

# RF TEST REPORT

Test Equipment : Smart Card Reader

Model Name

: SR20D

FCC ID

: OYUSR20D

Date of receipt

: 2023-10-27

Test Duration

: 2024-01-03 ~ 2024-01-26

Date of issue : 2024-02-16

Applicant

: IDTECK CO., Ltd.

4F, 61, Samjak-ro 171beon-gil, Bucheon-si

Gyeonggi-do, Repubilc of Korea

Test Laboratory : Lab-T, Inc.

2182-42 Baegok-daero, Mohyeon-eup, Cheoin-gu Yongin-si, Gyeonggi-do 17036, Republic of Korea

Test Specification : FCC Part 15 Subpart C 15.225

Test Result

: Pass

The above equipment was tested by Lab-T Testing Laboratory for compliance with the requirements of FCC Rules and Regulations. The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of Lab-T, Inc

Tested by:

Engineer NamHyoung Kwon Reviewed by:

Technical Manager SangHoon Yu



## **CONTENTS**

| 1. | Revision History                                                           | 3  |
|----|----------------------------------------------------------------------------|----|
| 2. | Information                                                                | 4  |
|    | 2.1 Applicant Information                                                  | 4  |
|    | 2.2 Test Laboratory Information                                            | 4  |
|    | 2.3 Test Site                                                              | 4  |
| 3. | Information about Test Equipment                                           | 5  |
|    | 3.1 Equipment Information                                                  | 5  |
|    | 3.2 Antenna Information                                                    | 5  |
|    | 3.3 Test Frequency                                                         | 5  |
|    | 3.4 Tested Companion Device Information                                    | 5  |
| 4. | Test Report                                                                | 6  |
|    | 4.1 Summary                                                                | 6  |
|    | 4.2 Measurement Uncertainty                                                | 6  |
|    | 4.3 Transmitter Requirements                                               | 7  |
|    | 4.3.1 20 dB Bandwidth                                                      | 7  |
|    | 4.3.2 Frequency Tolerance of Carrier Signal                                | 9  |
|    | 4.3.3 In-band Fundamental Emission, In-band and Out-band Spurious Emission | 12 |
|    | 4.3.4 Conducted Emission                                                   | 17 |
|    |                                                                            | 40 |



# 1. Revision History

| Test Report No. | Date       | Description   |
|-----------------|------------|---------------|
| TRRFCC24-0006   | 2024-02-16 | Initial issue |
|                 |            |               |

REPORT No.:TRRFCC24-0006 Total 19 pages



### 2. Information

2.1 Applicant Information

| <u></u>                                                                          |                                                                           |  |  |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|
| Applicant Name                                                                   | IDTECK CO., Ltd.                                                          |  |  |
| Address 4F, 61, Samjak-ro 171beon-gil, Bucheon-si, Gyeonggi-do, Repubilc of Kore |                                                                           |  |  |
| Telephone No.                                                                    | +82-2-2659-0055                                                           |  |  |
| Person in charge Byung-Dong Kang / Private Sector, Corporation                   |                                                                           |  |  |
| Manufacturer                                                                     | IDTECK CO., Ltd.                                                          |  |  |
| Address                                                                          | 4F, 61, Samjak-ro 171beon-gil, Bucheon-si, Gyeonggi-do, Repubilc of Korea |  |  |

2.2 Test Laboratory Information

| 2.2 lest Laboratory information |                                                                                                 |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------|--|--|
| Corporate Name                  | Lab-T, Inc.                                                                                     |  |  |
| Representative                  | Duke (JongYoung) Kim                                                                            |  |  |
| Address                         | 2182-42 Baegok-daero, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17036<br>Republic of Korea |  |  |
| Telephone                       | +82-31-322-6767                                                                                 |  |  |
| Fax                             | +82-31-322-6768                                                                                 |  |  |
| E-mail                          | info@lab-t.net                                                                                  |  |  |
| FCC Designation No.             | KR0159                                                                                          |  |  |
| FCC Registration No.            | 133186                                                                                          |  |  |
| IC Site Registration No.        | 22000                                                                                           |  |  |

#### 2.3 Test Site

| Test Site  | Used        | Address                                                                                       |
|------------|-------------|-----------------------------------------------------------------------------------------------|
| Building L | $\boxtimes$ | 2182-40 Baegok-daero, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17036, Republic of Korea |
| Building T | $\boxtimes$ | 2182-42 Baegok-daero, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17036, Republic of Korea |
| Building A |             | 2182-44 Baegok-daero, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17036, Republic of Korea |



# 3. Information about Test Equipment

3.1 Equipment Information

| 3.1 Equipment information |                   |  |  |
|---------------------------|-------------------|--|--|
| Equipment Type            | Smart Card Reader |  |  |
| Model Name                | SR20D             |  |  |
| Frequency Range           | 13.56 MHz         |  |  |
| Modulation Type           | ASK               |  |  |
| Power Supply              | DC 12 V           |  |  |
| S/W Version               | 0.1.0.            |  |  |
| H/W Version               | 0.1.0.            |  |  |

Note 1 : The above EUT information was declared by the manufacturer.

#### 3.2 Antenna Information

| Туре         | Model No.  | Gain | Note. |
|--------------|------------|------|-------|
| Loop antenna | DM_Ant_V10 | -    | -     |

3.3 Test Frequency

| Test Mode | Test Frequency[MHz] |
|-----------|---------------------|
| ASK       | 13.56               |

**3.4 Tested Companion Device Information** 

| Туре | Manufacturer | Model | Note. |
|------|--------------|-------|-------|
| -    | -            | -     | -     |



## 4. Test Report

4.1 Summary

| FCC Part 15                                                                |                                                                         |                   |                       |  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------|-----------------------|--|
| FCC Rule                                                                   | Parameter                                                               | Clause            | Status                |  |
| Transmitter                                                                | Requirements                                                            |                   |                       |  |
| 15.203                                                                     | Antenna Requirement                                                     | 5.8               | С                     |  |
| 15.215(c)                                                                  | 20 dB Bandwidth                                                         | 6.9.2             | С                     |  |
| 15.225(e)                                                                  | Frequency Tolerance of Carrier Signal                                   | 6.8               | С                     |  |
| 15.225(a)<br>15.225(b)<br>15.225(c)<br>15.225(d)<br>15.205(a)<br>15.209(a) | In-band Fundamental Emission,<br>In-band and Out-band Spurious Emission | 6.3<br>6.4<br>6.5 | С                     |  |
| 15.207(a)                                                                  | Conducted Emissions                                                     | 6.2               | N/A <sup>Note 2</sup> |  |
| Note 1: C = Comply N/C = Not Comply N/T = Not Tested N/A = Not Applicable  |                                                                         |                   |                       |  |

#### 4.2 Measurement Uncertainty

| Mesurement Items                             | Expanded Uncertainty |                                           |  |
|----------------------------------------------|----------------------|-------------------------------------------|--|
| 99% Occupied Bandwidth                       | 6.80 kHz             | (The confidence level is about 95 %, k=2) |  |
| Frequency Error                              | 5.81 kHz             | (The confidence level is about 95 %, k=2) |  |
| Radiated Spurious Emissions (30 MHz under)   | 4.06 dB              | (The confidence level is about 95 %, k=2) |  |
| Radiated Spurious Emissions (30 MHz ~ 1 GHz) | 4.84 dB              | (The confidence level is about 95 %, k=2) |  |
| Conducted Emission                           | 2.52 dB              | (The confidence level is about 95 %, k=2) |  |

The device only uses DC power, so it was not tested

<sup>\*</sup> The general test methods used to test this device is ANSI C63.10:2020





#### 4.3 Transmitter Requirements

#### 4.3.1 20 dB Bandwidth

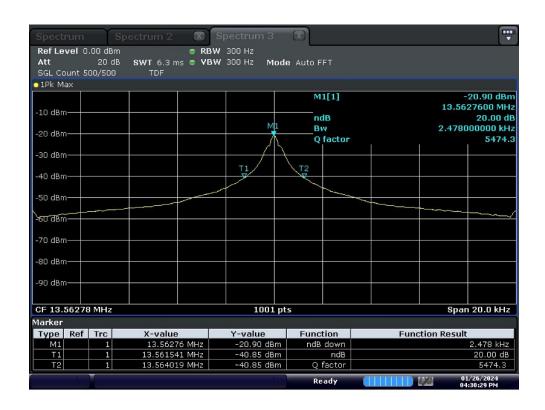
#### 4.3.1.1 Regulation

Accoding to §15.215(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

#### 4.3.1.2 Measurement Procedure

These test measurement settings are specified in section 6.9.2 of ANSI C63.10-2020

4.3.1.3 Result


Comply (Measurement data: Refer to the next page)



#### 4.3.1.4 Measurement Data

Test mode: ASK

| Frequency | Results | Lowest Frequency | Highest Frequency |
|-----------|---------|------------------|-------------------|
| [MHz]     | [kHz]   | [MHz]            | [MHz]             |
| 13.56     | 2.478 0 | 13.561 5         | 13.564 0          |





#### 4.3.2 Frequency Tolerance of Carrier Signal

#### 4.3.2.1 Regulation

According to §15.225(e) The frequency tolerance of the carrier signal shall be maintained within  $\pm 0.01\%$  of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

#### 4.3.2.2 Measurement Procedure

These test measurement settings are specified in section 6.8.1 and 6.8.2 of ANSI C63.10-2020

4.3.2.3 Result

Comply (Measurement data: Refer to the next page)



#### 4.3.2.4 Measurement Data

Test mode: 0 min

| Nominal<br>Frequency <sup>Note 1</sup><br>[MHz] | Temp<br>[°C] | Lowest<br>Frequency<br>[MHz] | Highest<br>Frequency<br>[MHz] | Center<br>Frequency<br>[Hz] | Tolerance<br>[%] |
|-------------------------------------------------|--------------|------------------------------|-------------------------------|-----------------------------|------------------|
|                                                 | -20          | 13.561 581                   | 13.564 119                    | 13 562 850                  | 0.000 369        |
|                                                 | -10          | 13.561 761                   | 13.563 919                    | 13 562 840                  | 0.000 295        |
|                                                 | 0            | 13.561 721                   | 13.563 979                    | 13 562 850                  | 0.000 369        |
|                                                 | 10           | 13.561 581                   | 13.564 079                    | 13 562 830                  | 0.000 221        |
|                                                 | 20           | 13.561 641                   | 13.563 959                    | 13 562 800                  | 0.000 000        |
| 13.562 8                                        | 30           | 13.561 561                   | 13.563 939                    | 13 562 750                  | -0.000 369       |
|                                                 | 40           | 13.561 621                   | 13.563 839                    | 13 562 730                  | -0.000 516       |
|                                                 | 50           | 13.561 501                   | 13.563 919                    | 13 562 710                  | -0.000 664       |
|                                                 | Voltage[%]   | Note 2                       |                               |                             |                  |
|                                                 | 85           | 13.561 601                   | 13.563 979                    | 13 562 790                  | -0.000 074       |
|                                                 | 115          | 13.561 681                   | 13.563 859                    | 13 562 770                  | -0.000 221       |

Note 1 : The center frequency measured at room temperature and rated voltage was declared as the Nominal frequency, and then the frequency stability was tested.

Test mode: 2 min

| Nominal<br>Frequency <sup>Note 1</sup><br>[MHz] | Temp<br>[°C] | Lowest<br>Frequency<br>[MHz] | Highest<br>Frequency<br>[MHz] | Center<br>Frequency<br>[Hz] | Tolerance<br>[%] |
|-------------------------------------------------|--------------|------------------------------|-------------------------------|-----------------------------|------------------|
|                                                 | -20          | 13.561 534                   | 13.564 158                    | 13 562 846                  | 0.000 339        |
|                                                 | -10          | 13.561 756                   | 13.563 914                    | 13 562 835                  | 0.000 258        |
|                                                 | 0            | 13.561 720                   | 13.563 972                    | 13 562 846                  | 0.000 339        |
| 13.562 8                                        | 10           | 13.561 585                   | 13.564 082                    | 13 562 834                  | 0.000 247        |
| 13.302 6                                        | 20           | 13.561 637                   | 13.563 971                    | 13 562 804                  | 0.000 029        |
|                                                 | 30           | 13.561 566                   | 13.563 950                    | 13 562 758                  | -0.000 310       |
|                                                 | 40           | 13.561 605                   | 13.563 812                    | 13 562 709                  | -0.000 675       |
|                                                 | 50           | 13.561 494                   | 13.563 901                    | 13 562 698                  | -0.000 756       |

Note 1 : The center frequency measured at room temperature and rated voltage was declared as the Nominal frequency, and then the frequency stability was tested.

Note 2: This test was measured at room temperature of +20 degrees



Test mode: 5 min

| Nominal<br>Frequency <sup>Note 1</sup><br>[MHz] | Temp<br>[°C] | Lowest<br>Frequency<br>[MHz] | Highest<br>Frequency<br>[MHz] | Center<br>Frequency<br>[Hz] | Tolerance<br>[%] |  |
|-------------------------------------------------|--------------|------------------------------|-------------------------------|-----------------------------|------------------|--|
|                                                 | -20          | 13.561 574                   | 13.564 120                    | 13 562 847                  | 0.000 347        |  |
|                                                 | -10          | 13.561 764                   | 13.563 931                    | 13 562 848                  | 0.000 350        |  |
|                                                 | 0            | 13.561 745                   | 13.563 928                    | 13 562 837                  | 0.000 269        |  |
| 13.562 8                                        | 10           | 13.561 662                   | 13.563 991                    | 13 562 827                  | 0.000 195        |  |
| 13.302 6                                        | 20           | 13.561 632                   | 13.563 952                    | 13 562 792                  | -0.000 059       |  |
|                                                 | 30           | 13.561 584                   | 13.563 932                    | 13 562 758                  | -0.000 310       |  |
|                                                 | 40           | 13.561 634                   | 13.563 833                    | 13 562 734                  | -0.000 490       |  |
|                                                 | 50           | 13.561 508                   | 13.563 941                    | 13 562 725                  | -0.000 557       |  |

Note 1 : The center frequency measured at room temperature and rated voltage was declared as the Nominal frequency, and then the frequency stability was tested.

Test mode: 10 min

| Nominal<br>Frequency <sup>Note 1</sup><br>[MHz] | Temp<br>[°C] | Lowest<br>Frequency<br>[MHz] | Highest<br>Frequency<br>[MHz] | Center<br>Frequency<br>[Hz] | Tolerance<br>[%] |
|-------------------------------------------------|--------------|------------------------------|-------------------------------|-----------------------------|------------------|
|                                                 | -20          | 13.561 576                   | 13.564 124                    | 13 562 850                  | 0.000 369        |
|                                                 | -10          | 13.561 780                   | 13.563 927                    | 13 562 854                  | 0.000 394        |
|                                                 | 0            | 13.561 734                   | 13.563 965                    | 13 562 850                  | 0.000 365        |
| 13.562 8                                        | 10           | 13.561 580                   | 13.564 054                    | 13 562 817                  | 0.000 125        |
| 13.302 6                                        | 20           | 13.561 581                   | 13.564 001                    | 13 562 791                  | -0.000 066       |
|                                                 | 30           | 13.561 563                   | 13.563 940                    | 13 562 752                  | -0.000 358       |
|                                                 | 40           | 13.561 592                   | 13.563 897                    | 13 562 745                  | -0.000 409       |
|                                                 | 50           | 13.561 534                   | 13.563 910                    | 13 562 722                  | -0.000 575       |

Note 1 : The center frequency measured at room temperature and rated voltage was declared as the Nominal frequency, and then the frequency stability was tested.



#### 4.3.3 In-band Fundamental Emission, In-band and Out-band Spurious Emission

#### 4.3.3.1 Regulation

According to §15.225(a),(b),(c),(d) (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

According to §15.209(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency<br>[MHz] | Field Strength<br>[microvolts/meter] | Measurement Distance<br>[meters] |
|--------------------|--------------------------------------|----------------------------------|
| 0.009 - 0.490      | 2 400/F[kHz]                         | 300                              |
| 0.490 - 1.705      | 24 000/F[kHz]                        | 30                               |
| 1.705 - 30.0       | 30                                   | 30                               |
| 30 - 88            | 100**                                | 3                                |
| 88 - 216           | 150**                                | 3                                |
| 216 - 960          | 200**                                | 3                                |
| Above 960          | 500                                  | 3                                |

<sup>\*\*</sup> Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shallnot be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.



#### 4.3.3.2 Measurement Procedure

- 1) The preliminary and final rdiated measurements were performed to determine the frequency producing the maximum emissions in at a 10m anechoic chamber. The EUT was tested at a distance 3 meters.
- 2) The EUT was placed on the top of the 0.8-meter height, 1  $\times$  1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
- 3) The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, and from 30 to 1 000 MHz using the TRILOG broadband antenna.
- 4) Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
- Note 1: The resolution bandwidth of test receiver/spectrum analyzer is 200 Hz for Quasi-peak detection (QP) at frequency below 150 kHz.
- Note 2: The resolution bandwidth of test receiver/spectrum analyzer is 9 kHz for Quasi-peak detection (QP) at frequency 150 kHz to 30 MHz
- Note 3: The resolution bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- Note 4: The video bandwidth of test receiver/spectrum analyzer is three times as much as resolution bandwidth

#### 4.3.3.3 Result

Comply (Measurement data: Refer to the next page)





#### 4.3.3.4 Measurement Data

Test mode: 9 kHz ~ 30 MHz

| Frequency<br>[MHz] | Detector        | Note<br>1 | Pol.<br>[V/H] | Reading<br>[dBµV] | Ant<br>Factor<br>[dB] | Cable<br>Loss<br>[dB] | Result<br>at 3m<br>[dBµV/m] | Result<br>at 30m<br>[dBµV/m] | Limit<br>at 30m<br>[dBµV/m] | Margin<br>[dB] |
|--------------------|-----------------|-----------|---------------|-------------------|-----------------------|-----------------------|-----------------------------|------------------------------|-----------------------------|----------------|
| 13.562 8           | QP              | F         | Н             | 63.80             | 10.70                 | 0.70                  | 75.20                       | 35.20                        | 84.00                       | 48.80          |
| 13.562 8           | QP              | F         | V             | 56.00             | 10.70                 | 0.70                  | 67.40                       | 27.40                        | 84.00                       | 56.60          |
| Spurious           | Not<br>detected | S         | -             | -                 | -                     | -                     | -                           | -                            | -                           | -              |

| Frequency<br>[MHz] | Detector        | Note<br>1 | Pol.<br>[V/H] | Reading<br>[dBµV] | Ant<br>Factor<br>[dB] | Cable<br>Loss<br>[dB] | Result<br>at 3m<br>[dBµV/m] | Result<br>at 300m<br>[dBµV/m] | Limit<br>at 300m<br>[dBµV/m] | Margin<br>[dB] |
|--------------------|-----------------|-----------|---------------|-------------------|-----------------------|-----------------------|-----------------------------|-------------------------------|------------------------------|----------------|
| Spurious           | Not<br>detected | S         | 1             | -                 | -                     | -                     | -                           | -                             | 1                            | -              |

"F" : Fundamental, "S" : Spurious Note 1:

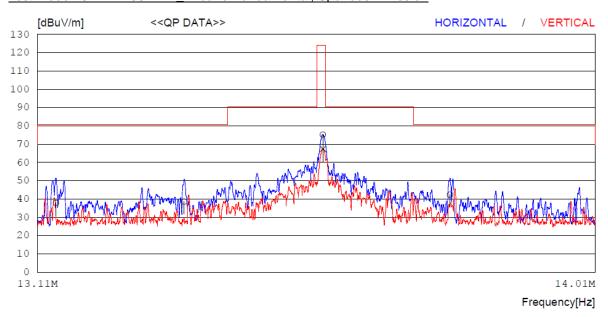
Note 2: Result: Reading + Ant factor + Cable loss

Note 3:

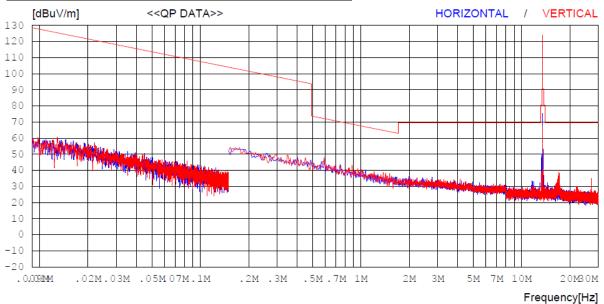
According to §15.31 (f)(2); Result at  $30m[dB\mu V/m] = Result$  at  $3m[dB\mu V/m] - 40*log(30/3)[dB\mu V/m]$  Result at  $300m[dB\mu V/m] = Result$  at  $3m[dB\mu V/m] - 40*log(300/3)[dB\mu V/m]$  Not detected means peak measurement did not take place because it is more than 20dB difference in the limit

Note 4:

Test mode: 30 MHz ~ 1 GHz

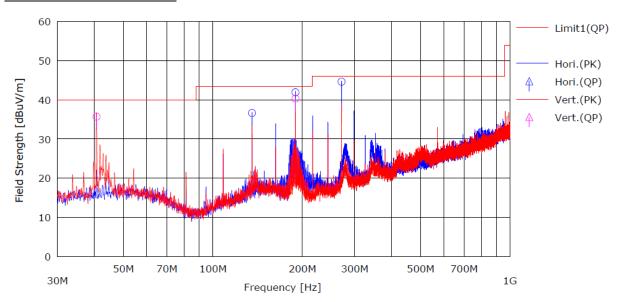

| Frequency<br>[MHz] | Detector | Note<br>1 | Pol.<br>[V/H] | Reading<br>[dBµV] | Ant<br>Factor<br>[dB] | Loss<br>[dB] | Result<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|--------------------|----------|-----------|---------------|-------------------|-----------------------|--------------|--------------------|-------------------|----------------|
| 40.670             | QP       | S         | ٧             | 45.70             | 19.40                 | -29.40       | 35.70              | 40.00             | 4.30           |
| 135.630            | QP       | S         | Н             | 46.10             | 18.50                 | -28.00       | 36.60              | 40.00             | 3.40           |
| 189.856            | QP       | S         | ٧             | 51.20             | 16.80                 | -27.70       | 40.30              | 43.50             | 3.20           |
| 189.859            | QP       | S         | Н             | 52.80             | 16.80                 | -27.70       | 41.90              | 43.50             | 1.60           |
| 271.238            | QP       | S         | Н             | 53.00             | 18.50                 | -26.90       | 44.60              | 46.00             | 1.40           |

Note 1: Loss: Cable loss - Amp gain Result : Reading + Ant factor + Loss Note 2:




#### 4.3.3.5 Measurement Plot

#### Test mode: 9 kHz ~ 30 MHz\_In-band Fundamental, Spurious Emission




#### Test mode: 9 kHz ~ 30 MHz\_Out-band Spurious Emission





#### Test mode : 30 MHz ~ 1 GHz





#### 4.3.4 Conducted Emission

#### 4.3.4.1 Regulation

According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50  $\mu\text{H}/50~\Omega$  line impedance stabilization network (LISN).

Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

| Frequency of emission | Conducted Limit[dBµV] |            |  |  |  |
|-----------------------|-----------------------|------------|--|--|--|
| [MHz]                 | Qausi-Peak            | Average    |  |  |  |
| 0.15 – 0.5            | 66 to 56 *            | 56 to 46 * |  |  |  |
| 0.5 – 5               | 56                    | 46         |  |  |  |
| 5 - 30                | 60                    | 50         |  |  |  |

<sup>\*</sup> Decreases with the logarithm of the frequency.

According to §15.107(a), for unintentional device, except for Class A digital devices, line conducted emission limits are the same as the above table.

#### 4.3.4.2 Measurement Procedure

- 1) The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5 m away from the side wall of the shielded room.
- 2) Each current-carrying conductor of the EUT power cord was individually connected through a 50  $\Omega$ /50  $\mu$ H LISN, which is an input transducer to a Spectrum Analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3) Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4) The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 MHz to 30 MHz.
- 5) The measurements were made with the detector set to PEAK amplitude within a bandwidth of 10 kHz or to QUASIPEAK and AVERAGE within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.

#### 4.3.4.3 Result

Not Applicable (The device only uses DC power, so it was not tested)



# **APPENDIX I**

### **TEST EQUIPMENT USED FOR TESTS**



To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment.

| Equipment                      | Manufacturer  | Model                | Serial No. | Cal. Date<br>(yy.mm.dd) | Next Cal.Date<br>(yy.mm.dd) |
|--------------------------------|---------------|----------------------|------------|-------------------------|-----------------------------|
| FSV Signal Analyzer            | ROHDE&SCHWARZ | FSV40                | 101010     | 2023-04-13              | 2024-04-13                  |
| DC POWER<br>SUPPLY             | KIKUSUI       | PWX1500L             | SM002050   | 2023-08-16              | 2024-08-16                  |
| HUMIDITY/TEMP DATA<br>RECORDER | LUTRON        | MHB-382SD            | 79735      | 2023-04-19              | 2024-04-19                  |
| Digital MultiMeter             | HP            | 34401A               | US36025428 | 2024-01-04              | 2025-01-04                  |
| Signal Generator               | ROHDE&SCHWARZ | SMB100A              | 178384     | 2023-10-11              | 2024-10-11                  |
| Temp & Humi Test<br>Chamber    | SJ SCIENCE    | SJ-TH-S50            | 170719     | 2023-04-13              | 2024-04-13                  |
| EMI Test Receiver              | ROHDE&SCHWARZ | ESU40                | 100445     | 2023-09-05              | 2024-09-05                  |
| Active Loop H-Field            | ETS           | 6502                 | 00150598   | 2023-06-27              | 2025-06-27                  |
| BiLog Antenna                  | Schwarzbeck   | VULB9168             | 00821      | 2023-03-29              | 2024-03-29                  |
| Attenuator                     | JFW           | 50F-006              | 6 dB-3     | 2023-04-13              | 2024-04-13                  |
| PREAMPLIFIER                   | TSJ           | MLA-10k01-<br>b01-27 | 1870367    | 2023-04-13              | 2024-04-13                  |
| Antenna Mast                   | Innco         | MA4640-<br>XPET-0800 | 578        | -                       | -                           |
| Controller                     | TOKIN         | 5909L                | 141909L-1  | -                       | -                           |
| Controller                     | Innco         | CO3000               | 40040217   | -                       | -                           |
| Turn Table                     | TOKIN         | 5983-1.5             | -          | -                       | -                           |