

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name: Sony Mobile Communications Inc. 4-12-3 Higashi-Shinagawa Shinagawa-ku Tokyo, 140-0002, Japan Date of Testing: 08/23/20 - 09/16/20 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 1M2007070106-04-R1.PY7

FCC ID: PY7-57441Y

APPLICANT: SONY MOBILE COMMUNICATIONS INC.

DUT Type: Portable Handset Application Type: Certification
FCC Rule Part(s): CFR §2.1093

Equipment	s Band & Mode IX Frequency _		SAR				
Class			1g Head (W/kg)	1g Body- Worn (W/kg)	1g Hotspot (W/kg)	10g Phablet (W/kg)	
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.16	0.24	0.21	N/A	
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	0.10	0.24	0.36	N/A	
PCE	UMTS 850	826.40 - 846.60 MHz	0.25	0.38	0.38	N/A	
PCE	UMTS 1750	1712.4 - 1752.6 MHz	< 0.1	< 0.1	0.13	N/A	
PCE	UMTS 1900	1852.4 - 1907.6 MHz	< 0.1	0.11	0.14	N/A	
PCE	LTE Band 12	699.7 - 715.3 MHz	0.22	0.29	0.30	N/A	
PCE	LTE Band 17	706.5 - 713.5 MHz	N/A	N/A	N/A	N/A	
PCE	LTE Band 13	779.5 - 784.5 MHz	0.19	0.28	0.28	N/A	
PCE	LTE Band 26 (Cell)	814.7 - 848.3 MHz	0.21	0.30	0.30	N/A	
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	N/A	N/A	N/A	N/A	
PCE	LTE Band 66 (AWS)	1710.7 - 1779.3 MHz	< 0.1	< 0.1	0.14	N/A	
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	N/A	N/A	N/A	N/A	
PCE	LTE Band 25 (PCS)	1850.7 - 1914.3 MHz	< 0.1	0.13	0.17	N/A	
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	N/A	N/A	N/A	N/A	
PCE	LTE Band 7	2502.5 - 2567.5 MHz	< 0.1	< 0.1	< 0.1	N/A	
CBE	LTE Band 48	3552.5 - 3697.5 MHz	< 0.1	< 0.1	< 0.1	N/A	
PCE	LTE Band 41	2498.5 - 2687.5 MHz	< 0.1	< 0.1	< 0.1	N/A	
PCE	NR Band n5 (Cell)	826.5 - 846.5 MHz	< 0.1	0.13	0.13	N/A	
PCE	NR Band n66 (AWS)	1712.5 - 1777.5 MHz	< 0.1	< 0.1	< 0.1	N/A	
PCE	NR Band n2 (PCS)	1852.5 - 1907.5 MHz	< 0.1	< 0.1	< 0.1	N/A	
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.27	< 0.1	< 0.1	N/A	
NII	U-NII-1	5180 - 5240 MHz	N/A	N/A	N/A	N/A	
NII	U-NII-2A	5260 - 5320 MHz	0.23	< 0.1	N/A	0.23	
NII	U-NII-2C	5500 - 5720 MHz	0.41	< 0.1	N/A	0.20	
NII	U-NII-3	5745 - 5825 MHz	0.47	< 0.1	N/A	0.19	
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.36	< 0.1	0.12	N/A	
Simultaneou	s SAR per KDB 690783 DO	er KDB 690783 D01v01r03: 1.10 0.58 0.50			0.44		

Note: This revised Test Report (S/N: 1M2007070106-04-R1.PY7) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: PY7-57441Y	Poud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 4 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 1 of 129

© 2020 PCTEST.

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE AND	NR INFORMATION	15
3	INTROD	UCTION	17
4	DOSIME	TRIC ASSESSMENT	18
5	DEFINIT	ION OF REFERENCE POINTS	19
6	TEST CO	ONFIGURATION POSITIONS	20
7	RF EXPO	OSURE LIMITS	24
8	FCC ME	ASUREMENT PROCEDURES	25
9	RF CON	DUCTED POWERS	31
10	SYSTEM	I VERIFICATION	86
11	SAR DA	ΓA SUMMARY	91
12	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	111
13	SAR ME	ASUREMENT VARIABILITY	124
14	EQUIPM	ENT LIST	125
15	MEASUF	REMENT UNCERTAINTIES	126
16	CONCLU	JSION	127
17	REFERE	NCES	128
APPEN	IDIX A: IDIX B: IDIX C:	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS SAR TISSUE SPECIFICATIONS	
APPEN	IDIX D:	SAR SYSTEM VALIDATION	
APPEN	IDIX E:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
APPEN	IDIX F: IDIX G: IDIX H: IDIX I:	DOWNLINK LTE CA RF CONDUCTED POWERS POWER REDUCTION VERIFICATION 802.11ax RU SAR EXCLUSION PROBE AND DIPOLE CALIBRATION CERTIFICATES	

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Domo 2 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 2 of 129

1.1 **Device Overview**

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 17	Voice/Data	706.5 - 713.5 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 7	Voice/Data	2502.5 - 2567.5 MHz
LTE Band 48	Voice/Data	3552.5 - 3697.5 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
U-NII-1	Data	5180 - 5240 MHz
U-NII-2A	Data	5260 - 5320 MHz
U-NII-2C	Data	5500 - 5720 MHz
U-NII-3	Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz
NR Band n5 (Cell)	Data	826.5 - 846.5 MHz
NR Band n66 (AWS)	Data	1712.5 - 1777.5 MHz
NR Band n2 (PCS)	Data	1852.5 - 1907.5 MHz
NFC	Data	13.56 MHz
NR Band n260	Data	37000 - 40000 MHz
NR Band n261	Data	27500 - 28350 MHz

Time-Averaging Algorithm for RF Exposure Compliance 1.2

The equipment under test (EUT) contains:

a. Qualcomm® SDX55M modem supporting 2G/3G/4G/5G NR WWAN technologies

Qualcomm® SDX55M modem is enabled with Qualcomm® Smart Transmit feature. This feature performs time averaging algorithm in real time to control and manage transmitting power and ensure the time-averaged RF exposure is in compliance with FCC requirements all the time. Refer to Compliance Summary document for detailed description of Qualcomm® Smart Transmit feature (report SN could be found in Section 1.11 -Bibliography).

	FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager			
	Document S/N:	Test Dates:	DUT Type:		D 0 -4400			
	1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 3 of 129			
© 202	2020 PCTEST.							

09/11/2019

Note that WLAN operations are not enabled with Smart Transmit.

The Smart Transmit algorithm maintains the time-averaged transmit power, in turn, time-averaged RF exposure of SAR design target or PD design target, below the predefined time-averaged power limit (i.e., P_{limit} for sub-6 radio, and input.power.limit for 5G mmW NR), for each characterized technology and band (see RF Exposure Part 0 Test Report, report SN could be found in Section 1.11 - Bibliography).

Smart Transmit allows the device to transmit at higher power instantaneously, as high as P_{max} , when needed, but enforces power limiting to maintain time-averaged transmit power to Plimit. Below table shows Plimit EFS settings and maximum tune up output power P_{max} configured for this EUT for various transmit conditions (Device State Index DSI). Note that the device uncertainty for sub-6GHz WWAN is 1.0dB for this EUT.

Exposure Scenario:		Head	Body-Worn	Phablet	Hotspot
Averaging Volume:		1g	1g	10g	1g
Spacing:		0 mm	10 mm	0 mm	10 mm
DSI:			5		6
Technology/Band	Antenna		Plin	nit	
GSM/GPRS/EDGE 850 MHz	1		23.3		23.3
GSM/GPRS/EDGE 1900 MHz	1		18.3		18.3
UMTS B5	1		24.0		24.0
UMTS B4	1	16.0			16.0
UMTS B2	1	16.0			16.0
LTE FDD B12	1	24.0			24.0
LTE FDD B13	1	24.0			24.0
LTE FDD B17	1		24.0		24.0
LTE FDD B5	1		24.0		24.0
LTE FDD B26	1		24.0		24.0
LTE FDD B66/B4	1		16.0		16.0
LTE FDD B25/2	1		16.0		16.0
LTE FDD B7	1		16.0		16.0
LTE TDD B48	2	12.0			12.0
LTE TDD B41	1	12.0			12.0
NR FDD n5	1	24.0			24.0
NR FDD n66	1	16.0			16.0
NR FDD n2	1		16.0		16.0

^{*}Note all P_{limit} EFS and maximum tune up output power P_{max} levels entered in above Table correspond to average power levels after accounting for duty cycle in the case of TDD modulation schemes (for e.g., GSM & LTE TDD).

The maximum time-averaged output power (dBm) for any 2G/3G/4G/5G Sub6 WWAN technology, band, and DSI = minimum of " P_{limit} EFS" and "Maximum tune up output power P_{max} " + 1dB device uncertainty. SAR values in this report were scaled to this maximum time-averaged output power to determine compliance per KDB Publication 447498 D01v06.

The purpose of this report (Part 1 test) is to demonstrate that the EUT meets FCC SAR limits when transmitting in static transmission scenario at maximum allowable time-averaged power levels.

	FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dana 4 - 6400	
	1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 4 of 129	
© 202	20 PCTEST.				REV 21.4 M	

^{*}Maximum tune up output power P_{max} is used to configure EUT during RF tune up procedure. The maximum allowed output power is equal to maximum Tune up output power + 1dB device design uncertainty.

Measurement Condition: All conducted power and SAR measurements in this report (Part 1 test) were performed by setting Reserve_power_margin (Smart Transmit EFS entry) to 0dB.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

1.3.1 2G/3G/4G/5G Output Power

For this device, Only DSI = 5/6 conditions are applicable for SAR for this device. Therefore, only those targets are listed below per manufacturer request.

	GSM/GPRS/EDGE 850									
Power Level	Voice Data - Burst Average GMSK (in dBm) Data - Burst Average 8-PSK (in dBm)			Data - Burst Average GMSK (in dBm)		ige 8-PSK (in d	Bm)			
		1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots
Max (DSI = 5 or 6)	Max allowed power	33.2	33.2	30.2	28.4	27.2	28.0	26.5	24.5	23.5
Max (DSI = 5 or 6) Nominal		32.5	32.5	29.5	27.7	26.5	27.0	25.5	23.5	22.5
GSM/GPRS/EDGE 1900										
Power Level	Mode / Band	Voice Data - Burst Average GMSK (in dBm) Data - Burst Average 8-PSK (in dBm)				Data - Burst Average GMSK (in dBm)		Bm)		
		1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots
Body-worn, Head, Phablet	Max allowed power	28.2	28.2	25.2	23.4	22.2	27.0	25.5	23.5	22.5
(DSI = 5)	Nominal	27.5	27.5	24.5	22.7	21.5	26.0	24.5	22.5	21.5
Hotopot (DSI = 6)	Max allowed power	28.2	28.2	25.2	23.4	22.2	27.0	25.5	23.5	22.5
Hotspot (DSI = 6)	Nominal	27.5	27.5	24.5	22.7	21.5	26.0	24.5	22.5	21.5

For GSM, the above powers listed are GSM burst average values.

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 5 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 5 of 129

	UMTS Band	d 5 (850 MH	lz)			
		Modulated Average Output Power (in dBm)				
Power Level	Mode / Band	3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6	3GPP DC-HSDPA Rel 8	
Max (DSI = 5 or 6)	Max allowed power	24.7	24.0	24.0	24.0	
IVIAX (D3I = 3 01 0)	Nominal	24.0	23.0	23.0	23.0	
	UMTS Band	4 (1750 MI	Hz)			
		Modulated Average Output Power (in dBm)				
Power Level	Mode / Band	3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6	3GPP DC-HSDPA Rel 8	
Body-worn, Head, Phablet	Max allowed power	16.7	16.0	16.0	16.0	
(DSI = 5)	Nominal	16.0	15.0	15.0	15.0	
Hotspot (DSI = 6)	Max allowed power	16.7	16.0	16.0	16.0	
Hotspot (D3I = 0)	Nominal	16.0	15.0	15.0	15.0	
	UMTS Band	2 (1900 MI	Hz)			
		Мо		ge Output Pov IBm)	wer	
Power Level	Mode / Band	3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6	3GPP DC-HSDPA Rel 8	
Body-worn, Head, Phablet	Max allowed power	16.7	16.0	16.0	16.0	
(DSI = 5)	Nominal	16.0	15.0	15.0	15.0	
Hotspot (DSI = 6)	Max allowed power	16.7	16.0	16.0	16.0	
ווטנאטנ (ניטו – ט)	Nominal	16.0	15.0	15.0	15.0	

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 6 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 6 of 129

		Modulated Average O	utput Power (in dBm)
Mode / Band		Body-worn, Head, Phablet (DSI = 5)	Hotspot (DSI = 6)
LTE FDD Band 12	Max allowed power	25.0	25.0
LIE FUU Ballu 12	Nominal	24.0	24.0
LTE FDD Band 17	Max allowed power	25.0	25.0
LIE FDD Ballu 17	Nominal	24.0	24.0
LTE FDD Band 13	Max allowed power	25.0	25.0
LIE FUU Ballu 13	Nominal	24.0	24.0
LTE FDD Band 26	Max allowed power	25.0	25.0
LTE FDD Ballu 20	Nominal	24.0	24.0
LTE FDD Band 5	Max allowed power	25.0	25.0
LIE FUU Ballu 5	Nominal	24.0	24.0
LTE FDD Band 66	Max allowed power	17.0	17.0
LIE FDD Ballu 00	Nominal	16.0	16.0
LTE FDD Band 4	Max allowed power	17.0	17.0
LTE FDD Ballu 4	Nominal	16.0	16.0
LTE FDD Band 2	Max allowed power	17.0	17.0
LTE FDD Ballu Z	Nominal	16.0	16.0
LTE FDD Band 25	Max allowed power	17.0	17.0
LIE FDD Ballu 25	Nominal	16.0	16.0
LTE CDD Band 7	Max allowed power	17.0	17.0
LTE FDD Band 7	Nominal	16.0	16.0
LTE TDD Band 48	Max allowed power	15.0	15.0
LIE IDD Ballu 40	Nominal	14.0	14.0
LTE TDD Band 41 (PC3)	Max allowed power	15.0	15.0
LIL IDD Ballu 41 (PC3)	Nominal	14.0	14.0

For LTE TDD, the above powers listed are TDD burst average values.

		Modulated Average Output Power (in dBm)				
Mode / Band		Body-worn, Head, Phablet (DSI = 5)	Hotspot (DSI = 6)			
NR FDD Band n5	Max allowed power	25.0	25.0			
INK FUU Ballu IIS	Nominal	24.0	24.0			
NR FDD Band n66	Max allowed power	17.0	17.0			
INK FUU Ballu 1100	Nominal	16.0	16.0			
ND CDD Band n2	Max allowed power	17.0	17.0			
NR FDD Band n2	Nominal	16.0	16.0			

FCC ID: PY7-5744	1Y :	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Tes	st Dates:	DUT Type:		Dog 7 of 120
1M2007070106-04-	R1.PY7 08/	23/20 - 09/16/20	Portable Handset		Page 7 of 129

1.3.2 2.4 GHz Maximum Bluetooth and SISO/MIMO WLAN Output Power

Note: Targets for 802.11ax RU operations can be found in Appendix H

		IEEE 802.11 (in dBm)			IEEE 802.11 (in dBm) Modulated Average - Single Tx Chain									
		Modulated Average - Single Tx Chain												
Mode	Band	Chain 0					ain 0		Mode	Band	Chain 1			
		b	g	n	ax (SU)			b	g	n	ax (SU)			
Maximu	m Power	Max	Max	Max	Max	Maximu	ım Power	Max	Max	Max	Max			
2.4 GHz WIFI	2.45 GHz	9.7	9.1	9.1	9.1	2.4 GHz WIFI	2.45 GHz	9.0	9.1	9.1	9.1			

		·	IEEE 802.11 (in dBm)					
		Modulated Average - MIMO						
Mode	Band		Chain 0 & Chair	11				
		g (CDD + STBC)	n (CDD + STBC, SDM)	ax (SU) (CDD + STBC, SDM)				
Maximu	m Power	Max	Max	Max				
2.4 GHz WIFI	2.45 GHz	9.1	9.1	9.1				

Note: In MIMO operations, each Chain 0 and Chain 1 transmits at maximum allowed powers as indicated above.

Bluetooth (in dBm)	
14.0	
·	
Bluetooth LE (in dBm)	

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 9 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 8 of 129

1.3.3 5 GHz Maximum SISO/MIMO WLAN Output Power

Note: Targets for 802.11ax RU operations can be found in Appendix H

	30.0 101	IEEE 802.11 (in dBm)									
		Mod	lulated Average		hain	Modulated Average - MIMO					
Mode	Band		Chain 0 8	& Chain 1		Chain 0 & Chain 1					
Wiode	Bana	а	n ac ax (SU) a (CDD + STBC)		a (CDD + STBC)	n (CDD + STBC, SDM)	ac (CDD + STBC, SDM)	ax (SU) (CDD + STBC, SDM)			
	Maximum wer	Max	Max	Max	Max	Max	Max	Max	Max		
	5200 MHz	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0		
5 GHz WIFI	5300 MHz	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0		
(20MHz BW)	5500 MHz	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0		
	5800 MHz	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0		
	5200 MHz		9.0	9.0	9.0		9.0	9.0	9.0		
5 GHz WIFI	5300 MHz		9.0	9.0	9.0		9.0	9.0	9.0		
(40MHz BW)	5500 MHz		9.0	9.0	9.0		9.0	9.0	9.0		
	5800 MHz		9.0	9.0	9.0		9.0	9.0	9.0		
	5200 MHz			9.0	9.0			9.0	9.0		
5 GHz WIFI	5300 MHz			9.0	9.0			9.0	9.0		
(80MHz BW)	5500 MHz			9.0	9.0			9.0	9.0		
	5800 MHz			9.0	9.0			9.0	9.0		

Note: In MIMO operations, each Chain 0 and Chain 1 transmits at maximum allowed powers as indicated above.

FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 0 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 9 of 129

PCTEST. REV 21.4 M 09/11/2019

1.4 DUT Antenna Locations

The overall dimensions of this device are $> 9 \times 5$ cm. A diagram showing the location of the device antennas can be found in Appendix E. Since the diagonal dimension of this device is > 160 mm and < 200 mm, it is considered a "phablet."

Table 1-1
Device Edges/Sides for SAR Testing

Device Edges/Sides for SAR Testing								
Mode	Back	Front	Тор	Bottom	Right	Left		
GPRS 850	Yes	Yes	No	Yes	No	Yes		
GPRS 1900	Yes	Yes	No	Yes	No	Yes		
UMTS 850	Yes	Yes	No	Yes	No	Yes		
UMTS 1750	Yes	Yes	No	Yes	No	Yes		
UMTS 1900	Yes	Yes	No	Yes	No	Yes		
LTE Band 12	Yes	Yes	No	Yes	No	Yes		
LTE Band 13	Yes	Yes	No	Yes	No	Yes		
LTE Band 26 (Cell)	Yes	Yes	No	Yes	No	Yes		
LTE Band 66 (AWS)	Yes	Yes	No	Yes	No	Yes		
LTE Band 25 (PCS)	Yes	Yes	No	Yes	No	Yes		
LTE Band 7	Yes	Yes	No	Yes	No	Yes		
LTE Band 48	Yes	Yes	No	Yes	Yes	No		
LTE Band 41	Yes	Yes	No	Yes	No	Yes		
NR Band n5 (Cell)	Yes	Yes	No	Yes	No	Yes		
NR Band n66 (AWS)	Yes	Yes	No	Yes	No	Yes		
NR Band n2 (PCS)	Yes	Yes	No	Yes	No	Yes		
2.4 GHz WLAN Ant 1	Yes	Yes	Yes	No	Yes	No		
2.4 GHz WLAN Ant 2	Yes	Yes	No	No	No	Yes		
5 GHz WLAN Ant 1	Yes	Yes	Yes	No	Yes	No		
5 GHz WLAN Ant 2	Yes	Yes	Yes	No	No	Yes		
Bluetooth	Yes	Yes	Yes	No	Yes	No		

Note: Particular DUT edges were not required to be evaluated for wireless router SAR or phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III and FCC KDB Publication 648474 D04v01r03. The distances between the transmit antennas and the edges of the device are included in the filing. When wireless router mode is enabled, 5 GHz WLAN operations are disabled.

1.5 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in Appendix E.

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 10 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 10 of 129

© 2020 PCTEST. REV 21.4

1.6 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Table 1-2
Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Phablet	Notes
1	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	Yes	
2	GSM voice + 5 GHz WI-FI	Yes	Yes	N/A	Yes	
3	GSM voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered
4	GSM voice + 2.4 GHz WI-FI MIMO	Yes	Yes	N/A	Yes	
5	GSM voice + 5 GHz WI-FI MIMO	Yes	Yes	N/A	Yes	
6	GSM voice + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered
7	GSM voice + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO	Yes	Yes	N/A	Yes	
8	GSM voice + 2.4 GHz Bluetooth + 5 GHz WI-FI MIMO	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered
9	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes	
10	UMTS + 5 GHz WI-FI	Yes	Yes	N/A	Yes	
11	UMTS + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
12	UMTS + 2.4 GHz WI-FI MIMO	Yes	Yes	Yes	Yes	Brackett Formatting to correlation
13	UMTS + 5 GHz WI-FI MIMO	Yes	Yes	N/A	Yes	
14	UMTS + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered
15	UMTS + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO	Yes	Yes	N/A	Yes	Diactoria i caroning to constants
16	UMTS + 2.4 GHz Bluetooth + 5 GHz WI-FI MIMO	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered
	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes	Diactoria i canomig to complactor
	LTE + 5 GHz WI-FI	Yes	Yes	N/A	Yes	
	LTE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
	LTE + 2.4 GHz WI-FI MIMO	Yes	Yes	Yes	Yes	Diagram Foundating to constant of
21	LTE + 5 GHz WI-FI MIMO	Yes	Yes	N/A	Yes	
	LTE + 2.4 GHz Bluetooth + 5 GHz WI-FI MIMO	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered
23	LTE + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered
24	LTE + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO	Yes	Yes	N/A	Yes	Diagram Foundating to continuored
	LTE + 5G NR	Yes	Yes	N/A	Yes	
	LTE + 5 GHz WI-FI + 5G NR	Yes	Yes	N/A	Yes	
	LTE + 2.4 GHz WI-FI + 5G NR	Yes	Yes	Yes	Yes	
28	LTE + 2.4 GHz Bluetooth + 5G NR	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
29	LTE + 2.4 GHz WI-FI MIMO + 5G NR	Yes	Yes	Yes	Yes	Biddledin retileting to considered
	LTE + 5 GHz WI-FI MIMO + 5G NR	Yes	Yes	N/A	Yes	
31	LTE + 2.4 GHz Bluetooth + 5 GHz WI-FI + 5G NR	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered
32	LTE + 2.4 GHz Bluetooth + 5 GHz WI-FI MIMO + 5G NR	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered
	LTE + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO + 5G NR	Yes	Yes	N/A	Yes	Diactoon Tetricing is considered
34	GPRS/EDGE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	Yes	* DTM applications are considered
35	GPRS/EDGE + 5 GHz WI-FI	Yes*	Yes*	N/A	Yes	* DTM applications are considered
- 55	CI NO/EDGE 1 3 GHZ WITT	103	103	14/74	103	* DTM applications are considered
36	GPRS/EDGE + 2.4 GHz Bluetooth	Yes*^	Yes*	Yes^	Yes	^ Bluetooth Tethering is considered
37	GPRS/EDGE + 2.4 GHz WI-FI MIMO	Yes*	Yes*	Yes	Yes	* DTM applications are considered
38	GPRS/EDGE + 5 GHz WI-FI MIMO	Yes*	Yes*	N/A	Yes	* DTM applications are considered
39	GPRS/EDGE + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes*^	Yes*	N/A	Yes	* DTM applications are considered ^ Bluetooth Tethering is considered
40	GPRS/EDGE + 2.4 GHz WI-FI MIMO + 5 GHz WI-FI MIMO	Yes*	Yes*	N/A	Yes	* DTM applications are considered
						* DTM applications are considered
41	GPRS/EDGE + 2.4 GHz Bluetooth + 5 GHz WI-FI MIMO	Yes*^	Yes*	N/A	Yes	^Bluetooth Tethering is considered

- 1. 2.4 GHz WLAN and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.

	FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT SONY		Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dage 11 of 120	
	1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 11 of 129	
© 202	2020 PCTEST.					

- 4. Per the manufacturer, WIFI Direct is not expected to be used in conjunction with a held-to-ear or bodyworn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 5. 5 GHz Wireless Router is not supported by S/W, therefore U-NII-1, U-NII2A, U-NII2C, and U-NII-3 were not evaluated for wireless router conditions.
- 6. This device supports 2x2 MIMO Tx for WLAN 802.11a/g/n/ac/ax. 802.11a/g/n/ac/ax supports CDD and STBC and 802.11n/ac/ax additionally supports SDM. Each WLAN antenna can transmit independently or together when operating with MIMO.
- 7. This device supports Bluetooth Tethering.
- 8. This device supports VoLTE.
- LTE + 5G NR FR1 Scenarios are limited to EN-DC combinations with anchor bands as shown in the NR FR1 checklist.
- 10. 5G NR FR2 n260 and n261 cannot transmit simultaneously.
- 11. LTE + 5G NR FR2 Scenarios are limited to EN-DC combinations with anchor bands as shown in the NR FR2 checklist.

1.7 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-1, U-NII-2A, U-NII-2C, & U-NII-3 WIFI, only 2.4 GHz WLAN, and 2.4 GHz Bluetooth Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02r01.

This device supports IEEE 802.11ax with the following features:

- a) Up to 80 MHz Bandwidth only for 5 GHz
- b) Up to 20 MHz Bandwidth only for 2.4 GHz
- c) No aggregate channel configurations
- d) 2 Tx antenna output
- e) Up to 1024 QAM is supported
- f) TDWR and Band gap channels are supported for 5 GHz
- g) MU-MIMO UL Operations are not supported

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Because wireless router operations are not supported for 5 GHz WLAN, phablet SAR tests were performed. Phablet SAR was not evaluated for 2.4 GHz WLAN, and 2.4 GHz Bluetooth operations since wireless router 1g SAR was < 1.2 W/kg.

Per April 2019 TCB Workshop Notes, SAR testing was not required for 802.11ax when applying the initial test configuration procedures of KDB 248227, with 802.11ax considered a higher order 802.11 mode.

FCC ID: PY7-57441Y	Proud to be part of @element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 42 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 12 of 129

PCTEST. REV 21.4 M 09/11/2019

(B) Licensed Transmitter(s)

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE Carrier Aggregation (CA) in the downlink. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive. The downlink carrier aggregation exclusion analysis can be found in Appendix F.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg.

This device supports downlink 4x4 MIMO operations for some LTE Bands. Per May 2017 TCB Workshop Notes, SAR for 4x4 DL MIMO was not needed since the maximum average output power in 4x4 DL MIMO mode was not more than 0.25 dB higher than the maximum output power with 4x4 DL MIMO inactive. Additionally, SAR for 4x4 MIMO Downlink Carrier Aggregation was not needed since the maximum average output power in 4x4 MIMO Downlink Carrier Aggregation mode was not more than 0.25 dB higher than the maximum output power with 4x4 MIMO Downlink and downlink carrier aggregation inactive.

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

This device supports 5G NR for Bands n260, and n261. RF Exposure assessment and simultaneous transmission analysis for these bands can be found in the Near Field PD Report (report SN can be found in Section 1.11 – Bibliography).

NR implementation is limited to EN-DC operations only, with the LTE Bands shown in the NR FR1 checklist acting as anchor bands. Per FCC guidance, SAR tests for NR Bands and LTE anchors bands were performed separately due to limitations in SAR probe calibration factors. Please see Section 11 for more details.

1.8 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D04v01r03 (Phablet Procedures)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)
- May 2017 TCB Workshop Notes (LTE 4x4 Downlink MIMO)
- April 2018 TCB Workshop Notes (LTE Carrier Aggregation)
- April 2019 TCB Workshop Notes (IEEE 802.11ax)

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 12 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 13 of 129

1.9 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

1.10 Bibliography

Report Type	Report Serial Number
PD Exposure Part 0 Test Report	Revision B.
Near Field PD Report (Part 1)	1M2007070106-01-R1.PY7
RF Exposure Part 0 Test Report	Revision B
RF Exposure Part 2 Test Report	1M2007070106-02.PY7
RF Exposure Compliance Summary Report	1M2007070106-03.PY7

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 44 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 14 of 129

	L	TE Information					
orm Factor			Portable Handset				
requency Range of each LTE transmission band			Band 12 (699.7 - 715.3 Band 17 (706.5 - 713.5				
		LTE	Band 13 (779.5 - 784.5	MHz)			
			nd 26 (Cell) (814.7 - 84				
		LTE Band 5 (Cell) (824.7 - 848.3 MHz) LTE Band 66 (AWS) (1710.7 - 1779.3 MHz)					
		LTE Band 66 (AWS) (1710.7 - 1779.3 MHz) LTE Band 4 (AWS) (1710.7 - 1754.3 MHz)					
		LTE Band	1 25 (PCS) (1850.7 - 19	114.3 MHz)			
	LTE Band 2 (PCS) (1850.7 - 1909.3 MHz)						
			Band 7 (2502.5 - 2567.5 tand 48 (3552.5 - 3697				
		LTE Band 48 (3552.5 - 3697.5 MHz) LTE Band 41 (2498.5 - 2687.5 MHz)					
		LTE B	and 38 (2572.5 - 2617. 12: 1.4 MHz, 3 MHz, 5 N	5 MHz)			
nannel Bandwidths			E Band 17: 5 MHz, 10 f				
		LT	E Band 13: 5 MHz, 10 N	ИHz			
		LTE Band 26 (Cell)): 1.4 MHz, 3 MHz, 5 Mi Cell): 1.4 MHz, 3 MHz, !	Hz, 10 MHz, 15 MHz			
			4 MHz, 3 MHz, 5 MHz,		-lz		
		LTE Band 4 (AWS): 1.4	4 MHz, 3 MHz, 5 MHz, 1	0 MHz, 15 MHz, 20 MH	k		
	L	TE Band 25 (PCS): 1.4	4 MHz, 3 MHz, 5 MHz, 1	10 MHz, 15 MHz, 20 MH	łz		
			MHz, 3 MHz, 5 MHz, 1 7: 5 MHz, 10 MHz, 15 N		2		
			8: 5 MHz, 10 MHz, 15 I				
			1: 5 MHz, 10 MHz, 15 I				
nannel Numbers and Frequencies (MHz)	Low	LIE Band 3	8: 5 MHz, 10 MHz, 15 Mid	Mid-High	High		
E Band 12: 1.4 MHz		(23017)	707.5 (23095)		(23173)		
E Band 12: 3 MHz	700.5	(23025)	707.5 (23095)		(23165)		
Band 12: 5 MHz		(23035)	707.5 (23095)		(23155)		
E Band 12: 10 MHz E Band 17: 5 MHz		23060)	707.5 (23095) 710 (23790)		23130)		
E Band 17: 5 MHz		(23755) 23780)	710 (23790)		(23825) 23800)		
Band 13: 5 MHz		(23205)	782 (23230)	784.5	(23255)		
E Band 13: 10 MHz	N	VA .	782 (23230)	N	VA .		
E Band 26 (Cell): 1.4 MHz E Band 26 (Cell): 3 MHz		(26697)	831.5 (26865)		(27033)		
E Band 26 (Cell): 3 MHz E Band 26 (Cell): 5 MHz		(26705) (26715)	831.5 (26865) 831.5 (26865)		(27025) (27015)		
E Band 26 (Cell): 10 MHz		26740)	831.5 (26865)		26990)		
E Band 26 (Cell): 15 MHz	821.5	(26765)	831.5 (26865)	841.5 (26965)			
E Band 5 (Cell): 1.4 MHz		(20407)	836.5 (20525)	848.3 (20643) 847.5 (20635)			
E Band 5 (Cell): 3 MHz E Band 5 (Cell): 5 MHz		(20415) (20425)	836.5 (20525) 836.5 (20525)		(20635)		
E Band 5 (Cell): 10 MHz		20450)	836.5 (20525)		20600)		
E Band 66 (AWS): 1.4 MHz	1710.7 (131979)		1745 (132322)		(132665)		
E Band 66 (AWS): 3 MHz	1711.5 (131987)		1745 (132322)		(132657)		
E Band 66 (AWS): 5 MHz	1712.5 (131997)		1745 (132322)				
E Band 66 (AWS): 10 MHz E Band 66 (AWS): 15 MHz		132022) (132047)	1745 (132322) 1745 (132322)		(132527)		
E Band 66 (AWS): 20 MHz		132072)	1745 (132322)				
E Band 4 (AWS): 1.4 MHz		(19957)	1732.5 (20175)	1754.3 (20393)			
E Band 4 (AWS): 3 MHz E Band 4 (AWS): 5 MHz	1711.5	(19965)	1732.5 (20175)	1753.5 (20385)			
E Band 4 (AWS): 5 MHz		(19975)	1732.5 (20175) 1732.5 (20175)	1752.5 (20375) 1750 (20350)			
E Band 4 (AWS): 15 MHz		(20025)	1732.5 (20175)		(20325)		
E Band 4 (AWS): 20 MHz		20050)	1732.5 (20175)		20300)		
E Band 25 (PCS): 1.4 MHz		(26047)	1882.5 (26365)		(26683)		
E Band 25 (PCS): 3 MHz E Band 25 (PCS): 5 MHz		(26055)	1882.5 (26365) 1882.5 (26365)		(26675)		
E Band 25 (PCS): 10 MHz		(26090)	1882.5 (26365)		26640)		
E Band 25 (PCS): 15 MHz	1857.5	(26115)	1882.5 (26365)	1907.5	(26615)		
E Band 25 (PCS): 20 MHz		26140)	1882.5 (26365)		26590)		
E Band 2 (PCS): 1.4 MHz E Band 2 (PCS): 3 MHz		(18607) (18615)	1880 (18900) 1880 (18900)		(19193) (19185)		
E Band 2 (PCS): 5 MHz		(18625)	1880 (18900)		(19175)		
E Band 2 (PCS): 10 MHz	1855 (18650)	1880 (18900)	1905 (19150)		
Band 2 (PCS): 15 MHz		(18675)	1880 (18900)		(19125)		
E Band 2 (PCS): 20 MHz E Band 7: 5 MHz		(20775)	1880 (18900) 2535 (21100)		19100) (21425)		
E Band 7: 10 MHz		(20773)	2535 (21100)		21400)		
E Band 7: 15 MHz	2507.5	(20825)	2535 (21100)	2562.5	(21375)		
E Band 7: 20 MHz		20850)	2535 (21100) N/A		21350)		
E Band 48: 5 MHz E Band 48: 10 MHz	3552.5 (55265) 3555 (55290)	3600.8 (55748) 3601.7 (55757)	N/A N/A	3649.2 (56232) 3648.3 (56223)	3697.5 (56715 3695 (56690)		
E Band 48: 15 MHz	3557.5 (55315)	3602.5 (55765)	N/A	3647.5 (56215)	3692.5 (56665		
E Band 48: 20 MHz	3560 (55340)	3603.3 (55773)	N/A	3646.7 (56207)	3690 (56640)		
E Band 41: 5 MHz E Band 41: 10 MHz	2506 (39750) 2506 (39750)	2549.5 (40185) 2549.5 (40185)	2593 (40620) 2593 (40620)	2636.5 (41055) 2636.5 (41055)	2680 (41490) 2680 (41490)		
E Band 41: 10 MHz E Band 41: 15 MHz	2506 (39750)	2549.5 (40185) 2549.5 (40185)	2593 (40620)	2636.5 (41055) 2636.5 (41055)	2680 (41490)		
Band 41: 20 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)		
Band 38: 5 MHz		(37775)	2595 (38000)		(38225)		
E Band 38: 10 MHz E Band 38: 15 MHz	2575 ((37800) (37825)	2595 (38000) 2595 (38000)	2615 ((38200)		
E Band 38: 15 MHz		(37825)	2595 (38000) 2595 (38000)		(38175)		
Category	2000 (DI	UE Cat 20, UL UE Car	13			
dulations Supported in UL	ļ -		QPSK, 16QAM, 64QAM		-		
E MPR Permanently implemented per 3GPP TS			YES				
101 section 6.2.3~6.2.5? (manufacturer attestation be provided)			150				
MPR (Additional MPR) disabled for SAR Testing?			YES				
E Carrier Aggregation Possible Combinations	The te	chnical description incl	udes all the possible car	rrier aggregation combi	nations		
Additional Information							
E Additional Information	MIMO, LAA features a	s shown in Section 9 a	res on 3GPP Release 1 and Appendix F. All upling the done on the PCC. The		identical to the Rele		

FCC ID: PY7-57441Y	PCTEST* Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 45 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 15 of 129
120 DCTEST				DEV/ 21 / M

	NR	Information				
Form Factor		Portable Handset				
		NR Bar	nd n5 (Cell) (826.5 - 846	i.5 MHz)		
		NR Band	n66 (AWS) (1712.5 - 17	777.5 MHz)		
	NR Band n2 (PCS) (1852.5 - 1907.5 MHz)					
	NR Band n5 (Cell): 5 MHz, 10 MHz, 15 MHz, 20 MHz					
	NR Band n66 (AWS): 5 MHz, 10 MHz, 15 MHz, 20 MHz					
		NR Band n2 (F	PCS): 5 MHz, 10 MHz, 1	5 MHz, 20 MHz		
Channel Numbers and Frequencies (MHz)	Low	Low-Mid	Mid	Mid-High	High	
NR Band n5 (Cell): 5 MHz	826.5 (165300)	836.5 (167300)	846.5 (169300)	
NR Band n5 (Cell): 10 MHz	829 (1	65800)	836.5 (167300)	844 (1	168800)	
NR Band n5 (Cell): 15 MHz	831.5 (166300)	836.5 (167300)	841.5 (168300)	
NR Band n5 (Cell): 20 MHz	834 (1	66800)	836.5 (167300)	839 (1	167800)	
NR Band n66 (AWS): 5 MHz	1712.5	(342500)	1745 (349000)	1777.5	(355500)	
NR Band n66 (AWS): 10 MHz	1715 (343000)	1745 (349000)	1775 (355000)	
NR Band n66 (AWS): 15 MHz	1717.5	(343500)	1745 (349000)	1772.5	(354500)	
NR Band n66 (AWS): 20 MHz	1720 (344000)	1745 (349000)	1770 (354000)	
NR Band n2 (PCS): 5 MHz	1852.5	(370500)	1880 (376000)	1907.5	(381500)	
NR Band n2 (PCS): 10 MHz	1855 (371000)	1880 (376000)	1905 (381000)	
NR Band n2 (PCS): 15 MHz	1857.5	(371500)	1880 (376000)	1902.5	(380500)	
NR Band n2 (PCS): 20 MHz	1860 (372000)	1880 (376000)	1900 (380000)	
SCS for NR Band n5/n66/n2			15 kHz			
Modulations Supported in UL			2 BPSK, QPSK, 16QAM I: QPSK, 16QAM, 64QAI	, ,		
NR MPR Permanently implemented per 3GPP TS			YES			
A-MPR (Additional MPR) disabled for SAR Testing?			YES			
EN-DC Carrier Aggregation Possible Combinations	The te	chnical description incl	ludes all the possible car	rier aggregation combi	inations	
LTE Anchor Bands for NR Band n5			LTE Band 2/66			
LTE Anchor Bands for NR Band n66 (AWS)			LTE Band 5/13			
LTE Anchor Bands for NR Band n2 (PCS)			LTE Band 5/13			

FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 46 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 16 of 129

3

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 17 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 17 of 129

© 2020 PCTEST. REV 21.4 M 09/11/2019

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan	Maximum Zoom Scan	Max	imum Zoom So Resolution (Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{200m} , Δy _{200m})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
	alca yarcay	1 20011 7 200117	Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	, ,,, ,
≤ 2 GHz	≤ 15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤4	≤3	≤2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 48 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 18 of 129

© 2020 PCTEST. REV 21.4 I

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

Figure 5-3
Handset Vertical Center & Horizontal Line Reference Points

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 40 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 19 of 129

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

	FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 00 -f 400
	1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 20 of 129
© 202	0 PCTEST.				REV 21.4 M

09/11/2019

Figure 6-2 Front, Side and Top View of Ear/15º Tilt
Position

Figure 6-3
Side view w/ relevant markings

6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

Figure 6-4
Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Domo 24 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 21 of 129

© 2020 PCTEST. REV 21.4 09/11/20:

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

6.8 Phablet Configurations

For smart phones with a display diagonal dimension > 150 mm or an overall diagonal dimension > 160 mm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that

FCC ID: PY7-57441Y	Proud to be port of (® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 22 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 22 of 129
20 DCTEST				DE\/ 21.4 M

09/11/2019

support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04v01r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10g SAR. The UMPC mini-tablet 1g SAR at 5 mm is not required. When hotspot mode applies, 10g SAR is required only for the surfaces and edges with hotspot mode 1g SAR > 1.2 W/kg.

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 22 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 23 of 129

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS				
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)		
Peak Spatial Average SAR Head	1.6	8.0		
Whole Body SAR	0.08	0.4		
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20		

^{1.} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

	FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 04 -f 400
	1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 24 of 129
© 202	20 PCTEST.				REV 21.4 M

09/11/2019

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

thereof, please contact INFO@PCTEST.COM.

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

	FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 05 400
	1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 25 of 129
© 202	0 PCTEST.				REV 21.4 M

@ 9/11/2019 © 2020 PCTEST. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

8.4.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.4.6 SAR Measurement Conditions for DC-HSDPA

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

	FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 00 -f 400
	1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 26 of 129
© 202	0 PCTEST.				REV 21.4 M

REV 21.4 M 09/11/2019

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.</p>
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

8.5.5 TDD

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

8.5.6 Downlink Only Carrier Aggregation

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink

FCC ID: PY7-57441Y	Proud to be part of & element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 27 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 27 of 129
20 PCTEST				REV/ 21 / M

020 PCTEST. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopy

carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for downlink only carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.6.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47-5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60-5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

8.6.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission

FCC ID: PY7-57441Y	Poud to be part of @element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 28 of 129
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Fage 28 01 129
OO DOTEOT				DEV 04 4 M

© 2020 PCTEST. REV 21.4 09/11/201

mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n/ax OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.6 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. Per April 2019 TCB Workshop guidance, 802.11ax was considered the highest order 802.11 mode. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.6.7 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is \leq 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest

FCC ID: PY7-57441Y	Portest Proud to be part of Selement	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 20 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 29 of 129
20 PCTEST				REV/ 21 / M

PCTEST. REV 21.4 N

802.11 mode is considered for SAR measurements (See Section 8.6.6). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 20 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 30 of 129

9 RF CONDUCTED POWERS

All conducted power measurements for 2G/3G/4G/5G Sub6 WWAN technologies and bands in this section were performed by setting $Reserve_power_margin$ (Qualcomm® Smart Transmit EFS entry) to 0dB, so that the EUT transmits continuously at minimum (P_{limit} , maximum tune up output power P_{max}).

9.1 GSM Conducted Powers

Table 9-1 Measured P_{max}

	Maximum Burst-Averaged Output Power										
		Voice	GPRS/EDGE Data (GMSK)				EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot					EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	128	32.50	32.48	30.20	28.26	26.94	26.60	25.04	23.32	22.69	
GSM 850	190	32.43	32.41	30.20	28.34	27.17	26.85	25.00	23.48	22.38	
	251	32.27	32.25	30.11	28.27	27.07	26.71	25.12	23.15	22.24	

Calculated Maximum Frame-Averaged Output Power										
		Voice	GPRS/EDGE Data (GMSK)				EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	23.30	23.28	24.01	23.83	23.76	17.40	18.85	18.89	19.51
GSM 850	190	23.23	23.21	24.01	23.91	23.99	17.65	18.81	19.05	19.20
	251	23.07	23.05	23.92	23.84	23.89	17.51	18.93	18.72	19.06
GSM 850	Frame Avg.Targets:	23.30	23.30	23.31	23.27	23.32	17.80	19.31	19.07	19.32

FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dono 24 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 31 of 129

© 2020 PCTEST. REV 21.4 M 09/11/2019

Table 9-2

Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot)

	Maximum Burst-Averaged Output Power											
		Voice	GPRS/EDGE Data (GMSK)			EDGE Data (8-PSK)						
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot		
	512	26.74	26.84	23.51	21.85	20.71	25.89	24.22	22.11	21.04		
GSM 1900	661	26.73	26.85	23.56	21.88	20.73	26.15	24.52	22.33	21.41		
	810	26.84	26.77	23.52	21.73	20.54	25.83	24.24	21.97	20.94		

Calculated Maximum Frame-Averaged Output Power										
		Voice	GPRS/EDGE Data (GMSK)			EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	512	17.54	17.64	17.32	17.42	17.53	16.69	18.03	17.68	17.86
GSM 1900	661	17.53	17.65	17.37	17.45	17.55	16.95	18.33	17.90	18.23
	810	17.64	17.57	17.33	17.30	17.36	16.63	18.05	17.54	17.76
GSM 1900	Frame Avg.Targets:	18.30	18.30	18.31	18.27	18.32	16.80	18.31	18.07	18.32

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8-PSK modulation do not have an impact on output power.

GSM Class: A
GPRS Multislot class: 33 (Max 4 Tx uplink slots)
EDGE Multislot class: 33 (Max 4 Tx uplink slots)
DTM Multislot Class: N/A

Figure 9-1 Power Measurement Setup

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 22 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 32 of 129

9.2 **UMTS Conducted Powers**

Table 9-3 Measured Pmax

3GPP	Mode	3GPP 34.121	Cellu	lar Band [dBm]	3GPP MPR
Release Version	Mode	Subtest	4132	4183	4233	[dB]
99	WCDMA	12.2 kbps RMC	23.94	23.90	23.85	-
99	WCDIVIA	12.2 kbps AMR	23.88	23.86	23.84	-
6		Subtest 1	23.02	22.92	22.73	0
6	HSDPA	Subtest 2	23.01	22.89	22.91	0
6	ПООРА	Subtest 3	22.50	22.47	22.38	0.5
6		Subtest 4	22.49	22.46	22.38	0.5
6		Subtest 1	23.07	22.98	22.96	0
6		Subtest 2	21.07	21.01	20.97	2
6	HSUPA	Subtest 3	22.00	22.05	22.00	1
6		Subtest 4	21.08	21.02	20.99	2
6		Subtest 5	23.07	23.00	22.99	0
8		Subtest 1	22.99	23.01	22.97	0
8	DC-HSDPA	Subtest 2	23.04	22.98	22.95	0
8	DC-I ISDFA	Subtest 3	22.56	22.49	22.46	0.5
8		Subtest 4	22.57	22.46	22.44	0.5

Table 9-4 Measured Plimit for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot)

3GPP Release	Mode	3GPP 34.121 Subtest	AW	S Band [d	Bm]	PCS	6 Band [dl	Bm]	3GPP MPR [dB]
Version		Sublest	1312	1412	1513	9262	9400	9538	[ub]
99	WCDMA	12.2 kbps RMC	15.60	15.63	15.66	15.75	15.79	15.79	-
99	VVCDIVIA	12.2 kbps AMR	15.74	15.69	15.73	15.77	15.78	15.81	-
6		Subtest 1	14.90	14.93	14.91	15.07	15.10	15.00	0
6	HSDPA	Subtest 2	14.96	14.93	15.02	15.05	15.13	15.08	0
6	HODEA	Subtest 3	14.48	14.46	14.48	14.57	14.64	14.60	0.5
6		Subtest 4	14.39	14.51	14.55	14.59	14.69	14.62	0.5
6		Subtest 1	14.90	14.92	14.95	15.00	15.02	15.03	0
6		Subtest 2	12.89	12.90	12.96	13.01	13.04	13.03	2
6	HSUPA	Subtest 3	13.86	13.89	13.90	14.00	14.03	14.00	1
6		Subtest 4	12.89	12.91	12.96	13.01	13.04	13.03	2
6		Subtest 5	14.88	14.90	14.93	14.98	15.01	15.01	0
8		Subtest 1	14.93	14.86	14.91	15.02	14.89	15.06	0
8		Subtest 2	14.95	14.94	14.87	15.05	14.91	15.02	0
8	DC-HSDPA	Subtest 3	14.48	14.43	14.42	14.54	14.57	14.54	0.5
8		Subtest 4	14.44	14.36	14.41	14.53	14.57	14.54	0.5

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Domo 22 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 33 of 129

© 2020 PCTEST. REV 21.4 M

DC-HSDPA considerations

- 3GPP Specification 34.121-1 Release 8 Ver 8.10.0 was used for DC-HSDPA guidance
- H-Set 12 (QPSK) was confirmed to be used during DC-HSDPA measurements
- The DUT supports UE category 24 for HSDPA

Figure 9-2 Power Measurement Setup

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 24 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 34 of 129

9.3 LTE Conducted Powers

9.3.1 LTE Band 12

 $\label{eq:Table 9-5} \textbf{LTE Band 12 Measured P_{max} for all DSI - 10 MHz Bandwidth}$

			LTE Band 12 10 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power	00.1 [02]	
			[dBm]		
	1	0	24.15		0
	1	25	24.18	0	0
	1	49	24.07		0
QPSK	25	0	23.45		1
	25	12	23.44	0-1	1
	25	25	23.42	0-1	1
	50	0	23.40		1
	1	0	23.72		1
	1	25	23.77	0-1	1
	1	49	23.66		1
16QAM	25	0	22.11		2
	25	12	22.10	0-2	2
	25	25	22.09	0-2	2
	50	0	22.11		2
	1	0	22.39		2
	1	25	22.51	0-2	2
	1	49	22.45		2
64QAM	25	0	21.17		3
	25	12	21.10	0.2	3
	25	25	21.09	0-3	3
	50	0	21.11		3

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 05 -6400	
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 35 of 129

© 2020 PCTEST.

REV 21.4 M
09/11/2019

Table 9-6 I TF Band 12 Measured P. w for all DSI - 5 MHz Bandwidth

LIE Band 12 Measured P _{max} for all DSI - 5 MHZ Bandwidth LTE Band 12 LTE Band 12							
Modulation	RB Size	RB Offset	Low Channel	5 MHz Bandwidth Mid Channel	High Channel 23155	MPR Allowed per 3GPP [dB]	MPR [dB]
			23035 (701.5 MHz)	23095 (707.5 MHz)	(713.5 MHz)		
Conducted Power [dBm]							
	1	0	24.19	24.20	24.06	0	0
QPSK	1	12	24.17	24.03	23.93		0
	1	24	24.13	24.05	23.93		0
	12	0	23.66	23.50	23.48	0-1	1
	12	6	23.60	23.45	23.48		1
	12	13	23.56	23.48	23.39		1
	25	0	23.59	23.49	23.42		1
16QAM	1	0	23.75	23.40	23.25	0-1	1
	1	12	23.68	23.35	23.20		1
	1	24	23.58	23.34	23.14		1
	12	0	22.58	22.21	22.23	0-2	2
	12	6	22.51	22.18	22.22		2
	12	13	22.45	22.20	22.12		2
	25	0	22.31	22.20	22.16		2
64QAM	1	0	22.12	22.40	22.53	0-2	2
	1	12	22.75	22.35	22.51		2
	1	24	22.82	22.31	22.36		2
	12	0	20.87	21.16	21.30	0-3	3
	12	6	21.18	21.10	21.24		3
	12	13	21.31	21.07	21.19		3
	25	0	21.18	21.17	21.21		3

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 36 of 129	
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		

Table 9-7 LTE Band 12 Measured Pmax for all DSI - 3 MHz Bandwidth

			Daria 12 Micasa	LTE Band 12	or o will bar	idwidtii	
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23025 (700.5 MHz)	23095 (707.5 MHz)	23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.12	24.01	23.93		0
	1	7	24.10	23.95	23.82	0	0
	1	14	23.98	23.98	23.78		0
QPSK	8	0	23.54	23.48	23.40		1
	8	4	23.60	23.54	23.42	0-1	1
	8	7	23.51	23.44	23.35		1
	15	0	23.60	23.43	23.41		1
	1	0	23.55	23.32	23.73		1
	1	7	23.48	23.25	23.57	0-1	1
	1	14	23.46	23.23	23.51		1
16QAM	8	0	22.41	22.21	22.27		2
	8	4	22.39	22.26	22.27	0-2	2
	8	7	22.34	22.25	22.21	0-2	2
	15	0	22.37	22.10	22.16		2
	1	0	21.81	22.17	22.29		2
	1	7	22.02	22.16	22.20	0-2	2
	1	14	22.29	22.14	22.14		2
64QAM	8	0	20.74	21.19	21.27		3
	8	4	20.89	21.25	21.26	0-3	3
	8	7	21.03	21.19	21.19	0-3	3
	15	0	20.89	21.29	21.13		3

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 27 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 37 of 129

Table 9-8 LTE Band 12 Measured Pmax for all DSI - 1.4 MHz Bandwidth

				LTE Band 12 1.4 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 23017	Mid Channel 23095	High Channel 23173	MPR Allowed per	MPR [dB]
			(699.7 MHz)	(707.5 MHz) Conducted Power [dBm	(715.3 MHz)	3GPP [dB]	
	1	0	24.03	24.00	23.76		0
	1	2	24.07	24.14	23.74	1	0
	1	5	23.96	24.01	23.72	1 , 1	0
QPSK	3	0	24.05	23.92	23.82	0	0
	3	2	24.07	24.00	23.84	1	0
	3	3	24.02	23.96	23.76	0-1	0
	6	0	23.47	23.32	23.28		1
	1	0	23.27	23.26	23.20		1
	1	2	23.31	23.37	23.27		1
	1	5	23.25	23.34	23.18	0-1	1
16QAM	3	0	23.37	23.29	23.01]	1
	3	2	23.36	23.38	23.02		1
	3	3	23.31	23.33	22.96		1
	6	0	22.17	22.16	21.96	0-2	2
	1	0	21.54	22.46	22.25		2
	1	2	21.68	22.59	22.27		2
	1	5	21.61	22.43	22.25	0-2	2
64QAM	3	0	21.73	22.40	22.16	U-2	2
	3	2	21.86	22.46	22.19		2
	3	3	21.82	22.39	22.16		2
	6	0	20.63	21.03	21.10	0-3	3

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 29 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 38 of 129

LTE Band 13 9.3.2

Table 9-9 LTE Band 13 Measured P_{max} for all DSI - 10 MHz Bandwidth

			LTE Band 13 10 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	23230	23230	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	00:: [u2]	
	1	0	24.46		0
	1	25	24.34	0	0
	1	49	24.32		0
QPSK	25	0	23.48		1
	25	12	23.45	0-1	1
	25	25	23.51	0-1	1
	50	0	23.49		1
	1	0	23.61		1
	1	25	23.66	0-1	1
	1	49	23.52		1
16QAM	25	0	22.20		2
	25	12	22.21	0-2	2
	25	25	22.20	0-2	2
	50	0	22.20		2
	1	0	22.36		2
	1	25	22.28	0-2	2
	1	49	22.27		2
64QAM	25	0	20.83		3
	25	12	21.28	0-3	3
	25	25	21.29	0-3	3
	50	0	21.25		3

FCC ID: PY7-57441Y	Poud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 20 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 39 of 129

Table 9-10 LTE Band 13 Measured P_{max} for all DSI - 5 MHz Bandwidth

	LTE Band 13 5 MHz Bandwidth									
Modulation	RB Size	RB Offset	Mid Channel 23230 (782.0 MHz) Conducted Power	MPR Allowed per 3GPP [dB]	MPR [dB]					
			[dBm]							
	1	0	24.30		0					
	1	12	24.27	0	0					
	1	24	24.30		0					
QPSK	12	0	23.49		1					
	12	6	23.48	0-1	1					
	12	13	23.54	0-1	1					
	25	0	23.47		1					
	1	0	23.25		1					
	1	12	23.28	0-1	1					
	1	24	23.26		1					
16QAM	12	0	22.22		2					
	12	6	22.17	0-2	2					
	12	13	22.21	0-2	2					
	25	0	22.23		2					
	1	0	22.44		2					
	1	12	22.53	0-2	2					
	1	24	22.45		2					
64QAM	12	0	21.30		3					
	12	6	21.26	0-3	3					
	12	13	21.28	0-3	3					
	25	0	21.23		3					

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: PY7-57441Y	Poud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 40 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 40 of 129

© 2020 PCTEST.

9.3.3 LTE Band 26 (Cell)

	LTE Band 26 (Cell) Measured P _{max} for all DSI - 15 MHz Bandwidth LTE Band 26 (Cell)									
	15 MHz Bandwidth Mid Channel									
Modulation	RB Size	26865 MPR Allowed per		_	MPR [dB]					
	1	0	23.75		0					
	1	36	23.76	0	0					
	1	74	23.65		0					
QPSK	36	0	23.32		1					
	36	18	23.30	0-1	1					
	36	37	23.29	0-1	1					
	75	0	23.31		1					
	1	0	23.44		1					
	1	36	23.45	0-1	1					
	1	74	23.35		1					
16QAM	36	0	22.07		2					
	36	18	22.05	0-2	2					
	36	37	22.05	0-2	2					
	75	0	22.06		2					
	1	0	22.13		2					
	1	36	22.16	0-2	2					
	1	74	22.07		2					
64QAM	36	0	21.06		3					
	36	18	21.06	0.3	3					
	36	37	21.05	0-3	3					
	75	0	21.05		3					

Note: LTE Band 26 (Cell) at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 44 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 41 of 129

© 2020 PCTEST.

REV 21.4 M
09/11/2019

Table 9-12 I TE Band 26 (Cell) Measured P. for all DSI - 10 MHz Bandwidth

		LIE Dan	a 26 (Cell) Mea	sured P _{max} for all	1 DSI - 10 MITZ I	bandwidth				
	LTE Band 26 (Cell) 10 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	26740	26865	26990	MPR Allowed per	MPR [dB]			
			(819.0 MHz)	(831.5 MHz) Conducted Power [dBm	(844.0 MHz) 1	3GPP [dB]				
	1	0	24.07	23.93	23.86		0			
	1	25	23.90	23.90	23.72	0	0			
	1	49	23.93	23.90	23.68		0			
QPSK	25	0	23.16	22.97	22.99		1			
	25	12	23.15	23.09	22.97	1 04	1			
	25	25	23.04	23.00	22.93	0-1	1			
	50	0	23.14	23.05	22.93		1			
	1	0	22.96	23.27	23.05		1			
	1	25	22.82	23.21	22.97	0-1	1			
	1	49	22.77	23.16	22.91		1			
16QAM	25	0	21.93	21.79	21.81		2			
	25	12	21.90	21.88	21.76	0-2	2			
	25	25	21.81	21.79	21.78	0-2	2			
	50	0	21.85	21.75	21.65		2			
	1	0	21.80	21.79	21.94		2			
	1	25	21.64	21.77	21.99	0-2	2			
	1	49	21.60	21.82	21.78		2			
64QAM	25	0	21.00	20.80	20.79		3			
	25	12	20.98	20.86	20.78		3			
	25	25	20.86	20.80	20.73	0-3	3			
	50	0	20.87	20.83	20.71	1	3			

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 42 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 42 of 129

Table 9-13 LTE Band 26 (Cell) Measured P_{max} for all DSI - 5 MHz Bandwidth

				LTE Band 26 (Cell) 5 MHz Bandwidth			
Modulation	RB Size	3 Size RB Offset	Low Channel 26715	Mid Channel 26865	High Channel	MPR Allowed per	MPR [dB]
			(816.5 MHz)	(831.5 MHz) Conducted Power [dBm	(846.5 MHz)	3GPP [dB]	
	1	0	24.18	24.02	23.84		0
	1	12	24.10	24.04	23.81	0	0
	1	24	24.01	24.03	23.75		0
QPSK	12	0	23.22	23.06	23.00		1
	12	6	23.24	23.07	22.96	0-1	1
	12	13	23.11	23.01	22.86	0-1	1
	25	0	23.16	23.05	22.97		1
	1	0	23.04	23.11	22.84		1
	1	12	22.95	23.14	22.78	0-1	1
	1	24	22.81	23.10	22.83		1
16QAM	12	0	21.94	21.93	21.73		2
	12	6	21.93	21.96	21.72	0-2	2
	12	13	21.84	21.89	21.62	0-2	2
	25	0	21.91	21.73	21.75		2
	1	0	22.34	22.35	21.88		2
	1	12	22.21	22.39	21.81	0-2	2
	1	24	22.08	22.40	21.75		2
64QAM	12	0	21.03	20.78	20.64		3
	12	6	21.00	20.83	20.64	0-3	3
	12	13	20.87	20.79	20.54		3
	25	0	20.91	20.89	20.71		3

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 42 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 43 of 129

Table 9-14 LTE Band 26 (Cell) Measured P_{max} for all DSI - 3 MHz Bandwidth

				LTE Band 26 (Cell) 3 MHz Bandwidth			
Modulation	RB Size	ize RB Offset	Low Channel 26705	Mid Channel 26865	High Channel 27025	MPR Allowed per	MPR [dB]
			(815.5 MHz)	(815.5 MHz) (831.5 MHz) Conducted Power [dBm]	(847.5 MHz)	3GPP [dB]	
	1	0	24.08	23.88	23.87		0
	1	7	24.05	23.90	23.79	0	0
	1	14	23.91	23.93	23.74	1	0
QPSK	8	0	23.17	22.97	22.96		1
	8	4	23.20	23.06	22.96	0-1	1
	8	7	23.11	22.96	22.88		1
	15	0	23.19	23.03	22.91		1
	1	0	23.21	22.81	23.20		1
	1	7	23.10	22.80	23.14	0-1	1
	1	14	23.03	22.77	23.09		1
16QAM	8	0	21.98	21.73	21.80		2
	8	4	21.98	21.79	21.80	0-2	2
	8	7	21.90	21.76	21.71	0-2	2
	15	0	21.99	21.71	21.73		2
	1	0	22.24	21.66	21.80		2
	1	7	22.11	21.67	21.75	0-2	2
	1	14	22.04	21.76	21.71		2
64QAM	8	0	21.01	20.69	20.78		3
	8	4	20.98	20.78	20.80	0-3	3
	8	7	20.91	20.74	20.70	0-3	3
	15	0	20.90	20.87	20.65		3

FCC ID: PY7-57441Y	Pout to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 44 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 44 of 129

Table 9-15 LTE Band 26 (Cell) Measured Pmax for all DSI - 1.4 MHz Bandwidth

				LTE Band 26 (Cell) 1.4 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26697 (814.7 MHz)	Mid Channel 26865 (831.5 MHz)	High Channel 27033 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	23.97	23.81	23.67		0
	1	2	24.03	23.91	23.73		0
	1	5	23.90	23.82	23.65	0 0-1	0
QPSK	3	0	24.06	23.86	23.78		0
	3	2	24.06	23.95	23.85		0
	3	3	23.99	23.87	23.76		0
	6	0	23.10	22.92	22.80		1
	1	0	23.07	22.71	22.80	0-1	1
	1	2	23.13	22.82	22.88		1
	1	5	23.04	22.74	22.77		1
16QAM	3	0	22.84	22.75	22.55		1
	3	2	22.85	22.87	22.58		1
	3	3	22.75	22.79	22.51		1
	6	0	21.80	21.67	21.52	0-2	2
	1	0	22.09	21.59	21.77		2
	1	2	22.11	21.69	21.81		2
	1	5	22.03	21.58	21.76	0-2	2
64QAM	3	0	22.00	21.78	21.74	0-2	2
	3	2	22.03	21.93	21.77		2
	3	3	22.02	21.85	21.72		2
	6	0	20.88	20.72	20.66	0-3	3

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 45 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 45 of 129

LTE Band 66 (AWS) 9.3.4

Table 9-16 LTE Band 66 (AWS) Measured Plimit for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 20 MHz Bandwidth

				LTE Band 66 (AWS) 20 MHz Bandwidth			
Modulation	RB Size	RB Size RB Offset	132072 (1720.0 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			,	Conducted Power [dBm	,		
	1	0	15.71	15.94	15.85		0
	1	50	15.70	15.90	15.87	0	0
	1	99	15.67	15.89	15.75		0
QPSK	50	0	15.81	15.92	15.96	0-1	0
	50	25	15.92	15.93	16.02		0
	50	50	15.86	16.04	16.03		0
	100	0	15.85	15.87	15.92		0
	1	0	15.80	15.95	15.87		0
	1	50	15.79	15.82	15.93	0-1	0
	1	99	15.85	15.86	15.84		0
16QAM	50	0	15.85	15.93	16.01		0
	50	25	15.99	15.97	16.00	0-2	0
	50	50	15.90	16.00	16.02	0-2	0
	100	0	15.88	15.96	15.99		0
	1	0	16.07	16.15	16.42		0
	1	50	16.07	16.14	16.36	0-2	0
	1	99	16.06	16.12	16.32		0
64QAM	50	0	15.97	15.98	15.97		0
	50	25	15.90	15.98	16.00	0-3	0
	50	50	15.85	16.04	16.00	0-3	0
	100	0	15.90	15.92	16.03		0

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 46 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 46 of 129

Table 9-17 LTE Band 66 (AWS) Measured P_{limit} for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 15 MHz Bandwidth

				LTE Band 66 (AWS)			
			Low Channel	15 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132047 (1717.5 MHz)	132322 (1745.0 MHz)	132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	15.52	15.82	15.78		0
	1	36	15.69	15.91	15.87	0	0
	1	74	15.61	15.86	15.74		0
QPSK	36	0	15.74	15.84	15.97		0
	36	18	15.89	15.83	16.09	0-1	0
	36	37	15.83	15.93	16.01		0
	75	0	15.79	15.81	15.93		0
	1	0	15.93	16.04	16.11	0-1	0
	1	36	16.11	16.16	16.13		0
	1	74	16.05	16.06	16.07		0
16QAM	36	0	15.70	15.90	15.98		0
	36	18	15.82	15.97	16.10	0-2	0
	36	37	15.78	16.00	16.04	0-2	0
	75	0	15.81	15.84	15.95		0
	1	0	16.36	16.00	15.83		0
	1	36	16.32	16.22	15.92	0-2	0
	1	74	16.33	16.11	15.79		0
64QAM	36	0	15.76	15.91	16.09		0
	36	18	15.89	15.98	16.16	0-3	0
	36	37	15.83	15.98	16.12	0-3	0
	75	0	15.84	15.91	15.98		0

FCC ID: PY7-57441Y	Pout to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 47 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 47 of 129

Table 9-18 LTE Band 66 (AWS) Measured P_{limit} for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 10 MHz Bandwidth

				LTE Band 66 (AWS) 10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132022 (1715.0 MHz)	132322 (1745.0 MHz)	132622 (1775.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	15.58	15.89	15.78		0
	1	25	15.52	15.79	15.80	0	0
	1	49	15.56	15.83	15.78	1	0
QPSK	25	0	15.77	15.86	15.97		0
	25	12	15.79	15.88	15.96	0-1	0
	25	25	15.75	15.91	16.00		0
	50	0	15.78	15.86	15.97		0
	1	0	16.04	15.95	16.09		0
	1	25	15.91	15.98	16.07	0-1	0
	1	49	15.97	15.93	16.07] [0
16QAM	25	0	15.82	15.88	15.97		0
	25	12	15.81	15.90	15.96	0-2	0
	25	25	15.83	15.94	16.03	0-2	0
	50	0	15.82	15.87	15.93		0
	1	0	16.35	15.96	15.77		0
	1	25	16.38	16.09	15.82	0-2	0
	1	49	16.40	16.03	15.77		0
64QAM	25	0	15.77	15.81	16.03		0
	25	12	15.69	15.88	16.01	0-3	0
	25	25	15.74	15.87	16.07	0-3	0
	50	0	15.80	15.86	15.98		0

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 40 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 48 of 129

Table 9-19 LTE Band 66 (AWS) Measured P_{limit} for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 5 MHz Bandwidth

				LTE Band 66 (AWS) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	15.59	15.66	15.95		0
	1	12	15.62	15.69	15.94	0	0
	1	24	15.59	15.68	15.85		0
QPSK	12	0	15.75	15.80	15.99		0
	12	6	15.79	15.81	16.01	0-1	0
	12	13	15.75	15.84	15.97		0
	25	0	15.73	15.90	16.04		0
	1	0	15.63	15.97	16.30	0-1	0
	1	12	15.69	16.07	16.28		0
	1	24	15.66	15.96	16.24		0
16QAM	12	0	15.79	15.90	16.06		0
	12	6	15.82	15.92	16.06	0-2	0
	12	13	15.75	15.94	16.02	0-2	0
	25	0	15.86	15.88	16.05		0
	1	0	16.35	16.20	16.14		0
	1	12	16.42	16.23	16.10	0-2	0
	1	24	16.33	16.23	16.11		0
64QAM	12	0	15.79	15.98	16.09		0
	12	6	15.88	16.01	16.11	0-3	0
	12	13	15.80	16.02	16.05		0
	25	0	15.76	15.85	16.15		0

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 40 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 49 of 129

Table 9-20 LTE Band 66 (AWS) Measured P_{limit} for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 3 MHz Bandwidth

				LTE Band 66 (AWS) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131987 (1711.5 MHz)	132322 (1745.0 MHz)	132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			O	Conducted Power [dBm]		
	1	0	15.55	15.71	15.75		0
	1	7	15.49	15.92	15.78	0	0
	1	14	15.56	15.76	15.75		0
QPSK	8	0	15.81	15.82	15.96		0
	8	4	15.81	15.93	15.99	0-1	0
	8	7	15.77	15.85	15.95		0
	15	0	15.78	15.85	15.96		0
	1	0	15.95	15.84	16.09		0
	1	7	15.93	15.97	16.14	0-1	0
	1	14	15.90	15.92	15.91		0
16QAM	8	0	15.68	15.83	16.01		0
	8	4	15.71	15.92	16.06	0-2	0
	8	7	15.60	15.85	15.96	0-2	0
	15	0	15.79	15.83	16.03		0
	1	0	16.42	15.97	15.86		0
	1	7	16.43	16.04	15.83	0-2	0
	1	14	16.42	16.06	15.91		0
64QAM	8	0	15.84	15.83	15.94		0
	8	4	15.93	15.90	15.94	0-3	0
	8	7	15.82	15.87	15.90] 0-3	0
	15	0	15.72	15.99	16.05		0

FCC ID: PY7-57441Y	Proud to be part of @element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 50 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 50 of 129

Table 9-21 LTE Band 66 (AWS) Measured P_{limit} for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 1.4 MHz Bandwidth

				LTE Band 66 (AWS)			
				1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131979 (1710.7 MHz)	132322 (1745.0 MHz)	132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	15.51	15.68	15.91		0
	1	2	15.53	15.79	15.93		0
	1	5	15.46	15.67	15.90]	0
QPSK	3	0	15.61	15.70	15.76	0-1	0
	3	2	15.64	15.73	15.77		0
	3	3	15.59	15.67	15.73		0
	6	0	15.69	15.79	15.94		0
	1	0	15.84	15.84	15.94		0
	1	2	16.00	15.90	16.03		0
	1	5	15.87	15.82	15.96	0-1	0
16QAM	3	0	15.78	15.65	15.99		0
	3	2	15.86	15.71	16.03		0
	3	3	15.80	15.68	15.93		0
	6	0	15.74	15.76	15.88	0-2	0
	1	0	16.40	15.99	16.28		0
	1	2	16.37	16.08	16.35		0
	1	5	16.34	15.97	16.22	0-2	0
64QAM	3	0	15.76	15.63	15.99	- U-2 - 	0
	3	2	15.73	15.71	15.98		0
	3	3	15.69	15.66	15.94		0
	6	0	15.54	15.84	15.93	0-3	0

FCC ID: PY7-57441Y	Proud to be part of @element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 54 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 51 of 129

LTE Band 25 (PCS) 9.3.5

Table 9-22 LTE Band 25 (PCS) Measured Plimit for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 20 MHz Bandwidth

				LTE Band 25 (PCS)	G.I.I		
				20 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26140 (1860.0 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26590 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	15.90	15.94	15.77		0
	1	50	15.94	16.09	15.80	0	0
	1	99	15.86	15.97	15.76		0
QPSK	50	0	16.07	16.01	15.98		0
	50	25	16.13	16.14	15.97	0-1	0
	50	50	16.10	16.05	16.06	0-1	0
	100	0	16.08	16.05	15.93		0
	1	0	15.96	15.90	15.85	0-1	0
	1	50	16.00	15.94	15.93		0
	1	99	15.93	15.91	15.84		0
16QAM	50	0	16.11	16.04	16.00		0
	50	25	16.19	16.13	15.99	0-2	0
	50	50	16.13	16.11	16.04	0-2	0
	100	0	16.07	16.09	15.96		0
	1	0	16.23	16.16	16.37		0
	1	50	16.28	16.30	16.35	0-2	0
	1	99	16.22	16.20	16.34		0
64QAM	50	0	16.03	16.11	15.99		0
	50	25	16.11	16.16	15.98	1 02	0
	50	50	16.07	16.13	16.03	0-3	0
	100	0	16.13	16.11	15.99		0

FCC ID: PY7-57441Y	Poud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 52 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 52 of 129

Table 9-23 LTE Band 25 (PCS) Measured P_{limit} for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 15 MHz Bandwidth

				LTE Band 25 (PCS) 15 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26115 (1857.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26615 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	15.79	15.94	15.69		0
	1	36	15.85	16.01	15.76	0	0
	1	74	15.77	15.94	15.67		0
QPSK	36	0	16.09	15.95	15.91		0
	36	18	16.13	15.99	15.98	0-1	0
	36	37	16.05	16.00	15.99		0
	75	0	16.04	16.00	15.90		0
	1	0	16.26	16.14	16.00	0-1	0
	1	36	16.30	16.21	16.09		0
	1	74	16.21	16.14	15.97		0
16QAM	36	0	16.08	16.04	15.92		0
	36	18	16.11	16.03	15.95	0-2	0
	36	37	16.02	16.09	15.99	0-2	0
	75	0	16.07	16.02	15.90		0
	1	0	16.28	16.16	15.68		0
	1	36	16.31	16.31	15.78	0-2	0
	1	74	16.30	16.19	15.69		0
64QAM	36	0	16.13	16.03	16.04		0
	36	18	16.11	16.04	16.01	0-3	0
	36	37	16.06	16.03	16.09	0-3	0
	75	0	16.09	16.05	15.94		0

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 52 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 53 of 129

Table 9-24
LTE Band 25 (PCS) Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot)
- 10 MHz Bandwidth

				LTE Band 25 (PCS) 10 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26090 (1855.0 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26640 (1910.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	15.84	15.97	15.68		0
	1	25	15.76	15.85	15.70	0	0
	1	49	15.83	15.97	15.70		0
QPSK	25	0	16.06	15.93	15.87		0
	25	12	16.09	15.97	15.88	0-1	0
	25	25	16.08	15.99	15.92		0
	50	0	16.08	16.02	15.89		0
	1	0	16.26	15.99	15.99	0-1	0
	1	25	16.17	16.10	15.99		0
	1	49	16.21	16.08	16.04		0
16QAM	25	0	16.08	15.97	15.85		0
	25	12	16.10	16.02	15.90	0-2	0
	25	25	16.13	16.02	15.97	0-2	0
	50	0	16.15	16.05	15.84		0
	1	0	16.37	16.02	15.61		0
	1	25	16.41	16.20	15.70	0-2	0
	1	49	16.30	16.11	15.76		0
64QAM	25	0	16.02	15.89	15.90		0
	25	12	16.07	15.92	15.95	0-3	0
	25	25	16.08	15.98	16.04	0-3	0
	50	0	16.12	16.04	15.91		0

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 54 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 54 of 129

Table 9-25 LTE Band 25 (PCS) Measured P_{limit} for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 5 MHz Bandwidth

				LTE Band 25 (PCS) 5 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26065 (1852.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26665 (1912.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			·	Conducted Power [dBm]		
	1	0	15.90	15.71	15.91		0
	1	12	15.87	15.80	15.91	0	0
	1	24	15.90	15.85	15.89		0
QPSK	12	0	15.99	15.87	15.88		0
	12	6	16.07	15.97	15.95	0-1	0
	12	13	16.11	16.02	15.99	0-1	0
	25	0	16.04	15.97	15.92		0
	1	0	15.92	16.04	16.26		0
	1	12	15.91	16.11	16.24	0-1	0
	1	24	15.97	16.11	16.26		0
16QAM	12	0	16.06	15.95	15.94		0
	12	6	16.10	16.08	16.01	0-2	0
	12	13	16.11	16.08	16.01	0-2	0
	25	0	16.16	15.96	16.01		0
	1	0	16.48	16.28	16.09		0
	1	12	16.50	16.35	16.07	0-2	0
	1	24	16.51	16.36	16.10		0
64QAM	12	0	16.03	16.01	15.97		0
	12	6	16.10	16.16	16.05	0-3	0
	12	13	16.13	16.16	16.05	U-3	0
	25	0	16.09	15.93	16.06		0

FCC ID: PY7-57441Y	Proud to be part of @element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 55 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 55 of 129

Table 9-26 LTE Band 25 (PCS) Measured P_{limit} for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 3 MHz Bandwidth

				LTE Band 25 (PCS) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel	MDD Allers days	
Modulation	RB Size	RB Offset	26055 (1851.5 MHz)	26365 (1882.5 MHz)	26675 (1913.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm		30.1 [4.2]	
	1	0	15.78	15.76	15.60		0
	1	7	15.82	16.03	15.68	0	0
	1	14	15.90	15.94	15.72		0
QPSK	8	0	16.02	15.83	15.84		0
	8	4	16.09	15.97	15.96	0-1	0
	8	7	16.04	15.97	15.92	0-1	0
	15	0	16.05	15.94	15.92		0
	1	0	16.17	15.84	15.93		0
	1	7	16.18	16.04	15.94	0-1	0
	1	14	16.25	16.10	16.06		0
16QAM	8	0	15.86	15.89	15.88		0
	8	4	15.99	15.96	16.01	0-2	0
	8	7	15.94	16.01	15.97	0-2	0
	15	0	16.09	15.90	15.97		0
	1	0	15.83	16.00	15.68		0
	1	7	15.90	16.15	15.75	0-2	0
	1	14	16.00	16.18	15.80		0
64QAM	8	0	16.07	15.87	15.81		0
	8	4	16.17	16.01	15.92	0-3	0
	8	7	16.17	16.00	15.90		0
	15	0	15.96	16.03	15.97		0

FCC ID: PY7-57441Y	Pout to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 50 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 56 of 129

Table 9-27
LTE Band 25 (PCS) Measured P_{limit} for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 1.4 MHz Bandwidth

				LTE Band 25 (PCS)			
				1.4 MHz Bandwidth			
			Low Channel 26047	Mid Channel 26365	High Channel 26683	MPR Allowed per	
Modulation	RB Size	RB Offset	(1850.7 MHz)	(1882.5 MHz)	(1914.3 MHz)	3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	15.91	15.64	15.74		0
	1	2	16.03	15.72	15.80	1	0
	1	5	15.97	15.69	15.79		0
QPSK	3	0	15.80	15.72	15.72	0	0
	3	2	15.91	15.85	15.80		0
	3	3	15.89	15.80	15.73		0
	6	0	15.97	15.86	15.82	0-1	0
	1	0	15.94	15.96	15.86		0
	1	2	16.08	16.11	15.99] [0
	1	5	16.05	16.09	15.91	0-1	0
16QAM	3	0	16.01	15.95	15.61] 0-1	0
	3	2	16.08	16.03	15.71		0
	3	3	16.07	15.98	15.64		0
	6	0	15.98	15.90	15.80	0-2	0
	1	0	16.31	16.25	15.98		0
	1	2	16.47	16.33	16.08		0
	1	5	16.36	16.25	16.06	0-2	0
64QAM	3	0	16.01	15.92	15.63	- 0-2	0
	3	2	16.10	15.96	15.74		0
	3	3	16.04	15.91	15.69		0
	6	0	16.03	15.74	15.88	0-3	0

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 57 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 57 of 129

9.3.6 LTE Band 7

Table 9-28
LTE Band 7 Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot)
- 20 MHz Bandwidth

				ZU WINZ Dalluwi	atti		
				LTE Band 7			
		I	1 011	20 MHz Bandwidth	Litab Observat	1	
			Low Channel	Mid Channel	High Channel	MDD Allerender	
Modulation	RB Size	RB Offset	20850	21100	21350	MPR Allowed per	MPR [dB]
			(2510.0 MHz)	(2535.0 MHz)	(2560.0 MHz)	3GPP [dB]	
		_		Conducted Power [dBm			
	1	0	15.74	15.86	15.79		0
	1	50	15.77	15.93	15.80	0	0
	1	99	15.76	15.84	15.67		0
QPSK	50	0	15.87	15.92	15.97		0
	50	25	15.96	15.93	15.97	0-1	0
	50	50	15.95	15.98	15.96		0
	100	0	15.92	15.92	15.88		0
	1	0	15.80	15.85	15.82	0-1	0
	1	50	15.78	15.89	15.88		0
	1	99	15.89	15.87	15.72		0
16QAM	50	0	15.92	16.00	15.95		0
	50	25	15.99	16.01	16.05	0-2	0
	50	50	16.05	16.07	15.97	0-2	0
	100	0	15.91	15.95	15.93		0
	1	0	16.07	16.07	16.24		0
	1	50	16.06	16.21	16.22	0-2	0
	1	99	16.19	16.10	16.12		0
64QAM	50	0	15.84	16.02	15.95		0
	50	25	15.93	16.04	16.04	0-3	0
	50	50	15.93	16.11	15.98	0-3	0
	100	0	15.93	15.97	15.98		0

FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 50 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 58 of 129

Table 9-29
LTE Band 7 Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot)
- 15 MHz Bandwidth

				LTE Band 7	4411		
				15 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 20825 (2507.5 MHz)	Mid Channel 21100 (2535.0 MHz)	High Channel 21375 (2562.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	15.61	15.87	15.71		0
	1	36	15.71	15.96	15.75	0	0
	1	74	15.59	15.87	15.63		0
QPSK	36	0	15.82	15.95	15.96		0
	36	18	15.92	15.97	15.95	0-1	0
	36	37	15.94	15.96	15.95		0
	75	0	15.87	15.88	15.90		0
	1	0	16.07	16.01	16.06		0
	1	36	16.08	16.15	16.02	0-1	0
	1	74	16.10	16.08	16.04		0
16QAM	36	0	15.82	16.00	16.00		0
	36	18	15.89	16.05	16.02	0-2	0
	36	37	15.87	16.06	16.01	0-2	0
	75	0	15.85	15.88	15.89		0
	1	0	15.73	16.12	15.75		0
	1	36	15.67	16.24	15.74	0-2	0
	1	74	15.76	16.12	15.71		0
64QAM	36	0	15.85	15.96	16.09		0
	36	18	15.92	16.02	16.06	0.3	0
	36	37	15.94	16.04	16.06	0-3	0
	75	0	15.89	15.94	15.93		0

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 50 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 59 of 129

Table 9-30 LTE Band 7 Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 10 MHz Bandwidth

				LTE Band 7			
				10 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 20800 (2505.0 MHz)	Mid Channel 21100 (2535.0 MHz)	High Channel 21400 (2565.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			, (Conducted Power [dBm]		
	1	0	15.60	15.79	15.71		0
	1	25	15.38	15.79	15.67	0	0
	1	49	15.51	15.80	15.67		0
QPSK	25	0	15.80	15.89	15.92	0-1	0
	25	12	15.84	15.92	15.94		0
	25	25	15.84	15.96	15.92		0
	50	0	15.86	15.85	15.91		0
	1	0	16.01	16.00	16.04	0-1	0
	1	25	15.97	16.00	15.94		0
	1	49	15.96	15.99	15.96		0
16QAM	25	0	15.89	15.94	15.90		0
	25	12	15.92	16.00	15.96	0-2	0
	25	25	15.91	16.01	15.96	0-2	0
	50	0	15.86	15.94	15.87		0
	1	0	16.33	16.03	15.75		0
	1	25	16.30	16.04	15.68	0-2	0
	1	49	16.29	16.10	15.68		0
64QAM	25	0	15.82	15.90	15.96		0
	25	12	15.89	15.94	16.00		0
	25	25	15.86	15.95	15.99	0-3	0
	50	0	15.85	15.91	15.92		0

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 60 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 60 of 129

Table 9-31 LTE Band 7 Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 5 MHz Bandwidth

				LTE Band 7			
			Low Channel	5 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20775 21100 (2502.5 MHz) (2535.0 MHz)		21425 (2567.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	15.64	15.67	15.84		0
	1	12	15.57	15.73	15.79	0	0
	1	24	15.58	15.76	15.78		0
QPSK	12	0	15.79	15.87	15.89		0
	12	6	15.80	15.84	15.95	0-1	0
	12	13	15.79	15.91	15.89	0-1	0
	25	0	15.80	15.88	15.95		0
	1	0	15.61	15.96	16.18		0
	1	12	15.68	15.96	16.16	0-1	0
	1	24	15.67	16.00	16.14		0
16QAM	12	0	15.85	15.96	15.97		0
	12	6	15.84	15.93	15.98	0-2	0
	12	13	15.85	16.02	15.98	0-2	0
	25	0	15.94	15.90	15.96		0
	1	0	16.37	16.23	16.06		0
	1	12	16.39	16.24	16.04	0-2	0
	1	24	16.37	16.26	16.04		0
64QAM	12	0	15.83	16.06	16.02		0
	12	6	15.83	16.04	15.95		0
	12	13	15.81	16.08	15.96	0-3	0
	25	0	15.81	15.85	16.03		0

FCC ID: PY7-57441Y	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 04 (400
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 61 of 129
020 PCTEST.				REV 21.4 M

LTE Band 48 9.3.7

Table 9-32 LTE Band 48 Measured Plimit for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 20 MHz Bandwidth

	LTE Band 48 20 MHz Bandwidth										
		RB Offset	Low Channel	Low-Mid Channel	Mid-High Channel	High Channel					
Modulation	RB Size		RB Offset	55340 (3560.0 MHz)	55773 (3603.3 MHz)	56207 (3646.7 MHz)	56640 (3690.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Conducted	Power [dBm]						
	1	0	13.88	13.78	13.91	13.99		0			
	1	50	13.80	13.76	13.78	13.76	0	0			
	1	99	13.93	13.83	13.91	13.81		0			
QPSK	50	0	13.89	13.94	13.96	14.00		0			
	50	25	13.91	13.98	13.98	13.89	0-1	0			
	50	50	13.85	13.92	13.94	13.83	0-1	0			
	100	0	13.93	13.98	13.98	13.89		0			
	1	0	14.04	14.00	13.44	13.97	0-1	0			
	1	50	13.89	13.89	13.33	13.76		0			
	1	99	14.02	14.04	13.40	13.84		0			
16QAM	50	0	13.87	13.91	13.85	13.79		0			
	50	25	13.86	13.91	13.85	13.76	0-2	0			
	50	50	13.91	13.94	13.86	13.73	0-2	0			
	100	0	13.85	13.87	13.88	13.75		0			
	1	0	14.00	13.94	14.11	14.07		0			
	1	50	13.88	13.91	13.95	13.92	0-2	0			
	1	99	13.99	13.93	14.06	13.98		0			
64QAM	50	0	13.88	13.93	13.92	13.83		0			
	50	25	13.90	13.96	13.91	13.79	0-3	0			
	50	50	13.93	13.95	13.91	13.78	0-3	0			
	100	0	13.88	13.93	13.92	13.75		0			

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 62 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 62 of 129

Table 9-33 LTE Band 48 Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 15 MHz Bandwidth

				LTE Bar 15 MHz Bar				
			Low Channel	Low-Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	55315 (3557.5 MHz)	55765 (3602.5 MHz)	56215 (3647.5 MHz)	56665 (3692.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted	Power [dBm]			
	1	0	13.88	13.86	13.89	13.95		0
	1	36	13.92	13.93	13.90	13.92	0	0
	1	74	13.92	13.94	13.89	13.89		0
QPSK	36	0	13.99	13.98	14.07	14.10		0
	36	18	14.00	14.01	14.07	14.08	0-1	0
	36	37	14.00	13.98	14.05	14.05	0-1	0
	75	0	13.96	13.95	14.04	14.06		0
	1	0	13.98	13.89	13.58	14.05	0-1	0
	1	36	13.99	13.87	13.63	14.05		0
	1	74	14.10	14.18	13.66	14.05		0
16QAM	36	0	14.05	14.07	13.99	14.02		0
	36	18	14.08	14.11	14.00	14.09	0-2	0
	36	37	14.07	14.13	14.09	14.07	0-2	0
	75	0	13.99	14.07	13.95	13.97		0
	1	0	13.72	13.98	13.83	13.65		0
	1	36	13.76	14.00	13.91	13.71	0-2	0
	1	74	13.90	14.12	13.96	13.82		0
64QAM	36	0	14.06	14.03	14.07	14.03		0
	36	18	14.04	14.04	14.10	14.11	0-3	0
	36	37	14.06	14.12	14.15	14.04]	0
	75	0	14.08	14.15	14.03	13.99		0

FCC ID: PY7-57441Y	Poud to be post of element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dono 62 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 63 of 129

Table 9-34 LTE Band 48 Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 10 MHz Bandwidth

				LTE Bar 10 MHz Bar				
			Low Channel	Low-Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	55290 (3555.0 MHz)	55757 (3601.7 MHz)	56223 (3648.3 MHz)	56690 (3695.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted	Power [dBm]		_	
	1	0	13.98	13.99	13.95	14.19		0
	1	25	14.01	14.01	13.90	13.97	0	0
	1	49	14.36	14.00	13.94	13.92		0
QPSK	25	0	14.05	14.07	14.08	14.12		0
	25	12	14.04	14.10	14.13	14.20	0-1	0
	25	25	14.00	13.99	14.08	14.17	0-1	0
	50	0	13.96	13.99	14.11	14.09		0
	1	0	13.99	14.19	14.13	14.29	0-1	0
	1	25	13.81	14.15	14.12	14.26		0
	1	49	13.96	14.24	14.16	13.96		0
16QAM	25	0	14.19	14.14	14.06	14.19		0
	25	12	14.23	14.18	14.11	14.22	0-2	0
	25	25	14.17	14.12	14.09	14.17	0-2	0
	50	0	14.11	14.11	14.03	14.17		0
	1	0	13.84	13.87	14.00	13.80		0
	1	25	13.73	13.88	14.02	13.74	0-2	0
	1	49	13.85	13.95	14.09	13.87		0
64QAM	25	0	14.04	14.14	14.00	14.21		0
	25	12	14.15	14.16	14.10	14.21	0-3	0
	25	25	14.25	14.11	14.09	14.17]	0
	50	0	14.09	14.14	14.05	14.16		0

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 64 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 64 of 129

Table 9-35 LTE Band 48 Measured P_{limit} for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 5 MHz Bandwidth

	LTE Band 48 5 MHz Bandwidth										
			Low Channel	Low-Mid Channel	Mid-High Channel	High Channel					
Modulation	RB Size	RB Offset	55265 (3552.5 MHz)	55748 (3600.8 MHz)	56232 (3649.2 MHz)	56715 (3697.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
				Conducted	Power [dBm]						
	1	0	14.07	14.07	14.03	14.20		0			
	1	12	13.97	13.97	13.96	14.03	0	0			
	1	24	14.11	14.08	13.96	14.20		0			
QPSK	12	0	14.02	14.06	14.08	14.15		0			
	12	6	14.04	14.07	14.14	14.16	0-1	0			
	12	13	14.01	14.07	14.13	14.13	0-1	0			
	25	0	14.06	14.09	14.13	14.15		0			
	1	0	14.06	14.31	14.37	14.20	0-1	0			
	1	12	13.96	14.24	14.34	14.04		0			
	1	24	14.09	14.28	14.35	14.15		0			
16QAM	12	0	14.08	14.12	14.14	14.15		0			
	12	6	14.13	14.09	14.16	14.21	0-2	0			
	12	13	14.11	14.08	14.17	14.14	0-2	0			
	25	0	14.08	14.05	14.11	14.15		0			
	1	0	14.09	13.95	14.24	14.14		0			
	1	12	13.99	13.86	14.16	14.05	0-2	0			
	1	24	14.07	13.95	14.23	14.13		0			
64QAM	12	0	14.14	14.23	14.17	14.19		0			
	12	6	14.13	14.21	14.13	14.15	0-3	0			
	12	13	14.13	14.25	14.17	14.16	0-3	0			
	25	0	14.09	14.17	14.09	14.13		0			

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dono 65 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 65 of 129

LTE Band 41 9.3.8

Table 9-36 LTE Band 41 Measured Plimit for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 20 MHz Bandwidth

				2	LTE Band 41 0 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
•				Co	nducted Power [dE	m]			
	1	0	14.31	14.10	14.31	14.37	14.55		0
	1	50	14.14	14.11	14.17	14.15	14.47	0	0
	1	99	14.09	14.10	14.18	14.41	14.59		0
QPSK	50	0	14.01	14.29	14.31	14.47	14.58		0
	50	25	14.08	14.35	14.26	14.41	14.66	0-1	0
50	50	50	14.08	14.38	14.26	14.43	14.65] 0-1	0
	100	0	14.08	14.29	14.28	14.41	14.54		0
	1	0	14.23	14.65	14.26	14.61	14.47	0-1	0
	1	50	14.20	14.55	14.13	14.39	14.50		0
	1	99	14.30	14.55	14.11	14.59	14.58		0
16QAM	50	0	13.94	14.22	14.22	14.33	14.52		0
	50	25	14.05	14.32	14.16	14.29	14.55	0-2	0
	50	50	14.05	14.33	14.26	14.26	14.61	0-2	0
	100	0	14.08	14.22	14.18	14.31	14.49		0
	1	0	14.07	13.98	14.26	14.36	14.41]	0
	1	50	14.02	14.01	14.22	14.22	14.53	0-2	0
	1	99	14.10	14.02	14.15	14.35	14.65		0
64QAM	50	0	13.96	14.22	14.23	14.26	14.61		0
	50	25	14.06	14.35	14.23	14.30	14.62	0-3	0
	50	50	14.08	14.34	14.21	14.34	14.60		0
	100	0	14.07	14.26	14.24	14.33	14.58		0

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 66 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 66 of 129

Table 9-37 LTE Band 41 Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 15 MHz Bandwidth

				1:	LTE Band 41 5 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dB	Bm]			
	1	0	14.05	14.26	14.29	14.40	14.54		0
	1	36	14.01	14.32	14.35	14.35	14.55	0	0
	1	74	14.02	14.29	14.31	14.44	14.58		0
QPSK	36	0	14.10	14.32	14.42	14.47	14.63		0
	36	18	14.18	14.41	14.43	14.47	14.64	0-1	0
	36	37	14.14	14.36	14.35	14.47	14.67	0-1	0
	75	0	14.15	14.31	14.40	14.47	14.59		0
	1	0	13.88	14.10	13.77	14.29	14.06		0
	1	36	13.92	14.18	13.84	14.29	14.14	0-1	0
	1	74	13.84	14.19	13.81	14.38	14.16		0
16QAM	36	0	13.99	14.14	14.21	14.39	14.48		0
	36	18	14.08	14.23	14.21	14.43	14.53	0-2	0
	36	37	14.05	14.20	14.25	14.33	14.56	0-2	0
	75	0	14.00	14.10	14.18	14.39	14.50		0
	1	0	13.74	13.76	14.07	14.30	14.33		0
	1	36	13.83	13.79	14.08	14.31	14.38	0-2	0
	1	74	13.83	13.86	14.11	14.47	14.43		0
64QAM	36	0	14.02	14.15	14.30	14.31	14.61		0
	36	18	14.07	14.18	14.28	14.31	14.61	0-3	0
	36	37	14.05	14.17	14.30	14.28	14.65		0
	75	0	14.04	14.11	14.26	14.37	14.55		0

FCC ID: PY7-57441Y	Poud to be post of element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 67 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 67 of 129

Table 9-38 LTE Band 41 Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 10 MHz Bandwidth

				1	LTE Band 41 0 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dB	Bm]			
	1	0	14.14	14.30	14.30	14.15	14.52		0
	1	25	14.07	14.33	14.15	14.17	14.54	0	0
	1	49	14.13	14.27	14.01	14.16	14.31		0
QPSK	25	0	13.99	14.27	14.05	14.27	14.39		0
	25	12	14.04	14.36	14.06	14.29	14.36	0-1	0
	25	25	14.10	14.31	14.26	14.32	14.39	0-1	0
	50	0	14.10	14.34	14.07	14.33	14.37		0
	1	0	14.16	14.28	14.18	14.24	14.60		0
	1	25	13.94	14.23	14.33	14.27	14.13	0-1	0
	1	49	14.00	14.28	14.24	14.26	14.71		0
16QAM	25	0	14.00	14.14	14.25	14.23	14.31		0
	25	12	14.08	14.22	14.29	14.29	14.28	0-2	0
	25	25	14.08	14.18	14.19	14.21	14.42		0
	50	0	13.95	14.19	14.12	14.20	14.33		0
	1	0	13.96	13.91	13.93	14.10	14.39		0
	1	25	13.92	13.98	13.74	14.12	14.27	0-2	0
	1	49	13.87	13.95	13.71	14.07	14.25		0
64QAM	25	0	13.89	14.17	14.08	14.17	14.28		0
	25	12	13.96	14.25	14.02	14.15	14.38	0-3	0
	25	25	14.02	14.20	14.05	14.15	14.50		0
	50	0	13.91	14.22	14.00	14.25	14.34		0

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 60 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 68 of 129

Table 9-39 LTE Band 41 Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 5 MHz Bandwidth

					LTE Band 41 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	14.10	14.37	14.49	14.40	14.75		0
	1	12	14.11	14.42	14.53	14.44	14.78	0	0
	1	24	14.21	14.40	14.53	14.42	14.80	1	0
QPSK	12	0	14.11	14.37	14.49	14.48	14.69		0
	12	6	14.18	14.48	14.52	14.54	14.75	0-1	0
	12	13	14.13	14.42	14.52	14.53	14.76]	0
	25	0	14.14	14.42	14.48	14.52	14.70		0
	1	0	13.97	14.45	14.22	14.52	14.57		0
	1	12	13.94	14.48	14.23	14.56	14.58	0-1	0
	1	24	14.07	14.47	14.25	14.54	14.67		0
16QAM	12	0	14.01	14.28	14.24	14.35	14.63		0
	12	6	14.09	14.37	14.27	14.39	14.60	0-2	0
	12	13	14.04	14.33	14.29	14.36	14.69	0-2	0
	25	0	13.99	14.22	14.23	14.35	14.57		0
	1	0	13.92	13.97	14.17	14.38	14.51		0
	1	12	13.96	14.08	14.21	14.42	14.60	0-2	0
	1	24	13.99	14.01	14.20	14.42	14.62		0
64QAM	12	0	14.00	14.38	14.25	14.36	14.66		0
	12	6	14.07	14.42	14.27	14.42	14.67	0-3	0
	12	13	14.08	14.42	14.30	14.36	14.69		0
	25	0	14.01	14.30	14.20	14.32	14.58	1	0

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 60 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 69 of 129

9.4 NR Conducted Powers

9.4.1 NR Band n5

 $\label{eq:Table 9-40} \textbf{NR Band n5 Measured P_{max} for all DSI - 20 MHz Bandwidth}$

	NR Band n5						
		20 MHz Ban					
			Channel	7			
Modulation		RB Offset	167300 (836.5 MHz)	MPR Allowed per 3GPP	MPR [dB]		
			Conducted Power [dBm]	[dB]			
	1	1	24.12		0.0		
	1	53	24.22	0	0.0		
DFT-s-OFDM	1	104	23.53		0.0		
$\pi/2 \text{ BPSK}$	50	0	23.64	0-0.5	0.5		
MZ BI SK	50	28	24.01	0	0.0		
	50	56	23.53	0-0.5	0.5		
	100	0	23.56	0-0.5	0.5		
	1	1	24.10		0.0		
	1	53	24.06	0	0.0		
DFT-s-OFDM	1	104	23.34		0.0		
QPSK	50	0	23.09	0-1	1.0		
Qi Sit	50	28	24.06	0	0.0		
	50	56	22.97	0-1	1.0		
	100	0	23.07	0-1	1.0		
DFT-s-OFDM 16QAM	1	1	22.99	0-1	1.0		
CP-OFDM QPSK	1	1	22.62	0-1.5	1.5		

Note: NR Band n5 (Cell) at 20 MHz bandwidth does not support non-overlapping channels. Per FCC Guidance, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 70 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 70 of 129

PCTEST. REV 21.4 M 09/11/2019

Table 9-41 NR Band n5 Measured Pmax for all DSI - 15 MHz Bandwidth

	NR Band no Measured P _{max} for all DSI - 15 MH2 Bandwidth NR Band n5 15 MHz Bandwidth						
		15 WHZ Ban	Channel				
Modulation	RB Size	RB Offset	167300 (836.5 MHz)	MPR Allowed per 3GPP	MPR [dB]		
			Conducted Power [dBm]	[dB]			
	1	1	24.04		0.0		
	1	40	23.97	0	0.0		
DFT-s-OFDM	1	77	23.91		0.0		
π/2 BPSK	36	0	23.46	0-0.5	0.5		
n/2 DI SK	36	22	23.91	0	0.0		
	36	43	23.39	0-0.5	0.5		
	75	0	23.42	0-0.5	0.5		
	1	1	24.04		0.0		
	1	40	23.88	0	0.0		
DFT-s-OFDM	1	77	23.57		0.0		
QPSK	36	0	22.95	0-1	1.0		
QI OIX	36	22	23.86	0	0.0		
	36	43	22.83	0-1	1.0		
	75	0	22.88	U- I	1.0		
DFT-s-OFDM 16QAM	1	1	22.96	0-1	1.0		
CP-OFDM QPSK	1	1	22.33	0-1.5	1.5		

Note: NR Band n5 (Cell) at 15 MHz bandwidth does not support non-overlapping channels. Per FCC Guidance, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 74 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 71 of 129

© 2020 PCTEST. REV 21.4 M

Table 9-42 NR Band n5 Measured Pmax for all DSI - 10 MHz Bandwidth

NR Band n5						
		10 MHz Ban				
			Channel	7		
Modulation	RB Size	RB Offset	167300 (836.5 MHz)	MPR Allowed per 3GPP	MPR [dB]	
			Conducted Power [dBm]	[dB]		
	1	1	23.87		0.0	
	1	26	23.94	0	0.0	
DFT-s-OFDM	1	50	23.81		0.0	
π/2 BPSK	25	0	23.42	0-0.5	0.5	
MZ BI SK	25	14	23.92	0	0.0	
	25	27	23.29	0-0.5	0.5	
	50	0	23.39	0-0.5	0.5	
	1	1	23.84		0.0	
	1	26	23.87	0	0.0	
DFT-s-OFDM	1	50	23.85		0.0	
QPSK	25	0	22.81	0-1	1.0	
QI OIT	25	14	23.85	0	0.0	
	25	27	22.79	0-1	1.0	
	50	0	22.84	0-1	1.0	
DFT-s-OFDM 16QAM	1	1	22.76	0-1	1.0	
CP-OFDM QPSK	1	1	22.12	0-1.5	1.5	

Note: NR Band n5 (Cell) at 10 MHz bandwidth does not support non-overlapping channels. Per FCC Guidance, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 72 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 72 of 129

REV 21.4 M

Table 9-43 NR Band n5 Measured Pmax for all DSI - 5 MHz Bandwidth

			NR Band 5 MHz Band				
				Channel			
Modulation	RB Size	RB Offset	165300 (826.5 MHz)	167300 (836.5 MHz)	169300 (846.5 MHz)	MPR Allowed per 3GPP	MPR [dB]
			Cor	nducted Power [d	Bm]	[dB]	
	1	1	23.96	23.90	23.81		0.0
	1	13	23.81	23.84	23.68	0	0.0
DFT-s-OFDM	1	23	23.84	23.77	23.59		0.0
π/2 BPSK	12	0	23.44	23.34	23.04	0-0.5	0.5
R/2 DI SK	12	7	23.96	23.89	23.42	0-0.5	0.0
	12	13	23.36	23.29	23.09		0.5
	25	0	23.40	23.35	23.17	0-0.5	0.5
	1	1	23.98	23.88	23.78		0.0
	1	13	23.95	23.82	23.54	0	0.0
DFT-s-OFDM	1	23	23.80	23.83	23.66		0.0
QPSK	12	0	22.93	22.90	22.57	0-1	1.0
Qi Oit	12	7	23.84	23.79	23.38	0	0.0
	12	13	22.87	22.82	22.63	0-1	1.0
	25	0	22.88	22.85	22.66	1 0-1	1.0
DFT-s-OFDM 16QAM	1	1	22.96	22.84	22.80	0-1	1.0
CP-OFDM QPSK	1	1	22.47	22.08	22.01	0-1.5	1.5

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 72 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 73 of 129

9.4.2 NR Band n66

Table 9-44 NR Band n66 Measured P_{limit} for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 20 MHz Bandwidth

		,	NR Band 20 MHz Ban				
				Channel			
Modulation	RB Size	RB Offset	344000 (1720 MHz)	349000 (1745 MHz)	354000 (1770 MHz)	MPR Allowed per 3GPP	MPR [dB]
			Coi	nducted Power [d	Bm]	[dB]	
	1	1	16.12	16.18	16.18		0.0
	1	53	16.39	16.49	16.52	0	0.0
DFT-s-OFDM	1	104	16.15	16.07	16.14		0.0
π/2 BPSK	50	0	16.09	16.12	16.15	0-0.5	0.0
MZ DI SK	50	28	16.17	16.04	16.09	0-0.5	0.0
	50	56	16.13	16.04	16.08		0.0
	100	0	16.12	16.03	16.06	0-0.5	0.0
	1	1	16.16	16.18	16.23		0.0
	1	53	16.34	16.14	16.21	0	0.0
DFT-s-OFDM	1	104	16.21	16.16	16.10		0.0
QPSK	50	0	16.09	16.09	16.12	0-1	0.0
QI OIL	50	28	16.07	16.04	16.11	0	0.0
	50	56	16.14	16.06	16.08	0-1	0.0
	100	0	16.12	16.02	16.12	7 0-1	0.0
DFT-s-OFDM 16QAM	1	1	16.44	16.31	16.43	0-1	0.0
CP-OFDM QPSK	1	1	16.11	16.29	16.24	0-1.5	0.0

FCC ID: PY7-57441Y	Poud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 74 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 74 of 129

Table 9-45 NR Band n66 Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 15 MHz Bandwidth

			NR Band 15 MHz Ban							
				Channel						
Modulation	RB Size	RB Offset	343500 (1717.5 MHz)	349000 (1745 MHz)	354500 (1772.5 MHz)	MPR Allowed per 3GPP	MPR [dB]			
			Cor	nducted Power [d	Bm]	[dB]				
	1	1	15.97	16.07	15.93		0.0			
	1	40	16.05	15.98	15.83	0	0.0			
DFT-s-OFDM	1	77	16.16	16.06	15.87		0.0			
π/2 BPSK	36	0	16.02	16.00	15.92	0-0.5	0.0			
M/2 DF SK	36	22	15.95	15.91	15.81	0-0.5	0.0			
	36	43	15.99	15.95	15.83		0.0			
	75	0	16.00	15.96	15.85	0-0.3	0.0			
	1	1	16.03	16.10	15.90		0.0			
	1	40	15.92	15.93	15.86	0	0.0			
DFT-s-OFDM	1	77	16.01	15.97	15.90		0.0			
QPSK	36	0	16.00	16.00	15.89	0-1	0.0			
Qi Oit	36	22	15.94	15.87	15.76	0	0.0			
	36	43	15.96	15.91	15.82	0-1	0.0			
	75	0	15.95	15.97	15.87] 0-1	0.0			
DFT-s-OFDM 16QAM	1	1	16.00	15.99	15.91	0-1	0.0			
CP-OFDM QPSK	1	1	15.87	15.86	15.77	0-1.5	0.0			

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 75 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 75 of 129

REV 21.4 M

Table 9-46 NR Band n66 Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 10 MHz Bandwidth

			NR Band 10 MHz Ban				
				Channel		_	
Modulation	RB Size	RB Size RB Offset	343000 (1715 MHz)	349000 (1745 MHz)	355000 (1775 MHz)	MPR Allowed per 3GPP	MPR [dB]
			Cor	nducted Power [d	Bm]	[dB]	
	1	1	15.88	16.05	15.84		0.0
	1	26	15.92	15.89	15.88	0	0.0
DFT-s-OFDM	1	50	15.88	15.97	15.81		0.0
π/2 BPSK	25	0	15.85	15.95	15.87	0-0.5	0.0
M/2 DI SIC	25	14	15.87	15.93	15.88	0-0.5	0.0
	25	27	15.86	15.90	15.82		0.0
	50	0	15.90	15.91	15.85	0 0.0	0.0
	1	1	15.87	16.03	15.91		0.0
	1	26	15.84	15.99	15.86	0	0.0
DFT-s-OFDM	1	50	15.81	15.97	15.88		0.0
QPSK	25	0	15.85	15.96	15.84	0-1	0.0
Qi Oit	25	14	15.83	15.95	15.82	0	0.0
	25	27	15.88	15.93	15.79	0-1	0.0
	50	0	15.84	15.92	15.81]	0.0
DFT-s-OFDM 16QAM	1	1	15.80	15.88	15.79	0-1	0.0
CP-OFDM QPSK	1	1	15.68	15.81	15.76	0-1.5	0.0

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 76 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 76 of 129

Table 9-47 NR Band n66 Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 5 MHz Bandwidth

			NR Band 5 MHz Band				
				Channel			
Modulation	RB Size	RB Offset	342500 (1712.5 MHz)	349000 (1745 MHz)	355500 (1777.5 MHz)	MPR Allowed per 3GPP	MPR [dB]
			Cor	nducted Power [d	Bm]	[dB]	
	1	1	15.69	15.97	15.78		0.0
	1	13	15.85	16.02	15.73	0	0.0
DFT-s-OFDM	1	23	15.82	16.00	15.81		0.0
π/2 BPSK	12	0	15.84	15.94	15.83	0-0.5	0.0
WZ DI SK	12	7	15.93	15.97	15.92	0-0.5	0.0
	12	13	15.84	15.89	15.76		0.0
	25	0	15.88	15.91	15.82	0-0.5	0.0
	1	1	15.77	15.99	15.74		0.0
	1	13	15.92	15.93	15.93	0	0.0
DFT-s-OFDM	1	23	15.83	15.91	15.76		0.0
QPSK	12	0	15.86	15.88	15.82	0-1	0.0
Qi Sit	12	7	15.90	15.87	15.88	0	0.0
	12	13	15.89	15.94	15.90	0-1	0.0
	25	0	15.87	15.89	15.72	1 0-1	0.0
DFT-s-OFDM 16QAM	1	1	15.79	15.93	15.76	0-1	0.0
CP-OFDM QPSK	1	1	15.75	15.89	15.67	0-1.5	0.0

FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 77 of 100
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 77 of 129

9.4.3 NR Band n2

Table 9-48

NR Band n2 Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot)
- 20 MHz Bandwidth

			NR Band 20 MHz Ban				
				Channel			
Modulation	RB Size RB (RB Offset	372000 (1860 MHz)	376000 (1880 MHz)	380000 (1900 MHz)	MPR Allowed per 3GPP	MPR [dB]
			Conducted Power [dBm]			[dB]	
	1	1	16.18	16.07	16.01		0.0
	1	53	16.64	16.52	16.43	0	0.0
DFT-s-OFDM	1	104	16.16	16.06	15.86		0.0
π/2 BPSK	50	0	16.19	16.09	15.92	0-0.5	0.0
WZ DI SK	50	28	16.16	16.08	15.93	0	0.0
	50	56	16.09	16.05	15.95	0-0.5	0.0
	100	0	16.16	16.07	15.94	0-0.5	0.0
	1	1	16.43	16.19	16.11		0.0
	1	53	16.51	16.31	16.15	0	0.0
DFT-s-OFDM	1	104	16.38	16.12	16.10		0.0
QPSK	50	0	16.16	16.04	15.96	0-1	0.0
Qi Sit	50	28	16.14	16.06	15.95	0	0.0
	50	56	16.11	16.04	15.93	0-1	0.0
	100	0	16.12	16.05	15.98	J 0-1	0.0
DFT-s-OFDM 16QAM	1	1	16.58	15.97	16.21	0-1	0.0
CP-OFDM QPSK	1	1	15.88	16.17	15.97	0-1.5	0.0

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 70 of 400
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 78 of 129

Table 9-49 NR Band n2 Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 15 MHz Bandwidth

NR Band n2 15 MHz Bandwidth							
				Channel		_	
Modulation	RB Size	RB Offset	371500 (1857.5 MHz)	376000 (1880 MHz)	380500 (1902.5 MHz)	MPR Allowed per 3GPP	MPR [dB]
			Conducted Power [dBm]			[dB]	
	1	1	16.18	16.08	15.81		0.0
	1	40	16.15	16.00	15.90	0	0.0
DFT-s-OFDM π/2 BPSK	1	77	16.17	16.02	15.92		0.0
	36	0	16.19	15.99	15.86	0-0.5	0.0
n/2 DI SK	36	22	16.16	16.00	15.87	0	0.0
	36	43	16.18	15.97	15.86	0-0.5	0.0
	75	0	16.22	15.99	15.93	0-0.5	0.0
	1	1	16.13	16.04	15.91		0.0
	1	40	16.19	16.05	15.86	0	0.0
DFT-s-OFDM	1	77	16.21	16.07	15.93		0.0
QPSK	36	0	16.20	16.03	15.89	0-1	0.0
Qi Sit	36	22	16.21	15.97	15.87	0	0.0
	36	43	16.18	15.98	15.90	0-1	0.0
	75	0	16.15	16.03	15.88	0-1	0.0
DFT-s-OFDM 16QAM	1	1	16.38	16.06	15.90	0-1	0.0
CP-OFDM QPSK	1	1	15.93	15.98	15.78	0-1.5	0.0

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 70 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 79 of 129

REV 21.4 M

Table 9-50 NR Band n2 Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot) - 10 MHz Bandwidth

NR Band n2 10 MHz Bandwidth								
				Channel				
Modulation	RB Size	RB Offset	371000 (1855 MHz)	376000 (1880 MHz)	381000 (1905 MHz)	MPR Allowed per 3GPP	MPR [dB]	
			Cor	Conducted Power [dBm]				
	1	1	16.25	16.12	15.89		0.0	
	1	26	16.16	16.13	16.02	0	0.0	
DFT-s-OFDM	1	50	16.13	16.05	16.03		0.0	
π/2 BPSK	1 25	0	16.12	16.00	15.95	0-0.5	0.0	
1.72 DI SIX	25	14	16.07	16.01	15.94	0	0.0	
	25	27	16.09	15.98	15.98	0-0.5	0.0	
	50	0	16.15	16.02	15.97	0-0.5	0.0	
	1	1	16.07	16.03	15.90		0.0	
	1	26	16.16	16.12	16.04	0	0.0	
DFT-s-OFDM	1	50	16.02	15.99	16.01		0.0	
QPSK	25	0	16.08	16.02	15.96	0-1	0.0	
QFOR	25	14	16.10	15.97	15.94	0	0.0	
	25	27	16.09	15.94	16.01	0-1	0.0	
	50	0	16.10	15.97	15.95	0-1	0.0	
DFT-s-OFDM 16QAM	1	1	16.43	16.22	16.10	0-1	0.0	
CP-OFDM QPSK	1	1	15.96	15.87	15.77	0-1.5	0.0	

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Domo 90 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 80 of 129

REV 21.4 M

Table 9-51 NR Band n2 Measured *P_{limit}* for DSI = 5 (Body-worn, Phablet, Held-to-Ear), and/or DSI = 6 (Hotspot)
- 5 MHz Bandwidth

NR Band n2 5 MHz Bandwidth							
				Channel			
Modulation	RB Size	RB Offset	370500 (1852.5 MHz)	376000 (1880 MHz)	381500 (1907.5 MHz)	MPR Allowed per 3GPP	MPR [dB]
			Cor	nducted Power [d	Bm]	[dB]	
	1	1	16.02	15.96	15.83		0.0
	1	13	16.01	15.98	15.87	0	0.0
DET - OFDM	1	23	16.07	15.88	15.91		0.0
DFT-s-OFDM π/2 BPSK	12	0	16.01	16.02	15.89	0-0.5	0.0
M/2 DI SIX	12	7	16.13	16.03	15.98	0	0.0
	12	13	16.09	15.96	15.95	0-0.5	0.0
	25	0	16.11	15.92	15.92	0-0.5	0.0
	1	1	16.06	15.90	15.88		0.0
	1	13	16.04	15.99	16.00	0	0.0
DFT-s-OFDM	1	23	16.05	15.89	15.94		0.0
QPSK	12	0	16.03	15.93	15.88	0-1	0.0
Qi Sit	12	7	16.06	15.96	15.88	0	0.0
	12	13	16.10	15.98	15.97	0-1	0.0
	25	0	16.11	15.96	15.99	0-1	0.0
DFT-s-OFDM 16QAM	1	1	16.35	16.23	16.04	0-1	0.0
CP-OFDM QPSK	1	1	15.88	15.74	15.71	0-1.5	0.0

Figure 9-3 **Power Measurement Setup**

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 94 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 81 of 129

9.5 **WLAN Conducted Powers**

Table 9-52 2.4 GHz WLAN Average RF Power - Chain 0

2.4GHz Conducted Power [dBm]							
			IEEE Transmission Mode				
Freq [MHz]	Channel	802.11b	802.11g	802.11n	802.11ax		
		Average	Average	Average	Average		
2412	1	9.69	8.68	9.09	8.78		
2437	6	9.40	8.72	9.09	9.08		
2462	11	9.47	8.79	9.09	9.04		

Table 9-53 2.4 GHz WLAN Average RF Power - Chain 1

2.4GHz Conducted Power [dBm]							
		IEEE Transmission Mode					
Freq [MHz]	Channel	802.11b	802.11g	802.11n	802.11ax		
		Average	Average	Average	Average		
2412	1	8.91	9.02	8.93	8.92		
2437	6	8.65	9.09	9.04	9.00		
2462	11	8.51	8.85	8.84	8.77		

Table 9-54 5 GHz WLAN Average RF Power - Chain 0

5GHz (80MHz) Conducted Power [dBm]							
		IEEE Transmission Mode					
Freq [MHz]	Channel	802.11ac	802.11ax				
		Average	Average				
5210	42	8.61	8.50				
5290	58	8.66	8.56				
5530	106	8.65	8.49				
5610	122	8.68	8.44				
5690	138	8.71	8.56				
5775	155	8.60	8.35				

FCC ID: PY7-57441Y	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 92 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 82 of 129

Table 9-55 5 GHz WLAN Average RF Power – Chain 1

5GHz (80MHz) Conducted Power [dBm]							
		IEEE Transmission Mode					
Freq [MHz]	Channel	802.11ac	802.11ax				
		Average	Average				
5210	42	8.43	8.47				
5290	58	8.67	8.59				
5530	106	8.50	8.52				
5610	122	8.68	8.59				
5690	138	8.34	8.66				
5775	155	8.44	8.36				

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

Figure 9-4
Power Measurement Setup

FCC ID: PY7-57441Y	SAR EVALUATION REPORT		SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 92 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 83 of 129

Bluetooth Conducted Powers 9.6

Table 9-56 Bluetooth Average RF Power

_	Data			_	nducted wer
Frequency [MHz]	Rate [Mbps]	Mod.	Channel No.	[dBm]	[mW]
2402	1.0	GFSK	0	12.04	16.003
2441	1.0	GFSK	39	13.75	23.714
2480	1.0	GFSK	78	12.61	18.239
2402	2.0	π/4-DQPSK	0	11.15	13.032
2441	2.0	π/4-DQPSK	39	11.63	14.558
2480	2.0	π/4-DQPSK	78	11.57	14.355
2402	3.0	8DPSK	0	11.19	13.152
2441	3.0	8DPSK	39	11.67	14.689
2480	3.0	8DPSK	78	11.61	14.484

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 94 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 84 of 129

Figure 9-5
Bluetooth Transmission Plot

Equation 9-1 Bluetooth Duty Cycle Calculation

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.882 ms}{3.749 ms} * 100\% = 76.9\%$$

Figure 9-6
Power Measurement Setup

FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 95 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 85 of 129

10.1 Tissue Verification

Table 10-1 Measured Head Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			700	0.886	43.961	0.889	42.201	-0.34%	4.17%
			710	0.890	43.927	0.890	42.149	0.00%	4.22%
09/08/2020	750 Head	22.0	750	0.904	43.819	0.894	41.942	1.12%	4.48%
			770	0.911	43.759	0.895	41.838	1.79%	4.59%
			785	0.916	43.706	0.896	41.760	2.23%	4.66%
			820	0.872	41.466	0.899	41.578	-3.00%	-0.27%
09/02/2020	835 Head	24.0	835	0.879	41.381	0.900	41.500	-2.33%	-0.29%
			850	0.883	41.346	0.916	41.500	-3.60%	-0.37%
			820	0.913	43.139	0.899	41.578	1.56%	3.75%
09/14/2020	835 Head	21.0	835	0.919	43.105	0.900	41.500	2.11%	3.87%
			850	0.925	43.070	0.916	41.500	0.98%	3.78%
			1710	1.360	39.041	1.348	40.142	0.89%	-2.74%
			1720	1.370	38.975	1.354	40.126	1.18%	-2.87%
9/2/2020	1750 Head	22.1	1745	1.399	38.844	1.368	40.087	2.27%	-3.10%
0/2/2020	170011000	22.1	1750	1.403	38.831	1.371	40.079	2.33%	-3.11%
			1770	1.423	38.739	1.383	40.047	2.89%	-3.27%
			1790	1.444	38.621	1.394	40.016	3.59%	-3.49%
			1850	1.384	39.589	1.400	40.000	-1.14%	-1.03%
			1860	1.395	39.545	1.400	40.000	-0.36%	-1.14%
08/27/2020	1900 Head	21.3	1880	1.417	39.460	1.400	40.000	1.21%	-1.35%
06/2//2020	1900 Head	21.3	1900	1.438	39.371	1.400	40.000	2.71%	-1.57%
			1905	1.444	39.348	1.400	40.000	3.14%	-1.63%
			1910	1.449	39.326	1.400	40.000	3.50%	-1.69%
			1850	1.402	38.964	1.400	40.000	0.14%	-2.59%
			1860	1.412	38.920	1.400	40.000	0.86%	-2.70%
0/04/0000	4000 111	04.0	1880	1.432	38.838	1.400	40.000	2.29%	-2.91%
8/31/2020	1900 Head	21.8	1900	1.452	38.755	1.400	40.000	3.71%	-3.11%
			1905	1.457	38.734	1.400	40.000	4.07%	-3.17%
			1910	1.463	38.714	1.400	40.000	4.50%	-3.22%
			2510	1.930	38.355	1.866	39.123	3.43%	-1.96%
			2535	1.967	38.212	1.893	39.092	3.91%	-2.25%
			2550	1.984	38.175	1.909	39.073	3.93%	-2.30%
			2560	1.998	38.174	1.920	39.060	4.06%	-2.27%
9/1/2020	2450 Head	24.0	2600	2.043	37.980	1.964	39.009	4.02%	-2.64%
			2650	2.098	37.766	2.018	38.945	3.96%	-3.03%
			2680	2.135	37.656	2.051	38.907	4.10%	-3.22%
			2700	2.152	37.586	2.073	38.882	3.81%	-3.33%
			2400	1.813	38.755	1.756	39.289	3.25%	-1.36%
			2450	1.875	38.563	1.800	39.200	4.17%	-1.63%
09/03/2020	2450 Head	24.0	2480	1.910	38.446	1.833	39.162	4.20%	-1.83%
			2500	1.931	38.361	1.855	39.136	4.10%	-1.98%
			2400	1.784	40.024	1.756	39,289	1.59%	1.87%
			2450	1.840	39.823	1.800	39.200	2.22%	1.59%
09/16/2020	2450 Head	24.9	2480	1.875	39.703	1.833	39.162	2.29%	1.38%
			2500	1.898	39.636	1.855	39.136	2.32%	1.28%
			3650	2.986	39.158	3.066	37.757	-2.61%	3.71%
08/23/2020	3600 Head	22.5	3690	3.022	39.103	3.107	37.711	-2.74%	3.69%
33,23,2020	5555 11644		3700	3.029	39.093	3.117	37.711	-2.82%	3.69%
			5250	4.481	34.876	4.706	35.929	-4.78%	-2.93%
			5290	4.532	34.800	4.748	35.883	-4.55%	-3.02%
			5600	4.867	34.275	5.065	35.529	-3.91%	-3.53%
08/26/2020	5200-5800 Head	22.4	5610	4.879	34.258	5.076	35.518	-3.88%	-3.55%
00/20/2020	3200-3000 i 1880	22.4	5690	4.963	34.236	5.076	35.426	-3.78%	-3.70%
			5750	5.035	34.117	5.136	35.357	-3.76%	-3.72%
			5775	5.055	34.045	5.245	35.329	-3.62%	-3.74%
			5//5	5.055	34.000	5.245	33.329	-3.02%	-3.14%

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 96 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 86 of 129

Table 10-2
Measured Body Tissue Properties

Performed on: Performed on			Measu	i ca bo	ay iio	<u> </u>	per ties			
170 0.069 53.271 0.080 55.687 0.278 4.258 170 0.075 0.375 0.371 0.080 55.587 0.278 4.258 170 0.082 53.148 0.085 55.683 1.786 4.715 170 0.082 53.168 0.085 55.583 1.786 4.715 170 0.082 53.168 0.085 55.583 1.786 4.715 170 0.082 53.168 0.085 55.288 4.320 1.786 180 0.085 0.564 55.085 55.288 4.320 1.786 180 0.086 0.086 55.288 4.320 1.786 1.786 180 0.086 0.086 55.288 4.320 1.786 1.786 180 0.086 0.086 54.267 0.088 55.288 3.207 1.786 180 0.086 0.086 54.267 0.088 55.184 1.782 1.611 180 0.086 0.086 0.086 55.288 3.207 1.786 180 0.086 0.086 0.086 55.288 3.207 1.786 180 0.086 0.086 0.086 55.288 3.207 1.786 180 0.086 0.086 0.086 55.288 3.207 1.786 180 0.086 0.086 0.086 55.288 3.207 1.786 180 0.086 0.086 0.086 55.288 3.207 1.786 180 0.086 0.086 0.086 55.288 3.207 1.786 180 0.086 0.086 0.086 55.288 3.207 1.786 180 0.086 0.086 0.086 55.288 3.207 1.786 180 0.086 0.086 0.086 55.288 3.207 1.786 180 0.086 0.086 0.086 55.288 3.207 1.786 180 0.086 0.086 0.086 0.086 55.288 3.207 1.786 180 0.086 0.086 0.086 0.086 55.288 3.207 1.786 180 0.086 0.086 0.086 0.086 0.086 0.086 180 0.086 0.086 0.086 0.086 0.086 0.086 180 0.086 0.086 0.086 0.086 0.086 0.086 180 0.086 0.086 0.086 0.086 0.086 0.086 180 0.086 0.086 0.086 0.086 0.086 0.086 180 0.086 0.086 0.086 0.086 0.086 0.086 180 0.086 0.086 0.086 0.086 0.086 0.086 180 0.086 0.086 0.086 0.086 0.086 180 0.086 0.086 0.086 0.086 0.086 0.086 180 0.086 0.086 0.086 0.086 0.086 0.086 180 0.086 0.086 0.086 0.086 0.086 0.086 180 0.086 0.086	Tests	Tissue Type	During Calibration	Frequency	Conductivity,	Dielectric	Conductivity,	Dielectric	% dev σ	% dev ε
0824/2020 750 Body 22.4 750 0.075 55.341 0.0844 55.531 1.146 -4.17 770 0.082 0.51.46 0.0865 55.46 1.726 -4.17 785 0.088 53.106 0.086 55.085 2.286 -4.18 820 0.038 55.106 0.086 55.085 2.286 -4.18 820 0.038 55.106 0.086 55.085 2.286 -4.18 820 0.038 55.106 0.086 55.085 2.286 -4.18 820 0.038 55.106 0.086 55.108 -2.286 -1.626 820 0.086 54.441 0.070 55.200 -1.666 -1.624 820 0.086 55.331 0.077 55.200 -1.666 -1.624 820 0.086 55.331 0.086 55.286 -3.616 -3.316 -3.316 820 0.086 55.331 0.086 55.286 -3.616 -3.316 -3.316 820 0.086 55.286 -3.616 -3.286 -3.616				700	0.955	53.336	0.959	55.726	-0.42%	-4.29%
170				710	0.958	53.321	0.960	55.687	-0.21%	-4.25%
1862 1862 1863 1864 1865 1864 1865	08/27/2020	750 Body	22.4	750	0.975	53.217	0.964	55.531	1.14%	-4.17%
B80 0.939 54.599 0.989 55.288 3.209 1.209 B80 0.989 54.471 0.070 55.200 1.698 1.428 B80 0.989 54.267 0.988 55.184 1.1284 1.6181 B80 0.989 54.267 0.988 55.184 1.1284 1.6181 B80 0.984 53.341 0.970 55.200 2.2681 3.429 B80 0.984 52.386 1.489 55.537 0.989 2.268 B80 0.984 52.386 1.489 55.537 0.989 2.268 B80 0.984 52.386 1.489 55.537 0.989 2.268 B80 0.984 52.280 1.481 53.382 0.409 2.268 B80 0.984 52.280 1.481 53.382 0.499 2.218 B80 0.984 52.280 1.481 53.382 0.499 0.209 B80 0.984 52.280 1.481 53.382 0.499 0.209 B80 0.984 52.280 0.984 0.984 0.984 B80 0.984 0.984 0.984 0.984 B80 0.984 0.984 0.984 0.984 0.984 0.984 0.984 B80 0.984 0.984 0.984 0.984 0.984 0.984 0.984 B80 0.				770	0.982	53.148	0.965	55.453	1.76%	-4.16%
Beautiful				785	0.988	53.106	0.966	55.395	2.28%	-4.13%
880				820	0.938	54.559	0.969	55.258	-3.20%	-1.26%
09/15/2020 836 Body 22.5 882 0.0894 53.311 0.099 55.288 3.361% 3.311 0.091 55.289 3.361% 3.311 0.091 55.289 3.361% 3.351 0.0914 3.351 1.0916 3.350 1.0916 3.9916 3.9916 3.9916 3.9916 3.9916 3.9916 3.9916 3.9916 3.9916 3.9916 3.9916 3.9916 3.9916 3.9916 3.9916 3.9916 3.9916 3.991	08/24/2020	835 Body	21.3	835	0.954	54.414	0.970	55.200	-1.65%	-1.42%
Base Body				850	0.969	54.267	0.988	55.154	-1.92%	-1.61%
1750 Body 22.2 1760 Body				820	0.934	53.429	0.969	55.258	-3.61%	-3.31%
08/24/2020 1900 Body 22.6 1790 Body 22.7 1790 Body 22.8 1790 Body 24.8 1790 Body	09/15/2020	835 Body	22.5	835	0.949	53.311	0.970	55.200	-2.16%	-3.42%
1720				850	0.964	53.141	0.988	55.154	-2.43%	-3.65%
09/14/2020 1900 Body 2.1.5				1710	1.450	52.440	1.463	53.537	-0.89%	-2.05%
1750 Body				1720	1.461	52.395	1.469	53.511	-0.54%	-2.09%
1750 1.494 52.279 1.488 53.432 0.499 -2.216 1770 1.595 52.200 1.501 53.379 0.599 -2.216 1790 1.596 52.115 1.514 53.326 1.499 -2.216 1710 1.442 53.856 1.463 53.537 1.499 -2.217 1720 1.463 53.549 1.469 53.541 1.099 -0.0914 1770 1.481 53.444 1.485 53.445 1.470 -0.0914 1770 1.487 53.424 1.488 53.432 0.079 -0.079 1770 1.487 53.424 1.488 53.342 0.079 -0.079 1770 1.589 53.340 1.501 53.320 0.999 -0.217 1770 1.598 53.340 1.501 53.320 0.999 -0.217 1770 1.598 53.360 1.489 53.311 0.699 -0.217 1770 1.598 53.069 1.489 53.311 0.699 -0.217 1770 1.513 52.973 1.488 53.432 1.699 -0.009 1780 1.513 52.973 1.489 53.341 0.699 -0.009 1780 1.513 52.273 1.514 53.326 2.719 -0.009 1780 1.513 52.273 1.514 53.326 2.719 -0.009 1880 1.514 51.223 1.501 53.300 0.399 -3.289 1880 1.544 51.325 1.520 53.300 0.399 -3.289 1880 1.526 51.025 1.520 53.300 0.399 -3.289 1880 1.569 50.000 1.520 53.300 0.399 -3.289 1890 1.567 51.061 1.520 53.300 3.499 -4.279 1990 1.567 51.061 1.520 53.300 3.499 -4.279 1990 1.567 51.061 1.520 53.300 3.499 -4.279 1990 1.567 51.061 1.520 53.300 3.499 -4.279 1990 1.567 51.061 1.520 53.300 3.499 -4.279 1990 1.567 51.061 1.520 53.300 3.499 -4.279 1990 1.567 51.061 1.520 53.300 3.499 -4.279 1990 1.567 51.061 1.520 53.300 3.499 -4.279 1990 1.567 51.061 1.520 53.300 3.499 -4.279 1990 1.567 51.061 1.520 53.300 3.499 -4.279 1990 1.567 51.061 1.520 53.300 3.499 -4.279 1990 1.567 51.061 1.520 53.300 3.499 -4.279 1990 1.567 51.061 1.520 53.300 3.499 -4.279 1990 1.567 51.061 1.520 53.300 3.499 -4.279 19	09/24/2020	17E0 Body	22.2	1745	1.488	52.298	1.485	53.445	0.20%	-2.15%
1790	00/24/2020	1750 Body	22.2	1750	1.494	52.279	1.488	53.432	0.40%	-2.16%
09/03/2020 1750 Body 21.5				1770	1.515	52.200	1.501	53.379	0.93%	-2.21%
09/14/2020 1750 Body 21.5 1700 1.442 53.585 1.483 53.537 1.449 0.099 0.079 09/03/2020 1750 Body 21.5 1750 1.483 53.444 1.485 53.445 0.279 0.079 09/14/2020 1750 Body 20.9 1750 1.508 53.340 1.501 53.379 0.47% 0.079 09/14/2020 1750 Body 20.9 1770 1.508 53.340 1.501 53.379 0.47% 0.079 09/14/2020 1750 Body 20.9 1770 1.508 53.003 1.483 53.542 0.478 0.078 09/14/2020 1750 Body 20.9 17745 1.508 53.003 1.483 53.537 0.27% 0.089 09/14/2020 1900 Body 24.2 1850 1.508 53.003 1.485 53.245 1.50% 0.283 09/14/2020 1900 Body 24.2 1860 1.508 53.003 1.485 53.245 1.60% 0.283 09/24/2020 1900 Body 24.2 1860 1.508 53.003 1.480 53.571 0.277 0.283 09/24/2020 1900 Body 24.2 1860 1.508 53.004 1.500 53.300 0.339 3.389 09/24/2020 1900 Body 24.4 1860 1.506 53.004 1.500 53.300 0.339 3.389 09/24/2020 1900 Body 24.6 1860 1.509 50.990 1.500 53.300 0.309 4.23 1860 1.508 50.502 1.500 53.300 0.309 4.23 1860 1.509 50.990 1.500 53.300 0.707 4.23 1860 1.509 50.990 1.500 53.300 0.707 4.23 1860 1.509 50.990 1.500 53.300 0.707 4.23 1860 1.509 50.990 1.500 53.300 0.707 4.23 1860 1.509 50.990 1.500 53.300 0.707 4.23 1860 1.509 50.990 1.500 53.300 0.707 4.24 1860 1.509 50.502 1.500 53.300 0.707 4.24 1860 1.509 50.502 1.500 53.300 0.707 4.24 1860 1.509 50.502 1.500 53.300 0.707 4.24 1860 1.509 50.502 1.500 53.300 0.707 4.24 1860 1.509 50.502 1.500 53.300 0.707 4.24 1860 1.509 50.502 1.500 53.300 0.707 4.24 1860 1.509 50.502 1.500 53.300 0.707 4.24 1860 1.509 50.502 1.500 53.300 0.707 4.24 1860 1.509 50.502 1.500 53.300 0.707 4.24 1860 1.509 50.502 1.500 53.300 0.707 4.24 1860 1.509 50.502 1.500 53.300 0.707 4.24 1860 1.5				1790	1.536	52.115	1.514	53.326	1.45%	-2.27%
09/03/2020 1750 Body 21.5				1710	1.442	53.585	1.463	53.537	-1.44%	0.09%
9814/2020 1750 Body 21.5				1720	1.453	53.549	1.469	53.511	-1.09%	0.07%
1750 1.487 53.424 1.488 53.432 -0.07% -0.07 1770 1.508 53.340 1.501 53.379 0.47% -0.07 1790 1.529 53.260 1.514 53.326 0.99% -0.20 1710 1.467 53.09 1.468 53.351 53.26 0.99% -0.20 1720 1.479 53.099 1.469 53.511 0.69% -0.28 1720 1.479 53.099 1.489 53.511 0.69% -0.28 1746 1.508 53.003 1.489 53.511 0.69% -0.28 1750 1.513 52.973 1.488 53.432 1.69% -0.28 1770 1.533 52.973 1.488 53.432 1.69% -0.28 1770 1.533 52.973 1.488 53.432 1.69% -0.28 1790 1.555 52.783 1.501 53.300 0.39% -3.20% 1860 1.514 51.322 1.520 53.300 0.39% -3.20% 1860 1.526 51.204 1.520 53.300 1.39% -3.20% 1860 1.526 51.004 1.520 53.300 1.71% -0.00 1860 1.567 51.081 1.520 53.300 3.40% -4.22 1880 1.567 51.081 1.520 53.300 3.40% -4.22 1890 1.516 51.023 1.520 53.300 3.40% -4.22 1890 1.516 51.023 1.520 53.300 3.40% -4.22 1890 1.516 51.023 1.520 53.300 3.40% -4.22 1890 1.516 51.025 1.520 53.300 3.40% -4.22 1890 1.516 51.025 51.025 53.300 3.40% -4.22 1890 1.516 51.025 51.025 53.300 3.40% -4.22 1890 1.516 51.025 51.025 53.300 3.40% -4.22 1890 1.516 51.025 51.020 53.300 3.40% -4.22 1890 1.516 50.900 1.520 53.300 3.40% -4.22 1890 1.516 50.900 1.520 53.300 3.40% -4.22 1890 1.509 50.900 1.520 53.300 2.00% -4.20 1890 1.509 50.900 1.520 53.300 2.00% -4.20 1890 1.509 50.900 1.520 53.300 2.00% -4.20 1890 1.509 50.900 1.520 53.300 2.00% -4.20 1890 1.509 50.900 1.520 53.300 2.00% -4.20 1890 1.509 50.900 1.520 53.300 2.00% -4.20 1890 1.500 50.900 1.520 53.300 2.00% -4.20 1890 1.500 50.900 1.520 53.300 2.00% -4.20 1890 1.500 50.900 1.520 53.300 2.00% -4.20 1890 1.500 50.900 1.520 53.300 2.00% -4.20 1890 1.500 50.900 1.520 53.300 2.00% -4.20 1890 1.500 50.900 1.520 53.300 2.00% -4.20 1890 1.500 50.900 50.	00/03/3030	17E0 Body	24.5	1745	1.481	53.444	1.485	53.445	-0.27%	0.00%
09/14/2020 1750 Body 20.9 1750 Body 20.9 1750 Body 1750 Body 20.9 1760 Body 1750 Body	09/03/2020	1750 Body	21.5	1750	1.487	53.424	1.488	53.432	-0.07%	-0.01%
09/14/2020 1750 Body 20.9 1760 Body 2150 Body 2160 Body 24.2 1900 Body 24.2 1900 Body 24.6 1880 1.509 1.509 1.509 1.509 1.500 1.509 1.500				1770	1.508	53.340	1.501	53.379	0.47%	-0.07%
09/14/2020				1790	1.529	53.260	1.514	53.326	0.99%	-0.12%
08/14/2020 1750 Body 20.9 1750 Body 1750 Body 1750 Body 1750 1.513 52.973 1.488 53.432 1.68% -0.86				1710	1.467	53.109	1.463	53.537	0.27%	-0.80%
1750 Body				1720	1.479	53.069	1.469	53.511	0.68%	-0.83%
1750	00/44/0000	4750 B	00.0	1745	1.508	53.003	1.485	53.445	1.55%	-0.83%
1790	09/14/2020	1750 Body	20.9	1750	1.513	52.973	1.488	53.432	1.68%	-0.86%
8/24/2020				1770	1.533	52.913	1.501	53.379	2.13%	-0.87%
8/24/2020				1790	1.555	52.793	1.514	53.326	2.71%	-1.00%
8/24/2020 1900 Body 24.2 1800				1850	1.514	51.232	1.520	53.300	-0.39%	-3.88%
8/24/2020 1900 Body 24.2 1880					1.525	51.204		53.300	0.33%	-3.93%
1900 1.567	_,_,			1880	1.546	51.136				-4.06%
1905	8/24/2020	1900 Body	24.2	1900	1.567	51.061		53.300	3.09%	-4.20%
1910				1905				53.300		-4.23%
1850 1.499 51.023 1.520 53.300 -1.38% -4.27% 1860 1.509 50.990 1.520 53.300 -0.72% -4.38% 1.429 1900 Body 24.6 1880 1.530 50.992 1.520 53.300 0.66% 4.436 1900 1.551 50.885 1.520 53.300 2.04% 4.458 1900 1.551 50.885 1.520 53.300 2.04% 4.458 1900 1.551 50.886 1.520 53.300 2.04% 4.458 1900 1.551 50.886 1.520 53.300 2.04% 4.458 1900 1.552 50.826 1.520 53.300 2.43% -4.651 1910 1.562 50.826 1.520 53.300 2.43% -4.651 1910 1.562 50.826 1.520 53.300 2.43% -4.651 1850 1.497 52.726 1.520 53.300 -1.57% -1.081 1850 1.497 52.726 1.520 53.300 -0.75% -1.551 1860 1.508 52.688 1.520 53.300 -0.75% -1.551 1900 1.554 52.645 1.520 53.300 0.66% -1.300 1.554 52.645 1.520 53.300 0.24% -1.421 1900 1.554 52.545 1.520 53.300 2.24% -1.421 1900 1.554 52.545 1.520 53.300 2.24% -1.421 1905 1.566 52.517 1.520 53.300 2.263% -1.472 1900 1.554 52.545 1.520 53.300 2.263% -1.472 1900 1.554 52.545 1.520 53.300 2.63% -1.472 1900 1.554 52.545 1.520 53.300 2.63% -1.472 1900 1.554 52.545 1.520 53.300 2.63% -1.472 1900 1.554 52.545 1.520 53.300 3.03% -1.472 1900 1.554 52.545 1.520 53.300 3.03% -1.472 1900 1.554 52.545 1.520 53.300 3.03% -1.472 1900 1.554 52.545 1.550 53.300 3.03% -1.472 1900 1.554 52.545 1.550 53.300 3.03% -1.472 1900 1.554 52.545 1.550 53.300 3.03% -1.472 1900 1.554 52.545 1.550 53.300 3.03% -1.472 1900 1.554 52.545 1.550 53.300 3.03% -1.472 1900 1.554 52.545 1.550 53.300 3.03% -1.472 1900 1.554 52.545 1.550 53.300 3.03% -1.472 1900 1.554 52.545 1.550 52.700 4.92% 1900 1.554 52.545 1.550 52.700 4.92% 1900 1.554 52.550 1.555 52.550 52.555 5						51.025				-4.27%
1860 1.509 50.990 1.520 53.300 -0.72% 4.433 1880 1.530 50.922 1.520 53.300 -0.66% 4.465 1900 1.551 50.868 1.520 53.300 0.66% 4.465 1905 1.557 50.842 1.520 53.300 2.43% 4.651 1910 1.562 50.826 1.520 53.300 2.43% 4.651 1810 1.562 50.826 1.520 53.300 2.43% 4.651 1810 1.562 50.826 1.520 53.300 2.75% -4.645 1810 1.562 50.826 1.520 53.300 -0.75% -4.645 1810 1.562 50.826 1.520 53.300 -0.75% -4.645 1810 1.508 52.688 1.520 53.300 -0.75% -4.645 1810 1.508 52.688 1.520 53.300 -0.75% -1.645 1810 1.508 52.688 1.520 53.300 -0.75% -1.645 1810 1.508 52.686 1.520 53.300 -0.75% -1.645 1810 1.554 52.545 1.520 53.300 .0.66% -1.30 1810 1.554 52.545 1.520 53.300 .0.66% -1.30 1810 1.554 52.545 1.520 53.300 2.24% -1.40 1810 1.560 52.532 1.520 53.300 2.24% -1.40 1810 1.560 52.532 1.520 53.300 2.24% -1.47 1810 1.566 52.517 1.520 53.300 2.43% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 2.43% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.47 1810 1.566 52.517 1.520 53.300 3.03% -1.57 1810 1.566 52.517 52.662 3.03% -1.556 1820 1.520 52.500 5										-4.27%
1800 Body								53.300		-4.33%
1900 1.551 50.858 1.520 53.300 2.04% -4.585 1905 1.557 50.842 1.520 53.300 2.43% -4.615 1910 1.562 50.826 1.520 53.300 2.75% -4.645				1880	1.530	50.922			0.66%	-4.46%
1905	08/24/2020	1900 Body	24.6							-4.58%
8/31/2020 1900 Body 24.4 1850 1.497 52.726 1.520 53.300 2.76% -4.645 1850 1.497 52.726 1.520 53.300 -1.57% -1.085 1860 1.508 52.688 1.520 53.300 -0.79% -1.15% -1.085 1860 1.508 52.688 1.520 53.300 -0.79% -1.15% -1.085 1860 1.508 52.688 1.520 53.300 -0.79% -1.15% -1.085 1860 1.508 52.688 1.520 53.300 0.66% -1.305 1900 1.554 52.545 1.520 53.300 0.24% -1.42% -1.095 1.550 52.532 1.520 53.300 2.24% -1.42% -1.095 1.550 52.532 1.520 53.300 3.03% -1.47% -1.095 1.550 52.532 1.520 53.300 3.03% -1.47% -1.095 1.550 52.545 1.520 53.300 3.03% -1.47% -1.095 1.550 52.542 1.520 53.300 3.03% -1.47% -1.095 1.550 52.542 1.520 53.300 3.03% -1.47% -1.095 1.550 52.542 1.550 52.767 4.21% -0.081% -1.095 1.550 52.700 4.92% -0.982 1.550 52.704 4.92% -0.982 1.550 52.704 4.92% -0.982 1.550 52.704 4.92% -0.982 1.550 52.704 4.92% -0.982 1.550 52.704 4.92% -0.982 1.550 52.704 1.92% -0.982 1.550 52.704 1.92% -0.982 1.550 52.704 1.92% -0.982 1.550 52.623 3.36% -1.025 1.550 52.623 3.36% -1.025 1.550 52.623 3.36% -1.025 1.550 52.623 3.36% -1.025 1.550 52.623 3.36% -1.025 1.550 52.623 3.36% -1.025 1.550 52.520 52.520 52.52										-4.61%
8/31/2020 1900 Body 24.4 1850										-4.64%
8/31/2020 1900 Body 24.4 1880				1850	1.497	52.726				-1.08%
8/31/2020 1900 1.554 52.545 1.520 53.300 2.24% 1.425 1900 1.566 52.517 1.520 53.300 2.63% 1.425 1910 1.566 52.517 1.520 53.300 3.03% 1.437 2400 1.982 52.342 1.902 52.767 4.21% 0.815 2480 2.079 52.124 1.993 52.662 4.32% 1.026 2500 2.102 52.062 2.021 52.636 4.01% 1.095 2500 2.102 52.062 2.021 52.636 4.01% 1.095 2550 2.159 51.946 2.092 52.573 3.20% 1.165 2550 2.159 51.946 2.092 52.573 3.20% 1.165 2550 2.171 51.920 2.106 52.500 3.09% 1.225 2600 2.217 51.810 2.163 52.509 2.5061 1.335 2650 2.279 51.654 2.234 52.445 2.01% 1.551 2660 2.279 51.654 2.234 52.445 2.01% 1.515 2680 2.217 51.810 2.163 52.509 2.5061 1.335 2650 2.279 51.654 2.234 52.445 2.01% 1.515 2680 2.217 51.810 2.163 52.509 2.5061 1.335 2680 2.217 51.810 2.163 52.509 2.5061 1.506 2680 2.217 51.810 2.163 52.509 2.5061 1.506 2700 2.340 51.566 2.277 52.407 1.71% 1.606 2700 2.340 51.564 2.234 52.445 2.01% 1.515 2680 2.279 51.654 2.234 52.445 2.01% 1.515 2680 2.279 51.654 2.234 52.445 2.01% 1.515 2680 2.279 51.654 2.234 52.445 2.01% 1.515 2680 2.279 51.654 2.234 52.445 2.01% 1.515 2680 2.279 51.654 2.234 52.445 2.01% 1.515 2680 2.279 51.654 2.234 52.445 2.01% 1.515 2680 2.279 51.654 2.205 52.382 1.52% 2.509 2400 1.979 51.569 1.902 52.767 4.05% 2.275 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.004 4.8889 3.356 51.063 1.87% 2.2				1860	1.508	52.688	1.520	53.300	-0.79%	-1.15%
8/31/2020 1900 1.554 52.545 1.520 53.300 2.24% 1.425 1900 1.566 52.517 1.520 53.300 2.63% 1.425 1910 1.566 52.517 1.520 53.300 3.03% 1.437 2400 1.982 52.342 1.902 52.767 4.21% 0.815 2480 2.079 52.124 1.993 52.662 4.32% 1.026 2500 2.102 52.062 2.021 52.636 4.01% 1.095 2500 2.102 52.062 2.021 52.636 4.01% 1.095 2550 2.159 51.946 2.092 52.573 3.20% 1.165 2550 2.159 51.946 2.092 52.573 3.20% 1.165 2550 2.171 51.920 2.106 52.500 3.09% 1.225 2600 2.217 51.810 2.163 52.509 2.5061 1.335 2650 2.279 51.654 2.234 52.445 2.01% 1.551 2660 2.279 51.654 2.234 52.445 2.01% 1.515 2680 2.217 51.810 2.163 52.509 2.5061 1.335 2650 2.279 51.654 2.234 52.445 2.01% 1.515 2680 2.217 51.810 2.163 52.509 2.5061 1.335 2680 2.217 51.810 2.163 52.509 2.5061 1.506 2680 2.217 51.810 2.163 52.509 2.5061 1.506 2700 2.340 51.566 2.277 52.407 1.71% 1.606 2700 2.340 51.564 2.234 52.445 2.01% 1.515 2680 2.279 51.654 2.234 52.445 2.01% 1.515 2680 2.279 51.654 2.234 52.445 2.01% 1.515 2680 2.279 51.654 2.234 52.445 2.01% 1.515 2680 2.279 51.654 2.234 52.445 2.01% 1.515 2680 2.279 51.654 2.234 52.445 2.01% 1.515 2680 2.279 51.654 2.234 52.445 2.01% 1.515 2680 2.279 51.654 2.205 52.382 1.52% 2.509 2400 1.979 51.569 1.902 52.767 4.05% 2.275 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.021 52.636 3.81% 2.235 2500 2.098 51.302 2.004 4.8889 3.356 51.063 1.87% 2.2				1880	1.530	52,607	1.520	53.300	0.66%	-1.30%
09/03/2020 2450 Body 23.0 2450 Body 23.8 2450 Body 23.8 2450 Body 2450 Body 2450 Body 2450 Body 2450 Body 2560 2.171 51.892 52.061 2.035 52.636 4.078 -1.097 52.062 2.140 51.892 52.062 2.021 52.636 4.078 -1.097 52.062 2.004 52.035 52.623 3.64% -1.078 52.062 4.278 52.062 2.021 52.636 4.078 -1.097 52.062 2.004 52.035 52.623 3.64% -1.078 52.062 2.005 52.	8/31/2020	1900 Body	24.4							-1.42%
09/03/2020 2450 Body 23.0 2450 Body 23.0 2450 Body 23.0 2.046 52.342 1.902 52.767 4.21% -0.815				1905			1.520	53.300	2.63%	-1.44%
09/03/2020 2450 Body 23.0 2450 Body 23.0 2450 Body 23.0 2.046 52.342 1.902 52.767 4.21% -0.815										
09/03/2020 2450 Body 23.0 2450 C 2.046 52.213 1.950 52.700 4.92% -0.929 2480 2.079 52.124 1.993 52.662 4.32% -1.029 2500 2.102 52.062 2.021 52.636 4.01% -1.099 2500 2.109 52.061 2.035 52.623 3.64% -1.079 2535 2.140 51.986 2.071 52.592 3.33% -1.159 2550 2.159 51.946 2.092 52.573 3.20% -1.199 2560 2.171 51.920 2.106 52.560 3.09% -1.229 2600 2.217 51.810 2.163 52.509 2.50% -1.339 2660 2.279 51.654 2.234 52.445 2.01% -1.609 2660 2.279 51.654 2.234 52.445 2.01% -1.609 2700 2.340 51.504 2.305 52.382 1.52% -1.689 2450 Body 23.0 2450 Body 2460 2.075 51.361 1.993 52.662 4.11% -2.479 2500 2.098 51.306 1.902 52.767 4.05% -2.279 2480 2.075 51.361 1.993 52.662 4.11% -2.479 2500 2.098 51.302 2.021 52.636 3.81% -2.539 2500 2.098 51.302 2.021 52.636 3.81% -2.539 3650 3.552 49.894 3.489 51.118 1.81% -2.391 3700 3.613 49.839 3.536 51.063 1.87% -2.401 3700 3.613 49.839 3.548 51.050 1.83% -2.391 5290 5.517 47.419 5.404 48.892 2.09% -3.015 5600 5.934 46.887 5.766 48.471 2.91% -3.275 5690 6.057 46.755 5.872 48.349 31.539 3.309 3.309 3.309 3.309 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.268 3.45% -3.345 5750 6.147 46.655 5.842 48.26										-0.81%
08/03/2020 2450 Body 23.0 2480 2.079 52.124 1.993 52.662 4.32% -1.02* 2500 2.102 52.062 2.021 52.636 4.01% -1.09* 2510 2.109 52.061 2.035 52.623 3.64% -1.07* 2535 2.140 51.986 2.071 52.592 3.33% -1.15* 2550 2.159 51.946 2.092 52.573 3.20% -1.19* 2560 2.171 51.920 2.106 52.560 3.09% -1.22* 2600 2.217 51.810 2.163 52.590 2.50% -1.33* 2650 2.279 51.854 2.234 52.445 2.01% -1.56* 2650 2.279 51.856 2.277 52.407 1.71% -1.610* 2680 2.316 51.566 2.277 52.407 1.71% -1.610* 2700 2.340 51.504 2.205 52.392 1.52% -1.68* 2400 1.979 51.569 1.902 52.767 4.05% 2.27* 2450 2.042 51.435 1.950 52.700 4.72% -2.40* 2480 2.075 51.361 1.993 52.662 4.11% -2.47* 2500 2.098 51.302 2.021 52.636 3.81% -2.53* 2500 2.098 51.302 2.021 52.636 3.81% -2.53* 2500 2.098 51.302 2.021 52.636 3.81% -2.53* 3700 3.613 49.839 3.536 51.063 1.87% -2.40* 3700 3.613 49.839 3.548 51.050 1.83% -2.40* 3700 3.613 49.839 3.548 51.050 1.83% -2.40* 3700 3.613 49.839 3.548 51.050 1.83% -2.40* 5290 5.517 47.419 5.404 48.892 2.09% -3.07* 5600 5.934 46.887 5.766 48.471 2.91% -3.27* 5600 5.948 46.887 5.766 48.471 2.91% -3.27* 5600 5.948 46.887 5.766 48.471 2.91% -3.27* 5600 5.948 46.685 5.872 48.349 3.369 -3.36*				2450						-0.92%
2500 2.102 52.062 2.021 52.636 4.01% -1.095 2510 2.109 52.061 2.035 52.633 3.64% -1.075 2535 2.140 51.986 2.071 52.592 3.33% -1.155 2550 2.159 51.946 2.092 52.573 3.20% -1.195 2550 2.177 51.920 2.106 52.560 3.09% -1.225 2600 2.217 51.810 2.163 52.509 2.50% -1.335 2650 2.279 51.654 2.234 52.445 2.01% -1.515 2680 2.217 51.810 2.163 52.509 2.50% -1.335 2680 2.316 51.566 2.277 52.407 1.71% -1.607 2700 2.340 51.504 2.305 52.382 1.52% -1.685 2400 1.979 51.569 1.902 52.767 4.05% -2.275 2480 2.042 51.435 1.950 52.700 4.72% 2.2405 2480 2.075 51.361 1.993 52.662 4.11% 2.475 2500 2.098 51.302 2.021 52.636 3.81% -2.535 09/14/2020 3600 Body 21.6 3690 3.552 49.894 3.489 51.118 1.81% 2.295 09/14/2020 5200-5800 Body 22.6 5610 5.934 48.889 3.536 51.063 1.87% 2.207 5500 5.934 46.887 5.766 48.471 2.91% -3.275 5690 6.597 44.6857 5.766 48.471 2.91% -3.275 5690 6.057 46.755 5.872 48.349 3.15% -3.330	09/03/2020	2450 Body	23.0							-1.02%
08/24/2020 2450 Body 23.8 2560 2.109 52.061 2.035 52.623 3.64% -1.075 2550 2.159 51.946 2.071 52.592 3.33% -1.155 2550 2.159 51.946 2.092 52.573 3.20% -1.195 2550 2.159 51.946 2.092 52.573 3.20% -1.225 2560 2.171 51.920 2.106 52.560 3.09% -1.225 2660 2.217 51.810 2.163 52.509 2.50% -1.335 2680 2.217 51.810 2.163 52.509 2.50% -1.335 2680 2.216 51.566 2.277 52.407 1.77% -1.605 2700 2.340 51.504 2.305 52.382 1.52% -1.665 2700 4.25% -1.665 2.270 52.407 1.77% -1.605 2700 2.340 51.504 2.305 52.382 1.52% -1.665 2.200										-1.09%
08/24/2020 2450 Body 23.8 2556 2.140 51.986 2.071 52.592 3.33% -1.155 2550 2.159 51.946 2.092 52.573 3.20% -1.195 2660 2.171 51.920 2.106 52.560 3.09% -1.225 2660 2.217 51.810 2.163 52.590 2.50% -1.335 2660 2.217 51.810 2.163 52.590 2.50% -1.335 2660 2.279 51.654 2.234 52.445 2.01% -1.605 2700 2.340 51.504 2.305 52.362 1.52% -1.685 2.277 52.407 1.71% -1.605 2700 2.340 51.504 2.305 52.362 1.52% -1.685 2.200 2.200 2.340 51.504 2.305 52.362 1.52% -1.685 2.200 2.340 2.340 51.504 2.305 52.362 1.52% -1.685 2.200 2.340 2.340 51.504 2.305 52.767 4.05% 2.270 2.340 2.340 2.345 1.902 52.767 4.05% 2.270 2.400 1.979 51.569 1.902 52.767 4.05% 2.245 2.042 51.435 1.950 52.700 4.72% -2.405 2.002 2.008 51.361 1.993 52.662 4.11% -2.475 2.260 2.002 2.098 51.302 2.021 52.636 3.81% 2.535 2.000 2.098 51.302 2.021 52.636 3.81% 2.535 2.500 2.098 51.302 2.021 52.636 3.81% 2.535 2.500 2.098 51.302 3.536 51.063 1.87% 2.240 3.700 3.613 49.839 3.536 51.063 1.87% 2.240 3.700 3.613 49.839 3.548 51.050 1.83% 2.375 5200 5.468 47.485 5.558 48.947 2.05% 2.295 52.90 5.517 47.419 5.404 48.892 2.09% 3.015 5600 5.934 46.887 5.766 48.471 2.91% -3.275 5690 6.057 46.755 5.872 48.349 3.15% -3.305 5690 6.057 46.755 5.872 48.349 3.15% -3.305 5690 6.057 46.755 5.872 48.349 3.15% -3.305 5690 6.057 46.755 5.842 48.268 3.45% -3.345 5.358 48.268 3.45% -3.345 5690 6.057 46.755 5.842 48.268 3.45% -3.345 5.358 48.268 3.45% -3.345 5690 6.057 46.755 5.842 48.268 3.45% -3.345 5690 6.057 46.755 5.842 48.268 3.45% -3.345 5690 6.057 46.755 5.842 48.268 3.45% -3.345 5690 6.057 46.755 5.842 48.268 3.45% -3.345 5690 6.057 46.755 5.842 48.268 3.45% -3.345 5690 6.057 46.755 5.842 48.268 3.45% -3.345 5690 6.057 46.755 5.842 48.268 3.45% -3.345 5690 6.057 46.755 5.842 48.268 3.45% -3.345 5690 6.057 46.755 5.842 48.268 3.45% -3.345 5690 6.057 46.755 5.842 48.268 3.45% -3.345 5690 6.057 46.755 5.842 48.268 3.45% -3.345 5690 6.057 46.755 5.842 48.268 3.45% -3.345 5690 6.057 46.755 5.842 48.268 3.45% -3.345 5690 6.057 46.755 5.842 48.268 3.45% -3.345 5690 6.057 46.755 5.842 48.268									_	-1.07%
08/24/2020 2450 Body 23.8 2550 2.159 51.946 2.092 52.573 3.20% -1.199 2560 2.171 51.920 2.106 52.560 3.09% -1.299 2650 2.277 51.810 2.163 52.509 2.50% -1.339 2650 2.279 51.654 2.234 52.445 2.01% -1.519 2680 2.316 51.566 2.277 52.407 1.71% -1.609 2700 2.340 51.564 2.234 52.445 2.01% -1.519 2700 2.340 51.564 2.234 52.445 2.01% -1.519 2700 2.340 51.569 1.902 52.767 4.05% -2.279 2480 2.042 51.435 1.902 52.767 4.05% -2.279 2480 2.075 51.361 1.993 52.662 4.11% 2.479 2500 2.098 51.302 2.021 52.662 4.11% 2.479 2500 2.098 51.302 2.021 52.662 4.11% 2.299 09/14/2020 3600 Body 21.6 3899 3.502 49.894 3.489 51.118 1.81% 2.399 09/14/2020 52.06 5.06 3.06 52.00 4.06 3.06 52.00 4.06 3.06 52.00 4.06 3.06 52.00 4.06 3.06 52.00 4.06 3.06 52.00 4.06 3.06 52.00 4.06 3.06 52.00 4.06 3.06 52.00 4.72% 2.20 52.00										-1.15%
23.8 2560 2.171 51.920 2.106 52.560 3.09% -1.225 2600 2.217 51.810 2.163 52.509 2.50% -1.335 2650 2.277 51.810 2.163 52.509 2.50% -1.335 2.509 2.50% -1.335 2.509 2.50% -1.335 2.509 2.50% -1.335 2.509 2.50% -1.335 2.509 2.50% -1.351 2.500 2.279 51.654 2.234 52.445 2.01% -15.515 2.580 2.316 51.566 2.277 52.407 1.71% -1.607 2.700 2.340 51.504 2.305 52.382 1.52% -1.685 2.700 4.72% -2.405 2.205 52.382 1.52% -1.685 2.200 1.979 51.569 1.902 52.767 4.05% -2.245 2.400 2.075 51.361 1.993 52.662 4.11% -2.475 2.500 2.098 51.302 2.021 52.636 3.81% -2.535 2.500 2.098 51.302 2.021 52.636 3.81% -2.535 2.500 2.098 51.302 2.021 52.636 3.81% -2.395 2.500 3.552 49.894 3.489 51.118 1.81% -2.395 3.500 3.502 49.839 3.536 51.063 1.87% -2.405 3.700 3.613 49.839 3.548 51.050 1.83% -2.395 52.50 5.468 47.485 5.358 48.947 2.05% -2.995 52.50 5.468 47.485 5.358 48.947 2.05% -2.995 52.50 5.468 47.485 5.358 48.947 2.05% -2.995 52.50 5.517 47.419 5.404 48.892 2.09% -3.215 5600 5.934 46.887 5.766 48.471 2.91% -3.275 5600 5.934 46.887 5.766 48.471 2.91% -3.275 5600 5.934 46.887 5.766 48.471 2.91% -3.275 5600 5.934 46.685 5.572 48.349 3.15% -3.305 5650 5.942 48.268 3.45% -3.345 5650 5.942 48.268										-1.19%
2450 Body 23.8 2600 2.217 51.810 2.163 52.509 2.50% -1.33* 2650 2.279 51.654 2.234 52.445 2.01% -1.51* 2650 2.279 51.654 2.234 52.445 2.01% -1.51* 2700 2.340 51.504 2.305 52.382 1.52% -1.68* 2700 2.340 51.504 2.305 52.382 1.52% -1.68* 2700 2.340 51.504 2.305 52.382 1.52% -1.68* 2400 1.979 51.569 1.902 52.767 4.05% -2.27* 2450 2.042 51.435 1.950 52.700 4.72% -2.40* 2480 2.075 51.361 1.993 52.662 4.11% -2.47* 2500 2.098 51.302 2.021 52.662 4.11% -2.47* 2500 2.098 51.302 2.021 52.636 3.81% -2.33* 2500 2.098 51.302 2.021 52.636 3.81% -2.33* 2500 3.602 49.839 3.536 51.063 1.87% -2.40* 3700 3.613 49.839 3.536 51.063 1.87% -2.40* 3700 3.613 49.839 3.548 51.050 1.83% -2.37* 5250 5.468 47.485 5.586 48.947 2.05% -2.99* 5290 5.517 47.419 5.404 48.892 2.09% -3.07\$ 5600 5.934 46.887 5.766 48.471 2.91% -3.27* 5600 5.934 46.887 5.766 48.471 2.91% -3.27* 5690 6.057 46.755 5.872 48.349 3.15% -3.30* 5750 6.147 46.655 5.942 48.268 3.45% -3.34*										-1.22%
2650 2.279 51.854 2.234 52.445 2.01% -1.515 2680 2.316 51.566 2.277 52.407 1.71% -1.605 2700 2.340 51.506 2.277 52.407 1.77% -1.605 2700 2.340 51.504 2.305 52.382 1.52% -1.685 2400 1.979 51.569 1.902 52.767 4.05% -2.275 2450 2.042 51.435 1.950 52.700 4.72% 2.2405 2480 2.075 51.361 1.993 52.662 4.11% 2.475 2500 2.098 51.302 2.021 52.636 3.81% -2.535 2500 2.098 51.302 2.021 52.636 3.81% -2.535 2500 2.098 51.302 2.021 52.636 3.81% -2.535 2500 3.552 49.894 3.489 51.118 1.81% 2.395 2500 3.552 49.894 3.489 51.118 1.81% 2.395 2500 3.552 49.893 3.536 51.063 1.87% 2.2405 3700 3.613 49.839 3.548 51.050 1.83% -2.407 3700 3.613 49.839 3.548 51.050 1.83% -2.407 2500 5.934 46.887 5.358 48.947 2.05% 2.998 5290 5.517 47.419 5.404 48.892 2.09% -3.075 5690 5.934 46.887 5.766 48.471 2.91% -3.275 5690 6.057 46.755 5.872 48.349 3.15% -3.306 5750 6.147 46.655 5.872 48.349 3.15% -3.306	08/24/2020	2450 Body	23.8							-1.33%
2680 2.316 51.566 2.277 52.407 1.71% -1.605 2700 2.340 51.504 2.205 52.382 1.52% -1.685 2400 1.979 51.569 1.902 52.767 4.055 -2.275 2450 Body 23.0 2.450 2.042 51.435 1.950 52.700 4.72% -2.245 2480 2.075 51.361 1.993 52.662 4.11% -2.475 2500 2.098 51.302 2.021 52.636 3.81% -2.259 3650 3.552 49.894 3.89 51.118 1.81% -2.395 3650 3.552 49.894 3.89 51.118 1.81% -2.395 3700 3.613 49.839 3.536 51.063 1.87% -2.405 3700 3.613 49.839 3.536 51.063 1.87% -2.405 5250 5.468 47.485 5.358 48.947 2.055 -2.995 5250 5.468 47.485 5.358 48.947 2.055 -2.995 5260 5.517 47.419 5.404 48.892 2.09% -3.015 5600 5.934 46.887 5.766 48.471 2.91% -3.275 5600 5.934 46.887 5.766 48.471 2.91% -3.275 5690 6.057 46.755 5.872 48.349 3.15% -3.305 5750 6.147 46.655 5.942 48.268 3.45% -3.345										-1.51%
09/13/2020 2450 Body 23.0 23.0 1.52% 2450 Body 23.0 2450 Body 23.0 2450 Body 25.0										-1.60%
09/13/2020 2450 Body 23.0 2450 Body 23.0 2450 Body 23.0 2450 Body 2460 2.042 51.435 1.950 52.700 4.72% 2.275 2500 2.098 51.302 2.021 52.662 4.11% 2.437 2.500 2.098 51.302 2.021 52.636 3.81% 2.253 2500 2.098 51.302 2.021 52.636 3.81% 2.253 2500 2.098 51.302 2.021 52.636 3.81% 2.253 2.091 2.098 2.098 2.098 51.302 2.021 52.636 3.81% 2.353 2.091 2.098 2.09										-1.68%
09/13/2020 2450 Body 23.0 2450 2.042 51.435 1.950 52.700 4.72% -2.405 2480 2.075 51.361 1.993 52.662 4.11% -2.475 2500 2.098 51.302 2.021 52.636 3.81% -2.535 3650 3.552 49.894 3.489 51.118 1.81% -2.395 3700 3.613 49.839 3.536 51.063 1.87% -2.405 3700 3.613 49.839 3.536 51.063 1.87% -2.405 3700 3.613 49.839 3.548 51.050 1.83% -2.375 3500 5.517 47.419 5.404 48.892 2.09% -3.015 5290 5.517 47.419 5.404 48.892 2.09% -3.015 5600 5.934 46.887 5.766 48.471 2.91% -3.275 5690 6.057 46.755 5.872 48.349 3.15% -3.305 5750 6.147 46.655 5.942 48.268 3.45% -3.345										
2480 2.075 51.361 1.993 52.662 4.11% -2.475 2500 2.098 51.302 2.021 52.636 3.81% -2.535 09/14/2020 3600 Body 21.6 3690 3.552 49.894 3.489 51.118 1.81% -2.395 3700 3.613 49.839 3.548 51.063 1.87% -2.405 3700 3.613 49.839 3.548 51.060 1.83% -2.395 5250 5.468 47.485 5.358 48.947 2.05% -2.995 5290 5.517 47.419 5.404 48.892 2.09% -3.015 5600 5.934 46.887 5.766 48.471 2.91% -3.275 5690 6.057 46.755 5.872 48.349 3.15% -3.306 5750 6.147 46.655 5.942 48.268 3.45% -3.345										
2500 2.098 51.302 2.021 52.636 3.81% -2.53; 09/14/2020 3600 Body 21.6 3690 3.652 49.894 3.489 51.118 1.81% -2.39; 3600 Body 21.6 3690 3.602 49.839 3.536 51.063 1.87% -2.40; 3700 3.613 49.839 3.548 51.050 1.83% -2.40; 5250 5.468 47.485 5.358 48.947 2.05% -2.90; 5290 5.517 47.419 5.404 48.892 2.09% -3.01; 5600 5.934 46.887 5.766 48.471 2.91% -3.27; 5600 5.948 46.873 5.776 48.481 2.94% -3.27; 5600 6.057 46.755 5.872 48.349 3.15% -3.30; 5750 6.147 46.655 5.842 48.268 3.45% -3.345	09/13/2020	2450 Body	23.0							
09/14/2020 3600 Body 21.6 3650 3.552 49.894 3.489 51.118 1.81% -2.395 3600 Body 21.6 3690 3.602 49.839 3.536 51.063 1.87% -2.407 3700 3.613 49.839 3.548 51.050 1.83% -2.437 5250 5.468 47.485 5.358 48.947 2.05% -2.995 5290 5.517 47.419 5.404 48.892 2.09% -3.015 5600 5.934 46.887 5.766 48.471 2.91% -32.77 5690 6.057 46.755 5.872 48.349 3.15% -3.305 5750 6.147 46.655 5.942 48.268 3.45% -3.345										
09/14/2020 3600 Body 21.6 3690 3.602 49.839 3.536 51.063 1.87% -2.405 3700 3.613 49.839 3.548 51.050 1.83% -2.375 5250 5.468 47.485 5.358 48.947 2.05% -2.995 5.517 47.419 5.404 48.892 2.05% -3.015 5600 5.934 46.887 5.766 48.471 2.91% -32.275 5600 5.934 46.887 5.766 48.471 2.91% -32.275 5690 6.057 46.755 5.872 48.349 3.15% -3.305 5750 6.147 46.655 5.942 48.268 3.45% -3.345										
3700 3.613 49.839 3.548 51.050 1.83% -2.375 5250 5.468 47.485 5.358 48.947 2.05% 2-295 5290 5.517 47.419 5.404 48.892 2.09% -3.015 5500 5.934 46.887 5.766 48.471 2.91% -3.275 5600 5.934 46.887 5.766 48.471 2.91% -3.275 5600 5.948 46.873 5.778 48.488 2.94% -3.275 5690 6.057 46.755 5.872 48.349 3.15% -3.305 5750 6.147 46.655 5.842 48.268 3.45% -3.345	00/14/2020	3600 Post.	21.6							
5250 5.468 47.485 5.358 48.947 2.05% -2.995 5290 5.517 47.419 5.404 48.892 2.09% -3.015 5690 5.934 46.887 5.766 48.471 2.91% -3.275 5690 6.057 46.755 5.872 48.349 3.15% -3.305 5750 6.147 46.655 5.942 48.268 3.45% -3.345	09/14/2020	3000 Body	21.6							
5290 5.517 47.419 5.404 48.892 2.09% -3.015 5800 5.934 46.887 5.766 48.471 2.91% -3.275 5610 5.948 46.873 5.778 48.458 2.94% -3.275 5690 6.057 46.755 5.787 48.349 3.15% -3.305 5750 6.147 46.655 5.942 48.268 3.45% -3.345										
5600 5.934 46.887 5.766 48.471 2.91% -3.275 08/23/2020 5200-5800 Body 22.6 5610 5.948 46.873 5.778 48.458 2.94% -3.275 5690 6.057 46.755 5.872 48.349 3.15% -3.305 5750 6.147 46.655 5.942 48.268 3.45% -3.345										-2.99%
08/23/2020 5200-5800 Body 22.6 5610 5.948 46.873 5.778 48.458 2.94% -3.275 5690 6.057 46.755 5.872 48.349 3.15% -3.305 5750 6.147 46.655 5.942 48.268 3.45% -3.345										-3.01%
5690 6.057 46.755 5.872 48.349 3.15% -3.305 5750 6.147 46.655 5.942 48.268 3.45% -3.345										-3.27%
5750 6.147 46.655 5.942 48.268 3.45% -3.345	08/23/2020	5200-5800 Body	22.6							-3.27%
										-3.30%
5775 6.176 46.636 5.971 48.234 3.43% -3.315										-3.34%
				5775	6.176	46.636	5.971	48.234	3.43%	-3.31%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 97 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 87 of 129

© 2020 PCTEST.

REV 21.4 M 09/11/2019

10.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix D.

Table 10-3
System Verification Results – 1g Head

	Oystem Vermouton results – 19 riedd											
	System Verification TARGET & MEASURED											
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN		Measured SAR ₁₉ (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR ₁₉ (W/kg)	Deviation _{1g} (%)
Е	750	HEAD	09/08/2020	22.3	22.0	0.200	1054	3589	1.680	8.630	8.400	-2.67%
D	835	HEAD	09/02/2020	23.1	22.7	0.200	4d047	7488	1.990	9.420	9.950	5.63%
Е	835	HEAD	09/14/2020	21.9	21.0	0.200	4d133	3589	2.020	9.430	10.100	7.10%
L	1750	HEAD	09/02/2020	24.3	22.2	0.100	1008	7406	3.920	36.200	39.200	8.29%
L	1900	HEAD	08/27/2020	22.3	21.5	0.100	5d148	7406	3.910	39.100	39.100	0.00%
L	1900	HEAD	08/31/2020	22.7	21.9	0.100	5d148	7406	4.280	39.100	42.800	9.46%
Е	2450	HEAD	09/03/2020	22.9	22.7	0.100	797	3589	5.180	52.700	51.800	-1.71%
Р	2450	HEAD	09/16/2020	23.7	23.3	0.100	981	7308	5.150	52.300	51.500	-1.53%
Е	2600	HEAD	09/01/2020	22.6	23.0	0.100	1064	3589	5.900	58.100	59.000	1.55%
D	3700	HEAD	08/23/2020	23.0	22.5	0.100	1018	7488	6.410	65.800	64.100	-2.58%
Н	5250	HEAD	08/26/2020	24.5	22.4	0.050	1237	7357	3.690	81.300	73.800	-9.23%
Н	5600	HEAD	08/26/2020	24.5	22.4	0.050	1237	7357	4.000	85.700	80.000	-6.65%
Н	5750	HEAD	08/26/2020	24.5	22.4	0.050	1237	7357	3.710	80.600	74.200	-7.94%

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 90 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 88 of 129

© 2020 PCTEST.

REV 21.4 M
09/11/2019

Table 10-4 System Verification Results – 1g Body

System Verification TARGET & MEASURED

	TARGET & MEASURED											
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
Р	750	BODY	08/27/2020	22.2	22.4	0.200	1054	7551	1.830	8.530	9.150	7.27%
Р	835	BODY	08/24/2020	21.9	21.2	0.200	4d047	7551	2.000	9.470	10.000	5.60%
D	835	BODY	09/15/2020	23.1	22.5	0.200	4d133	7488	1.910	9.750	9.550	-2.05%
I	1750	BODY	08/24/2020	21.9	22.2	0.100	1148	7570	3.770	36.300	37.700	3.86%
I	1750	BODY	09/03/2020	21.9	21.5	0.100	1148	7570	3.430	36.300	34.300	-5.51%
G	1750	BODY	09/14/2020	22.1	20.9	0.100	1008	7538	3.940	37.400	39.400	5.35%
Н	1900	BODY	08/24/2020	24.0	22.8	0.100	5d080	7357	4.170	39.200	41.700	6.38%
J	1900	BODY	08/24/2020	22.7	22.6	0.100	5d080	7571	4.140	39.200	41.400	5.61%
J	1900	BODY	08/31/2020	20.9	22.4	0.100	5d080	7571	4.220	39.200	42.200	7.65%
К	2450	BODY	09/03/2020	22.0	21.7	0.100	981	7409	5.210	50.900	52.100	2.36%
К	2450	BODY	09/13/2020	23.0	22.7	0.100	981	7409	5.210	50.900	52.100	2.36%
К	2600	BODY	08/24/2020	22.6	23.0	0.100	1064	7409	5.620	55.600	56.200	1.08%
D	3700	BODY	09/14/2020	22.4	21.6	0.100	1018	7488	6.680	64.300	66.800	3.89%
G	5250	BODY	08/23/2020	22.1	22.6	0.050	1237	7538	3.680	75.600	73.600	-2.65%
G	5600	BODY	08/23/2020	22.1	22.6	0.050	1237	7538	3.760	78.500	75.200	-4.20%
G	5750	BODY	08/23/2020	22.1	22.6	0.050	1237	7538	3.540	75.900	70.800	-6.72%

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 90 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 89 of 129

Table 10-5

					stem v	erifica	tion R	esuits	s – 10g			
	System Verification TARGET & MEASURED											
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR _{10 g} (W/kg)	1 W Target SAR _{10g} (W/kg)	1 W Normalized SAR _{10g} (W/kg)	Deviation _{10g} (%)
G	5250	BODY	08/23/2020	22.1	22.6	0.050	1237	7538	1.030	21.200	20.600	-2.83%
G	5600	BODY	08/23/2020	22.1	22.6	0.050	1237	7538	1.050	22.000	21.000	-4.55%
G	5750	BODY	08/23/2020	22.1	22.6	0.050	1237	7538	0.981	21.200	19.620	-7.45%

Figure 10-1 System Verification Setup Diagram

Figure 10-2 System Verification Setup Photo

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 00 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 90 of 129

SAR DATA SUMMARY

11.1 **Standalone Head SAR Data**

Table 11-1 GSM 850 Head SAR

						MEASU	JREMEN	T RESU	LTS						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	# of Time	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots	Cycle	(W/kg)	Factor	(W/kg)	
836.60	190	GSM 850	GSM	33.2	32.43	0.03	Right	Cheek	80813	1	1:8.3	0.130	1.194	0.155	A1
836.60	190	GSM 850	GSM	33.2	32.43	0.06	Right	Tilt	80813	1	1:8.3	0.066	1.194	0.079	
836.60	190	GSM 850	GSM	33.2	32.43	0.05	Left	Cheek	80813	1	1:8.3	0.124	1.194	0.148	
836.60	190	GSM 850	GSM	33.2	32.43	-0.13	3 Left Tilt 80813 1				1:8.3	0.067	1.194	0.080	
836.60	190	GSM 850	GPRS	27.2	27.17	0.14	Right	Cheek	80813	4	1:2.076	0.123	1.007	0.124	
836.60	190	GSM 850	GPRS	27.2	27.17	0.14	Right	Tilt	80813	4	1:2.076	0.050	1.007	0.050	
836.60	190	GSM 850	GPRS	27.2	27.17	0.07	Left	Cheek	80813	4	1:2.076	0.121	1.007	0.122	
836.60	190	GSM 850	GPRS	27.2	27.17	0.01	Left	Tilt	80813	4	1:2.076	0.100	1.007	0.101	
			E C95.1 1992 Spatial Pe I Exposure/G	ak							Heat 1.6 W/kg eraged o				

Table 11-2 GSM 1900 Head SAR

						MEASU	JREMEN	T RESU	LTS						
FREQUI	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	# of Time	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	661	GSM 1900	GSM	28.2	26.73	0.17	Right	Cheek	81779	1	1:8.3	0.036	1.403	0.051	
1880.00	661	GSM 1900	GSM	28.2	26.73	0.08	Right	Tilt	81779	1	1:8.3	0.026	1.403	0.036	
1880.00	661	GSM 1900	GSM	28.2	26.73	0.03	Left	Cheek	81779	1	1:8.3	0.073	1.403	0.102	A2
1880.00	661	GSM 1900	GSM	28.2	26.73	0.10	Left	Tilt	81779	1	1:8.3	0.027	1.403	0.038	
1880.00	661	GSM 1900	GPRS	22.2	20.73	-0.09	Right	Cheek	81779	4	1:2.076	0.032	1.403	0.045	
1880.00	661	GSM 1900	GPRS	22.2	20.73	-0.18	Right	Tilt	81779	4	1:2.076	0.029	1.403	0.041	
1880.00	661	GSM 1900	GPRS	22.2	20.73	-0.17	Left	Cheek	81779	4	1:2.076	0.062	1.403	0.087	
1880.00	661	GSM 1900	GPRS	22.2	20.73	-0.08	Left	Tilt	81779	4	1:2.076	0.024	1.403	0.034	
		ANSI / IEE	E C95.1 1992		MIT				<u> </u>	•	Hea		•		
	Spatial Peak										1.6 W/kg	,			
		Uncontrolled	I Exposure/G	enerai Popul	ation					a	eraged ov	er 1 gram			

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 01 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 91 of 129

© 2020 PCTEST. REV 21.4 M © 2020 PCTEST. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Table 11-3 UMTS 850 Head SAR

						11100	o i ica	u OAIN						
					МЕ	ASURE	MENT R	ESULTS						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
836.60	4183	UMTS 850	RMC	24.7	23.90	0.00	Right	Cheek	81779	1:1	0.207	1.202	0.249	A3
836.60	4183	UMTS 850	RMC	24.7	23.90	0.02	Right	Tilt	81779	1:1	0.103	1.202	0.124	
836.60	4183	UMTS 850	RMC	24.7	23.90	0.00	Left	Cheek	81779	1:1	0.192	1.202	0.231	
836.60	4183	UMTS 850	RMC	24.7	23.90	0.03	Left	Tilt	81779	1:1	0.109	1.202	0.131	
		ANSI / IEE	E C95.1 1992	- SAFETY LI	MIT						Head			
			Spatial Pe	ak						1.6 V	V/kg (mW/g))		
		Uncontrolled	d Exposure/G	eneral Popul	ation					averag	jed over 1 gra	am		

Table 11-4 UMTS 1750 Head SAR

					ME	ASURE	MENT R	ESULTS						
FREQUE	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.		0011100	Power [dBm]	Power [dBm]	Drift [dB]	0.40	Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
1732.40	1412	UMTS 1750	RMC	16.7	15.63	0.12	Right	Cheek	80813	1:1	0.021	1.279	0.027	
1732.40	.40 1412 UMTS 1750 RMC 16.7 15.63 0.11 Right Tilt							80813	1:1	0.020	1.279	0.026		
1732.40	1412	UMTS 1750	RMC	16.7	15.63	0.10	Left	Cheek	80813	1:1	0.044	1.279	0.056	A4
1732.40	1412	UMTS 1750	RMC	16.7	15.63	-0.11	Left	Tilt	80813	1:1	0.028	1.279	0.036	
		ANSI / IEE	E C95.1 1992	- SAFETY LI	MIT						Head			
			Spatial Pe								V/kg (mW/g)			
		Uncontrolled	I Exposure/G	eneral Popul	ation					averag	ed over 1 gra	ım		

Table 11-5 UMTS 1900 Head SAR

					<u> </u>		00 1100	IG OAIN	•					
					ME	ASURE	MENT R	ESULTS						
FREQUI	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	9400	UMTS 1900	RMC	16.7	15.79	0.11	Right	0.049						
1880.00	9400	UMTS 1900	RMC	16.7	15.79	0.17	Right	Tilt	81779	1:1	0.029	1.233	0.036	
1880.00	9400	UMTS 1900	RMC	16.7	15.79	0.04	Left	Cheek	81779	1:1	0.074	1.233	0.091	A5
1880.00 9400 UMTS 1900 RMC 16.7 15.79							Left	Tilt	81779	1:1	0.037	1.233	0.046	
		ANSI / IEE	E C95.1 1992	- SAFETY LI	MIT						Head			
			Spatial Pe	ak						1.6 V	V/kg (mW/g))		
		Uncontrolled	Exposure/G	eneral Popul	ation					averag	ed over 1 gra	am		

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 02 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 92 of 129

Table 11-6 LTE Band 12 Head SAR

								MEAS	UREME	ENT RES	ULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.0	24.18	-0.05	0	Right	Cheek	QPSK	1	25	80813	1:1	0.151	1.208	0.182	
707.50	23095	Mid	LTE Band 12	10	24.0	23.45	0.01	1	Right	Cheek	QPSK	25	0	80813	1:1	0.113	1.135	0.128	
707.50	23095	Mid	LTE Band 12	10	25.0	24.18	0.11	0	Right	Tilt	QPSK	1	25	80813	1:1	0.066	1.208	0.080	
707.50	23095	Mid	LTE Band 12	10	24.0	23.45	0.17	1	Right	Tilt	QPSK	25	0	80813	1:1	0.048	1.135	0.054	
707.50	23095	Mid	LTE Band 12	10	25.0	24.18	-0.09	0	Left	Cheek	QPSK	1	25	80813	1:1	0.179	1.208	0.216	A6
707.50	23095	Mid	LTE Band 12	10	24.0	23.45	0.06	1	Left	Cheek	QPSK	25	0	80813	1:1	0.130	1.135	0.148	
707.50	23095	Mid	LTE Band 12	10	25.0	24.18	-0.03	0	Left	Tilt	QPSK	1	25	80813	1:1	0.080	1.208	0.097	
707.50	23095	Mid	LTE Band 12	10	24.0	23.45	0.13	1	Left	Tilt	QPSK	25	0	80813	1:1	0.059	1.135	0.067	
			ANSI / IEEE (C95.1 1992 Spatial Pe								Head							
			l Incontrolled F							.6 W/kg (n									
			Uncontrolled E	xposure/G	eneral Popu	iation							ave	eraged over	i gram				

Table 11-7 LTE Band 13 Head SAR

								MEAS	UREMI	ENT RES	SULTS								
FR	REQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
782.00	23230	Mid	LTE Band 13	10	25.0	24.46	0.03	0	Right	Cheek	QPSK	1	0	80813	1:1	0.139	1.132	0.157	
782.00	23230	Mid	LTE Band 13	10	24.0	23.51	0.03	1	Right	Cheek	QPSK	25	25	80813	1:1	0.119	1.119	0.133	
782.00	23230	Mid	LTE Band 13	10	25.0	24.46	0.01	0	Right	Tilt	QPSK	1	0	80813	1:1	0.078	1.132	0.088	
782.00	23230	Mid	LTE Band 13	10	24.0	23.51	0.05	1	Right	Tilt	QPSK	25	25	80813	1:1	0.069	1.119	0.077	
782.00	23230	Mid	LTE Band 13	10	25.0	24.46	-0.12	0	Left	Cheek	QPSK	1	0	80813	1:1	0.165	1.132	0.187	A7
782.00	23230	Mid	LTE Band 13	10	24.0	23.51	0.04	1	Left	Cheek	QPSK	25	25	80813	1:1	0.144	1.119	0.161	
782.00	23230	Mid	LTE Band 13	10	25.0	24.46	0.03	0	Left	Tilt	QPSK	1	0	80813	1:1	0.096	1.132	0.109	
782.00 23230 Mid LTE Band 13 10 24.0 23.51 -0.04								1	Left	Tilt	QPSK	25	25	80813	1:1	0.078	1.119	0.087	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population													Head .6 W/kg (n	nW/g)				

Table 11-8 LTE Band 26 (Cell) Head SAR

								MEAS	UREMI	ENT RES	SULTS								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Cł	١.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.0	23.76	0.10	0	Right	Cheek	QPSK	1	36	81779	1:1	0.157	1.330	0.209	A8
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.0	23.32	0.03	1	Right	Cheek	QPSK	36	0	81779	1:1	0.143	1.169	0.167	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.0	23.76	-0.01	0	Right	Tilt	QPSK	1	36	81779	1:1	0.078	1.330	0.104	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.0	23.32	0.07	1	Right	Tilt	QPSK	36	0	81779	1:1	0.067	1.169	0.078	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.0	23.76	-0.01	0	Left	Cheek	QPSK	1	36	81779	1:1	0.145	1.330	0.193	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.0	23.32	-0.05	1	Left	Cheek	QPSK	36	0	81779	1:1	0.136	1.169	0.159	
831.50	831.50 26865 Mid LTE Band 26 (Cell) 15 25.0 23.76 0.06								Left	Tilt	QPSK	1	36	81779	1:1	0.077	1.330	0.102	
831.50	31.50 26865 Mid LTE Band 26 (Cell) 15 24.0 23.32 0.10									Tilt	QPSK	36	0	81779	1:1	0.074	1.169	0.087	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Head				,	
	Spatial Peak Uncontrolled Exposure/General Population													.6 W/kg (n eraged over					

FCC ID: PY7-57441Y	Proud to be part of @element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 02 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 93 of 129

Table 11-9 LTE Band 66 (AWS) Head SAR

							<u></u>	ana	ין טט	1110)	Head	UAIN							
								MEAS	UREME	ENT RES	SULTS								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch	١.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	17.0	15.94	0.10	0	Right	Cheek	QPSK	1	0	80813	1:1	0.016	1.276	0.020	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	17.0	16.04	-0.13	0	Right	Cheek	QPSK	50	50	80813	1:1	0.015	1.247	0.019	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	17.0	15.94	0.13	0	Right	Tilt	QPSK	1	0	80813	1:1	0.016	1.276	0.020	
1745.00	(AWS)									Tilt	QPSK	50	50	80813	1:1	0.015	1.247	0.019	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	17.0	15.94	0.21	0	Left	Cheek	QPSK	1	0	80813	1:1	0.041	1.276	0.052	A9
1745.00	132322	Mid	LTE Band 66 (AWS)	20	17.0	16.04	0.09	0	Left	Cheek	QPSK	50	50	80813	1:1	0.039	1.247	0.049	
1745.00	1745.00 132322 Mid LTE Band 66 (AWS) 17.0 15.94 0.11									Tilt	QPSK	1	0	80813	1:1	0.024	1.276	0.031	
1745.00	.00 132322 Mid LTE Band 66 (AWS) 20 17.0 16.04 -0.04									Tilt	QPSK	50	50	80813	1:1	0.021	1.247	0.026	
			ANSI / IEEE C	95.1 1992 -	SAFETY LIN	VIT								Head					
			:	Spatial Pea	ak								1	.6 W/kg (n	nW/g)				
			Uncontrolled Ex	cposure/Ge	eneral Popul	ation							ave	eraged over	1 gram				

Table 11-10 LTE Band 25 (PCS) Head SAR

										ENT RES	BULTS								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	CI	١.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.09	-0.11	0	Right	Cheek	QPSK	1	50	81779	1:1	0.017	1.233	0.021	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.14	0.13	0	Right	Cheek	QPSK	50	25	81779	1:1	0.019	1.219	0.023	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.09	0.18	0	Right	Tilt	QPSK	1	50	81779	1:1	0.013	1.233	0.016	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.14	0.17	0	Right	Tilt	QPSK	50	25	81779	1:1	0.013	1.219	0.016	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.09	0.01	0	Left	Cheek	QPSK	1	50	81779	1:1	0.038	1.233	0.047	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.14	0.04	0	Left	Cheek	QPSK	50	25	81779	1:1	0.039	1.219	0.048	A10
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.09	0.17	0	Left	Tilt	QPSK	1	50	81779	1:1	0.016	1.233	0.020	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.14	0.10	0	Left	Tilt	QPSK	50	25	81779	1:1	0.016	1.219	0.020	
			ANSI / IEEE C			VIIT								Head					
				Spatial Pe										.6 W/kg (n	•				
			Uncontrolled E	xposure/G	eneral Popul	ation							ave	eraged over	1 gram				

Table 11-11 LTE Band 7 Head SAR

							MEAS	UREMI	ENT RES	SULTS								
EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
CI	n.		[WHZ]	Power [dBm]	Power (abm)	опт (ав)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
21100	Mid	LTE Band 7	20	17.0	15.93	0.11	0	Right	Cheek	QPSK	1	50	80797	1:1	0.034	1.279	0.043	
21100	Mid	LTE Band 7	20	17.0	15.98	0.17	0	Right	Cheek	QPSK	50	50	80797	1:1	0.028	1.265	0.035	
								Right	Tilt	QPSK	1	50	80797	1:1	0.020	1.279	0.026	
21100	Mid	LTE Band 7	20	17.0	15.98	0.12	0	Right	Tilt	QPSK	50	50	80797	1:1	0.015	1.265	0.019	
21100	Mid	LTE Band 7	20	17.0	15.93	0.09	0	Left	Cheek	QPSK	1	50	80797	1:1	0.055	1.279	0.070	A11
21100	Mid	LTE Band 7	20	17.0	15.98	0.10	0	Left	Cheek	QPSK	50	50	80797	1:1	0.041	1.265	0.052	
2535.00 21100 Mid LTE Band 7 20 17.0 15.93 0.12								Left	Tilt	QPSK	1	50	80797	1:1	0.023	1.279	0.029	
2535.00 21100 Mid LTE Band 7 20 17.0 15.98 0.14								Left	Tilt	QPSK	50	50	80797	1:1	0.019	1.265	0.024	
			Spatial Pe	ak									.6 W/kg (n	nW/g)				
	21100 21100 21100 21100 21100 21100 21100	21100 Mid 21100 Mid 21100 Mid 21100 Mid 21100 Mid 21100 Mid	Ch. 21100 Md LTE Band 7	Mode Indicate	Mode Bandwidth [MHz] Allowed Power [dBm]	Ch. Mode Bandwidth Allowed Power [dBm] Power [dBm]	Ch. Mode Bandwidth [MHz] Allowed Power [dBm] P	Reduency Reduence Reduence	Reduency Reduence Reduence	Note Power Power	Mode	Note Bandwidth Maximum Conducted Power [dBm] Power MPR [dB] Side Test Position Modulation RB Size	Bandwidth Maximum Allowed Power [dBm] Power [dBm]	Power Powe	Power Powe	Power Powe	Sample Power [dBm] Power	Facility Facility

FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 04 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 94 of 129

Table 11-12 LTE Band 48 Head SAR

								ı	MEASU	REMENT	RESULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Cł	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
3690.00	56640	High	LTE Band 48	20	15.0	13.99	0.14	0	Right	Cheek	QPSK	1	0	80797	1:1.58	0.012	1.262	0.015	
3690.00	56640	High	LTE Band 48	20	15.0	14.00	0.19	0	Right	Cheek	QPSK	50	0	80797	1:1.58	0.009	1.259	0.011	
3690.00										Tilt	QPSK	1	0	80797	1:1.58	0.016	1.262	0.020	A12
3690.00	56640	High	LTE Band 48	20	15.0	14.00	-0.21	0	Right	Tilt	QPSK	50	0	80797	1:1.58	0.012	1.259	0.015	
3690.00	56640	High	LTE Band 48	20	15.0	13.99	0.00	0	Left	Cheek	QPSK	1	0	80797	1:1.58	0.008	1.262	0.010	
3690.00	56640	High	LTE Band 48	20	15.0	14.00	0.11	0	Left	Cheek	QPSK	50	0	80797	1:1.58	0.003	1.259	0.004	
3690.00	56640	High	LTE Band 48	20	15.0	13.99	0.11	0	Left	Tilt	QPSK	1	0	80797	1:1.58	0.005	1.262	0.006	
3690.00	56640	High	LTE Band 48	20	15.0	14.00	0.12	0	Left	Tilt	QPSK	50	0	80797	1:1.58	0.004	1.259	0.005	
			ANSI / IEEE	C95.1 1992 - Spatial Peak		т							1.6 V	Head V/kg (mW/g)					
			Uncontrolled	Exposure/Ger	neral Populat	ion							averag	ed over 1 gram					

Table 11-13 LTE Band 41 Head SAR

								MEAS	UREM	ENT RES	SULTS								
FR	EQUENCY	(Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[MHZ]	Power [dBm]	rower [dBill]	Dilit [GB]			Position				Number	Сусів	(W/kg)	racioi	(W/kg)	
2680.00	41490	High	LTE Band 41	20	15.0	14.59	-0.19	0	Right	Cheek	QPSK	1	99	80797	1:1.58	0.026	1.099	0.029	
2680.00	41490	High	LTE Band 41	0.01	0	Right	Cheek	QPSK	50	25	80797	1:1.58	0.018	1.081	0.019				
2680.00	41490	High	LTE Band 41	0.12	0	Right	Tilt	QPSK	1	99	80797	1:1.58	0.018	1.099	0.020				
2680.00	41490	High	LTE Band 41	20	15.0	14.66	0.17	0	Right	Tilt	QPSK	50	25	80797	1:1.58	0.012	1.081	0.013	
2680.00	41490	High	LTE Band 41	20	15.0	14.59	-0.21	0	Left	Cheek	QPSK	1	99	80797	1:1.58	0.034	1.099	0.037	A13
2680.00	41490	High	LTE Band 41	20	15.0	14.66	-0.02	0	Left	Cheek	QPSK	50	25	80797	1:1.58	0.022	1.081	0.024	
2680.00	41490	High	LTE Band 41	20	15.0	14.59	0.21	0	Left	Tilt	QPSK	1	99	80797	1:1.58	0.010	1.099	0.011	
2680.00										Tilt	QPSK	50	25	80797	1:1.58	0.005	1.081	0.005	
			ANSI / IEEE C	95.1 1992 Spatial Pe		MIT							1	Head .6 W/kg (n	nW/g)				
			Uncontrolled E	xposure/G	eneral Popul	ation				_			ave	eraged over	1 gram				

Table 11-14 NR Band n5 Head SAR

								1111	uiiu	110 1	icaa CAIN								
								ME	ASURE	EMENT I	RESULTS								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch	١.	mode	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	[0.5]	Oluc	Position	modulation.	NB 0120	its onset	Number	Cycle	(W/kg)	Factor	(W/kg)	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	24.10	0.12	0	Right	Cheek	DFT-S-OFDM QPSK	1	1	80797	1:1	0.056	1.230	0.069	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	24.06	0.21	0	Right	Cheek	DFT-S-OFDM QPSK	50	28	80797	1:1	0.051	1.242	0.063	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	24.10	0.16	0	Right	Tilt	DFT-S-OFDM QPSK	1	1	80797	1:1	0.028	1.230	0.034	
836.50	- 								Right	Tilt	DFT-S-OFDM QPSK	50	28	80797	1:1	0.026	1.242	0.032	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	24.10	0.20	0	Left	Cheek	DFT-S-OFDM QPSK	1	1	80797	1:1	0.049	1.230	0.060	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	24.06	0.15	0	Left	Cheek	DFT-S-OFDM QPSK	50	28	80797	1:1	0.058	1.242	0.072	A14
836.50	167300	Mid	NR Band n5 (Cell)	20	23.5	22.62	0.17	1.5	Left	Cheek	CP-OFDM QPSK	1	1	80797	1:1	0.033	1.225	0.040	
836.50	36.50 167300 Mid NR Band n5 (Cell) 20 25.0 24.10 0.17								Left	Tilt	DFT-S-OFDM QPSK	1	1	80797	1:1	0.024	1.230	0.030	
836.50									Left	Tilt	DFT-S-OFDM QPSK	50	28	80797	1:1	0.028	1.242	0.035	
			ANSI / IEEE C	95.1 1992	- SAFETY LI	MIT								Head					
				Spatial Pe	ak								1.6 W	//kg (mW/	g)				
			Uncontrolled E	xposure/G	eneral Popul	ation							average	ed over 1 q	ram				

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 05 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 95 of 129

Table 11-15 NR Band n66 Head SAR

										•••	Juu 0/ 11								
								MEA	SUREN	IENT RE	SULTS								
FI	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cvcle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHZ]	Power [dBm]	Power (abm)	Drift (aB)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	1
1720.00	344000	Low	NR Band n66 (AWS)	20	17.0	16.34	0.14	0	Right	Cheek	DFT-S-OFDM QPSK	1	53	81779	1:1	0.000	1.164	0.000	
1720.00	344000	Low	NR Band n66 (AWS)	20	17.0	16.14	-0.13	0	Right	Cheek	DFT-S-OFDM QPSK	50	56	81779	1:1	0.000	1.219	0.000	
1720.00	(AWS)									Tilt	DFT-S-OFDM QPSK	1	53	81779	1:1	0.000	1.164	0.000	
1720.00	20.00 344000 Low NR Band n66 (AWS) 20 17.0 16.14 0.10								Right	Tilt	DFT-S-OFDM QPSK	50	56	81779	1:1	0.000	1.219	0.000	
1720.00	344000	Low	NR Band n66 (AWS)	20	17.0	16.34	0.04	0	Left	Cheek	DFT-S-OFDM QPSK	1	53	81779	1:1	0.007	1.164	0.008	A15
1720.00	344000	Low	NR Band n66 (AWS)	20	17.0	16.14	0.18	0	Left	Cheek	DFT-S-OFDM QPSK	50	56	81779	1:1	0.005	1.219	0.006	
1745.00	349000	Mid	NR Band n66 (AWS)	20	17.0	16.29	0.07	0	Left	Cheek	CP-OFDM QPSK	1	1	81779	1:1	0.005	1.178	0.006	
1720.00	NP Rand n66									Tilt	DFT-S-OFDM QPSK	1	53	81779	1:1	0.000	1.164	0.000	
1720.00	0 344000 Low NR Band n66 (AWS) 20 17.0 16.14 0.10									Tilt	DFT-S-OFDM QPSK	50	56	81779	1:1	0.000	1.219	0.000	
			ANSI / IEEE C9	5.1 1992 -	SAFETY LIM	IT								Head					
			S	patial Peal	k								1.6	W/kg (mW	//g)				
			Uncontrolled Ex	posure/Ge	neral Popula	tion							avera	ged over 1	gram				

Table 11-16 NR Band n2 Head SAR

								MEA	SUREN	IENT RE	SULTS								
F	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHZ]	Power [dBm]	Power (abm)	υτιπ (αΒ)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	i l
1860.00	372000	Low	NR Band n2 (PCS)	20	17.0	16.51	0.13	0	Right	Cheek	DFT-S-OFDM QPSK	1	53	81779	1:1	0.005	1.119	0.006	
1860.00	372000	Low	NR Band n2 (PCS)	20	17.0	16.16	0.14	0	Right	Cheek	DFT-S-OFDM QPSK	50	0	81779	1:1	0.005	1.213	0.006	
1860.00									Right	Tilt	DFT-S-OFDM QPSK	1	53	81779	1:1	0.003	1.119	0.003	
1860.00	372000	Low	NR Band n2 (PCS)	20	17.0	16.16	0.06	0	Right	Tilt	DFT-S-OFDM QPSK	50	0	81779	1:1	0.003	1.213	0.004	
1860.00	372000	Low	NR Band n2 (PCS)	20	17.0	16.51	0.12	0	Left	Cheek	DFT-S-OFDM QPSK	1	53	81779	1:1	0.014	1.119	0.016	
1860.00	372000	Low	NR Band n2 (PCS)	20	17.0	16.16	0.14	0	Left	Cheek	DFT-S-OFDM QPSK	50	0	81779	1:1	0.013	1.213	0.016	
1880.00	376000	Mid	NR Band n2 (PCS)	20	17.0	16.17	0.15	0	Left	Cheek	CP-OFDM QPSK	1	1	81779	1:1	0.021	1.211	0.025	A16
1860.00	860.00 372000 Low NR Band n2 (PCS) 20 17.0 16.51 0.11								Left	Tilt	DFT-S-OFDM QPSK	1	53	81779	1:1	0.006	1.119	0.007	
1860.00									Left	Tilt	DFT-S-OFDM QPSK	50	0	81779	1:1	0.005	1.213	0.006	
			ANSI / IEEE C9	5.1 1992 -	SAFETY LIM	IT								Head					
			S	patial Peal	•								1.6	W/kg (mV	//g)				
			Uncontrolled Exp	oosure/Ge	neral Popula	tion							avera	ged over 1	gram				

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Down 06 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 96 of 129

Table 11-17 DTS Head SISO SAR

									SUREM										
FREQUI	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test Position	Antenna	Device Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Config.	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	9.7	9.69	0.17	Right	Cheek	Chain 0	80979	1	99.9	0.107	-	1.002	1.001	-	
2412	1	802.11b	DSSS	22	9.7	9.69	0.07	Right	Tilt	Chain 0	80979	1	99.9	0.163	-	1.002	1.001	-	
2412	1	802.11b	0.11	Left	Cheek	Chain 0	80979	1	99.9	0.448	0.266	1.002	1.001	0.267	A17				
2412	1	802.11b	DSSS	22	9.7	9.69	0.16	Left	Tilt	Chain 0	80979	1	99.9	0.281	-	1.002	1.001	-	
2412	1	802.11b	DSSS	22	9.0	8.91	0.14	Right	Cheek	Chain 1	80979	1	99.9	0.070	0.038	1.021	1.001	0.039	
2412	1	802.11b	DSSS	22	9.0	8.91	0.15	Right	Tilt	Chain 1	80979	1	99.9	0.025	-	1.021	1.001	-	
2412	1	802.11b	DSSS	22	9.0	8.91	0.00	Left	Cheek	Chain 1	80979	1	99.9	0.068	-	1.021	1.001	-	
2412	1	802.11b	0.18	Left	Tilt	Chain 1	80979	1	99.9	0.014	-	1.021	1.001	-					
				ial Peak	ETY LIMIT									Head .6 W/kg (mW eraged over 1					

Table 11-18 NII Head SAR

									CLIDEM										
			ı	T	T	ı		WEA	SUREM	ENI KE				Peak SAR of		ı	ı	Reported SAR	
FREQU	_	Mode	Service	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Side	Test Position	Antenna Config.	Device Serial	Data Rate (Mbps)	Duty Cycle (%)	Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	(1g)	Plot #
MHz	Ch.				Power [dBm]						Number			W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5290	58	802.11ac	OFDM	80	9.0	8.66	-0.13	Right	Cheek	Chain 0	80953	29.3	99.7	0.298	-	1.081	1.003	-	
5290	58	802.11ac	OFDM	80	9.0	8.66	0.15	Right	Tilt	Chain 0	80953	29.3	99.7	0.347	-	1.081	1.003	-	
5290	58	802.11ac	OFDM	80	9.0	8.66	0.13	Left	Cheek	Chain 0	80953	29.3	99.7	0.489	0.208	1.081	1.003	0.226	
5290	58	802.11ac	OFDM	80	9.0	8.66	0.19	Left	Tilt	Chain 0	80953	29.3	99.7	0.441	-	1.081	1.003	-	
5290	58	802.11ac	OFDM	80	9.0	8.67	0.12	Right	Cheek	Chain 1	80953	29.3	99.7	0.070	-	1.079	1.003	-	
5290	58	802.11ac	OFDM	80	9.0	8.67	0.00	Right	Tilt	Chain 1	80953	29.3	99.7	0.079	0.021	1.079	1.003	0.023	
5290	58	802.11ac	OFDM	80	9.0	8.67	0.00	Left	Cheek	Chain 1	80953	29.3	99.7	0.013	-	1.079	1.003	-	
5290	58	802.11ac	OFDM	80	9.0	8.67	0.00	Left	Tilt	Chain 1	80953	29.3	99.7	0.014	-	1.079	1.003	-	
5690	138	802.11ac	OFDM	80	9.0	8.71	-0.10	Right	Cheek	Chain 0	80953	29.3	99.7	0.623	-	1.069	1.003	-	
5690	138	802.11ac	OFDM	80	9.0	8.71	0.12	Right	Tilt	Chain 0	80953	29.3	99.7	0.634	-	1.069	1.003	-	
5690	138	802.11ac	OFDM	80	9.0	8.71	0.14	Left	Cheek	Chain 0	80953	29.3	99.7	1.194	0.382	1.069	1.003	0.410	
5690	138	802.11ac	OFDM	80	9.0	8.71	0.18	Left	Tilt	Chain 0	80953	29.3	99.7	1.077	0.386	1.069	1.003	0.414	
5610	122	802.11ac	OFDM	80	9.0	8.68	0.11	Right	Cheek	Chain 1	80953	29.3	99.7	0.073	-	1.076	1.003	-	
5610	122	802.11ac	OFDM	80	9.0	8.68	0.00	Right	Tilt	Chain 1	80953	29.3	99.7	0.077	0.022	1.076	1.003	0.024	
5610	122	802.11ac	OFDM	80	9.0	8.68	0.14	Left	Cheek	Chain 1	80953	29.3	99.7	0.013	-	1.076	1.003	-	
5610	122	802.11ac	OFDM	80	9.0	8.68	0.00	Left	Tilt	Chain 1	80953	29.3	99.7	0.017	-	1.076	1.003	-	
5775	155	802.11ac	OFDM	80	9.0	8.60	0.14	Right	Cheek	Chain 0	80953	29.3	99.7	0.520	-	1.096	1.003	-	
5775	155	802.11ac	OFDM	80	9.0	8.60	0.17	Right	Tilt	Chain 0	80953	29.3	99.7	0.536	-	1.096	1.003	-	
5775	155	802.11ac	OFDM	80	9.0	8.60	0.13	Left	Cheek	Chain 0	80953	29.3	99.7	0.841	0.382	1.096	1.003	0.420	
5775	155	802.11ac	OFDM	80	9.0	8.60	0.17	Left	Tilt	Chain 0	80953	29.3	99.7	1.149	0.424	1.096	1.003	0.466	A18
5775	155	802.11ac	OFDM	80	9.0	8.44	0.18	Right	Cheek	Chain 1	80953	29.3	99.7	0.047	0.017	1.138	1.003	0.019	
5775	155	802.11ac	OFDM	80	9.0	8.44	0.00	Right	Tilt	Chain 1	80953	29.3	99.7	0.027	-	1.138	1.003	-	
5775	155	802.11ac	OFDM	80	9.0	8.44	0.00	Left	Cheek	Chain 1	80953	29.3	99.7	0.013	-	1.138	1.003	-	
5775	155	802.11ac	OFDM	80	9.0	8.44	0.00	Left	Tilt	Chain 1	80953	29.3	99.7	0.014	-	1.138	1.003	-	
		ANSI/	IEEE C95.1		ETY LIMIT									Head					
		Uncontro	•	ial Peak ure/Genera	al Population									.6 W/kg (mW raged over 1	•				
		UU	= Apos	, 00	opulation								avo	500 0.01 1	J				

FCC ID: PY7-57441Y	Proud to be part of selement	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 07 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 97 of 129

Table 11-19 DSS Head SAR

							DOO	пеац	SAN							
						М	EASURE	MENT R	ESULT	s						
FREQUE	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Data Rate	Duty	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.	Wode	Service	Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Number	(Mbps)	Cycle (%)	(W/kg)	Power)	Cycle)	(W/kg)	FIOL#
2441.00	39	Bluetooth	FHSS	14.0	13.75	-0.06	Right	Cheek	80979	1	76.9	0.075	1.059	1.300	0.103	
2441.00	39	Bluetooth	FHSS	14.0	13.75	-0.02	Right	Tilt	80979	1	76.9	0.124	1.059	1.300	0.171	
2441.00	39	Bluetooth	FHSS	14.0	13.75	-0.01	Left	Cheek	80979	1	76.9	0.259	1.059	1.300	0.357	A19
2441.00	39	Bluetooth	FHSS	14.0	13.75	0.03	Left	Tilt	80979	1	76.9	0.198	1.059	1.300	0.273	
		ANSI / IEEI	E C95.1 1992	- SAFETY LII	MIT							Head				
			Spatial Pe								1.6	W/kg (mW/	g)			
		Uncontrolled	Exposure/G	eneral Popul	ation						avera	aged over 1 g	ram			

FCC ID: PY7-57441Y	Pout to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 00 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 98 of 129

11.2 Standalone Body-Worn SAR Data

Table 11-20 GSM/UMTS Body-Worn SAR Data

					WI, O WI I O				- utu					
					MEAS	UREME	NT RES	ULTS						
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted	Power	Spacing	Device Serial	Duty	Side	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Number	Cycle		(W/kg)	Factor	(W/kg)	
836.60	190	GSM 850	GSM	33.2	32.43	-0.02	10 mm	81779	1:8.3	back	0.203	1.194	0.242	
836.60	190	GSM 850	GPRS	27.2	27.17	-0.10	10 mm	81779	1:2.076	back	0.210	1.007	0.211	A20
1880.00	661	GSM 1900	GSM	28.2	26.73	0.00	10 mm	80797	1:8.3	back	0.168	1.403	0.236	
1880.00	661	GSM 1900	GPRS	22.2	20.73	-0.08	10 mm	80797	1:2.076	back	0.171	1.403	0.240	A21
836.60	4183	UMTS 850	RMC	24.7	23.90	0.01	10 mm	81779	1:1	back	0.319	1.202	0.383	A23
1732.40	1412	UMTS 1750	RMC	16.7	15.63	0.01	10 mm	83197	1:1	back	0.059	1.279	0.075	A24
1880.00	9400	UMTS 1900	RMC	16.7	15.79	0.04	10 mm	81738	1:1	back	0.085	1.233	0.105	A26
		ANSI / IEEE	C95.1 1992 - S	AFETY LIMIT							Body			
			Spatial Peak							1.6	W/kg (mW/g)		
		Uncontrolled	Exposure/Gene	ral Population	n					avera	ged over 1 gr	am		

Table 11-21 LTE Body-Worn SAR

								MEASUF		RESULTS									
FR	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	CI	١.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number						Cycle	(W/kg)	Factor	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.0	24.18	0.02	0	80797	QPSK	1	25	10 mm	back	1:1	0.242	1.208	0.292	A28
707.50	23095	Mid	LTE Band 12	10	24.0	23.45	-0.02	1	80797	QPSK	25	0	10 mm	back	1:1	0.194	1.135	0.220	
782.00	23230	Mid	LTE Band 13	10	25.0	24.46	-0.01	0	80797	QPSK	1	0	10 mm	back	1:1	0.248	1.132	0.281	A30
782.00	23230	Mid	LTE Band 13	10	24.0	23.51	-0.01	1	80797	QPSK	25	25	10 mm	back	1:1	0.205	1.119	0.229	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.0	23.76	0.02	0	81779	QPSK	1	36	10 mm	back	1:1	0.226	1.330	0.301	A31
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.0	23.32	-0.01	1	81779	QPSK	36	0	10 mm	back	1:1	0.200	1.169	0.234	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	17.0	15.94	0.02	0	83197	QPSK	1	0	10 mm	back	1:1	0.056	1.276	0.071	A32
1745.00	132322	Mid	LTE Band 66 (AWS)	20	17.0	16.04	0.04	0	83197	QPSK	50	50	10 mm	back	1:1	0.055	1.247	0.069	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.09	0.06	0	81738	QPSK	1	50	10 mm	back	1:1	0.100	1.233	0.123	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.14	0.08	0	81738	QPSK	50	25	10 mm	back	1:1	0.104	1.219	0.127	A34
2535.00	21100	Mid	LTE Band 7	20	17.0	15.93	0.18	0	80797	QPSK	1	50	10 mm	back	1:1	0.034	1.279	0.043	
2535.00	21100	Mid	LTE Band 7	20	17.0	15.98	0.12	0	80797	QPSK	50	50	10 mm	back	1:1	0.039	1.265	0.049	A36
3690.00	56640	High	LTE Band 48	20	15.0	13.99	-0.07	0	81779	QPSK	1	0	10 mm	back	1:1.58	0.067	1.262	0.085	A38
3690.00	56640	High	LTE Band 48	20	15.0	14.00	-0.13	0	81779	QPSK	50	0	10 mm	back	1:1.58	0.063	1.259	0.079	
2680.00	41490	High	LTE Band 41	20	15.0	14.59	0.20	0	80797	QPSK	1	99	10 mm	back	1:1.58	0.045	1.099	0.049	
2680.00	41490	High	LTE Band 41	20	15.0	14.66	0.10	0	80797	QPSK	50	25	10 mm	back	1:1.58	0.050	1.081	0.054	A40
			ANSI / IEEE C			NT								Во					
				Spatial Pea										•	y (mW/g)				
			Uncontrolled Ex	cposure/Ge	eneral Popula	ation							av	eraged c	ver 1 gra	m			

FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 00 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 99 of 129

Table 11-22 NR Body-Worn SAR

										O111 O7 (1									
								MEASU	JREMEN	T RESULTS									
FI	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch			[MPIZ]	Power [dBm]	Power [abm]	υτιπ (αΒ)		Number						Cycle	(W/kg)	Factor	(W/kg)	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	24.10	-0.02	0	80797	DFT-S-OFDM QPSK	1	1	10 mm	back	1:1	0.096	1.230	0.118	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	24.06	0.03	0	80797	DFT-S-OFDM QPSK	50	28	10 mm	back	1:1	0.105	1.242	0.130	A41
836.50	167300	Mid	NR Band n5 (Cell)	20	23.5	22.62	0.01	1.5	80797	CP-OFDM QPSK	1	1	10 mm	back	1:1	0.067	1.225	0.082	
1720.00	344000	Low	NR Band n66 (AWS)	20	17.0	16.34	0.19	0	80797	DFT-S-OFDM QPSK	1	53	10 mm	back	1:1	0.012	1.164	0.014	A42
1720.00	344000	Low	NR Band n66 (AWS)	20	17.0	0.10	0	80797	DFT-S-OFDM QPSK	50	56	10 mm	back	1:1	0.012	1.219	0.015		
1745.00	349000	Mid	NR Band n66 (AWS)	20	17.0	16.29	-0.13	0	80797	CP-OFDMQPSK	1	1	10 mm	back	1:1	0.012	1.178	0.014	
1860.00	372000	Low	NR Band n2 (PCS)	20	17.0	16.51	0.10	0	81738	DFT-S-OFDM QPSK	1	53	10 mm	back	1:1	0.030	1.119	0.034	A44
1860.00	372000	Low	NR Band n2 (PCS)	20	17.0	16.16	0.21	0	81738	DFT-S-OFDM QPSK	50	0	10 mm	back	1:1	0.026	1.213	0.032	
1880.00	376000	Mid	NR Band n2 (PCS)	20	17.0	16.17	0.17	0	81738	CP-OFDM QPSK	1	1	10 mm	back	1:1	0.023	1.211	0.028	
			ANSI / IEEE C9	5.1 1992 - Spatial Peal		П							1.6	Body W/kg (n					
			Uncontrolled Exp	posure/Gei	neral Popula	tion							avera	ged over	1 gram				

Table 11-23 DTS Body-Worn SAR

							N	MEASUR	EMENT	RESUL	TS								
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power		Spacing	Antenna Config.	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[WITZ]	[dB]		Config.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)			
2412	1	802.11b	DSSS	22	9.7	9.69	-0.19	10 mm	Chain 0	80953	1	back	99.9	0.077	0.057	1.002	1.001	0.057	A46
2412	1	802.11b	DSSS	22	9.0	8.91	0.17	10 mm	Chain 1	80953	1	back	99.9	0.037	0.024	1.021	1.001	0.025	
		ANS	SI / IEEE (C95.1 1992 Spatial Pe	- SAFETY LIMIT	ſ								Body 1.6 W/kg (m	W/g)		•		
		Unco	ntrolled E	xposure/G	eneral Populati	on							а	veraged over	1 gram				

Table 11-24 NII Body-Worn SAR

									MEASURE	MENT RES	JLTS								
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[MHZ]	[dBm]	[dBm]	[GB]		Conng.	Number	(MDPS)			W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5290	58	802.11ac	OFDM	80	9.0	8.66	0.19	10 mm	Chain 0	81134	29.3	back	99.7	0.081	0.030	1.081	1.003	0.033	
5290	58	802.11ac	OFDM	80	9.0	8.67	0.00	10 mm	Chain 1	81134	29.3	back	99.7	0.155	0.069	1.079	1.003	0.075	A48
5690	138	802.11ac	OFDM	80	9.0	8.71	0.10	10 mm	Chain 0	81134	29.3	back	99.7	0.083	0.033	1.069	1.003	0.035	
5610									81134	29.3	back	99.7	0.084	0.035	1.076	1.003	0.038		
5775	155	802.11ac	OFDM	80	9.0	8.60	0.00	10 mm	Chain 0	81134	29.3	back	99.7	0.076	0.026	1.096	1.003	0.029	
5775	155	802.11ac	OFDM	80	9.0	8.44	0.01	10 mm	Chain 1	81134	29.3	back	99.7	0.083	0.035	1.138	1.003	0.040	
		Al	NSI / IEEE	C95.1 199	2 - SAFETY LIMI	т							Boo	dy					
		Unc	ontrolled	Spatial P Exposure/	eak General Populat	tion							1.6 W/kg averaged ov						

Table 11-25 DSS Body-Worn SAR

						DO	3 500	IY-VVC	,, , , , , , , , , , , , , , , , , , ,	111						
						ME	ASURE	MENT F	RESUL	TS						
FREQU	ENCY	Mode	Service	Maximum Allowed		Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	(W/kg)	Power)	Cycle)	(W/kg)	
2441	MHz Ch. Power [dBm]						10 mm	80979	1	back	76.9	0.061	1.059	1.300	0.084	A49
		ANSI / IEEE	C95.1 199	22 - SAFETY	LIMIT							Body			,	
			Spatial I	Peak							1	I.6 W/kg (m\	N/g)			j
		Uncontrolled E	Exposure	General Pop	oulation						ave	eraged over 1	gram			

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 400 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 100 of 129

11.3 Standalone Hotspot SAR Data

Table 11-26 GPRS/UMTS Hotspot SAR Data

					GPK3/C		•			4					
					ME	ASURE	MENT F	RESULTS	3						
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	# of Time Slots	Duty Cycle	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	T Ower [abin]	Dint [ab]		Number	Olots	Oyolo		(W/kg)	1 dotor	(W/kg)	
836.60	190	GSM 850	GPRS	27.2	27.17	-0.10	10 mm	81779	4	1:2.076	back	0.210	1.007	0.211	A20
836.60	190	GSM 850	GPRS	27.2	27.17	-0.17	10 mm	81779	4	1:2.076	front	0.131	1.007	0.132	
836.60	190	GSM 850	GPRS	27.2	27.17	0.11	10 mm	81779	4	1:2.076	bottom	0.139	1.007	0.140	
836.60	190	GSM 850	GPRS	27.2	27.17	0.01	10 mm	81779	4	1:2.076	left	0.136	1.007	0.137	
1880.00	661	GSM 1900	GPRS	22.2	20.73	-0.08	10 mm	80797	4	1:2.076	back	0.171	1.403	0.240	
1880.00	661	GSM 1900	GPRS	22.2	20.73	-0.04	10 mm	80797	4	1:2.076	front	0.146	1.403	0.205	
1880.00	661	GSM 1900	GPRS	22.2	20.73	0.21	10 mm	80797	4	1:2.076	bottom	0.048	1.403	0.067	
1880.00	661	GSM 1900	GPRS	22.2	20.73	-0.02	10 mm	80797	4	1:2.076	left	0.254	1.403	0.356	A22
836.60	4183	UMTS 850	RMC	24.7	23.90	0.01	10 mm	81779	N/A	1:1	back	0.319	1.202	0.383	A23
836.60	4183	UMTS 850	RMC	24.7	23.90	0.00	10 mm	81779	N/A	1:1	front	0.194	1.202	0.233	
836.60	4183	UMTS 850	RMC	24.7	23.90	-0.05	10 mm	81779	N/A	1:1	bottom	0.234	1.202	0.281	
836.60	4183	UMTS 850	RMC	24.7	23.90	-0.01	10 mm	81779	N/A	1:1	left	0.205	1.202	0.246	
1732.40	1412	UMTS 1750	RMC	16.7	15.63	0.01	10 mm	83197	N/A	1:1	back	0.059	1.279	0.075	
1732.40	1412	UMTS 1750	RMC	16.7	15.63	0.00	10 mm	83197	N/A	1:1	front	0.060	1.279	0.077	
1732.40	1412	UMTS 1750	RMC	16.7	15.63	0.04	10 mm	83197	N/A	1:1	bottom	0.025	1.279	0.032	
1732.40	1412	UMTS 1750	RMC	16.7	15.63	-0.03	10 mm	83197	N/A	1:1	left	0.105	1.279	0.134	A25
1880.00	9400	UMTS 1900	RMC	16.7	15.79	0.04	10 mm	81738	N/A	1:1	back	0.085	1.233	0.105	
1880.00	9400	UMTS 1900	RMC	16.7	15.79	0.07	10 mm	81738	N/A	1:1	front	0.060	1.233	0.074	
1880.00	9400	UMTS 1900	RMC	16.7	15.79	0.15	10 mm	81738	N/A	1:1	bottom	0.023	1.233	0.028	
1880.00	9400	UMTS 1900	RMC	16.7	15.79	-0.01	10 mm	81738	N/A	1:1	left	0.115	1.233	0.142	A27
		ANSI / IEEE	C95.1 1992 - S	AFETY LIMIT								ody			
			Spatial Peak									g (mW/g)			
		Uncontrolled	Exposure/Gene	erai Populatio	on					a	veraged o	over 1 gram			

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 404 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 101 of 129

Table 11-27 LTE Band 12 Hotspot SAR

										iotope									
								MEAS	JREMEN	T RESULT	ΓS								
FRE	QUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	٦.		[MHz]	Power [dBm]	Power [dBm]	Drift [ab]		Number							(W/kg)	Factor	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.0	24.18	0.02	0	80797	QPSK	1	25	10 mm	back	1:1	0.242	1.208	0.292	
707.50	23095	Mid	LTE Band 12	10	24.0	23.45	-0.02	1	80797	QPSK	25	0	10 mm	back	1:1	0.194	1.135	0.220	
707.50	23095	Mid	LTE Band 12	10	25.0	24.18	0.03	0	80797	QPSK	1	25	10 mm	front	1:1	0.194	1.208	0.234	
707.50	23095	Mid	LTE Band 12	10	24.0	23.45	0.01	1	80797	QPSK	25	0	10 mm	front	1:1	0.161	1.135	0.183	
707.50	23095	Mid	LTE Band 12	10	25.0	24.18	-0.03	0	80797	QPSK	1	25	10 mm	bottom	1:1	0.097	1.208	0.117	
707.50	23095	Mid	LTE Band 12	10	24.0	23.45	0.01	1	80797	QPSK	25	0	10 mm	bottom	1:1	0.072	1.135	0.082	
707.50	23095	Mid	LTE Band 12	10	25.0	24.18	0.01	0	80797	QPSK	1	25	10 mm	left	1:1	0.248	1.208	0.300	A29
707.50	23095	Mid	LTE Band 12	10	0.07	1	80797	QPSK	25	0	10 mm	left	1:1	0.204	1.135	0.232			
		-	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	atial Peak									1.6 W	/kg (mW	//g)				
		Un	controlled Expo	sure/Gener	ral Populatio	n							average	d over 1	gram				

Table 11-28 LTE Band 13 Hotspot SAR

								MEASU	REMENT	RESULT	s								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[]	Power [dBm]	· one: [ub]	D.m. [aD]		Number							(W/kg)		(W/kg)	
782.00	23230	Mid	LTE Band 13	10	25.0	24.46	-0.01	0	80797	QPSK	1	0	10 mm	back	1:1	0.248	1.132	0.281	A30
782.00	23230	Mid	LTE Band 13	10	24.0	23.51	-0.01	1	80797	QPSK	25	25	10 mm	back	1:1	0.205	1.119	0.229	
782.00	23230	Mid	LTE Band 13	10	25.0	24.46	0.02	0	80797	QPSK	1	0	10 mm	front	1:1	0.205	1.132	0.232	
782.00	23230	Mid	LTE Band 13	10	24.0	23.51	0.05	0.05 1 80797 QPSK 25 25 10 mm front 1:1 0.166 1.119										0.186	
782.00	23230	Mid	LTE Band 13	10	25.0	24.46	0.02	0	80797	QPSK	1	0	10 mm	bottom	1:1	0.143	1.132	0.162	
782.00	23230	Mid	LTE Band 13	10	24.0	23.51	0.01	1	80797	QPSK	25	25	10 mm	bottom	1:1	0.125	1.119	0.140	
782.00	23230	Mid	LTE Band 13	10	25.0	24.46	-0.03	0	80797	QPSK	1	0	10 mm	left	1:1	0.235	1.132	0.266	
782.00	23230	Mid	LTE Band 13	10	24.0	23.51	0.02	1	80797	QPSK	25	25	10 mm	left	1:1	0.171	1.119	0.191	
		-	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	tial Peak									1.6 W	//kg (mV	V/g)				
		Un	controlled Expo	sure/Gener	al Population	1							average	ed over 1	gram				

Table 11-29 LTF Band 26 (Cell) Hotspot SAR

								iiiu Z	o (Cei	i) Hots	spor	SAR							
								MEASU	JREMENT	RESULT	s								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number				.,		. , ., .	(W/kg)	Factor	(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.0	23.76	0.02	0	81779	QPSK	1	36	10 mm	back	1:1	0.226	1.330	0.301	A31
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.0	23.32	-0.01	1	81779	QPSK	36	0	10 mm	back	1:1	0.200	1.169	0.234	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.0	23.76	-0.01	0	81779	QPSK	1	36	10 mm	front	1:1	0.173	1.330	0.230	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.0	23.32	0.01	1	81779	QPSK	36	0	10 mm	front	1:1	0.151	1.169	0.177	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.0	23.76	0.02	0	81779	QPSK	1	36	10 mm	bottom	1:1	0.150	1.330	0.200	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.0	23.32	-0.04	1	81779	QPSK	36	0	10 mm	bottom	1:1	0.132	1.169	0.154	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.0	23.76	-0.08	0	81779	QPSK	1	36	10 mm	left	1:1	0.129	1.330	0.172	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.0	23.32	0.02	1	81779	QPSK	36	0	10 mm	left	1:1	0.122	1.169	0.143	
			ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	tial Peak									1.6 W	//kg (mV	V/g)				
		Ur	ncontrolled Expo	sure/Gener	ral Population	n							average	ed over 1	gram				

FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 402 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 102 of 129

Table 11-30 LTE Band 66 (AWS) Hotspot SAR

								(,		<u> </u>	•						
							MEASU	REMENT	RESULT	S								
QUENCY	П	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
Ch.			[MHZ]	Power [dBm]	Power [asm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
132322	Mid	LTE Band 66 (AWS)	20	17.0	15.94	0.02	0	83197	QPSK	1	0	10 mm	back	1:1	0.056	1.276	0.071	
132322	Mid	LTE Band 66 (AWS)	20	17.0	16.04	0.04	0	83197	QPSK	50	50	10 mm	back	1:1	0.055	1.247	0.069	
132322	Mid	LTE Band 66 (AWS)	20	17.0	15.94	0.05	0	83197	QPSK	1	0	10 mm	front	1:1	0.060	1.276	0.077	
132322	Mid	LTE Band 66 (AWS)	20	17.0	16.04	0.16	0	83197	QPSK	50	50	10 mm	front	1:1	0.061	1.247	0.076	
132322	Mid	LTE Band 66 (AWS)	20	17.0	15.94	0.01	0	83197	QPSK	1	0	10 mm	bottom	1:1	0.025	1.276	0.032	
132322	Mid	LTE Band 66 (AWS)	20	17.0	16.04	0.07	0	83197	QPSK	50	50	10 mm	bottom	1:1	0.024	1.247	0.030	
132322	Mid	LTE Band 66 (AWS)	20	17.0	15.94	0.02	0	83197	QPSK	1	0	10 mm	left	1:1	0.096	1.276	0.122	
132322	Mid	LTE Band 66 (AWS)	20	17.0	16.04	0.06	0	83197	QPSK	50	50	10 mm	left	1:1	0.109	1.247	0.136	A33
	A	NSI / IEEE C95.1	1992 - SA	FETY LIMIT									Body					
		Spat	tial Peak									1.6 W	//kg (mV	V/g)				
	Unc	ontrolled Expos	ure/Genera	al Population	1							average	ed over 1	gram				
	Ch. 132322 132322 132322 132322 132322 132322 132322 132322	Ch. 132322 Md	Mode	Mode Mode Mode MHz MHz	Mode	Mode Bandwidth Maximum Allowed Power [dBm] Conducted Conduct	Mode Bandwidth Maximum Conducted Power (dBm) P	Maximum	Maximum Ch. Mode Bandwidth Maximum Allowed Power [dBm] Power [dBm] Device Serial Number	Measurement Result Maximum Allowed Power [dBm] Device Serial Number Modulation MPR [dB] MPR [dB] MPR [dB] Modulation Modulation Modulation Modulation Modulation Modulation Measurement Measure	Measurement Results Maximum Allowed Power (dBm) Powe	Marious Mari	Mode Bandwidth Maximum Allowed Power [dBm] Power [dBm] Device Modulation RB Size RB Offset Spacing	Mode Bandwidth Maximum Allowed Power (dBm) Device Device Power (dBm) Device Power (dBm) Device Power (dBm) Devi	Mode Bandwigth Maximum Allowed Power [dBm] Power Trift [dB] MPR [dB] Serial Number Modulation RB Size RB Offset Spacing Side Duty Cycle Duty Cycle Duty Cycle Serial Number Modulation RB Size RB Offset Spacing Side Duty Cycle Duty Cycle Duty Cycle Device Serial Number Modulation RB Size RB Offset Spacing Side Duty Cycle Duty Cycle Device Serial Number Modulation RB Size RB Offset Spacing Side Duty Cycle Duty Cycle Duty Cycle Device Device Serial Number Device Serial Duty Cycle Device De	Mode Bandwidth Maximum Allowed Power (dBm) Divice Divided Power (dBm) Divice Divided Power (dBm) Divided Divided	Mode Bandwidth Maximum Allowed Power (dBm) Power (Mode Bandwidth Maximum Allowed Power (BBm) Power (

Table 11-31 LTE Band 25 (PCS) Hotspot SAR

										RESULT									
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	٦.		[MITZ]	Power [dBm]	Power [dBm]	Drift [ab]		Number							(W/kg)	Factor	(W/kg)	1
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.09	0.06	0	81738	QPSK	1	50	10 mm	back	1:1	0.100	1.233	0.123	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.14	0.08	0	81738	QPSK	50	25	10 mm	back	1:1	0.104	1.219	0.127	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.09	0.03	0	81738	QPSK	1	50	10 mm	front	1:1	0.084	1.233	0.104	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.14	-0.02	0	81738	QPSK	50	25	10 mm	front	1:1	0.085	1.219	0.104	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.09	0.02	0	81738	QPSK	1	50	10 mm	bottom	1:1	0.037	1.233	0.046	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.14	0.03	0	81738	QPSK	50	25	10 mm	bottom	1:1	0.037	1.219	0.045	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.09	-0.04	0	81738	QPSK	1	50	10 mm	left	1:1	0.136	1.233	0.168	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	17.0	16.14	0.02	0	81738	QPSK	50	25	10 mm	left	1:1	0.142	1.219	0.173	A35
		-	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	atial Peak									1.6 W	//kg (mV	V/g)				
		Un	controlled Expo	sure/Gener	al Populatio	n							average	ed over 1	gram				

Table 11-32 LTE Band 7 Hotspot SAR

								MEASU	REMENT	RESULT	s								
FRE	QUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	١.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
2535.00	21100	Mid	LTE Band 7	20	17.0	15.93	0.18	0	80797	QPSK	1	50	10 mm	back	1:1	0.034	1.279	0.043	
2535.00	21100	Mid	LTE Band 7	20	17.0	15.98	0.12	0	80797	QPSK	50	50	10 mm	back	1:1	0.039	1.265	0.049	
2535.00	21100	Mid	LTE Band 7	20	17.0	15.93	0.14	0	80797	QPSK	1	50	10 mm	front	1:1	0.008	1.279	0.010	
2535.00	21100	Mid	LTE Band 7	20	17.0	15.98	0.19	0	80797	QPSK	50	50	10 mm	front	1:1	0.007	1.265	0.009	
2535.00	21100	Mid	LTE Band 7	20	17.0	15.93	-0.13	0	80797	QPSK	1	50	10 mm	bottom	1:1	0.025	1.279	0.032	
2535.00	21100	Mid	LTE Band 7	20	17.0	15.98	0.08	0	80797	QPSK	50	50	10 mm	bottom	1:1	0.029	1.265	0.037	
2535.00	21100	Mid	LTE Band 7	20	17.0	15.93	0.12	0	80797	QPSK	1	50	10 mm	left	1:1	0.052	1.279	0.067	
2535.00	21100	Mid	LTE Band 7	20	17.0	15.98	0.20	0	80797	QPSK	50	50	10 mm	left	1:1	0.055	1.265	0.070	A37
		-	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	atial Peak									1.6 W	/kg (mV	V/g)				
		Un	controlled Expo	sure/Gener	al Populatio	n							average	ed over 1	gram				

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 102 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 103 of 129

Table 11-33 LTE Band 48 Hotspot SAR

										otopo									
								MEASU	REMENT	RESULT	s								
FRE	QUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
3690.00	56640	High	LTE Band 48	20	15.0	13.99	-0.07	0	81779	QPSK	1	0	10 mm	back	1:1.58	0.067	1.262	0.085	
3690.00	56640	High	LTE Band 48	20	15.0	14.00	-0.13	0	81779	QPSK	50	0	10 mm	back	1:1.58	0.063	1.259	0.079	
3690.00	56640	High	LTE Band 48	20	15.0	13.99	0.10	0	81779	QPSK	1	0	10 mm	front	1:1.58	0.048	1.262	0.061	
3690.00	56640	High	LTE Band 48	20	15.0	14.00	-0.13	0	81779	QPSK	50	0	10 mm	front	1:1.58	0.047	1.259	0.059	
3690.00	56640	High	LTE Band 48	20	15.0	13.99	0.03	0	81779	QPSK	1	0	10 mm	bottom	1:1.58	0.069	1.262	0.087	A39
3690.00	56640	High	LTE Band 48	20	15.0	14.00	-0.11	0	81779	QPSK	50	0	10 mm	bottom	1:1.58	0.067	1.259	0.084	
3690.00	56640	High	LTE Band 48	20	15.0	13.99	0.05	0	81779	QPSK	1	0	10 mm	right	1:1.58	0.048	1.262	0.061	
3690.00	56640	High	LTE Band 48	20	15.0	14.00	-0.04	0	81779	QPSK	50	0	10 mm	right	1:1.58	0.045	1.259	0.057	
		-	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	atial Peak									1.6 W	/kg (mV	V/g)				
		Un	controlled Expo	sure/Gener	al Populatio	n							average	ed over 1	gram				

Table 11-34 LTE Band 41 Hotspot SAR

								. Dan	4 	iotape	,, ,,	111							
								MEASU	JREMEN	T RESULT	rs								
FRE	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number				.,			(W/kg)	Factor	(W/kg)	
2680.00	41490	High	LTE Band 41	20	15.0	14.59	0.20	0	80797	QPSK	1	99	10 mm	back	1:1.58	0.045	1.099	0.049	
2680.00	41490	High	LTE Band 41	20	15.0	14.66	0.10	0	80797	QPSK	50	25	10 mm	back	1:1.58	0.050	1.081	0.054	A40
2680.00	41490	High	LTE Band 41	20	15.0	14.59	0.15	0	80797	QPSK	1	99	10 mm	front	1:1.58	0.005	1.099	0.005	
2680.00	41490	High	LTE Band 41	20	15.0	14.66	0.10	0	80797	QPSK	50	25	10 mm	front	1:1.58	0.006	1.081	0.006	
2680.00	41490	High	LTE Band 41	20	15.0	14.59	-0.07	0	80797	QPSK	1	99	10 mm	bottom	1:1.58	0.009	1.099	0.010	
2680.00	41490	High	LTE Band 41	20	15.0	14.66	-0.01	0	80797	QPSK	50	25	10 mm	bottom	1:1.58	0.011	1.081	0.012	
2680.00	41490	High	LTE Band 41	20	15.0	14.59	0.13	0	80797	QPSK	1	99	10 mm	left	1:1.58	0.022	1.099	0.024	
2680.00	41490	High	LTE Band 41	20	15.0	14.66	0.10	0	80797	QPSK	50	25	10 mm	left	1:1.58	0.026	1.081	0.028	
		,	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	atial Peak									1.6 V	V/kg (mW	//g)				
		Un	controlled Expo	sure/Gener	al Population	n							averag	ed over 1	gram				

Table 11-35 NR Band n5 Hotspot SAR

		NK Band no notspot SAK																	
								MEAS	UREMEN	IT RESULTS	;								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch			[WITZ]	Power [dBm]	Fower [dBill]	Dilit [ub]		Number							(W/kg)	racioi	(W/kg)	ı
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	24.10	-0.02	0	80797	DFT-S-OFDM QPSK	1	1	10 mm	back	1:1	0.096	1.230	0.118	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	24.06	0.03	0	80797	DFT-S-OFDM QPSK	50	28	10 mm	back	1:1	0.105	1.242	0.130	A41
836.50	167300	Mid	NR Band n5 (Cell)	20	23.5	22.62	0.01	1.5	80797	CP-OFDM QPSK	1	1	10 mm	back	1:1	0.067	1.225	0.082	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	24.10	0.05	0	80797	DFT-S-OFDM QPSK	1	1	10 mm	front	1:1	0.061	1.230	0.075	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	24.06	-0.01	0	80797	DFT-S-OFDM QPSK	50	28	10 mm	front	1:1	0.067	1.242	0.083	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	24.10	-0.02	0	80797	DFT-S-OFDM QPSK	1	1	10 mm	bottom	1:1	0.071	1.230	0.087	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	24.06	-0.01	0	80797	DFT-S-OFDM QPSK	50	28	10 mm	bottom	1:1	0.075	1.242	0.093	
836.50	50 167300 Mid NR Band n5 (Cell) 20 25.0 24.10 -0.0						-0.07	0	80797	DFT-S-OFDM QPSK	1	1	10 mm	left	1:1	0.068	1.230	0.084	
836.50	1 1 1						0.05	0	80797	DFT-S-OFDM QPSK	50	28	10 mm	left	1:1	0.073	1.242	0.091	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body											
	Spatial Peak												1.6 W/k	g (mW/	g)				
	Uncontrolled Exposure/General Population												averaged	over 1 g	ram				

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 404 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 104 of 129

Table 11-36 NR Band n66 Hotspot SAR

										ENT RESULT									
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[2]	Power [dBm]	r ower (abiii)	Dink [GD]		Number							(W/kg)	1 40101	(W/kg)	
1720.00	344000	Low	NR Band n66 (AWS)	20	17.0	16.34	0.19	0	80797	DFT-S-OFDM QPSK	1	53	10 mm	back	1:1	0.012	1.164	0.014	
1720.00	(AWS)				0.10	0	80797	DFT-S-OFDM QPSK	50	56	10 mm	back	1:1	0.012	1.219	0.015			
1720.00	344000	Low	NR Band n66 (AWS)	20	17.0	16.34	0.11	0	80797	DFT-S-OFDM QPSK	1	53	10 mm	front	1:1	0.015	1.164	0.017	
1720.00	344000	Low	NR Band n66 (AWS)	20	17.0	16.14	-0.10	0	80797	DFT-S-OFDM QPSK	50	56	10 mm	front	1:1	0.013	1.219	0.016	
1720.00	344000	Low	NR Band n66 (AWS)	20	17.0	16.34	-0.17	0	80797	DFT-S-OFDM QPSK	1	53	10 mm	bottom	1:1	0.006	1.164	0.007	
1720.00	344000	Low	NR Band n66 (AWS)	20	17.0	16.14	0.06	0	80797	DFT-S-OFDM QPSK	50	56	10 mm	bottom	1:1	0.006	1.219	0.007	
1720.00	344000	Low	NR Band n66 (AWS)	20	17.0	16.34	0.06	0	80797	DFT-S-OFDM QPSK	1	53	10 mm	left	1:1	0.028	1.164	0.033	
1720.00	344000	Low	NR Band n66 (AWS)	20	17.0	16.14	0.21	0	80797	DFT-S-OFDM QPSK	50	56	10 mm	left	1:1	0.027	1.219	0.033	
1745.00	0 349000 Mid NR Band n66 (AWS) 20 17.0 16.29 0.1:						0.12	0	80797	CP-OFDM QPSK	1	1	10 mm	left	1:1	0.029	1.178	0.034	A43
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body											
	Spatial Peak											1.6	6 W/kg (mW/g)					
	Uncontrolled Exposure/General Population											aver	aged ove	r 1 gram	ı				

Table 11-37 NR Band n2 Hotspot SAR

	Mit Band Hz Hotopot OAK																		
								MEAS	UREMEN	T RESULTS									
FR	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
1860.00	372000	Low	NR Band n2 (PCS)	20	17.0	16.51	0.10	0	81738	DFT-S-OFDM QPSK	1	53	10 mm	back	1:1	0.030	1.119	0.034	
1860.00	372000	Low	NR Band n2 (PCS)	20	17.0	16.16	0.21	0	81738	DFT-S-OFDM QPSK	50	0	10 mm	back	1:1	0.026	1.213	0.032	
1860.00	372000	Low	NR Band n2 (PCS)	20	17.0	16.51	0.12	0	81738	DFT-S-OFDM QPSK	1	53	10 mm	front	1:1	0.026	1.119	0.029	
1860.00	372000	Low	NR Band n2 (PCS)	20	17.0	16.16	0.19	0	81738	DFT-S-OFDM QPSK	50	0	10 mm	front	1:1	0.023	1.213	0.028	
1860.00	372000	Low	NR Band n2 (PCS)	20	17.0	16.51	-0.15	0	81738	DFT-S-OFDM QPSK	1	53	10 mm	bottom	1:1	0.013	1.119	0.015	
1860.00	372000	Low	NR Band n2 (PCS)	20	17.0	16.16	0.17	0	81738	DFT-S-OFDM QPSK	50	0	10 mm	bottom	1:1	0.013	1.213	0.016	
1860.00	372000	Low	NR Band n2 (PCS)	20	17.0	16.51	0.00	0	81738	DFT-S-OFDM QPSK	1	53	10 mm	left	1:1	0.034	1.119	0.038	
1860.00	372000	Low	NR Band n2 (PCS)	20	17.0	16.16	0.14	0	81738	DFT-S-OFDM QPSK	50	0	10 mm	left	1:1	0.036	1.213	0.044	A45
1880.00	.00 376000 Mid NR Band n2 (PCS) 20 17.0 16.17 0.18						0.15	0	81738	CP-OFDM QPSK	1	1	10 mm	left	1:1	0.028	1.211	0.034	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body												
	Spatial Peak												1.6 W/I	kg (mW/	'g)				
	Uncontrolled Exposure/General Population											á	averaged	over 1 c	ıram				
	Uncontrolled Exposure/General Population														,				

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 405 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 105 of 129

Table 11-38 WLAN Hotspot SAR

		WLAN HOISPOI SAK																	
	MEASUREMENT RESULTS																		
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power		Spacing	Antenna	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]	[dBm]	[dBm]	[dB]	. •	Config.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2412	2412 1 802.11b DSSS 22 9.7 9.69 -								Chain 0	80953	1	back	99.9	0.077	0.057	1.002	1.001	0.057	
2412	112 1 802.11b DSSS 22 9.7 9.69 0.0								Chain 0	80953	1	front	99.9	0.069	-	1.002	1.001	-	
2412 1 802.11b DSSS 22 9.7 9.69 0.16 1								10 mm	Chain 0	80953	1	top	99.9	0.065	-	1.002	1.001	-	
2412	1	802.11b	DSSS	22	9.7	9.69	0.00	10 mm	Chain 0	80953	1	right	99.9	0.129	0.078	1.002	1.001	0.078	A47
2412	1	802.11b	DSSS	22	9.0	8.91	0.17	10 mm	Chain 1	80953	1	back	99.9	0.037	0.024	1.021	1.001	0.025	
2412	1	802.11b	DSSS	22	9.0	8.91	0.00	10 mm	Chain 1	80953	1	front	99.9	0.010	-	1.021	1.001	-	
2412	1 802.11b DSSS 22 9.0 8.91 0.0							10 mm	Chain 1	80953	1	left	99.9	0.032	-	1.021	1.001	-	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body											
	Spatial Peak													1.6 W/kg (m\	N/g)				
		Uncontrolled Exposure/General Population						averaged over 1 gram											

Table 11-39

	DSS Hotspot SAR															
	MEASUREMENT RESULTS															
FREQU	JENCY	Mode	Service	Maximum Allowed	Conducted	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]	.,	Number	(Mbps)		(%)	(W/kg)	Power)	Cycle)	(W/kg)	
2441	2441 39 Bluetooth FHSS 14.0 13.75 0.20							80979	1	back	76.9	0.061	1.059	1.300	0.084	
2441 39 Bluetooth FHSS 14.0 13.75 0.20 10 mm 80979 1								front	76.9	0.052	1.059	1.300	0.072			
2441	39	Bluetooth	FHSS	14.0	13.75	0.11	10 mm	80979	1	top	76.9	0.044	1.059	1.300	0.061	
2441	39	Bluetooth	FHSS	14.0	13.75	0.01	10 mm	80979	1	right	76.9	0.088	1.059	1.300	0.121	A50
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body									
	Spatial Peak						1.6 W/kg (mW/g)									
	Uncontrolled Exposure/General Population						averaged over 1 gram									

FCC ID: PY7-57441Y	: PY7-57441Y POLITIEST SAR EV		SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 400 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 106 of 129

11.4 Standalone Phablet SAR Data

Table 11-40 WLAN Phablet SAR

							МІ	EASURE	MENT F	RESULT	s								
FREQU	IENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power	Power Drift	Spacing	Antenna	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (10g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (10g)	Plot#
MHz	Ch.			[MHz]	[dBm]	[dBm]	[dB]	.,	Config.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5290	58	802.11ac	OFDM	80	9.0	8.66	-0.16	0 mm	Chain 0	81134	29.3	back	99.7	0.787	-	1.081	1.003	-	
5290	58	802.11ac	OFDM	80	9.0	8.66	0.17	0 mm	Chain 0	81134	29.3	front	99.7	0.598	-	1.081	1.003	-	
5290	58	802.11ac	OFDM	80	9.0	8.66	-0.16	0 mm	Chain 0	81134	29.3	top	99.7	2.402	0.189	1.081	1.003	0.205	
5290	58	802.11ac	OFDM	80	9.0	8.66	0.12	0 mm	Chain 0	81134	29.3	right	99.7	0.148	-	1.081	1.003	-	
5290	58	802.11ac	OFDM	80	9.0	8.67	0.00	0 mm	Chain 1	81134	29.3	back	99.7	1.750	0.215	1.079	1.003	0.233	A51
5290	58	802.11ac	OFDM	80	9.0	8.67	0.00	0 mm	Chain 1	81134	29.3	front	99.7	0.065	-	1.079	1.003	-	
5290	58	802.11ac	OFDM	80	9.0	8.67	0.18	0 mm	Chain 1	81134	29.3	top	99.7	0.053	-	1.079	1.003	-	
5290	58	802.11ac	OFDM	80	9.0	8.67	0.00	0 mm	Chain 1	81134	29.3	left	99.7	0.296	-	1.079	1.003	-	
5690	138	802.11ac	OFDM	80	9.0	8.71	-0.11	0 mm	Chain 0	81134	29.3	back	99.7	0.856	-	1.069	1.003	-	
5690	138	802.11ac	OFDM	80	9.0	8.71	0.18	0 mm	Chain 0	81134	29.3	front	99.7	1.037	-	1.069	1.003	-	
5690	138	802.11ac	OFDM	80	9.0	8.71	0.19	0 mm	Chain 0	81134	29.3	top	99.7	2.539	0.184	1.069	1.003	0.197	
5690	138	802.11ac	OFDM	80	9.0	8.71	0.17	0 mm	Chain 0	81134	29.3	right	99.7	0.623	-	1.069	1.003	-	
5610	122	802.11ac	OFDM	80	9.0	8.68	0.00	0 mm	Chain 1	81134	29.3	back	99.7	0.920	0.133	1.076	1.003	0.144	
5610	122	802.11ac	OFDM	80	9.0	8.68	0.00	0 mm	Chain 1	81134	29.3	front	99.7	0.097	-	1.076	1.003	-	
5610	122	802.11ac	OFDM	80	9.0	8.68	0.00	0 mm	Chain 1	81134	29.3	top	99.7	0.114	-	1.076	1.003	-	
5610	122	802.11ac	OFDM	80	9.0	8.68	0.00	0 mm	Chain 1	81134	29.3	left	99.7	0.234	-	1.076	1.003	-	
5775	155	802.11ac	OFDM	80	9.0	8.60	-0.10	0 mm	Chain 0	81134	29.3	back	99.7	0.833	-	1.096	1.003	-	
5775	155	802.11ac	OFDM	80	9.0	8.60	-0.12	0 mm	Chain 0	81134	29.3	front	99.7	1.038	-	1.096	1.003	-	
5775	155	802.11ac	OFDM	80	9.0	8.60	0.00	0 mm	Chain 0	81134	29.3	top	99.7	2.320	0.176	1.096	1.003	0.193	
5775	155	802.11ac	OFDM	80	9.0	8.60	-0.04	0 mm	Chain 0	81134	29.3	right	99.7	0.579	-	1.096	1.003	-	
5775	155	802.11ac	OFDM	80	9.0	8.44	0.00	0 mm	Chain 1	81134	29.3	back	99.7	0.947	0.118	1.138	1.003	0.135	
5775	155	802.11ac	OFDM	80	9.0	8.44	0.00	0 mm	Chain 1	81134	29.3	front	99.7	0.125	-	1.138	1.003	-	
5775	155	802.11ac	OFDM	80	9.0	8.44	0.00	0 mm	Chain 1	81134	29.3	top	99.7	0.261	-	1.138	1.003	-	
5775	155	802.11ac	OFDM	80	9.0	8.44	0.00	0 mm	Chain 1	81134	29.3	left	99.7	0.267	-	1.138	1.003	-	
		AN	ISI / IEEE		- SAFETY LIMIT									Phablet					
	Spatial Peak						4.0 W/kg (mW/g) averaged over 10 grams												
	Uncontrolled Exposure/General Population												ave	rageu over 10	yıams				

11.5 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.

FCC ID: PY7-57441Y	PY7-57441Y SAR EVALUATION REPO		SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 407 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 107 of 129

© 2020 PCTEST.

REV 21.4 M
09/11/2019

- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- 10. Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is > 160 mm and < 200 mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg.
- 11. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below.
- 12. This device uses Qualcomm Smart Transmit for 2G/3G/4G/5G operations to control and manage transmitting power in real time to ensure RF Exposure compliance. Per FCC Guidance, compliance for was assessed at the minimum of the time averaged power and the maximum output power for each band/mode/exposure condition (DSI).

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 2. Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

UMTS Notes:

- 1. UMTS mode was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- 1. LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 and MCC=001 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

	FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		David 400 of 400
	1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 108 of 129
© 202	0 PCTEST.				REV 21.4 M

© 2020 PCTEST. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying an microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents

- 4. Per FCC KDB Publication 447498 D01v06, when the reported LTE Band 41 or LTE Band 48 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g evaluations, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
- 6. Per KDB Publication 941225 D05Av01r02, SAR for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

NR Notes:

- 1. NR implementation is limited to EN-DC operations only, with the LTE Bands shown in the NR FR1 checklist acting as anchor bands. Per FCC guidance, SAR tests for NR Bands and LTE anchors bands were performed separately due to limitations in SAR probe calibration factors.
- 2. Due to test setup limitations, SAR testing for NR was performed using test mode software to establish the connection.
- 3. Simultaneous transmission analysis for EN-DC operations is addressed in the Part 2 Test Report (Serial Number can be found in the bibliography).
- 4. This device additionally supports some EN-DC conditions where additional LTE carriers are added on the downlink only.
- 5. Per FCC Guidance, NR modulations and RB Sizes/Offsets were selected for testing such that configurations with the highest output power were evaluated for SAR tests.

WLAN Notes:

- 1. For held-to-ear, and hotspot, and phablet operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g evaluations, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n/ax) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.6.5 for more information.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 8.6.6 for more information.
- 4. Per KDB Publication 248227 D01v02r02, SAR for MIMO was evaluated by following the simultaneous SAR provisions from KDB Publication 447498 D01v06 by either evaluating the sum of the 1g SAR values of each antenna transmitting independently or making a SAR measurement with both antennas transmitting simultaneously. Please see Section 12 for complete analysis.
- 5. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 6. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 400 -f 400
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 109 of 129

7. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Bluetooth Notes

- Bluetooth SAR was measured with the device connected to a call box with hopping disabled with DH5
 operation and Tx Tests test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was
 scaled to the 100% transmission duty factor to determine compliance. See Section 9.7 for the time
 domain plot and calculation for the duty factor of the device.
- 2. Head and Hotspot Bluetooth SAR were evaluated for BT BR tethering applications.

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 110 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 110 of 129

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

Qualcomm Smart Transmit algorithm in WWAN adds directly the time-averaged RF exposure from 4G and time-averaged RF exposure from 5G NR. Smart Transmit algorithm controls the total RF exposure from both 4G and 5G NR to not exceed FCC limit. Therefore, simultaneous transmission compliance between 4G+5G operations is demonstrated in the Qualcomm Part 2 Report during algorithm validation.

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 111 of 129
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Fage 111 01 129

© 2020 PCTEST.

REV 21.4 N
09/11/2019

12.3 Head SAR Simultaneous Transmission Analysis

Table 12-1 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ	SAR (W/kg)
		1	2	3	1+2	1+3	1+2+3
	GSM 850	0.155	0.267	0.039	0.422	0.194	0.461
	GSM 1900	0.102	0.267	0.039	0.369	0.141	0.408
	UMTS 850	0.249	0.267	0.039	0.516	0.288	0.555
	UMTS 1750	0.056	0.267	0.039	0.323	0.095	0.362
	UMTS 1900	0.091	0.267	0.039	0.358	0.130	0.397
	LTE Band 12	0.216	0.267	0.039	0.483	0.255	0.522
	LTE Band 13	0.187	0.267	0.039	0.454	0.226	0.493
Head SAR	LTE Band 26 (Cell)	0.209	0.267	0.039	0.476	0.248	0.515
I lead SAIN	LTE Band 66 (AWS)	0.052	0.267	0.039	0.319	0.091	0.358
	LTE Band 25 (PCS)	0.048	0.267	0.039	0.315	0.087	0.354
	LTE Band 7	0.070	0.267	0.039	0.337	0.109	0.376
	LTE Band 48	0.020	0.267	0.039	0.287	0.059	0.326
	LTE Band 41	0.037	0.267	0.039	0.304	0.076	0.343
	NR Band n5 (Cell)	0.072	0.267	0.039	0.339	0.111	0.378
	NR Band n66 (AWS)	0.008	0.267	0.039	0.275	0.047	0.314
	NR Band n2 (PCS)	0.025	0.267	0.039	0.292	0.064	0.331

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 112 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 112 of 129

Table 12-2 Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ	ΣSAR (W/kg)
		1	2	3	1+2	1+3	1+2+3
	GSM 850	0.155	0.466	0.024	0.621	0.179	0.645
	GSM 1900	0.102	0.466	0.024	0.568	0.126	0.592
	UMTS 850	0.249	0.466	0.024	0.715	0.273	0.739
	UMTS 1750	0.056	0.466	0.024	0.522	0.080	0.546
	UMTS 1900	0.091	0.466	0.024	0.557	0.115	0.581
	LTE Band 12	0.216	0.466	0.024	0.682	0.240	0.706
	LTE Band 13	0.187	0.466	0.024	0.653	0.211	0.677
Head SAR	LTE Band 26 (Cell)	0.209	0.466	0.024	0.675	0.233	0.699
I lead SAIN	LTE Band 66 (AWS)	0.052	0.466	0.024	0.518	0.076	0.542
	LTE Band 25 (PCS)	0.048	0.466	0.024	0.514	0.072	0.538
	LTE Band 7	0.070	0.466	0.024	0.536	0.094	0.560
	LTE Band 48	0.020	0.466	0.024	0.486	0.044	0.510
	LTE Band 41	0.037	0.466	0.024	0.503	0.061	0.527
	NR Band n5 (Cell)	0.072	0.466	0.024	0.538	0.096	0.562
	NR Band n66 (AWS)	0.008	0.466	0.024	0.474	0.032	0.498
	NR Band n2 (PCS)	0.025	0.466	0.024	0.491	0.049	0.515

FCC ID: PY7-57441Y	Pout to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 442 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 113 of 129

Table 12-3 Simultaneous Transmission Scenario with 2.4 GHz WLAN MIMO and 5 GHz WLAN MIMO (Held to Ear)

Exposure Condition Mode		2G/3G/4G/5G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	4	5	1+2+3+4+5
	GSM 850	0.155	0.267	0.039	0.466	0.024	0.951
	GSM 1900	0.102	0.267	0.039	0.466	0.024	0.898
	UMTS 850	0.249	0.267	0.039	0.466	0.024	1.045
	UMTS 1750	0.056	0.267	0.039	0.466	0.024	0.852
	UMTS 1900	0.091	0.267	0.039	0.466	0.024	0.887
	LTE Band 12	0.216	0.267	0.039	0.466	0.024	1.012
	LTE Band 13	0.187	0.267	0.039	0.466	0.024	0.983
Head SAR	LTE Band 26 (Cell)	0.209	0.267	0.039	0.466	0.024	1.005
I lead OAIX	LTE Band 66 (AWS)	0.052	0.267	0.039	0.466	0.024	0.848
	LTE Band 25 (PCS)	0.048	0.267	0.039	0.466	0.024	0.844
	LTE Band 7	0.070	0.267	0.039	0.466	0.024	0.866
	LTE Band 48	0.020	0.267	0.039	0.466	0.024	0.816
	LTE Band 41	0.037	0.267	0.039	0.466	0.024	0.833
	NR Band n5 (Cell)	0.072	0.267	0.039	0.466	0.024	0.868
	NR Band n66 (AWS)	0.008	0.267	0.039	0.466	0.024	0.804
	NR Band n2 (PCS)	0.025	0.267	0.039	0.466	0.024	0.821

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 444 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 114 of 129

Table 12-4 Simultaneous Transmission Scenario with Bluetooth (Held to Ear)

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM 850	0.155	0.357	0.512
	GSM 1900	0.102	0.357	0.459
	UMTS 850	0.249	0.357	0.606
	UMTS 1750	0.056	0.357	0.413
	UMTS 1900	0.091	0.357	0.448
	LTE Band 12	0.216	0.357	0.573
	LTE Band 13	0.187	0.357	0.544
Head SAR	LTE Band 26 (Cell)	0.209	0.357	0.566
I lead SAIN	LTE Band 66 (AWS)	0.052	0.357	0.409
	LTE Band 25 (PCS)	0.048	0.357	0.405
	LTE Band 7	0.070	0.357	0.427
	LTE Band 48	0.020	0.357	0.377
	LTE Band 41	0.037	0.357	0.394
	NR Band n5 (Cell)	0.072	0.357	0.429
	NR Band n66 (AWS)	0.008	0.357	0.365
	NR Band n2 (PCS)	0.025	0.357	0.382

FCC ID: PY7-57441Y	Poud to be post of element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 445 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 115 of 129

Table 12-5 Simultaneous Transmission Scenario with Bluetooth and 5 GHz WLAN (Held to Ear)

Exposure Mode		2G/3G/4G/5G SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ	SAR (W/kg	1)
		1	2	3	4	1+2+3	1+2+4	1+2+3+4
	GSM 850	0.155	0.357	0.466	0.024	0.978	0.536	1.002
	GSM 1900	0.102	0.357	0.466	0.024	0.925	0.483	0.949
	UMTS 850	0.249	0.357	0.466	0.024	1.072	0.630	1.096
	UMTS 1750	0.056	0.357	0.466	0.024	0.879	0.437	0.903
	UMTS 1900	0.091	0.357	0.466	0.024	0.914	0.472	0.938
	LTE Band 12	0.216	0.357	0.466	0.024	1.039	0.597	1.063
	LTE Band 13	0.187	0.357	0.466	0.024	1.010	0.568	1.034
Head SAR	LTE Band 26 (Cell)	0.209	0.357	0.466	0.024	1.032	0.590	1.056
	LTE Band 66 (AWS)	0.052	0.357	0.466	0.024	0.875	0.433	0.899
	LTE Band 25 (PCS)	0.048	0.357	0.466	0.024	0.871	0.429	0.895
	LTE Band 7	0.070	0.357	0.466	0.024	0.893	0.451	0.917
	LTE Band 48	0.020	0.357	0.466	0.024	0.843	0.401	0.867
	LTE Band 41	0.037	0.357	0.466	0.024	0.860	0.418	0.884
	NR Band n5 (Cell)	0.072	0.357	0.466	0.024	0.895	0.453	0.919
	NR Band n66 (AWS)	0.008	0.357	0.466	0.024	0.831	0.389	0.855
	NR Band n2 (PCS)	0.025	0.357	0.466	0.024	0.848	0.406	0.872

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 110 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 116 of 129

Body-Worn Simultaneous Transmission Analysis

Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

Official Control of the Control of t								
Configuration	Mode	2G/3G/4G/5G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg))	
		1	2	3	1+2	1+3	1+2+3	
	GSM/GPRS 850	0.242	0.057	0.025	0.299	0.267	0.324	
	GSM/GPRS 1900	0.240	0.057	0.025	0.297	0.265	0.322	
	UMTS 850	0.383	0.057	0.025	0.440	0.408	0.465	
	UMTS 1750	0.075	0.057	0.025	0.132	0.100	0.157	
	UMTS 1900	0.105	0.057	0.025	0.162	0.130	0.187	
	LTE Band 12	0.292	0.057	0.025	0.349	0.317	0.374	
	LTE Band 13	0.281	0.057	0.025	0.338	0.306	0.363	
Body-worn	LTE Band 26 (Cell)	0.301	0.057	0.025	0.358	0.326	0.383	
Body-World	LTE Band 66 (AWS)	0.071	0.057	0.025	0.128	0.096	0.153	
	LTE Band 25 (PCS)	0.127	0.057	0.025	0.184	0.152	0.209	
	LTE Band 7	0.049	0.057	0.025	0.106	0.074	0.131	
	LTE Band 48	0.085	0.057	0.025	0.142	0.110	0.167	
	LTE Band 41	0.054	0.057	0.025	0.111	0.079	0.136	
	NR Band n5 (Cell)	0.130	0.057	0.025	0.187	0.155	0.212	
	NR Band n66 (AWS)	0.015	0.057	0.025	0.072	0.040	0.097	
	NR Band n2 (PCS)	0.034	0.057	0.025	0.091	0.059	0.116	

FCC ID: PY7-57441Y	Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 447 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 117 of 129

Table 12-7 Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.0 cm)

Configuration	Configuration Mode		5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ	SAR (W/kg)
		1	2	3	1+2	1+3	1+2+3
	GSM/GPRS 850	0.242	0.035	0.075	0.277	0.317	0.352
	GSM/GPRS 1900	0.240	0.035	0.075	0.275	0.315	0.350
	UMTS 850	0.383	0.035	0.075	0.418	0.458	0.493
	UMTS 1750	0.075	0.035	0.075	0.110	0.150	0.185
	UMTS 1900	0.105	0.035	0.075	0.140	0.180	0.215
	LTE Band 12	0.292	0.035	0.075	0.327	0.367	0.402
	LTE Band 13	0.281	0.035	0.075	0.316	0.356	0.391
Body-worn	LTE Band 26 (Cell)	0.301	0.035	0.075	0.336	0.376	0.411
Body-Worn	LTE Band 66 (AWS)	0.071	0.035	0.075	0.106	0.146	0.181
	LTE Band 25 (PCS)	0.127	0.035	0.075	0.162	0.202	0.237
	LTE Band 7	0.049	0.035	0.075	0.084	0.124	0.159
	LTE Band 48	0.085	0.035	0.075	0.120	0.160	0.195
	LTE Band 41	0.054	0.035	0.075	0.089	0.129	0.164
	NR Band n5 (Cell)	0.130	0.035	0.075	0.165	0.205	0.240
	NR Band n66 (AWS)	0.015	0.035	0.075	0.050	0.090	0.125
	NR Band n2 (PCS)	0.034	0.035	0.075	0.069	0.109	0.144

Table 12-8 Simultaneous Transmission Scenario with 2.4 GHz WLAN MIMO and 5 GHz WLAN MIMO (Body-Worn at 1.0 cm)

			1.0 cm)				
Configuration	Mode	2G/3G/4G/5G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	4	5	1+2+3+4+5
	GSM/GPRS 850	0.242	0.057	0.025	0.035	0.075	0.434
	GSM/GPRS 1900	0.240	0.057	0.025	0.035	0.075	0.432
	UMTS 850	0.383	0.057	0.025	0.035	0.075	0.575
	UMTS 1750	0.075	0.057	0.025	0.035	0.075	0.267
	UMTS 1900	0.105	0.057	0.025	0.035	0.075	0.297
	LTE Band 12	0.292	0.057	0.025	0.035	0.075	0.484
	LTE Band 13	0.281	0.057	0.025	0.035	0.075	0.473
Pody worn	LTE Band 26 (Cell)	0.301	0.057	0.025	0.035	0.075	0.493
Body-worn	LTE Band 66 (AWS)	0.071	0.057	0.025	0.035	0.075	0.263
	LTE Band 25 (PCS)	0.127	0.057	0.025	0.035	0.075	0.319
	LTE Band 7	0.049	0.057	0.025	0.035	0.075	0.241
	LTE Band 48	0.085	0.057	0.025	0.035	0.075	0.277
	LTE Band 41	0.054	0.057	0.025	0.035	0.075	0.246
	NR Band n5 (Cell)	0.130	0.057	0.025	0.035	0.075	0.322
	NR Band n66 (AWS)	0.015	0.057	0.025	0.035	0.075	0.207
	NR Band n2 (PCS)	0.034	0.057	0.025	0.035	0.075	0.226

	FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dogo 119 d	
	1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 118 of 129
© 202	0 PCTEST.				REV 21.4 M

Table 12-9 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Simultaneous	Transmission Scenario	with bluetooth	(Body-Worn	at 1.0 cm)
Configuration	Mode	2G/3G/4G/5G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.242	0.084	0.326
	GSM/GPRS 1900	0.240	0.084	0.324
	UMTS 850	0.383	0.084	0.467
	UMTS 1750	0.075	0.084	0.159
	UMTS 1900	0.105	0.084	0.189
	LTE Band 12	0.292	0.084	0.376
	LTE Band 13	0.281	0.084	0.365
Body-worn	LTE Band 26 (Cell)	0.301	0.084	0.385
Body-worn	LTE Band 66 (AWS)	0.071	0.084	0.155
	LTE Band 25 (PCS)	0.127	0.084	0.211
	LTE Band 7	0.049	0.084	0.133
	LTE Band 48	0.085	0.084	0.169
	LTE Band 41	0.054	0.084	0.138
	NR Band n5 (Cell)	0.130	0.084	0.214
	NR Band n66 (AWS)	0.015	0.084	0.099
	NR Band n2 (PCS)	0.034	0.084	0.118

FCC ID: PY7-57441Y	Poud to be post of element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 440 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 119 of 129

Table 12-10
Simultaneous Transmission Scenario with Bluetooth and 5 GHz WLAN (Body-Worn at 1.0 cm)

Ciliataneous Transmission Cochano With Bidetooth and Conz WEA								• • • • • • • • • • • • • • • • • • • •
Configuration	Configuration Mode		Bluetooth SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ	SAR (W/kg))
		1	2	3	4	1+2+3	1+2+4	1+2+3+4
	GSM/GPRS 850	0.242	0.084	0.035	0.075	0.361	0.401	0.436
	GSM/GPRS 1900	0.240	0.084	0.035	0.075	0.359	0.399	0.434
	UMTS 850	0.383	0.084	0.035	0.075	0.502	0.542	0.577
	UMTS 1750	0.075	0.084	0.035	0.075	0.194	0.234	0.269
	UMTS 1900	0.105	0.084	0.035	0.075	0.224	0.264	0.299
	LTE Band 12	0.292	0.084	0.035	0.075	0.411	0.451	0.486
	LTE Band 13	0.281	0.084	0.035	0.075	0.400	0.440	0.475
Body-worn	LTE Band 26 (Cell)	0.301	0.084	0.035	0.075	0.420	0.460	0.495
Body-worn	LTE Band 66 (AWS)	0.071	0.084	0.035	0.075	0.190	0.230	0.265
	LTE Band 25 (PCS)	0.127	0.084	0.035	0.075	0.246	0.286	0.321
	LTE Band 7	0.049	0.084	0.035	0.075	0.168	0.208	0.243
	LTE Band 48	0.085	0.084	0.035	0.075	0.204	0.244	0.279
	LTE Band 41	0.054	0.084	0.035	0.075	0.173	0.213	0.248
	NR Band n5 (Cell)	0.130	0.084	0.035	0.075	0.249	0.289	0.324
	NR Band n66 (AWS)	0.015	0.084	0.035	0.075	0.134	0.174	0.209
	NR Band n2 (PCS)	0.034	0.084	0.035	0.075	0.153	0.193	0.228

FCC ID: PY7-57441Y	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 420 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 120 of 129

Hotspot SAR Simultaneous Transmission Analysis

Table 12-11 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ	Σ SAR (W/kg)	
		1	2	3	1+2	1+3	1+2+3
	GPRS 850	0.211	0.078	0.025	0.289	0.236	0.314
	GPRS 1900	0.356	0.078	0.025	0.434	0.381	0.459
	UMTS 850	0.383	0.078	0.025	0.461	0.408	0.486
	UMTS 1750	0.134	0.078	0.025	0.212	0.159	0.237
	UMTS 1900	0.142	0.078	0.025	0.220	0.167	0.245
	LTE Band 12	0.300	0.078	0.025	0.378	0.325	0.403
	LTE Band 13	0.281	0.078	0.025	0.359	0.306	0.384
Hotspot	LTE Band 26 (Cell)	0.301	0.078	0.025	0.379	0.326	0.404
SAR	LTE Band 66 (AWS)	0.136	0.078	0.025	0.214	0.161	0.239
	LTE Band 25 (PCS)	0.173	0.078	0.025	0.251	0.198	0.276
	LTE Band 7	0.070	0.078	0.025	0.148	0.095	0.173
	LTE Band 48	0.087	0.078	0.025	0.165	0.112	0.190
	LTE Band 41	0.054	0.078	0.025	0.132	0.079	0.157
	NR Band n5 (Cell)	0.130	0.078	0.025	0.208	0.155	0.233
	NR Band n66 (AWS)	0.034	0.078	0.025	0.112	0.059	0.137
	NR Band n2 (PCS)	0.044	0.078	0.025	0.122	0.069	0.147

FCC ID: PY7-57441Y	Pout to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 424 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 121 of 129

Table 12-12 Simultaneous Transmission Scenario with Bluetooth (Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G/5G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GPRS 850	0.211	0.121	0.332
	GPRS 1900	0.356	0.121	0.477
	UMTS 850	0.383	0.121	0.504
	UMTS 1750	0.134	0.121	0.255
	UMTS 1900	0.142	0.121	0.263
	LTE Band 12	0.300	0.121	0.421
	LTE Band 13	0.281	0.121	0.402
Hotspot	LTE Band 26 (Cell)	0.301	0.121	0.422
SAR	LTE Band 66 (AWS)	0.136	0.121	0.257
	LTE Band 25 (PCS)	0.173	0.121	0.294
	LTE Band 7	0.070	0.121	0.191
	LTE Band 48	0.087	0.121	0.208
	LTE Band 41	0.054	0.121	0.175
	NR Band n5 (Cell)	0.130	0.121	0.251
	NR Band n66 (AWS)	0.034	0.121	0.155
	NR Band n2 (PCS)	0.044	0.121	0.165

FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 422 of 420
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 122 of 129

12.6 Phablet Simultaneous Transmission Analysis

Per FCC KDB Publication 648474 D04 Handset SAR, Phablet SAR tests were not required if wireless router 1g SAR (scaled to the maximum output power, including tolerance) < 1.2 W/kg. Therefore no further analysis beyond the tables included in this section was required to determine that possible simultaneous transmission scenarios would not exceed the SAR limit.

Table 12-13
Simultaneous Transmission Scenario with 5 GHz WLAN (Phablet)

Exposure Condition	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
	1	2	1+2
Phablet SAR	0.205	0.233	0.438

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 122 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 123 of 129

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg.

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 124 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 124 of 129

© 2020 PCTEST. REV 21.4 M 09/11/2019

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent Agilent	85033E 8594A	3.5mm Standard Calibration Kit (9kHz-2.9GHz) Spectrum Analyzer	6/6/2020 N/A	Annual N/A	6/6/2021 N/A	MY53402352 3051A00187
Agilent	8753ES	Network Analyzer	3/5/2020	Annual	3/5/2021	MY40001472
Agilent	8753ES	S-Parameter Network Analyzer	12/31/2019	Annual	12/31/2020	US39170122
Agilent	8753ES	S-Parameter Vector Network Analyzer	9/19/2019	Annual	9/19/2020	MY40003841
Agilent	E4438C F4438C	ESG Vector Signal Generator	12/13/2019	Annual Riennial	12/13/2020	MY42082659 MY42082385
Agilent Agilent	E4438C E5515C	ESG Vector Signal Generator 8960 Series 10 Wireless Communications Test Set	3/8/2019 2/10/2020	Annual	3/8/2021 2/10/2021	GB42230325
Agilent	E5515C	Wireless Communications Test Set	2/26/2020	Annual	2/26/2021	GB44400860
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB46170464
Agilent	N5182A	MXG Vector Signal Generator	2/19/2020	Annual	2/19/2021	MY47420651
Agilent	N9030A	PXA Signal Analyzer (44GHz)	8/17/2020	Annual	8/17/2021	MY52350166
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433972
Amplifier Research Anritsu	15S1G6 MA24106A	Amplifier USB Power Sensor	CBT 10/10/2019	N/A Annual	CBT 10/10/2020	433974 1344545
Anritsu	MA24106A MA24106A	USB Power Sensor	10/10/2019	Annual	10/10/2020	1344559
Anritsu	MA2411B	Pulse Power Sensor	12/4/2019	Annual	12/4/2020	1126066
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1207470
Anritsu	ML2495A	Power Meter	11/15/2019	Annual	11/15/2020	1039008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Anritsu Anritsu	MT8821C MT8821C	Radio Communication Analyzer Radio Communication Analyzer	3/10/2020 6/15/2020	Annual	3/10/2021 6/15/2021	6200901190
Anritsu	M18821C MT8821C	Radio Communication Analyzer Radio Communication Analyzer	2/22/2020	Annual	2/22/2021	6261895213
Anritsu	MT8821C	Radio Communication Analyzer	11/22/2019	Annual	11/22/2020	6262044715
Control Company	4040	Therm./ Clock/ Humidity Monitor	2/17/2020	Biennial	2/17/2022	200113269
Control Company	4040	Therm./ Clock/ Humidity Monitor	2/17/2020	Biennial	2/17/2022	200113274
Control Company	4040	Therm./ Clock/ Humidity Monitor	3/6/2020	Biennial	3/6/2022	200170313
Control Company	4352	Long Stem Thermometer	6/26/2019	Biennial	6/26/2021	192282744
Control Company Control Company	4352 4352	Long Stem Thermometer Ultra Long Stem Thermometer	6/26/2019	Biennial Biennial	6/26/2021	192282739 181766816
Control Company Control Company	4352	Ultra Long Stem Thermometer Ultra Long Stem Thermometer	11/29/2018	Biennial	11/29/2020	181766817
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
KEYSIGHT	E4438C	VECTOR SIGNAL GENERATOR	6/22/2020	Annual	6/22/2021	MY45092078
Keysight Technologies	AT/N6705B	DC Power Supply	N/A	N/A	N/A	MY53001315
Keysight Technologies	N6705B	DC Power Analyzer	4/27/2019	Biennial	4/27/2021	MY53004059
Keysignt Technologies	U3401A	Digital Multimeter Digital Caliper	5/14/2020 1/17/2020	Biennial Biennial	5/14/2022 1/17/2022	MY57201470 409193536
MCI	1108-150 BW-N6W5+	Digital Caliper 6dB Attenuator	1/17/2020 CBT	N/A	1/17/2022 CBT	1139
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits Mini-Circuits	NLP-1200+ NLP-2950+	Low Pass Filter DC to 1000 MHz Low Pass Filter DC to 2700 MHz	CBT	N/A N/A	CBT	N/A N/A
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Pasternack	NC-100	Torque Wrench	8/4/2020	Biennial	8/4/2022	N/A
Pasternack	NC-100	Torque Wrench	8/4/2020	Biennial	8/4/2022	1445
Pasternack Pasternack	PE2208-6 PE2209-10	Bidirectional Coupler Bidirectional Coupler	CBT	N/A N/A	CBT	N/A N/A
Rohde & Schwarz	CMW500	Radio Communication Tester	10/4/2019	Annual	10/4/2020	166462
Rohde & Schwarz	CMW500	Radio Communication Tester	10/15/2019	Annual	10/15/2020	109366
Rohde & Schwarz	CMW500	Radio Communication Tester	3/27/2020	Annual	3/27/2021	128633
Rohde & Schwarz	CMW500	Radio Communication Tester	5/21/2020	Annual	5/21/2021	128635
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
SPEAG SPEAG	DAK-3.5 D1750V2	Dielectric Assessment Kit 1750 MHz SAR Dinole	10/22/2019	Annual	10/22/2020	1091
SPEAG	D1750V2 D1765V2	1750 MHz SAR Dipole	5/23/2018	Triennial	5/23/2021	1008
SPEAG	D1900V2	1900 MHz SAR Dipole	10/23/2018	Biennial	10/23/2020	5d080
SPEAG	D1900V2	1900 MHz SAR Dipole	2/21/2019	Biennial	2/21/2021	5d148
SPEAG	D2450V2	2450 MHz SAR Dipole	8/16/2018	Triennial	8/16/2021	981
SPEAG	D2450V2	2450 MHz SAR Dipole	9/11/2017	Triennial	9/11/2020	797
SPEAG SPEAG	D2600V2 D3700V2	2600 MHz SAR Dipole 3700 MHz SAR Dipole	6/14/2019 1/11/2018	Biennial Triennial	6/14/2021 1/11/2021	1064 1018
SPEAG	D3700V2 D5GHzV2	5 GHz SAR Dipole	8/10/2018	Biennial	8/10/2021	1018
SPEAG	D750V3	750 MHz Dipole	3/11/2020	Annual	3/11/2021	1054
SPEAG	D835V2	835 MHz SAR Dipole	10/19/2018	Biennial	10/19/2020	4d133
SPEAG	D835V2	835 MHz SAR Dipole	3/13/2019	Biennial	3/13/2021	4d047
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2019	Annual	9/17/2020	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/13/2020	Annual	1/13/2021	1530
24703	DAFA	Dani Data Association Classes 1	1/12/2022			
SPEAG SPEAG	DAE4 DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	1/13/2020 4/15/2020	Annual Annual	1/13/2021 4/15/2021	1558 1407
SPEAG SPEAG SPEAG	DAE4 DAE4 DAE4	Dasy Data Acquisition Electronics	1/13/2020 4/15/2020 3/12/2020	Annual Annual Annual	1/13/2021 4/15/2021 3/12/2021	1558 1407 1368
SPEAG	DAE4		4/15/2020	Annual	4/15/2021	1407
SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAE4 DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	4/15/2020 3/12/2020 5/20/2020 6/18/2020	Annual Annual Annual Annual	4/15/2021 3/12/2021 5/20/2021 6/18/2021	1407 1368 728 1334
SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	Dasy Data Acquisition Electronics	4/15/2020 3/12/2020 5/20/2020 6/18/2020 8/11/2020	Annual Annual Annual Annual Annual	4/15/2021 3/12/2021 5/20/2021 6/18/2021 8/11/2021	1407 1368 728 1334 1450
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	Dasy Data Acquisition Electronics	4/15/2020 3/12/2020 5/20/2020 6/18/2020 8/11/2020 5/14/2020	Annual Annual Annual Annual Annual Annual	4/15/2021 3/12/2021 5/20/2021 6/18/2021 8/11/2021 5/14/2021	1407 1368 728 1334 1450 1583
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	Dasy Data Acquisition Electronics	4/15/2020 3/12/2020 5/20/2020 6/18/2020 8/11/2020 5/14/2020 7/15/2020	Annual Annual Annual Annual Annual Annual Annual Annual	4/15/2021 3/12/2021 5/20/2021 6/18/2021 8/11/2021 5/14/2021 7/15/2021	1407 1368 728 1334 1450 1583 1322
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	Dasy Data Acquisition Electronics	4/15/2020 3/12/2020 5/20/2020 6/18/2020 8/11/2020 5/14/2020 7/15/2020 12/5/2019	Annual Annual Annual Annual Annual Annual	4/15/2021 3/12/2021 5/20/2021 6/18/2021 8/11/2021 5/14/2021 7/15/2021 12/5/2020	1407 1368 728 1334 1450 1583 1322 1533
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4	Day Data Acquisition Electronics	4/15/2020 3/12/2020 5/20/2020 6/18/2020 8/11/2020 5/14/2020 7/15/2020	Annual	4/15/2021 3/12/2021 5/20/2021 6/18/2021 8/11/2021 5/14/2021 7/15/2021	1407 1368 728 1334 1450 1583 1322
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	Dasy Data Acquisition Electronics	4/15/2020 3/12/2020 5/20/2020 6/18/2020 8/11/2020 5/14/2020 7/15/2020 12/5/2019 9/19/2019	Annual	4/15/2021 3/12/2021 5/20/2021 6/18/2021 8/11/2021 5/14/2021 7/15/2021 12/5/2020 9/19/2020	1407 1368 728 1334 1450 1583 1322 1533 7551
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 EX3DV4 EX3DV4 EX3DV4 EX3DV4	Dasy Data Acquisition Electronics SAR Probe SAR Probe SAR Probe	4/15/2020 3/12/2020 5/20/2020 5/20/2020 6/18/2020 8/11/2020 5/14/2020 7/15/2020 12/5/2019 9/19/2019 1/21/2020 4/21/2020	Annual	4/15/2021 3/12/2021 5/20/2021 5/20/2021 6/18/2021 5/14/2021 7/15/2020 9/19/2020 1/21/2021 1/21/2021 4/21/2021	1407 1368 728 1334 1450 1583 1322 1533 7551 7889 7488
SPEAG	DAE4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4	Day Data Acquistion Electronics SAR Probe SAR Probe SAR Probe SAR Probe	4/15/2020 3/12/2020 5/20/2020 6/18/2020 8/11/2020 5/14/2020 7/15/2020 7/15/2020 9/19/2019 1/21/2020 1/21/2020 6/23/2020	Annual	4/15/2021 3/12/2021 5/20/2021 5/20/2021 8/11/2021 8/11/2021 5/14/2021 7/15/2021 1/25/2020 9/19/2020 1/21/2021 1/21/2021 4/21/2021 6/23/2021	1407 1368 728 1334 1450 1583 1322 1533 7551 3589 7488 7488 7406
SPEAG	DAE4 EX3DV4	Dasy Data Acquisition Electronics SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe	4/15/2020 3/12/2020 5/20/2020 6/18/2020 8/11/2020 7/15/2020 7/15/2020 1/21/2020 1/21/2020 4/21/2020 6/23/2020	Annual	4/15/2021 3/12/2021 5/20/2021 5/20/2021 8/11/2021 8/11/2021 7/15/2021 12/5/2020 9/19/2020 1/21/2021 1/21/2021 4/21/2021 6/23/2021	1407 1368 728 1334 1450 1583 1322 1533 7551 3589 7488 7357 7406
SPEAG	DAE4 EN3DV4 EN3DV4	Day Data Acquistion Electronics SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe	4/15/2020 3/12/2020 3/12/2020 3/12/2020 6/18/2020 8/11/2020 5/14/2020 12/5/2019 9/19/2019 1/21/2020 1/21/2020 4/21/2020 6/23/2020 5/18/2020 5/18/2020	Annual	4/15/2021 3/12/2021 3/12/2021 5/20/2021 6/18/2021 8/11/2021 5/14/2021 12/5/2020 9/19/2020 1/21/2021 1/21/2021 4/21/2021 6/23/2021 5/18/2021 5/18/2021	1407 1368 728 1334 1450 1583 1322 1533 7551 3589 7488 7357 7406 7409
SPEAG	DAE4 EX3DV4	Dasy Data Acquisition Electronics SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe	4/15/2020 3/12/2020 5/20/2020 6/18/2020 8/11/2020 7/15/2020 7/15/2020 1/21/2020 1/21/2020 4/21/2020 6/23/2020	Annual	4/15/2021 3/12/2021 5/20/2021 5/20/2021 8/11/2021 8/11/2021 7/15/2021 12/5/2020 9/19/2020 1/21/2021 1/21/2021 4/21/2021 6/23/2021	1407 1368 728 1334 1450 1583 1322 1533 7551 3589 7488 7357 7406

Note:

- 1. CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.
- 2. Each equipment item was used solely within its respective calibration period.

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 425 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 125 of 129

© 2020 PCTEST.

REV 21.4 M 09/11/2019

а	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		Cı	CI	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ul	uı	VI
				_	_	(± %)	(± %)	
Measurement System								
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	œ
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	œ
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	8
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	8
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	œ
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	×
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	×
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	œ
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	œ
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	8
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	8
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	8
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	œ
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	8
Test Sample Related							-	
Test Sample Positioning	2.7	N	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	œ
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	œ
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	œ
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	Ν	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	œ
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	œ
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	œ
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	00
Combined Standard Uncertainty (k=1)	0.0	RSS	1.79	0.00	0.17	11.5	11.3	60
		k=2				23.0	22.6	- 50
Expanded Uncertainty (95% CONFIDENCE LEVEL)		N=2				23.0	22.0	
(7370 CONTIDENCE LEVEL)							l	l

		Quality Manager
ates:	DUT Type:	Down 126 of 120
20 - 09/16/20	Portable Handset	Page 126 of 129

16 CONCLUSION

16.1 **Measurement Conclusion**

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

	FCC ID: PY7-57441Y	Proud to be post of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 407 - 4400
	1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 127 of 129
© 202	0 PCTEST.				REV 21.4 M

© 2020 PCTEST. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of cont thereof, please contact INFO@PCTEST.COM.

17 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1-124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

	FCC ID: PY7-57441Y	Proud to be port of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		D 400 -4400		
	1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 128 of 129		
© 202	2020 PCTEST.						

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: PY7-57441Y	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	SONY	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 120 of 120
1M2007070106-04-R1.PY7	08/23/20 - 09/16/20	Portable Handset		Page 129 of 129