Application QIPMC46

Prediction of MPE limit at given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = \frac{PG}{4\pi R^2}$ where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest

relative to an isotropic radiator

R = distance to the center of radiation of the antenna

The table below is excerpted from Table 1B of 47 CFR 1.1310 titled Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure:

Frequency Range (MHz)	Power Density (mW/cm²)	Averaging Time (minutes)
300 – 1500	f/1500	30
1500 – 100.000	1.0	30

where f = frequency in MHz

Prediction GSM 1900

Antenna Type: 0dBi Antenna / 3dBi Antenna / 6 dBi Antenna / 7 dBi Antenna

Maximum peak output power at antenna input terminal:	29.7	dBm
Maximum peak output power at antenna input terminal:	933,254	mW
Antenna gain(typical):	0	dBi
Maximum antenna gain:	1	numeric
Prediction distance:	20	cm
Prediction frequency:	1880	MHz
MPE limit for uncontrolled exposure at prediction frequency:	1	$\frac{mW}{cm^2}$
Power density at prediction frequency: with Antenna Gain of 0dBi	0,1857	$\frac{mW}{cm^2}$
Power density at prediction frequency: with Antenna Gain of 3dBi	0,3713	$\frac{mW}{cm^2}$
Power density at prediction frequency: with Antenna Gain of 6dBi	0,7427	$\frac{mW}{cm^2}$
Power density at prediction frequency: with Antenna Gain of 7dBi	0,9305	$\frac{mW}{cm^2}$
Maximum allowable antenna gain:	7,3137	dBi

Prediction for GSM 850

Antenna Type: 0dBi Antenna

Maximum peak output power at antenna input terminal:	33	dBm
Maximum peak output power at antenna input terminal:	1,995	mW
Antenna gain(typical):	0	dBi
Maximum antenna gain:	1	numeric
Prediction distance:	20	cm
Prediction frequency:	836,4	MHz
MPE limit for uncontrolled exposure at prediction frequency:	<u>0,5576</u>	$\frac{mW}{cm^2}$
Power density at prediction frequency with Antenna Gain of 0dBi	0,3969	$\frac{mW}{cm^2}$
Maximum allowable antenna gain:	1,47	dBi

Application QIPMC46

The antenna gain where 1 $\frac{mW}{cm^2}$ would be reached at 20 cm distance, is **G= 7,3137dBi for GSM 1900**

The antenna gain where 0,5576 $\frac{mW}{cm^2}$ would be reached at 20 cm distance, is **G= 1,47dBi** for **GSM 850**