

EMC TEST REPORT

Applicant Honor Device Co., Ltd.

FCC ID 2AYGCHJC-LX3

Product Smart Phone

Model HJC-LX3

Report No. R2009H0246-E1V2

Issue Date February 1, 2021

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC Code CFR47 Part15B (2019)/ ANSI C63.4 (2014). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Wei Liu

Guangchang Fan
Approved by: Guangchang Fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

Report No.: R2009H0246-E1V2

1	Tes	st Laboratory	5
	1.1	Notes of the Test Report	5
	1.2	Test facility	
	1.3	Testing Location	5
2	Ge	neral Description of Equipment under Test	
	2.1	Applicant and Manufacturer Information	6
	2.2	General information	6
	2.3	Applied Standards	8
	2.4	Test Mode	9
3	Tes	st Case Results	
	3.1	Radiated Emission	10
	3.2	Conducted Emission	16
4	Ма	in Test Instruments	19
Α	NNEX	(A: The EUT Appearance	20
		R. Test Setup Photos	21

MC Test Report No.: R2009H0246-E1V2

Version	Revision description	Issue Date
Rev.0	Initial issue of report.	December 18, 2020
Rev.1	Update FCC ID.	January 28, 2021
Rev.2	Update FCC ID.	February 1, 2021

Note: This revised report (Report No. R2009H0246-E1V2) supersedes and replaces the previously issued report (Report No. R2009H0246-E1V1). Please discard or destroy the previously issued report and dispose of it accordingly.

MC Test Report No.: R2009H0246-E1V2

Summary of measurement results

Number	Test Case	Clause in FCC Rules		
1	Radiated Emission	FCC Part15.109, ANSI C63.4-2014	PASS	
2	Conducted Emission	FCC Part15.107, ANSI C63.4-2014	PASS	

Date of Testing: September 11, 2020 ~ October 22, 2020

Date of Sample Received: September 10, 2020

Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

Report No.: R2009H0246-E1V2

1.2 Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement.

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Fan Guangchang

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com

E-mail: fanguangchang@ta-shanghai.com

2 General Description of Equipment under Test

2.1 Applicant and Manufacturer Information

Applicant	Honor Device Co., Ltd.		
	Suite 3401, Unit A, Building 6, Shum Yip Sky Park, No. 8089,		
Applicant address	Hongli West Road, Xiangmihu Street, Futian District, Shenzhen,		
	Guangdong 518040, People's Republic of China		
Manufacturer	Honor Device Co., Ltd.		
	Suite 3401, Unit A, Building 6, Shum Yip Sky Park, No. 8089,		
Manufacturer address	Hongli West Road, Xiangmihu Street, Futian District, Shenzhen,		
	Guangdong 518040, People's Republic of China		

Report No.: R2009H0246-E1V2

2.2 General information

EUT Description							
Device Type	Device Type Portable Device						
Model	HJC-LX3						
SN	TRV0120825000058						
HW Version	HL3JSCM						
SW Version	10.1.1.111(C900E01R	1P1)					
Antenna Type	Internal Antenna						
	Band	Tx (MHz)	Rx (MHz)				
	GSM 850	824 ~ 849	869 ~ 894				
	GSM 1900	1850 ~ 1910	1930 ~ 1990				
	WCDMA Band II	1850 ~ 1910	1930 ~ 1990				
	WCDMA Band IV	1710 ~ 1755	2110 ~ 2155				
	WCDMA Band V	824 ~ 849	869 ~ 894				
	LTE Band 2	1850 ~ 1910	1930 ~ 1990				
Eroguenov	LTE Band 4	1710 ~ 1755	2110 ~ 2155				
Frequency	LTE Band 5	824 ~ 849	869 ~ 894				
	LTE Band 7	2500 ~ 2570	2620 ~ 2690				
	LTE Band 12	699 ~ 716	729 ~ 746				
	LTE Band 17	704 ~ 716	734 ~ 746				
	LTE Band 38	2570 ~ 2620	2570 ~ 2620				
	LTE Band 41	2496 ~ 2690	2496 ~ 2690				
	LTE Band 66	1710 ~ 1780	2110 ~ 2200				
	Bluetooth	2400 ~ 2483.5	2400 ~ 2483.5				

TA Technology (Shanghai) Co., Ltd.

TA-MB-06-001E

Page 6 of 21

	=110 1001 10 poi	•	1.0	301111011112000110210 21112		
		WIF12.4G	2400 ~ 2483.5	2400 ~ 2483.5		
		WIFI 5G(U-NII-1)	5150 ~ 5250	5150 ~ 5250		
		WIFI 5G(U-NII-2A)	5250 ~ 5350	5250 ~ 5350		
		WIFI 5G(U-NII-2C)	5470 ~ 5725	5470 ~ 5725		
		WIFI 5G(U-NII-3)	5725 ~ 5850	5725 ~ 5850		
	EUT Accessory					

Accessory	Model	Manufacture	No.
	HW-110600E00	Honor Device Co., Ltd.	1
	HW-110600B00	Honor Device Co., Ltd.	2
	HW-110600U00	Honor Device Co., Ltd.	3
	HW-110600A00	Honor Device Co., Ltd.	4
Adapter	HW-110600E02	Honor Device Co., Ltd.	5
	HW-110600B02	Honor Device Co., Ltd.	6
	HW-110600U02	Honor Device Co., Ltd.	7
	HW-110600A02	Honor Device Co., Ltd.	8
	HW-110600C02	Honor Device Co., Ltd.	9
	HB426589EEW	Honor Device Co., Ltd.	1
Battery	110-20000221	(Manufacturer: SCUD (FUJIAN) Electronics Co., Ltd.)	ľ
Battery	HB426589EEW	Honor Device Co., Ltd.	2
	TIDTZUGUGELVV	(Manufacturer: Sunwoda Electronic Co., Ltd.)	
USB Cable	213-01011-0	MING JI ELECTRONICS CO., LTD.	
OSB Cable	L99UC139-CS-H	LUXSHARE Precision Industry Co., Ltd	
	MEND1532B528A 11	Jiangxi Lianchuang Hongsheng Electronic Co. ,LTD	1
Earphone	EPAB542-2WH05-	FOXCONN INTERCONNECT TECHNOLOGY LIMITED	
Laiphone	DH	1 CACCINIA INTERCONNECT TECHNOLOGI ENVITED	2
	1293-3283-3.5mm -339	Boluo County Quancheng Electronic Co. ,LTD	3

Auxiliary test equipment

PC Manufacturer: Microsoft Corporation PC Model: L20170076

Note: 1.The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.


2. There is more than one Adapter/USB cable/ Battery/Earphone, each one should be applied throughout the compliance test respectively, and however, only the worst case (Adapter 1/USB cable 2/ Battery 1/Earphone 1) will be recorded in this report.

2.3 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards FCC Code CFR47 Part15B (2019) ANSI C63.4 (2014)



2.4 Test Mode

Test Mode	Test Mode				
Mode 1:	Adapter +USB cable+ earphone + Front camera On				
Mode 2:	Adapter +USB cable+ earphone + Rear camera On				
Mode 3:	Adapter + USB cable + earphone + Mp4				
Mode 4:	Adapter + USB cable + earphone + Bluetooth/ WLAN Traffic				
Mode 5:	USB Copy(EUT with PC) + USB cable + earphone				
Mode 6:	USB Copy(EUT with PC) + USB cable + camera On + earphone				
Mode 7:	Front Camera On +earphone				
Mode 8:	Earphone + MP4				
Mode 9:	Rear camera On +earphone				
Mode 10:	Earphone + Bluetooth/WLAN Traffic				

Report No.: R2009H0246-E1V2

During the test, the preliminary test was performed in all modes with all Adapters, Earphones, USB and batteries, mode 6 with Adapter 1, Earphone 1, Battery 1 and USB cable 2 is selected as the worst condition. The test data of the worst-case condition was recorded in this report.

3 Test Case Results

EMC Test Report

3.1 Radiated Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C~26°C	45%~50%	101.5kPa

Methods of Measurement

The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level.

The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power.

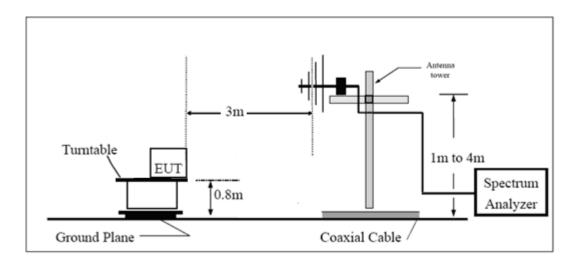
Set the spectrum analyzer in the following:

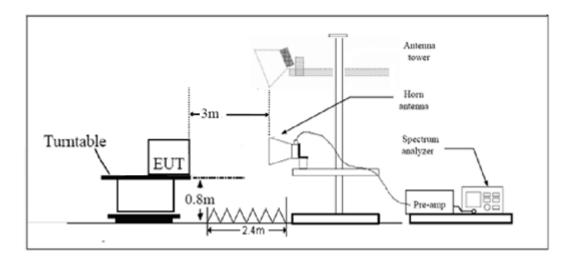
Below 1GHz:

RBW=100 kHz / VBW=300 kHz / Sweep=AUTO

Above 1GHz:

- (a) PEAK Detector: RBW=1MHz / VBW=3MHz/ Sweep=AUTO
- (b) AVERAGE Detector: RBW=1MHz / VBW=3MHz / Sweep=AUTO


The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.


Test Setup

Below 1GHz

Report No.: R2009H0246-E1V2

Above 1GHz

Note: Area side: 2.4mX3.6m

Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast.

Limits

Class B

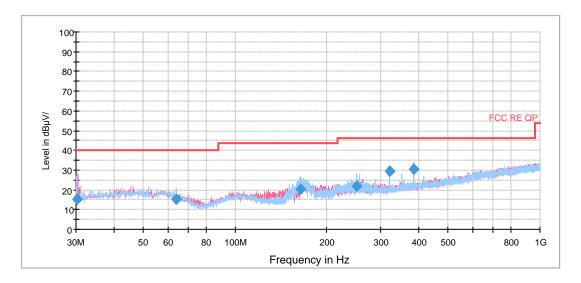
Frequency (MHz)	Field Strength (dBµV/m)	Detector
30 -88	40.0	Quasi-peak
88-216	43.5	Quasi-peak
216 – 960	46.0	Quasi-peak
960-1000	54.0	Quasi-peak
1000-5 th harmonic of the highest	54	Average
frequency or 40GHz, which is lower	74	Peak

Report No.: R2009H0246-E1V2

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
30MHz~200MHz	4.17 dB
200MHz~1000MHz	4.84 dB
1GHz~18GHz	4.35 dB
18GHz~26.5GHz	5.90 dB
26.5GHz~40GHz	5.92 dB

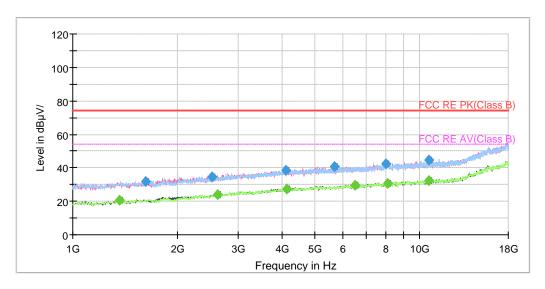


Test Results

Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier, the Emissions in the frequency band 18GHz –40GHz is more than 20dB below the limit are not reported.

Report No.: R2009H0246-E1V2

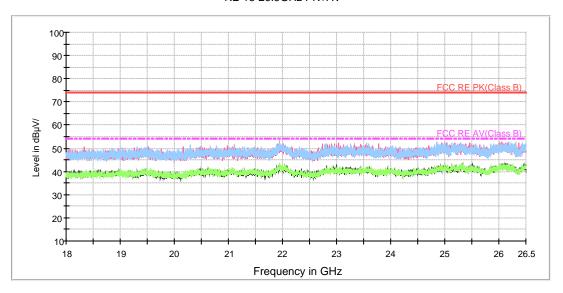
The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.



Radiated Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
30.121250	15.2	215.0	Н	341.0	12.7	24.8	40.0
63.950000	15.3	225.0	Н	202.0	12.9	24.7	40.0
163.738750	20.1	203.0	Н	82.0	10.6	23.4	43.5
250.190000	22.0	100.0	Н	274.0	14.7	24.0	46.0
320.030000	29.4	100.0	Н	329.0	16.2	16.6	46.0
384.050000	30.6	100.0	Н	351.0	18.1	15.4	46.0

Remark: 1. Correction Factor = Antenna factor + Insertion loss(cable loss+amplifier gain)


2. Margin = Limit - Quasi-Peak

Radiated Emission from 1GHz to 18GHz

Frequency (MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
1363.375000		20.85	54.00	33.15	200.0	Н	276.0	-16.9
1618.375000	31.55		74.00	42.45	100.0	V	321.0	-15.5
2515.125000	34.83		74.00	39.17 100.0		V	87.0	-11.3
2610.750000		23.77	54.00 30.23		100.0	V	143.0	-10.9
4117.375000	38.70		74.00	35.30	100.0	V	93.0	-5.8
4132.250000		27.42	54.00	26.58	200.0	Н	156.0	-5.7
5668.625000	40.95		74.00	33.05	200.0	Н	216.0	-2.7
6516.500000		29.63	54.00	24.37	100.0	V	42.0	-1.4
7989.125000	42.18		74.00	31.82	100.0	Н	343.0	0.5
8074.125000		30.88	54.00	23.12	200.0	V	87.0	0.6
10609.250000		32.60	54.00	21.40	200.0	V	294.0	2.3
10643.250000	44.48		74.00	29.52	200.0	V	336.0	2.4

RE 18-26.5GHz PK+AV

Radiated Emission from 18GHz to 26.5GHz

RE 26.5-40GHz PK+AV

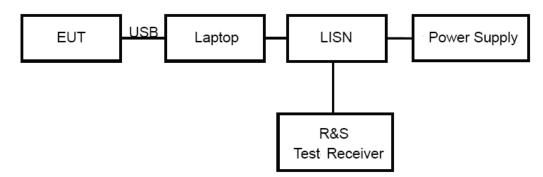
Radiated Emission from 26.5GHz to 40GHz

TA-MB-06-001E

3.2 Conducted Emission

EMC Test Report

Ambient condition


Temperature	Relative humidity	Pressure		
23°C~26°C	45%~50%	101.5kPa		

Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

During the test, EUT is connected to a laptop via a USB cable in the case of Transfer Data mode. The EUT is used as the peripheral equipment of the PC. The data is transferred from EUT to PC; PC is connected to server via a long LAN cable.

Test Setup

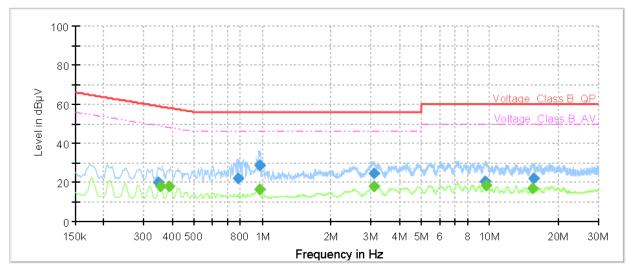
Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz.

Limits

Frequency	Conducted Limits(dBµV)					
(MHz)	Quasi-peak	Average				
0.15 - 0.5	66 to 56 *	56 to 46 [*]				
0.5 - 5	56	46				
5 - 30	60	50				
* Decreases with the logarithm of the frequency.						

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U= 2.57 dB.


TA Technology (Shanghai) Co., Ltd.

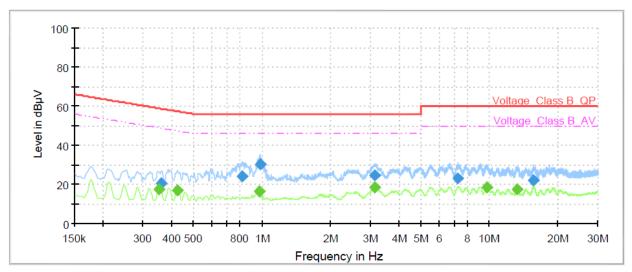
TA-MB-06-001E

Test Results

Following plots, Blue trace uses the peak detection; Green trace uses the average detection.

Report No.: R2009H0246-E1V2

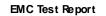
Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.35	20.22		59.01	38.79	1000.0	9.000	L1	ON	19
0.35		17.79	48.85	31.06	1000.0	9.000	L1	NO	19
0.39		17.91	48.10	30.19	1000.0	9.000	L1	ON	19
0.78	22.09		56.00	33.91	1000.0	9.000	L1	ON	19
0.97		16.24	46.00	29.76	1000.0	9.000	L1	ON	19
0.97	28.77		56.00	27.23	1000.0	9.000	L1	ON	19
3.08		17.77	46.00	28.23	1000.0	9.000	L1	ON	19
3.10	24.47		56.00	31.53	1000.0	9.000	L1	ON	19
9.54	20.58		60.00	39.42	1000.0	9.000	L1	ON	19
9.60		18.31	50.00	31.69	1000.0	9.000	L1	ON	19
15.43		17.06	50.00	32.94	1000.0	9.000	L1	ON	19
15.52	21.87		60.00	38.13	1000.0	9.000	L1	ON	19


Remark: Correct factor=cable loss + LISN factor

L line

Conducted Emission from 150 KHz to 30 MHz

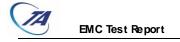
TA Technology (Shanghai) Co., Ltd.


TA-MB-06-001E

Frequency (MHz)	QuasiPeak (dΒμV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.35		17.57	48.90	31.33	1000.0	9.000	Ν	ON	19
0.36	20.64		58.75	38.11	1000.0	9.000	Ν	ON	19
0.42		17.13	47.40	30.27	1000.0	9.000	Ν	ON	19
0.82	24.14		56.00	31.86	1000.0	9.000	N	ON	19
0.97		16.60	46.00	29.40	1000.0	9.000	N	ON	19
0.98	30.17		56.00	25.83	1000.0	9.000	Ν	ON	19
3.12	24.75		56.00	31.25	1000.0	9.000	Ν	ON	19
3.13		18.39	46.00	27.61	1000.0	9.000	Ν	ON	19
7.27	23.27		60.00	36.73	1000.0	9.000	N	ON	19
9.71		18.64	50.00	31.36	1000.0	9.000	N	ON	19
13.22		17.57	50.00	32.43	1000.0	9.000	Ν	ON	19
15.58	21.81		60.00	38.19	1000.0	9.000	N	ON	19

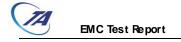
Remark: Correct factor=cable loss + LISN factor

N line Conducted Emission from 150 KHz to 30 MHz



4 Main Test Instruments

Name	Manufacturer	Turo	Serial	Calibration	Expiration	
Name	Manuracturer	Туре	Number	Date	Time	
Spectrum	R&S	FSV40	15195-01-	2020-05-17	2021-05-16	
Analyzer	κασ	13740	00	2020-03-17		
EMI Test	R&S	ESCI	100948	2020-05-17	2021-05-16	
Receiver	NGO	2001	100040	2020 00 17	2021-03-10	
Trilog Antenna	SCHWARZBECK	VULB 9163	391	2019-12-16	2021-12-15	
Horn Antenna	R&S	HF907	102723	2018-08-11	2021-08-10	
Horn Antenna	ETS-Lindgren	3160-09	00102643	2018-06-20	2021-06-19	
Standard Gain	STEATITE	QSH-SL-26-	16779	2019-12-24	2021-12-23	
Horn	STEATHE	40-K-15	10779	2019-12-24	2021-12-23	
EMI Test	R&S	ESR	101667	2020-05-17	2021-05-16	
Receiver	κασ	LON	101007	2020-03-17	2021-05-10	
LISN	R&S	ENV216	101171	2018-12-15	2021-12-14	
Bore Sight	ETS	2171B	00058752	/	/	
Antenna mast	LIO	21710	00030732	,	,	
Test software	EMC32	R&S	9.26.0	/	/	


******END OF REPORT ******

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

Report No.: R2009H0246-E1V2

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.

Report No.: R2009H0246-E1V2