

FCC Test Report

Test report
On Behalf of
Superior communications.

For

Fast Magnetic Wireless Charger Model No.: 09638PG-VN FCC ID: YJW-09638PG-VN

Prepared For: Superior communications.

5027 Irwindale Ave. Suite, Irwindale Ave, California, 91706, United States

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Dec. 07, 2022 ~ Jan. 05, 2023

Date of Report: Jan. 05, 2023

Report Number: HK2212075541-1E

TEST RESULT CERTIFICATION

Applicant's name: Superior communications.

Address...... 5027 Irwindale Ave. Suite, Irwindale Ave, California, 91706, United

States

Manufacture's Name.....: Superior communications.

Address...... 5027 Irwindale Ave. Suite, Irwindale Ave, California, 91706, United

States

Product description

Trade Mark: PURE.9eaR

Product name.....: Fast Magnetic Wireless Charger

Model and/or type reference : 09638PG-VN

Standards : FCC CFR 47 PART 18

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests Dec. 07, 2022 ~ Jan. 05, 2023

Test Result..... Pass

Testing Engineer

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

e of Contents

Page

Report No.: HK2212075541-1E

	rable of Conte	nts	Page
1 . TEST SUMMARY			5
1.1 . Test Procedures A	And Results		9 110 5
1.2 . Information of the	Test Laboratory		5
1.3 . Measurement Und	certainty		JULIAN TESTINES
2. GENERAL INFORMATI	ON		6
2.1. General Descriptio	n of EUT		6
2.2. Carrier Frequency	of Channels		HUAKTES
2.3. Operation of EUT	during testing		7
2.4. Test Mode			7
2.5. Description of Test	t Setup		8 Mun 8
2.6. Measurement Instr	ruments List		9
3. CONDUCTED EMISS	ION TEST		10
3.1. Block Diagram of T	Test Setup		HUAK TES
3.2. Conducted Power	Line Emission Li	mit	10
3.3. Test Procedure			10
4. RADIATED EMISSION	NS HUNKTE		13
4.1. Block Diagram of T	Test Setup		13
4.2. Rules and specific	ations		13
4.3. Test Procedure			14
4.4. Test Result			14
5. ANTENNA REQUIREM	ENT		18
6. PHOTOGRAPH OF TES	ST MUAN		19
7 DUOTOS OF THE FUT			04

** Modified History **

Revision	Description	Issued Data	Remark	
Revision 1.0	Initial Test Report Release	Jan. 05, 2023	Jason Zhou	
TESTING	EIME	ESTING	TESTING	
HILAN HUAN	HUA	HUAR	HUAT HUAT	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1. TEST SUMMARY

1.1. Test Procedures And Results

DESCRIPTION OF TEST	SECTION NUMBER	RESULT
CONDUCTED EMISSIONS TEST	18.307	COMPLIANT
RADIATED EMISSION TEST	18.305	COMPLIANT

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01.

FCC Designation Number is CN1229.

Canada IC CAB identifier is CN0045.

CNAS Registration Number is L9589.

1.3. Measurement Uncertainty

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.71dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.90dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 3.90dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.28dB, k=2

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2. GENERAL INFORMATION

2.1. General Description of EUT

Equipment:	Fast Magnetic Wireless Charger	TESTING LANTESTING
Model Name:	09638PG-VN	9
Series Models:	N/A	N ^G
Model Difference:	N/A MARK MILITESTING MILITESTING	HAKTESTING
Trade Mark:	PURE.9eaR	9
FCC ID:	YJW-09638PG-VN	ING TING
Antenna Type:	Coil Antenna	WAKTES !!!
Antenna Gain:	0dBi	
Operation frequency:	112KHz~205KHz	2. 2
Test frequency:	134KHz	TESTING LAK TESTING
Number of Channels:	1 0	0,
Modulation Type:	ASK	W.
Power Source:	Input: 12V 1.67A(PD) Wireless Output: 15W	HUAKTESTIN
Power Rating:	Input: 12V 1.67A(PD) Wireless Output: 15W	TING TSTING

CATIO

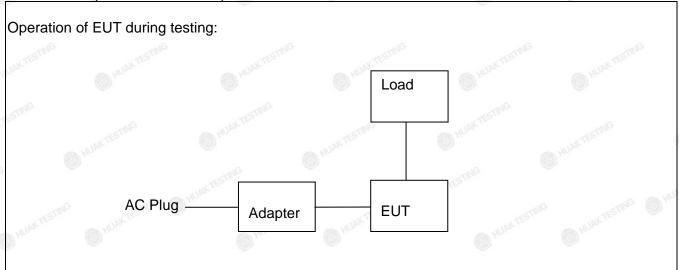
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Page 7 of 21

Report No.: HK2212075541-1E

2.2. Carrier Frequency of Channels

Operation I	Frequency each of channel	TESTING	NY TESTING (I)	TESTINE	3 NY TESTIN
Channel	Frequency	MHUAN TO HUAN	(C) HOLE	HUAR	MID!
1	134KHz				


2.3. Operation of EUT during testing
Operating Mode
The mode is used: Transmitting mode

2.4. Test Mode

EUT Mode	Description
TIME STIME	Cell phone setting 15W

2.5. Description of Test Setup

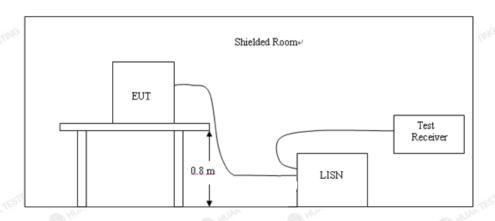
Adapter information Model: BD-F1

Input: 100-240V, 50-60Hz,1.5A

USB-C Output: (65W PD)DC 5V, 3A/9V, 3A/12V, 3A/15V, 3A/20V, 3.25A MAX

The sample was placed (0.8m (30MHz~1GHz), 0.8m (9KHz~30MHz)) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

2.6. Measurement Instruments List


Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interva	
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Feb. 18, 2022	1 Year	
2.	Receiver	R&S	ESCI 7	HKE-010	Feb. 18, 2022	1 Yea	
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	1 Yea	
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 18, 2022	1 Yea	
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	1 Yea	
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 18, 2022	1 Yea	
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Feb. 18, 2022	1 Yea	
8. Bilog Broadband Antenna		Schwarzbeck	VULB9163	HKE-012	Feb. 18, 2022	1 Yea	
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 18, 2022	1 Yea	
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Feb. 18, 2022	1 Yea	
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Feb. 18, 2022	1 Yea	
12.	Pre-amplifier	Agilent	83051A	HKE-016	Feb. 18, 2022	1 Yea	
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	N/A	[©] N/A	
14.	Power Sensor	Agilent	E9300A	HKE-086	Feb. 18, 2022	1 Yea	
15. Spectrum analyzer		Agilent	N9020A	HKE-048	Feb. 18, 2022	1 Yea	
16.	Signal generator	Agilent	N5182A	HKE-029	Feb. 18, 2022	1 Yea	
17.	Signal Generator	Agilent	83630A	HKE-028	Feb. 18, 2022	1 Yea	
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 09, 2021	3 Yea	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3. CONDUCTED EMISSION TEST

3.1. Block Diagram of Test Setup

3.2. Conducted Power Line Emission Limit

According to FCC Part 18.307(b)

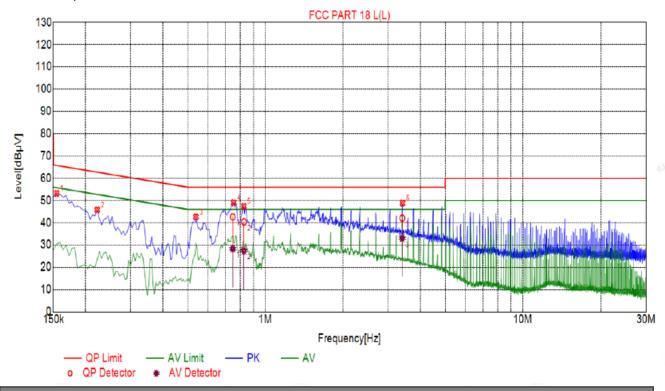
F	Maximum RF Line Voltage (dBμV)							
Frequency (MHz)	CLAS	SS A	CLASS B					
(111112)	Q.P.	Q.P. Ave.		Ave.				
0.15 - 0.50	79	66	66-56*	56-46*				
0.50 - 5.00	73	60	56	46				
5.00 - 30.0	73	60	60	50				

^{*} Decreasing linearly with the logarithm of the frequency

For intentional device, according to §18.307 Line Conducted Emission Limit is same as above table.

3.3. Test Procedure

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.


3.4. Test Result

PASS

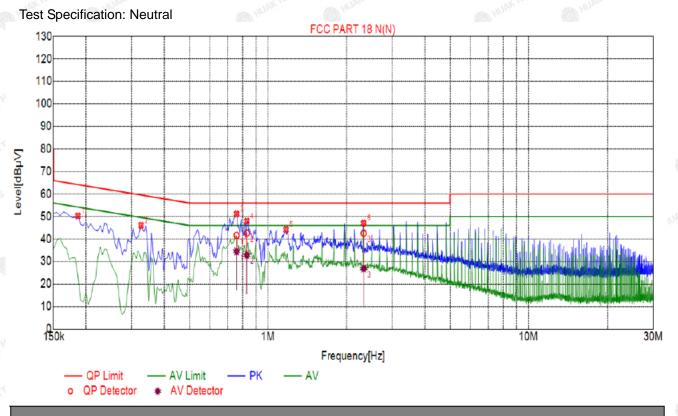
All the test modes completed for test. Only the worst result was reported as below:

Report No.: HK2212075541-1E

Suspected List

70000	NO.	Freq. [MHz]			Limit [dBµV]	Margin [dB]	Reading [dBμV]	Detector	Туре
	1	0.1545	53.23	20.03	65.81	12.58	41.20	PK	L
ğ	2	0.2220	45.81	20.04	62.82	17.01	33.77	PK	Г
	3	0.5370	42.63	20.05	56.00	13.37	30.58	PK	L
1	4	0.7530	49.03	20.06	56.00	6.97	36.97	PK	L
	5	0.8250	47.42	20.06	56.00	8.58	35.36	PK	L
	6	3.4125	48.88	20.24	56.00	7.12	28.64	PK	L

	Final	Final Data List										
76807	NO.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	QP Reading [dBμV]	ΑV Value [dBμV]	ΑV Limit [dBμV]	AV Margin [dB]	AV Reading [dBμV]	Туре
	1	0.7473	24.06	42.63	56.00	13.37	18.57	28.29	46.00	17.71	8.23	L
	2	0.8258	20.06	40.43	56.00	15.57	20.37	27.44	46.00	18.56	7.38	L
ÿ	3	3.4060	20.24	42.05	56.00	13.95	21.81	33.05	46.00	12.95	12.81	L


Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

	Sus	Suspected List											
100	NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре				
900	1	0.1860	50.28	20.05	64.26	13.98	35.23	PK	N				
	2	0.3255	46.07	20.05	59.58	13.51	31.02	PK	N				
ě	3	0.7575	51.13	20.06	56.00	4.87	36.07	PK	N				
	4	0.8295	47.96	20.06	56.00	8.04	27.90	PK	N				
1	5	1.1715	44.16	20.09	56.00	11.84	24.07	PK	N				
	6	2.3280	47.02	20.18	56.00	8.98	26.84	PK	N				

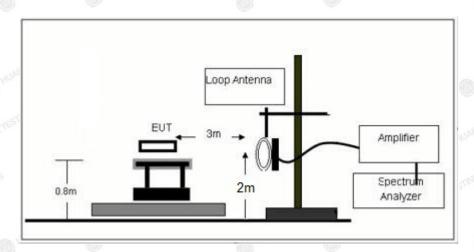
Final Data List												
500	NO.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	QP Reading [dBμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	AV Reading [dBμV]	Туре
	1	0.7575	20.06	41.60	56.00	14.40	21.54	34.51	46.00	11.49	14.45	N
	2	0.8295	20.06	42.62	56.00	13.38	22.56	32.81	46.00	13.19	12.75	N
	3	2.3280	20.18	42.56	56.00	13.44	22.38	26.85	46.00	19.15	6.67	N

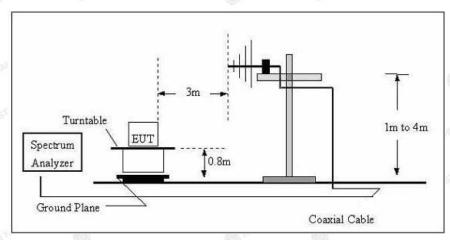
Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



4. RADIATED EMISSIONS

4.1. Block Diagram of Test Setup

4.2. Rules and specifications

Except as provided elsewhere in this Subpart 18.305 (b), the field strength levels of emissions which lie outside the bands specified in §18.301, unless otherwise indicated, shall not exceed the following table:

Equipment	Operating frequency	RF Power generated by equipment (watts)	Field strength limit (uV/m)	Distance (meters)	
(miscellaneous)					
	Any non- ISM frequency	Below 500 500 or more	15 15 × SQRT(power/500)	300 1300	

Remark:

- (1) Emission level dBuV/m for 0.009~30MHz = 20log (15) + 40log (300/3) dBuV/m;
- (2) Calculated according FCC 18.305.
- (3) The smaller limit shall apply at the cross point between two frequency bands.
- (4) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

4.3. Test Procedure

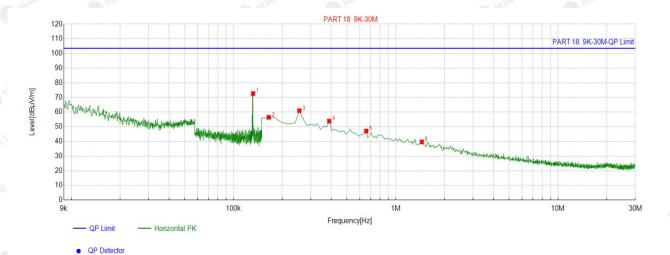
Measurement distance 3m

For the measurement range up to 30MHz in the following plots the field strength result from 3m Distance measurements are extrapolated to 300m and 30m distance respectively, by 40dB/decade, Per antenna factor scaling.

Measurements below 1000MHz are performed with a peak detector and compared to average limits, Measurements with an average detector are not required.

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

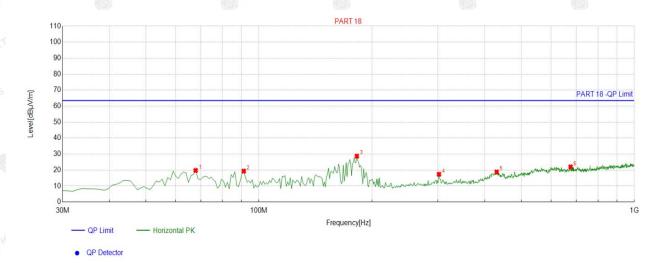

4.4. Test Result

PASS

Note: All the test modes completed for test. Only the worst result (15w) was reported as below.

For 9KHz - 30MHz

Sus	Suspected List									
NIC	NO.	Freq.	Factor Reading		Level	Limit	Margin			
4 IVC		[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]			
1	0.1339		13.78	58.85	72.63	103.50	30.87			
<u> 2</u>		0.1649	13.73	42.74	56.47	103.50	47.03			
3		0.2545	13.68	47.25	60.93	103.50	42.57			
4		0.3889	13.77	40.11	53.88	103.50	49.62			
5	,	0.6577	13.76	33.29	47.05	103.50	56.45			
6	;	1.4491	14.30	25.36	39.66	103.50	63.84			


Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor;

Margin = Limit – Level

For 30MHz-1GHz

Antenna polarity: H

<	Suspected List									
	NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Polarity
	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	
3.	1	67.8679	-15.37	35.12	19.75	63.50	43.75	100	30	Horizontal
	2	91.1712	-16.78	36.14	19.36	63.50	44.14	100	179	Horizontal
	3	182.4424	-16.80	45.51	28.71	63.50	34.79	100	275	Horizontal
	4	301.8719	-11.91	29.28	17.37	63.50	46.13	100	320	Horizontal
	5	430.0400	-8.42	27.23	18.81	63.50	44.69	100	120	Horizontal
L	6	676.6667	-4.03	26.03	22.00	63.50	41.50	100	128	Horizontal

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor;

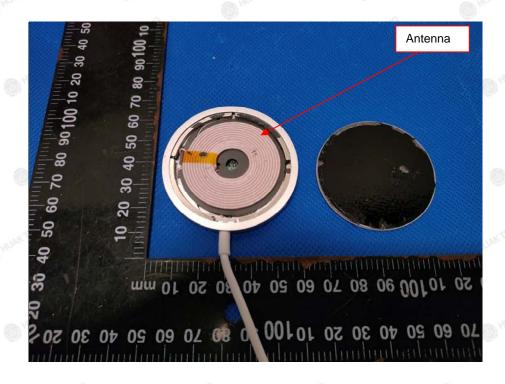
Margin = Limit – Level

Antenna polarity: V

Suspe	Suspected List								
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevity
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	63.0130	-14.39	48.35	33.96	63.50	29.54	100	77	Vertical
2	68.8388	-15.56	48.70	33.14	63.50	30.36	100	163	Vertical
3	91.1712	-16.78	48.24	31.46	63.50	32.04	100	2	Vertical
4	172.7327	-16.80	56.75	39.95	63.50	23.55	100	309	Vertical
5	424.2142	-8.58	29.94	21.36	63.50	42.14	100	168	Vertical
6	532.9630	-6.81	32.13	25.32	63.50	38.18	100	155	Vertical

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor;

Margin = Limit – Level

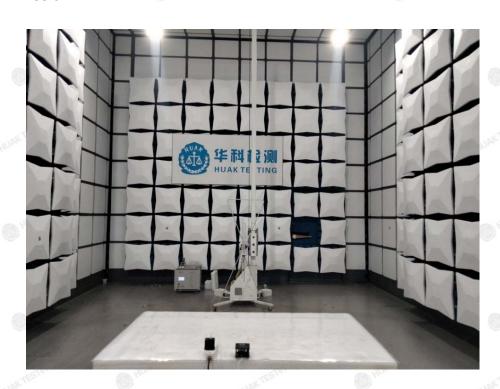

5. ANTENNA REQUIREMENT

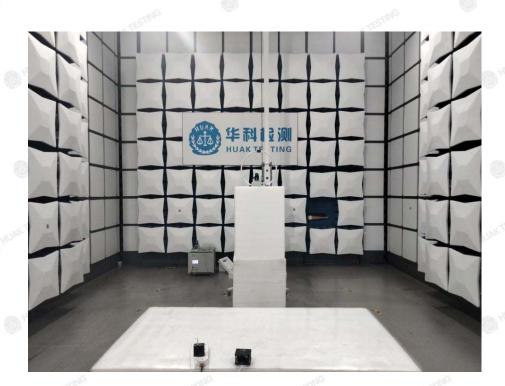
Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Coil Antenna, which permanently attached. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 0dBi.




The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. PHOTOGRAPH OF TEST

Radiated Emission

Conducted Emissions

7. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com