

TEST REPORT

Report No.	CISRR25022815206	
Project No.	CISR250228152	
FCC ID	2BFTE-GT09-2	
Applicant	Dongguan Haiyou Electronic Technology Co., Ltd.	
Address	Room 301, Building 2, No. 6, Shangxiawei Industrial Road, Zhutang, Fenggang Town, Dongguan City, Guangdong Province, China	
Manufacturer	Dongguan Haiyou Electronic Technology Co., Ltd.	
Address	Room 301, Building 2, No. 6, Shangxiawei Industrial Road, Zhutang, Fenggang Town, Dongguan City, Guangdong Province, China	
Product Name	GT09-2	
Trade Mark	N/A	
Model/Type reference	GT09-2	
Listed Model(s)	GS18, GT09, GD35, Z05	
Standard	47 CFR Part 15.247	
Test date	February 28, 2025 to March 8, 2025	
Issue date	March 10, 2025	
Test result	Complied	

Kory Huang

Prepared by: Rory Huang

GenryLong

Approved by: Genry Long

The test results relate only to the tested samples.

The test report should not be reproduced except in full without the written approval of Shenzhen Bangce Testing Technology Co., Ltd.

Contents

1. REPORT VERSION	3
2. TEST DESCRIPTION	4
3. SUMMARY	5
3.1. Product Description *	5
3.2. Radio Specification Description *	
3.3. Modification of EUT	
3.4. Deviation from standards 3.5. Testing Site	
4. TEST CONFIGURATION	7
4.1. Test frequency list	
4.2. Descriptions of test mode4.3. Support unit used in test configuration	
4.3. Support unit used in test configuration	
4.5. Environmental conditions	
4.6. Equipment Used during the Test	
5. TEST RESULTS	10
5.1. Evaluation Results (Evaluation)	10
5.1.1. Antenna Requirement	
5.2. Radio Spectrum Matter Test Results (RF)	11
5.2.1. Conducted Emission at AC power line	11
5.2.2. 6dB Bandwidth	14
5.2.3. Maximum Conducted Output Power	
5.2.4. Power Spectral Density	16
5.2.5. Conducted band edge and spurious emission	
5.2.6. Radiated band edge emission	
5.2.7. Radiated Spurious Emission (below 1GHz)	
5.2.8. Radiated Spurious Emission (Above 1GHz)	34
6. TEST SETUP PHOTOS	
7. EXTERNAL AND INTERNAL PHOTOS	50
7.1. External Photos	
7.2. Internal Photos	50

1. <u>REPORT VERSION</u>

Version No.	Issue date	Description
00	March 10, 2025	Original

2. TEST DESCRIPTION

No.	Test Item	Standard Requirement	Result
1	Antenna Requirement	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR 15.207(a)	Pass
3	6dB Bandwidth	47 CFR 15.247(a)(2)	Pass
4	Maximum Conducted Output Power	47 CFR 15.247(b)(3)	Pass
5	Power Spectral Density	47 CFR 15.247(e)	Pass
6	Conducted band edge and spurious emission	47 CFR 15.247(d), 15.209, 15.205	Pass
7	Radiated band edge emission	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Radiated Spurious Emission (below 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Radiated Spurious Emission (Above 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass

Note:

- The measurement uncertainty is not included in the test result.

3. SUMMARY

3.1. Product Description *

Main unit information:		
Product Name:	GT09-2	
Trade Mark:	N/A	
Model No.:	GT09-2	
Listed Model(s):	GS18, GT09, GD35, Z05	
Model difference:	The difference between different models is that in this application, due to different sales channels and different model names.	
Power supply:	input:DC 5V	
Hardware version:	N/A	
Software version:	N/A	
Accessory unit (AU) information:		
Battery: N/A		

3.2. Radio Specification Description *

Modulation type:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2MHz
Antenna type:	Chip
Antenna gain:	2.78dBi

Note:

- *: Since the above information is provided by the applicant relevant results or conclusions of this report are only made for these information, Bangce is not responsible for the authenticity, integrity and results of the information and/or the validity of the conclusion.
- 2) Operation frequency list as follow:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474

7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.3. Modification of EUT

No modifications are made to the EUT during all test items.

3.4. Deviation from standards

None

3.5. Testing Site

Laboratory Name	Shenzhen Bangce Testing Technology Co., Ltd.
Laboratory Location	101, building 10, Yunli Intelligent Park, Shutianpu community, Matian Street, Guangming District, Shenzhen,Guangdong, China
Contact information	Tel: 86-755-2319 6848, email: <u>service@cis-cn.net</u> Website: <u>http://www.cis-cn.net/</u>
FCC registration number	736346
FCC designation number	CN1372

4. TEST CONFIGURATION

4.1. Test frequency list

Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)
2402	2440	

4.2. Descriptions of test mode

No	Test mode	Description
TM1	TX mode	Keep the EUT in continuously transmitting mode with GFSK modulation at lowest, middle and highest channel.
TM2	Link mode	Keep the EUT in Bluetooth linking mode with AE.
TM3	Charging mode	Keep the EUT in charging status.

4.3. Support unit used in test configuration

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Item	Equipment name	Trade Name	Model No.
1	Phone	Huawei	NZONE S7
2	Adapter	Guangdong Sangu Technology Co. Itd	SG-0501000AU

4.4. Test sample information

Туре	Sample No.		
Engineer sample	CISR250228152-S01		
Normal sample	CISR250228152-S02		

4.5. Environmental conditions

Туре	Requirement
Temperature:	15~35°C
Relative Humidity:	25~75%
Air Pressure:	860~1060mbar

4.6. Equipment Used during the Test

Condu	Conducted Emission at AC power line					
Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date
1	EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2025-01-08	2026-01-07
2	Artificial power network	Schwarzbeck	NSLK812 7	8127-01096	2025-01-08	2026-01-07
3	8-wire Impedance Stabilization Network	Schwarzbeck	NTFM 8158	8158-00337	2025-01-08	2026-01-07
4	Artificial power network	Schwarzbeck	ENV216	/	2025-01-08	2026-01-07

6dB Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in non-restricted frequency bands						
Item	em Equipment name Manufacturer Model Serial No. Calibration date Due date					
1	MXG RF Signal Generator	Agilent	N5181A	MY50145362	2025-01-08	2026-01-07
2	Spectrum analyzer	R&S	FSV-40N	102130	2025-01-08	2026-01-07
3	Vector Signal Generator	Agilent	N5182A	MY50142364	2025-01-08	2026-01-07
4	Power Meter	WCS	WCS-PM	WCSPM23040 5A	2025-01-08	2026-01-07

Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz)

Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date
1	EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2025-01-08	2026-01-07
2	Amplifier	Tonscend	TAP9K3G 40	AP23A806027 0	2025-01-08	2026-01-07
3	Prime amplifier	Tonscend	TAP0101 8050	AP23A806028 0	2025-01-08	2026-01-07
4	9*6*6 anechoic chamber	SKET	9.3*6.3*6	N/A	2024-09-02	2027-09-01
5	Spectrum analyzer	Agilent	N9020A	MY50530263	2025-01-08	2026-01-07
6	Spectrum analyzer	R&S	FSV-40N	102130	2025-01-08	2026-01-07
7	Bilog Antenna	Schwarzbeck	VULB 9163	1463	2023-01-09	2026-01-08
8	Horn Antenna	SCHWARZBECK	BBHA 9120 D	2487	2023-01-09	2026-01-08
9	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	/	2023-01-09	2026-01-08

			-			
10	RF Cable	Tonscend	Cable 1	1	2025-01-08	2026-01-07
11	RF Cable	Tonscend	Cable 2	1	2025-01-08	2026-01-07
12	RF Cable	SKET	Cable 3	1	2025-01-08	2026-01-07
13	L.I.S.N.#1	Schwarzbeck	NSLK812 7	/	2025-01-08	2026-01-07
14	L.I.S.N.#2	ROHDE&SCHWA RZ	ENV216	/	2025-01-08	2026-01-07
15	Horn Antenna	SCHWARZBECK	BBHA917 0	1130	2023-01-09	2026-01-08
16	Preamplifier	Tonscend	TAP1804 0048	AP21C806126	2025-01-08	2026-01-07
17	Variable-frequency power source	Pinhong	PH1110	/	2025-01-08	2026-01-07
18	6dB Attenuator	SKET	DC-6G	1	2025-01-08	2026-01-07
19	Antenna tower	SKT	Bk-4AT- BS	AT202104010 1-V1	2025-01-08	2026-01-07

5. TEST RESULTS

5.1. Evaluation Results (Evaluation)

5.1.1. Antenna Requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

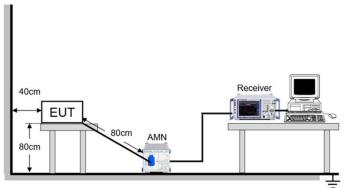
5.1.1.1. Test Result

Pass

5.1.1.2. Conclusion:

The EUT antenna is Chip(2.78dBi), the directional gain of the antenna less than 6dBi. It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used. Antenna structure please refer to the EUT internal photographs antenna photo.

5.2. Radio Spectrum Matter Test Results (RF)


5.2.1. Conducted Emission at AC power line

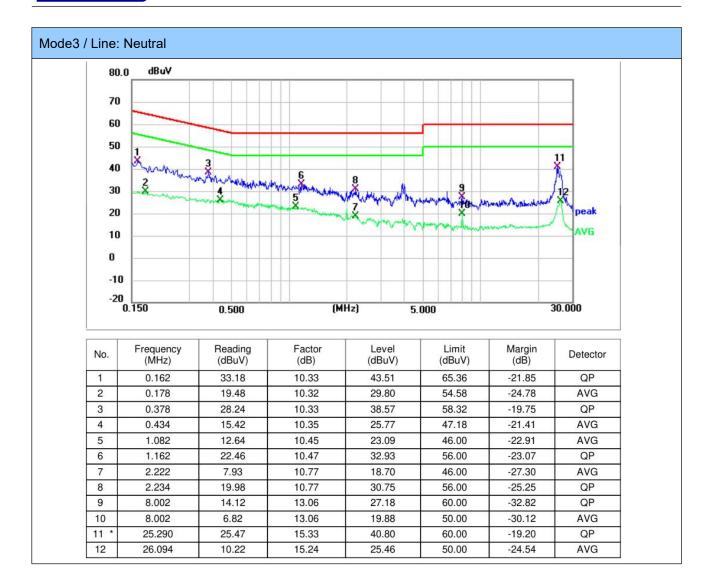
Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).					
	Frequency of emission (MHz)	Conducted limit (dBµV)				
		Quasi-peak	Average			
Test Limit:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of the frequency.					
Test Method:	ANSI C63.10-2020 section 6.2					
Procedure:	 ANSI C63.10-2020 section 6.2 1. The EUT was setup according to ANSI C63.10 requirements. 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. 4. The peripheral devices are also connected to the main power through a LISN. (Refer to the block diagram of the test setup and photographs) 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz. 					

5.2.1.1. E.U.T. Operation

Operating Environment:						
Temperature:	22.3 °C	22.3 °C Humidity: 56.8 % Atmospheric Pressure: 102 kPa				
Pre test mode:	Pre test mode: TM1, TM2, TM3					
Final test mode: TM1, TM2, TM3						

5.2.1.2. Test Setup Diagram

5.2.1.3. Test Result


Pass

5.2.1.4. Test Data

Note:

The BT function of this product does not work in charging mode, so only the charging mode(TM3) is tested

Note:

1). Result = Reading +Correct (Insertion Loss + Cable Loss + Attenuator Factor)

2). Margin = Result - Limit

BANGCE

5.2.2. 6dB Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8
Procedure:	11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW \geq [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value. 11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW \geq 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

5.2.2.1. E.U.T. Operation

Operating Envi	Operating Environment:						
Temperature:	23 °C	23 °C Humidity: 56.5 % Atmospheric Pressure: 103 kPa					
Pre test mode:		TM1		·			
Final test mode	e:	TM1					

5.2.2.2. Test Setup Diagram

5.2.2.3. Test Result

Pass

5.2.2.4. Test Data

5.2.3. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

5.2.3.1. E.U.T. Operation

Operating Environment:								
Temperature:	23 °C	Humidity:	56.5 %	Atmospheric Pressure:	103 kPa			
Pre test mode:		TM1						
Final test mode:		TM1						

5.2.3.2. Test Setup Diagram

5.2.3.3. Test Result

Pass

5.2.3.4. Test Data

5.2.4. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

5.2.4.1. E.U.T. Operation

Operating Environment:							
Temperature:	23 °C	Humidity:	56.5 %	Atmospheric Pressure:	103 kPa		
Pre test mode:		TM1					
Final test mode:		TM1					

5.2.4.2. Test Setup Diagram

5.2.4.3. Test Result

Pass

5.2.4.4. Test Data

5.2.5. Conducted band edge and spurious emission

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

5.2.5.1. E.U.T. Operation

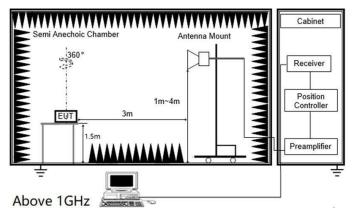
Operating Environment:								
Temperature:	23 °C	Humidity:	56.5 %	Atmospheric Pressure:	103 kPa			
Pre test mode:		TM1						
Final test mode:		TM1						

5.2.5.2. Test Setup Diagram

5.2.5.3. Test Result

Pass

5.2.5.4. Test Data


5.2.6. Radiated band edge emission

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`					
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
To at Lineite	216-960	200 **	3			
Test Limit:	Above 960	500	3			
	 these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 					
Test Method:	ANSI C63.10-2020 section 6.10					
Procedure:	 EUT was setup and tested according to ANSI C63.10 . The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10 on radiated measurement. Use the following spectrum analyzer settings: a) Span shall wide enough to fully capture the emission being measured b) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement For average measurement: use duty cycle correction factor method (DCCF), Averager level = Peak level + DCCF 					

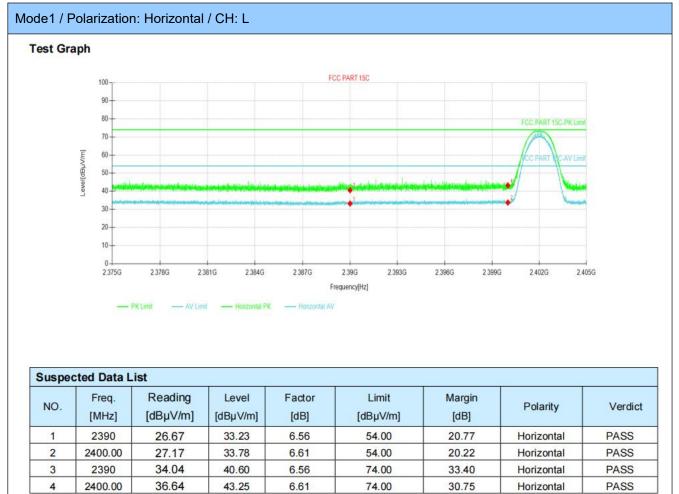
5.2.6.1. E.U.T. Operation

Operating Environment:								
Temperature:	22.7 °C		Humidity:	56.2 %	Atmospheric Pressure:	102 kPa		
Pre test mode:		TM1	, TM2, TM3					
Final test mode:		TM1	, TM2, TM3					

5.2.6.2. Test Setup Diagram

5.2.6.3. Test Result

Pass


5.2.6.4. Test Data

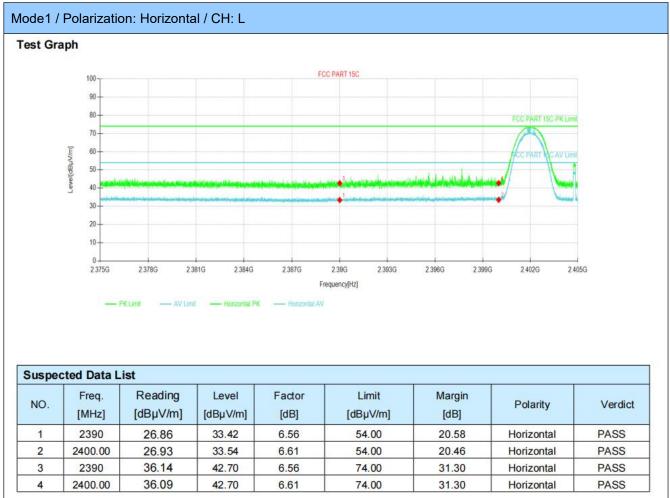
Note:

- 1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit Level
- 3) Average measurement was not performed if peak level is lower than average limit
- 4) The other emission levels were very low against the limit.

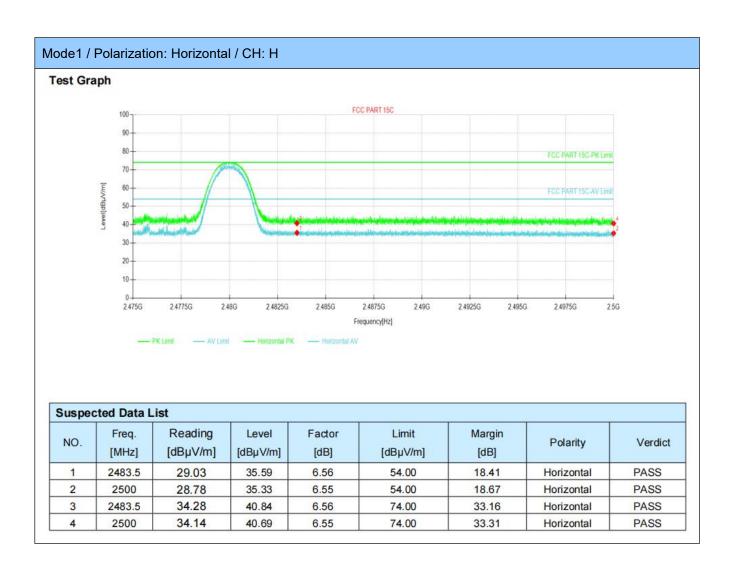
Have pre-scan all test mode, found TM1 mode which it was worst case, so only show the worst case's data on this report.

RIGHT:

Mode1 / Polarization: Vertical / CH: L **Test Graph** FCC PART 15C 100 90-80-FCC PART 15C-PK Lim 70 60 [m///ng]java1 50-40-30 20 10-0 2.405G 2.375G 2.378G 2.381G 2.384G 2.387G 2.39G 2.393G 2.396G 2.399G 2.402G Frequency[Hz] - PK Limit - AV Limit - Vertical PK - Vertical AV Suspected Data List Reading Limit Level Factor Freq. Margin NO. Polarity Verdict [MHz] [dBµV/m] [dBµV/m] [dB] [dBµV/m] [dB] 27.06 2390 33.62 6.56 54.00 20.38 Vertical PASS 1 2 2400.00 27.05 33.66 6.61 54.00 20.34 Vertical PASS 3 33.61 40.17 6.56 74.00 Vertical PASS 2390 33.83 4 2400.00 35.76 42.37 6.61 74.00 31.63 Vertical PASS

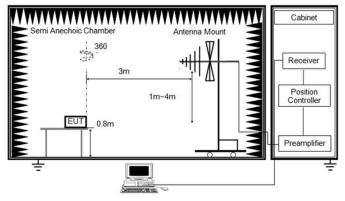

Mode1 / Polarization: Horizontal / CH: H **Test Graph** FCC PART 15C 100 90 80-FCC PART 15C-PK Lim 70-60-FCC PART 15C-AV Limi Level[dBµV/m] 50 40 30 20 10 0 2.475G 2.4775G 2.48G 2.4825G 2.485G 2.4875G 2.49G 2.4925G 2.495G 2.4975G 2.5G Frequency[Hz] - PK Limit - AV Limit Horizontal PK - Horizontal AV Suspected Data List Reading Freq. Limit Level Factor Margin NO. Polarity Verdict [dBµV/m] [MHz] [dBµV/m] [dB] [dBµV/m] [dB] 1 2483.5 27.41 33.97 6.56 54.00 20.03 Horizontal PASS 2 19.82 Horizontal PASS 2500 27.63 34.18 6.55 54.00 2483.5 36.74 43.30 6.56 74.00 30.70 Horizontal PASS 3 4 2500 35.79 42.34 6.55 74.00 31.66 Horizontal PASS

Mode1 / Polarization: Vertical / CH: H Test Graph FCC PART 15C 100-90-80-FCC PART 15C-PK Limit 70-60-Level[dBµV/m] FCC PART 15C-AV Limit 50 40-30 20-10-0. 2.475G 2.4775G 2.48G 2.4825G 2.485G 2.4875G 2.49G 2.4925G 2.495G 2.4975G 2.5G Frequency[Hz] - AV Limit PK Limit Suspected Data List Reading Freq. Level Factor Limit Margin NO. Polarity Verdict [MHz] [dBµV/m] [dBµV/m] [dB] [dBµV/m] [dB] 1 2483.5 28.50 35.06 6.56 54.00 18.94 Vertical PASS 2 2500 27.10 33.65 6.55 54.00 20.35 Vertical PASS PASS 36.10 3 2483.5 42.66 6.56 74.00 31.34 Vertical 4 2500 34.97 41.52 6.55 74.00 Vertical PASS 32.48


LEFT:

Mode1 / Polarization: Vertical / CH: L **Test Graph** FCC PART 15C 100 90-80-FCC PART 15C-PK Limi 70-60-Level[dBµV/m] 50-40-30-20-10-0. 2.375G 2.378G 2.384G 2.387G 2.39G 2.393G 2.396G 2.399G 2.402G 2.405G 2.381G Frequency[Hz] - AV Limit - Vertical PK - Vertical AV - PK Limit Suspected Data List Reading Freq. Level Factor Limit Margin NO. Polarity Verdict [MHz] [dBµV/m] [dBµV/m] [dB] [dBµV/m] [dB] 1 2390 26.40 32.96 6.56 54.00 21.04 Vertical PASS 2400.00 54.00 PASS 2 26.74 33.35 6.61 20.65 Vertical 3 2390 36.45 43.01 6.56 74.00 30.99 Vertical PASS 4 2400.00 34.91 41.52 6.61 74.00 32.48 Vertical PASS

Mode1 / Polarization: Vertical / CH: H **Test Graph** FCC PART 15C 100-90-80 FCC PART 15C-PK Lim 70 60 Level[dBµV/m] FCC PART 15C-AV Limi 50 المتراك فالمها والمتحر الألقاط 40-30 20 10 0 2.475G 2.4775G 2.4825G 2.485G 2.4875G 2.49G 2.4925G 2.495G 2.4975G 2.5G 2.48G Frequency[Hz] - AV Limit - PK Limit Suspected Data List Reading Freq. Level Factor Limit Margin NO. Polarity Verdict [MHz] [dBµV/m] [dBµV/m] [dB] [dBµV/m] [dB] 1 2483.5 28.54 35.10 6.56 54.00 18.90 Vertical PASS 2 6.55 Vertical PASS 2500 27.62 34.17 54.00 19.83 2483.5 35.34 41.90 6.56 74.00 32.10 Vertical PASS 3 4 2500 35.03 41.58 6.55 74.00 32.42 Vertical PASS


5.2.7. Radiated Spurious Emission (below 1GHz)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).					
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
To at Lingity	216-960	200 **	3			
Test Limit:	Above 960	500	3			
	these frequency bands is per 15.231 and 15.241. In the emission table above The emission limits shown i employing a CISPR quasi-p 110–490 kHz and above 10	4-216 MHz or 470-806 MHz. How ermitted under other sections of the , the tighter limit applies at the ba n the above table are based on n eak detector except for the frequ 00 MHz. Radiated emission limits s employing an average detector	his part, e.g., §§ ind edges. neasurements ency bands 9–90 kHz, s in these three bands			
Test Method:	ANSI C63.10-2020 section 6.6.4					
Procedure:						

5.2.7.1. E.U.T. Operation

Operating Environment:								
Temperature:	22.7 °C	Humidity:	56.2 %	Atmospheric Pressure:	102 kPa			
Pre test mode:		TM1, TM2, TM3						
Final test mode	e:	TM1, TM2, TM3						

5.2.7.2. Test Setup Diagram

Below 1 GHz and above 30 MHz

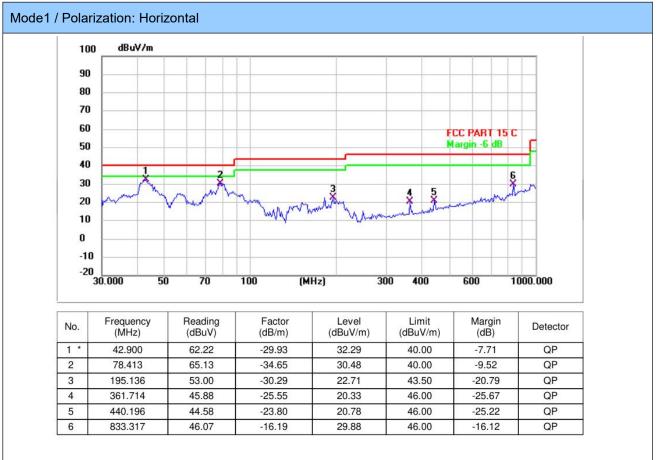
5.2.7.3. Test Result

Pass

5.2.7.4. Test Data

Note:

- 1) Level= Reading + Factor/Transd; Factor/Transd =Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit Level
- Average measurement was not performed if peak level is lower than average limit(54 dBuV/m) for above 1GHz.
- 4) The other emission levels were very low against the limit.
- 5) This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.

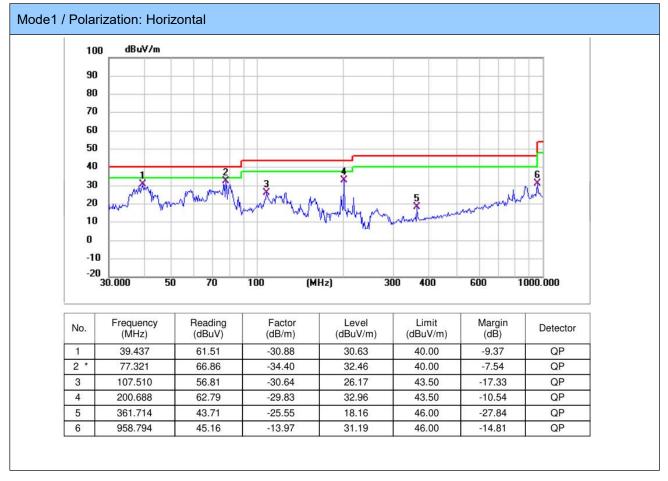

For 9 kHz ~ 30 MHz

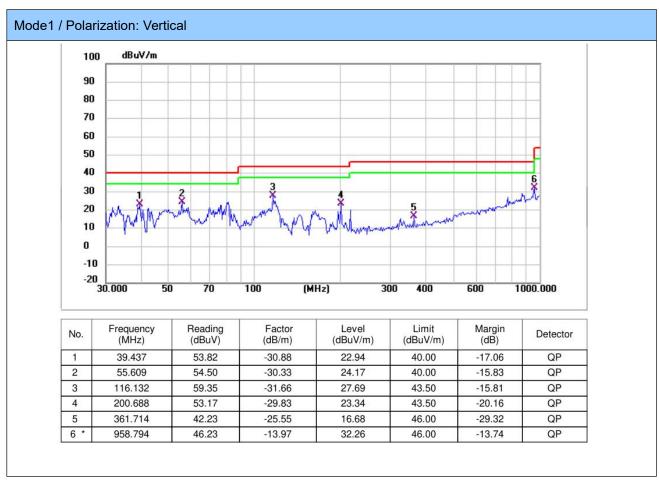
The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

For 30 MHz ~ 1000 MHz

Have pre-scan all test mode, found TM1 mode which it was worst case, so only show the worst case's data on this report.

RIGHT:




Mode1 / Polarization: Vertical dBuV/m 100 90 80 70 60 FCC PART 15 C Margin -6 dB 50 40 ê Ş З 30 X 5 20 10 0 -10 -20 30.000 50 70 (MHz) 300 400 1000.000 100 600 Frequency (MHz) Reading (dBuV) Factor (dB/m) Margin (dB) Level Limit No. Detector (dBuV/m) (dBuV/m) 1 * 56.395 58.73 -30.40 28.33 40.00 -11.67 QP 2 103.080 57.83 -30.82 27.01 43.50 -16.49 QP 56.78 43.50 -20.04 QP 3 151.597 -33.32 23.46 52.43 -29.11 23.32 46.00 -22.68 QP 4 227.691 5 440.196 44.58 -23.80 20.78 46.00 -25.22 QP 6 958.794 45.70 -13.97 31.73 46.00 -14.27 QP

LEFT:

Note:

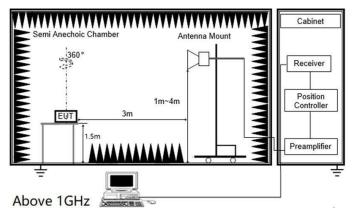
BANGCE

1) For 9 kHz ~ 30 MHz Measurement

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

2) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor

3) Margin = Limit – Level


5.2.8. Radiated Spurious Emission (Above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).				
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
Test Limit:	216-960	200 **	3		
Test Limit.	Above 960	500	3		
	these frequency bands is 15.231 and 15.241. In the emission table above The emission limits shown employing a CISPR quas 110–490 kHz and above	74-216 MHz or 470-806 MHz. H permitted under other sections we, the tighter limit applies at the in the above table are based of peak detector except for the free 1000 MHz. Radiated emission limit ents employing an average detector	of this part, e.g., §§ e band edges. on measurements equency bands 9–90 kHz, mits in these three bands		
Test Method:	ANSI C63.10-2020 section 6.6.4				
Procedure:	 ANSI C63.10-2020 section 6.6.4 1. The EUT was setup and tested according to ANSI C63.10. 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level. 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines. 5. Set to the maximum power setting and enable the EUT transmit continuously. 6. Use the following spectrum analyzer settings a) Span shall wide enough to fully capture the emission being measured; b) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement For average measurement: use duty cycle correction factor method (DCCF)Averager level = Peak level + DCCF 				

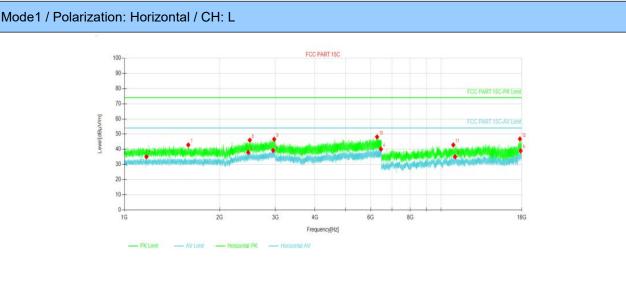
5.2.8.1. E.U.T. Operation

Operating Environment:								
Temperature:	22.7 °C	: н	lumidity:	56.2 %	Atmospheric Pressure:	102 kPa		
Pre test mode:		TM1, TI	M2, TM3					
Final test mode: T		TM1, TI	M2, TM3					

5.2.8.2. Test Setup Diagram

5.2.8.3. Test Result

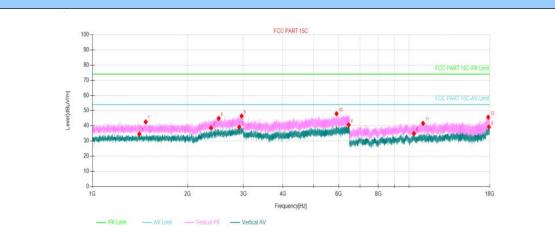
Pass



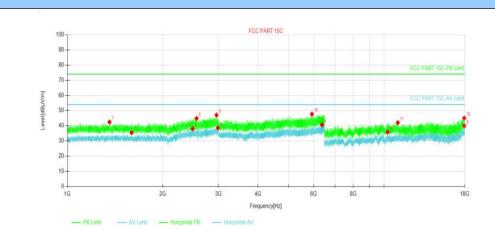
5.2.8.4. Test Data

<u> For 1 GHz ~ 25 GHz</u>

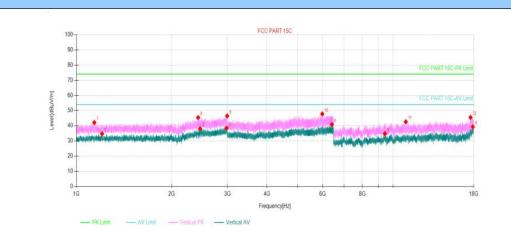
Have pre-scan all test mode, found TM1 mode which it was worst case, so only show the worst case's data on this report.


RIGHT:

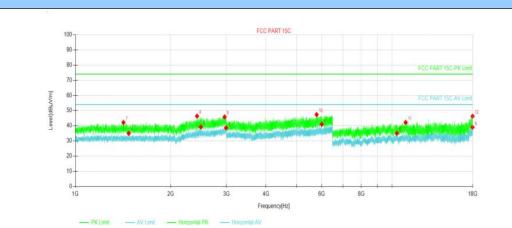
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	1174.4	33.45	35.05	1.60	54.00	18.95	Horizontal	PASS
2	2461.6	30.45	37.90	7.45	54.00	16.10	Horizontal	PASS
3	2950.6	29.67	39.22	9.55	54.00	14.78	Horizontal	PASS
4	6462.55	33.55	40.08	6.53	54.00	13.92	Horizontal	PASS
5	11080.4	30.28	35.05	4.77	54.00	18.95	Horizontal	PASS
6	17865.4	26.06	39.04	12.98	54.00	14.96	Horizontal	PASS
7	1592.2	39.63	42.86	3.23	74.00	31.14	Horizontal	PASS
8	2489.6	38.35	46.01	7.66	74.00	27.99	Horizontal	PASS
9	2973.8	36.87	46.62	9.75	74.00	27.38	Horizontal	PASS
10	6281.95	42.29	48.13	5.84	74.00	25.87	Horizontal	PASS
11	10940.1	38.18	42.85	4.67	74.00	31.15	Horizontal	PASS
12	17760.8	34.18	46,79	12.61	74.00	27.21	Horizontal	PASS


Mode1 / Polarization: Vertical / CH: L

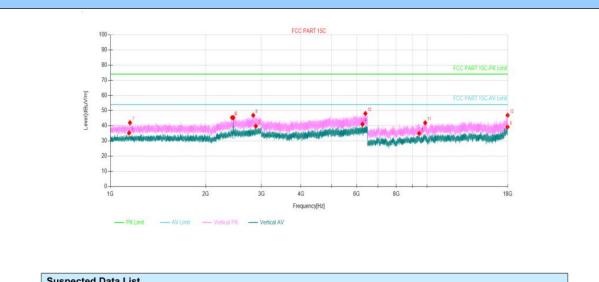
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	1407.4	31.59	34.54	2.95	54.00	19.46	Vertical	PASS
2	2370.8	31.71	38.56	6.85	54.00	15.44	Vertical	PASS
3	2911	29.90	39.11	9.21	54.00	14.89	Vertical	PASS
4	6452.05	34.07	40.60	6.53	54.00	13.40	Vertical	PASS
5	10364	30.69	34.86	4.17	54.00	19.14	Vertical	PASS
6	17899.9	26.31	39.21	12.90	54.00	14.79	Vertical	PASS
7	1474	39.40	42.56	3.16	74.00	31.44	Vertical	PASS
8	2505.4	37.16	44.87	7.71	74.00	29.13	Vertical	PASS
9	2960.8	36.80	46.44	9.64	74.00	27.56	Vertical	PASS
10	5906.05	43.07	47.95	4.88	74.00	26.05	Vertical	PASS
11	11079.3	36.87	41.63	4.76	74.00	32.37	Vertical	PASS
12	17799.9	32.54	45.67	13.13	74.00	28.33	Vertical	PASS


Mode1 / Polarization: Horizontal / CH: M

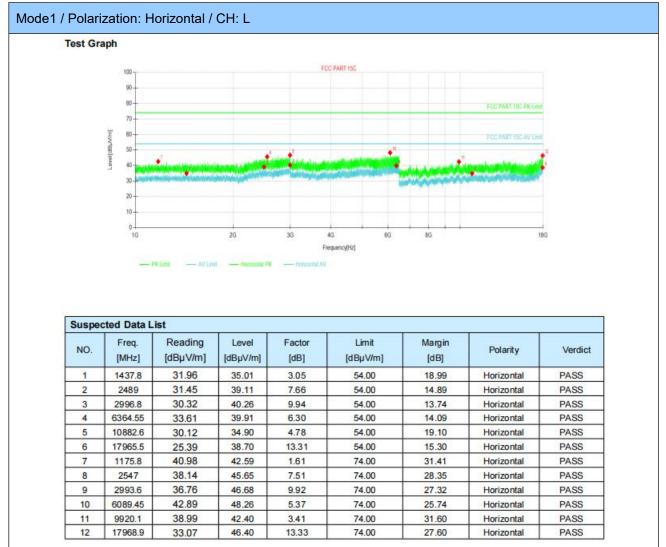
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	1596	32.20	35.43	3.23	54.00	18.57	Horizontal	PASS
2	2487.2	30.44	38.08	7.64	54.00	15.92	Horizontal	PASS
3	2988.6	28.76	38.63	9.87	54.00	15.37	Horizontal	PASS
4	6372.25	34.29	40.64	6.35	54.00	13.36	Horizontal	PASS
5	10273.1	31.81	35.88	4.07	54.00	18.12	Horizontal	PASS
6	17943.6	26.85	40.02	13.17	54.00	13.98	Horizontal	PASS
7	1359	39.74	42.45	2.71	74.00	31.55	Horizontal	PASS
8	2559.6	37.40	44.85	7.45	74.00	29.15	Horizontal	PASS
9	2959	37.42	47.04	9.62	74.00	26.96	Horizontal	PASS
10	5922.85	42.74	47.69	4.95	74.00	26.31	Horizontal	PASS
11	11060.9	37.32	42.03	4.71	74.00	31.97	Horizontal	PASS
12	17943.6	31.92	45.09	13.17	74.00	28.91	Horizontal	PASS


Mode1 / Polarization: Vertical / CH: M

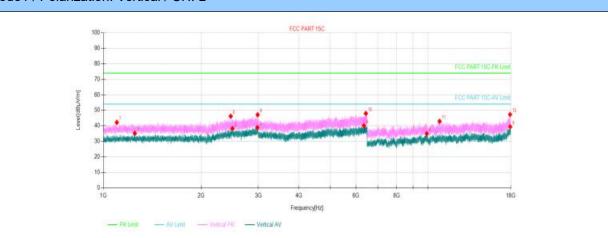
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	1205.4	32.94	34.74	1.80	54.00	19.26	Vertical	PASS
2	2460.8	30.60	38.05	7.45	54.00	15.95	Vertical	PASS
3	2981	28.71	38.52	9.81	54.00	15.48	Vertical	PASS
4	6413.55	34.31	40.84	6.53	54.00	13.16	Vertical	PASS
5	9430.2	31.74	34.82	3.08	54.00	19.18	Vertical	PASS
6	17893.0	26.38	39.29	12.91	54.00	14.71	Vertical	PASS
7	1139.6	40.78	42.14	1.36	74.00	31.86	Vertical	PASS
8	2424.2	38.23	45.40	7.17	74.00	28.60	Vertical	PASS
9	2995	36.53	46.46	9.93	74.00	27.54	Vertical	PASS
10	5980.6	42.59	47.78	5.19	74.00	26.22	Vertical	PASS
11	10980.4	38.03	42.61	4.58	74.00	31.39	Vertical	PASS
12	17580.2	33.46	45.55	12.09	74.00	28.45	Vertical	PASS


Mode1 / Polarization: Horizontal / CH: H

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	1474.8	31.87	35.03	3.16	54.00	18.97	Horizontal	PASS
2	2490.2	31.53	39.20	7.67	54.00	14.80	Horizontal	PASS
3	2992	28.73	38.63	9.90	54.00	15.37	Horizontal	PASS
4	6000.9	35.73	41.00	5.27	54.00	13.00	Horizontal	PASS
5	10359.4	30.87	35.04	4.17	54.00	18.96	Horizontal	PASS
6	17971.2	25.67	39.02	13.35	54.00	14.98	Horizontal	PASS
7	1418.8	39.17	42.16	2.99	74.00	31.84	Horizontal	PASS
8	2423.2	39.19	46.35	7.16	74.00	27.65	Horizontal	PASS
9	2961.2	36.18	45.82	9.64	74.00	28.18	Horizontal	PASS
10	5780.75	42.92	47.36	4.44	74.00	26.64	Horizontal	PASS
11	11048.2	37.55	42.22	4.67	74.00	31.78	Horizontal	PASS
12	17975.8	32.95	46.33	13.38	74.00	27.67	Horizontal	PASS

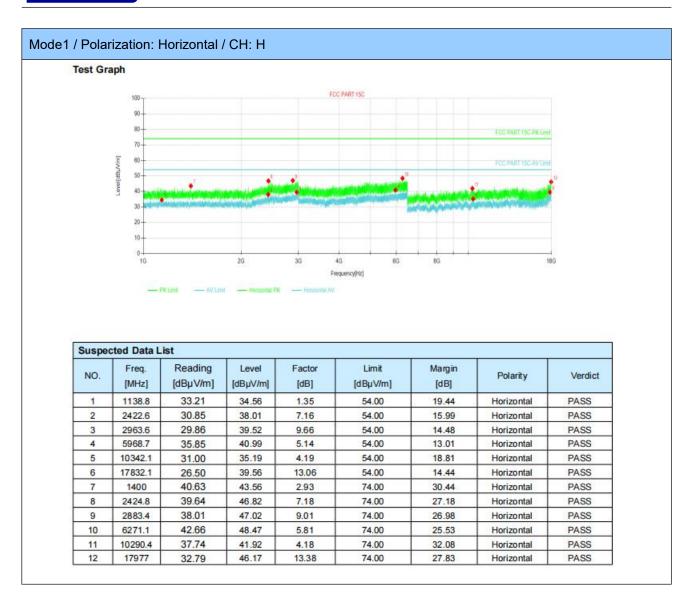

Mode1 / Polarization: Vertical / CH: H

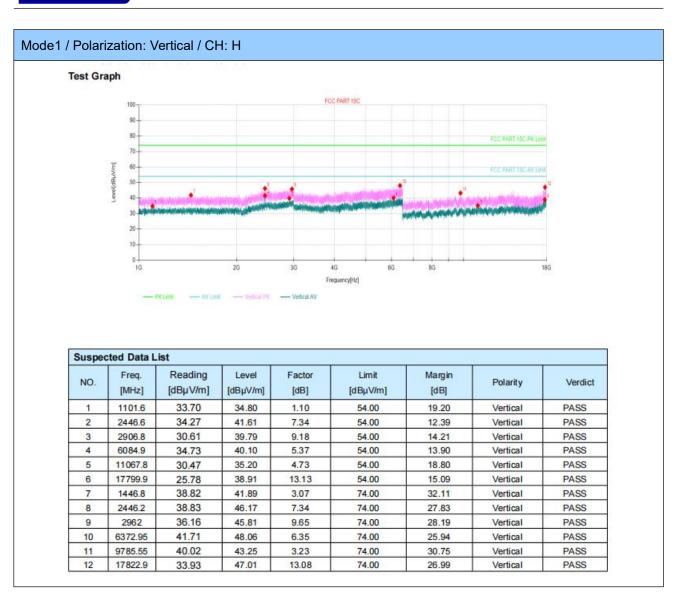
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	1146.2	33.84	35.24	1.40	54.00	18.76	Vertical	PASS
2	2446.2	37.99	45.33	7.34	54.00	8.67	Vertical	PASS
3	2881.6	30.73	39.72	8.99	54.00	14.28	Vertical	PASS
4	6257.45	35.27	41.05	5.78	54.00	12.95	Vertical	PASS
5	9446.3	31.84	34.94	3.10	54.00	19.06	Vertical	PASS
6	17979.3	25.83	39.23	13.40	54.00	14.77	Vertical	PASS
7	1153.6	40.57	42.02	1.45	74.00	31.98	Vertical	PASS
8	2423.6	38.21	45.38	7.17	74.00	28.62	Vertical	PASS
9	2827	38.24	46.86	8.62	74.00	27.14	Vertical	PASS
10	6390.45	41.60	48.07	6.47	74.00	25.93	Vertical	PASS
11	9872.95	38.52	41.93	3.41	74.00	32.07	Vertical	PASS
12	17978.1	33.54	46.93	13.39	74.00	27.07	Vertical	PASS



LEFT:

Mode1 / Polarization: Vertical / CH: L


NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	1250	33.05	35.14	2.09	54.00	18.86	Vertical	PASS
2	2497.6	30.51	38.23	7.72	54.00	15.77	Vertical	PASS
3	2979.2	29.13	38.92	9.79	54.00	15.08	Vertical	PASS
4	6343.2	33.89	40.05	6.16	54.00	13.95	Vertical	PASS
5	9905.15	31.51	34.96	3.45	54.00	19.04	Vertical	PASS
6	17924.1	26.38	39.43	13.05	54.00	14.57	Vertical	PASS
7	1100	41.14	42.23	1.09	74.00	31.77	Vertical	PASS
8	2467	38.68	46.17	7.49	74.00	27.83	Vertical	PASS
9	2986.4	37.32	47.17	9.85	74.00	26.83	Vertical	PASS
10	6434.55	41.45	47.98	6.53	74.00	26.02	Vertical	PASS
11	10855.0	38.08	42.90	4.82	74.00	31.10	Vertical	PASS
12	17906.8	34.39	47.33	12.94	74.00	26.67	Vertical	PASS



est Gra	ph							
				1				
	100			- F	CC PART 15C			
	90-							
	80-						FCC PART 15C-PK Limit	
	70							
	E 60-						FCC PART (SC AV Unit	
	60 50 40	10				10		12
	40-	Di terte allei Amieta	ALC: NOT THE OWNER.				anista adicita kaina di	6. C
	30-10-10			Contraction of the local division of the loc		والمحافظ والمحافظ والمحافظ		
	20-							
	10-							
	0			1	12 IV IV			
	1G		26	3G	46 66	80	1	BG
	-	FK limt → AV Lin	i — Holzonie Pi		requency[Hz]			
Suspec	ted Data L		i — Hotzankii Pi					
			Level			Margin		
Suspec	ted Data L	ist	1 1	K — Harzontał AV		Margin [dB]	Polarity	Verdict
	ted Data L	. ist Reading	Level	Factor	Limit		Polarity Horizontal	Verdict
NO.	ted Data L Freq. [MHz]	. ist Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	[dB]		
NO.	ted Data L Freq. [MHz] 1248.8	ist Reading [dBµV/m] 32.72	Level [dBµV/m] 34.80	Factor [dB] 2.08	Limit [dBµV/m] 54.00	[dB] 19.20	Horizontal	PASS
NO.	ted Data L Freq. [MHz] 1248.8 2423.2	ist Reading [dBµV/m] 32.72 30.91	Level [dBµV/m] 34.80 38.07	Factor [dB] 2.08 7.16	Limit [dBµV/m] 54.00 54.00	[dB] 19.20 15.93	Horizontal Horizontal	PASS PASS
NO. 1 2 3	ted Data L Freq. [MHz] 1248.8 2423.2 2981	ist Reading [dBµV/m] 32.72 30.91 29.60	Level [dBµV/m] 34.80 38.07 39.41	Factor [dB] 2.08 7.16 9.81	Limit [dBµV/m] 54.00 54.00 54.00	[dB] 19.20 15.93 14.59	Horizontal Horizontal Horizontal	PASS PASS PASS
NO. 1 2 3 4	ted Data L Freq. [MHz] 1248.8 2423.2 2981 6352.3	ist Reading [dBµV/m] 32.72 30.91 29.60 33.73	Level [dBµV/m] 34.80 38.07 39.41 39.95	Factor [dB] 2.08 7.16 9.81 6.22	Limit [dBµV/m] 54.00 54.00 54.00 54.00	[dB] 19.20 15.93 14.59 14.05	Horizontal Horizontal Horizontal Horizontal	PASS PASS PASS PASS
NO. 1 2 3 4 5	ted Data L Freq. [MHz] 1248.8 2423.2 2981 6352.3 11094.2	ist Reading [dBµV/m] 32.72 30.91 29.60 33.73 30.03	Level [dBµV/m] 34.80 38.07 39.41 39.95 34.84	Factor [dB] 2.08 7.16 9.81 6.22 4.81	Limit [dBµV/m] 54.00 54.00 54.00 54.00 54.00	[dB] 19.20 15.93 14.59 14.05 19.16	Horizontal Horizontal Horizontal Horizontal Horizontal	PASS PASS PASS PASS PASS
NO. 1 2 3 4 5 6	ted Data L Freq. [MHz] 1248.8 2423.2 2981 6352.3 11094.2 17849.3	ist Reading [dBµV/m] 32.72 30.91 29.60 33.73 30.03 25.61	Level [dBµV/m] 34.80 38.07 39.41 39.95 34.84 38.63	Factor [dB] 2.08 7.16 9.81 6.22 4.81 13.02	Limit [dBµV/m] 54.00 54.00 54.00 54.00 54.00 54.00	[dB] 19.20 15.93 14.59 14.05 19.16 15.37	Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal	PASS PASS PASS PASS PASS PASS
NO. 1 2 3 4 5 6 7	ted Data L Freq. [MHz] 1248.8 2423.2 2981 6352.3 11094.2 17849.3 1248.6	ist Reading [dBµV/m] 32.72 30.91 29.60 33.73 30.03 25.61 40.66	Level [dBµV/m] 34.80 38.07 39.41 39.95 34.84 38.63 42.74	Factor [dB] 2.08 7.16 9.81 6.22 4.81 13.02 2.08	Limit [dBµV/m] 54.00 54.00 54.00 54.00 54.00 54.00 54.00 74.00	[dB] 19.20 15.93 14.59 14.05 19.16 15.37 31.26	Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal	PASS PASS PASS PASS PASS PASS PASS
NO. 1 2 3 4 5 6 7 8	ted Data L Freq. [MHz] 1248.8 2423.2 2981 6352.3 11094.2 17849.3 1248.6 2490	ist Reading [dBµV/m] 32.72 30.91 29.60 33.73 30.03 25.61 40.66 37.19	Level [dBµV/m] 34.80 38.07 39.41 39.95 34.84 38.63 42.74 44.86	Factor [dB] 2.08 7.16 9.81 6.22 4.81 13.02 2.08 7.67	Limit [dBµV/m] 54.00 54.00 54.00 54.00 54.00 54.00 54.00 74.00 74.00	[dB] 19.20 15.93 14.59 14.05 19.16 15.37 31.26 29.14	Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal	PASS PASS PASS PASS PASS PASS PASS PASS
NO. 1 2 3 4 5 6 7 8 9	ted Data L Freq. [MHz] 1248.8 2423.2 2981 6352.3 11094.2 17849.3 1248.6 2490 2703	ist Reading [dBµV/m] 32.72 30.91 29.60 33.73 30.03 25.61 40.66 37.19 38.23	Level [dBµV/m] 34.80 38.07 39.41 39.95 34.84 38.63 42.74 44.86 46.05	Factor [dB] 2.08 7.16 9.81 6.22 4.81 13.02 2.08 7.67 7.82	Limit [dBµV/m] 54.00 54.00 54.00 54.00 54.00 54.00 54.00 74.00 74.00 74.00	[dB] 19.20 15.93 14.59 14.05 19.16 15.37 31.26 29.14 27.95	Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal	PASS PASS PASS PASS PASS PASS PASS PASS

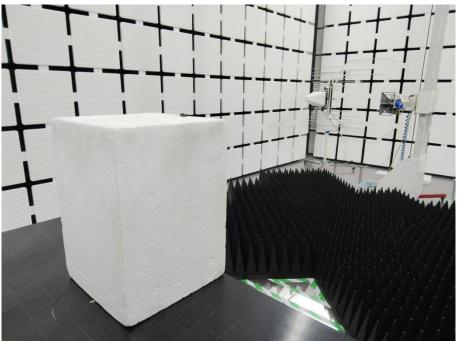
lest Gra	nh							
Cot On	.pri							
	100 7			F	CC PART 15C			
	90-							
	80-						FCC PART ISC-PK Limit	
	70-						Construction and the second	
	Ë 60-						FCC PART 15C-AV LINE	
	NT 850-					u-	PUG PART LIGHAY DIRE	4
	60 60 50 40	terre a fillen a day	and the second second	and the state of	And an and the second designed		. La La barra har and	8
	30	-	And the second second	A PROPERTY OF THE OWNER	Respective	and a second by	and the second state of the second state	
	20-							
	10-							
				-				
	0- 1G		2G	3G	46 66	8G	18	G
		ik Lint — AV Lin	d — Vedical PK		(requency(Hz)			
Suspe			n — Venar PK		undra er Vlord			
Suspec	ted Data L	ist		Vertical AV		Mamin		
Suspec	Freq.	ist Reading	Level	Vertical AV	Limit	Margin	Polarity	Verdict
NO.	Freq. [MHz]	ist Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	[dB]		
NO. 1	Freq. [MHz] 1168.6	ist Reading [dBµV/m] 33.04	Level [dBµV/m] 34.60	Factor [dB] 1.56	Limit [dBµV/m] 54.00	[dB] 19.40	Vertical	PASS
NO. 1 2	Eted Data L Freq. [MHz] 1168.6 2451.4	ist Reading [dBµV/m] 33.04 33.06	Level [dBµV/m] 34.60 40.44		Limit [dBµV/m] 54.00 54.00	[dB] 19.40 13.56	Vertical Vertical	PASS PASS
NO. 1 2 3	Eted Data L Freq. [MHz] 1168.6 2451.4 2905.2	ist Reading [dBµV/m] 33.04 33.06 30.03	Level [dBµV/m] 34.60 40.44 39.19		Limit [dBµV/m] 54.00 54.00 54.00	[dB] 19.40 13.56 14.81	Vertical Vertical Vertical	PASS PASS PASS
NO. 1 2 3 4	Freq. [MHz] 1168.6 2451.4 2905.2 6430.7	ist Reading [dBµV/m] 33.04 33.06 30.03 33.84	Level [dBµV/m] 34.60 40.44 39.19 40.37		Limit [dBµV/m] 54.00 54.00 54.00 54.00	[dB] 19.40 13.56 14.81 13.63	Vertical Vertical Vertical Vertical	PASS PASS PASS PASS
NO. 1 2 3 4 5	Eted Data L Freq. [MHz] 1168.6 2451.4 2905.2 6430.7 10968.9	ist Reading [dBμV/m] 33.04 33.06 30.03 33.84 30.05	Level [dBµV/m] 34.60 40.44 39.19 40.37 34.65		Limit [dBµV/m] 54.00 54.00 54.00 54.00 54.00	[dB] 19.40 13.56 14.81 13.63 19.35	Vertical Vertical Vertical Vertical Vertical	PASS PASS PASS PASS PASS
NO. 1 2 3 4 5 6	ted Data L Freq. [MHz] 1168.6 2451.4 2905.2 6430.7 10968.9 17797.6	ist Reading [dBµV/m] 33.04 33.06 30.03 33.84 30.05 26.54	Level [dBµV/m] 34.60 40.44 39.19 40.37 34.65 39.64		Limit [dBµV/m] 54.00 54.00 54.00 54.00 54.00 54.00	[dB] 19.40 13.56 14.81 13.63 19.35 14.36	Vertical Vertical Vertical Vertical Vertical Vertical	PASS PASS PASS PASS PASS PASS
NO. 1 2 3 4 5 6 7	ted Data L Freq. [MHz] 1168.6 2451.4 2905.2 6430.7 10968.9 17797.6 1346	ist Reading [dBµV/m] 33.04 33.06 30.03 33.84 30.05 26.54 40.35	Level [dBµV/m] 34.60 40.44 39.19 40.37 34.65 39.64 43.00		Limit [dBµV/m] 54.00 54.00 54.00 54.00 54.00 54.00 54.00 74.00	[dB] 19.40 13.56 14.81 13.63 19.35 14.36 31.00	Vertical Vertical Vertical Vertical Vertical Vertical Vertical	PASS PASS PASS PASS PASS PASS PASS
NO. 1 2 3 4 5 6 7 8	ted Data L Freq. [MHz] 1168.6 2451.4 2905.2 6430.7 10968.9 17797.6 1346 2392.4	ist Reading [dBµV/m] 33.04 33.06 30.03 33.84 30.05 26.54 40.35 37.96	Level [dBµV/m] 34.60 40.44 39.19 40.37 34.65 39.64 43.00 44.91		Limit [dBµV/m] 54.00 54.00 54.00 54.00 54.00 54.00 54.00 74.00 74.00	[dB] 19.40 13.56 14.81 13.63 19.35 14.36 31.00 29.09	Vertical Vertical Vertical Vertical Vertical Vertical Vertical Vertical	PASS PASS PASS PASS PASS PASS PASS PASS
NO. 1 2 3 4 5 6 7 8 9	ted Data L Freq. [MHz] 1168.6 2451.4 2905.2 6430.7 10968.9 17797.6 1346 2392.4 2998	ist Reading [dBµV/m] 33.04 33.06 30.03 33.84 30.05 26.54 40.35 37.96 37.70	Level [dBµV/m] 34.60 40.44 39.19 40.37 34.65 39.64 43.00 44.91 47.65		Limit [dBµV/m] 54.00 54.00 54.00 54.00 54.00 54.00 54.00 74.00 74.00 74.00	[dB] 19.40 13.56 14.81 13.63 19.35 14.36 31.00 29.09 26.35	Vertical Vertical Vertical Vertical Vertical Vertical Vertical Vertical Vertical Vertical	PASS PASS PASS PASS PASS PASS PASS PASS
NO. 1 2 3 4 5 6 7 8	ted Data L Freq. [MHz] 1168.6 2451.4 2905.2 6430.7 10968.9 17797.6 1346 2392.4	ist Reading [dBµV/m] 33.04 33.06 30.03 33.84 30.05 26.54 40.35 37.96	Level [dBµV/m] 34.60 40.44 39.19 40.37 34.65 39.64 43.00 44.91		Limit [dBµV/m] 54.00 54.00 54.00 54.00 54.00 54.00 54.00 74.00 74.00	[dB] 19.40 13.56 14.81 13.63 19.35 14.36 31.00 29.09	Vertical Vertical Vertical Vertical Vertical Vertical Vertical Vertical	PASS PASS PASS PASS PASS PASS PASS PASS

Note:

1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor

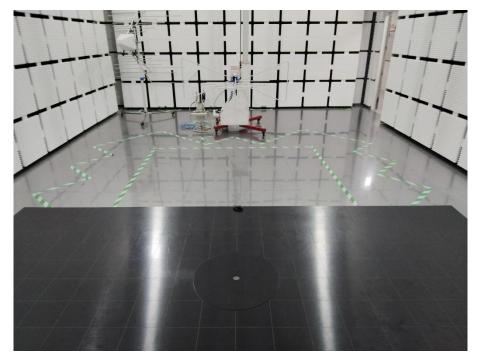
2) Margin = Limit – Level

3) Average measurement was not performed if peak level is lower than average limit (54dBuV/m) for above 1GHz.



6. TEST SETUP PHOTOS

Conducted Emission at AC power line


Radiated band edge emission Radiated Spurious Emission (Above 1GHz)

Radiated Spurious Emission (below 1GHz)

7. EXTERNAL AND INTERNAL PHOTOS

7.1. External Photos

Refer to the RF report CISRR25022815205.

7.2. Internal Photos

Refer to the RF report CISRR25022815205.