

TEST REPORT

Product Name: CHERRY MX 8.2 TKL WirelessModel Number: G80-3882FCC ID: GDDMX3882

Prepared for Address	:	Cherry Europe GmbH Cherrystraβe 2,91275 Auerbach i.d. OPf. Germany	
Prepared by : Address :		EMTEK (SHENZHEN) CO., LTD. Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China	
		Tel: (0755) 26954280 Fax: (0755) 26954282	
Report Number Date(s) of Tests Date of issue	:	ENS2110200144W00202R October 20, 2021 to December 22, 2021 December 22, 2021	

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Table of Contents

1	TES	T RESULT CERTIFICATION	3
2	EUT	TECHNICAL DESCRIPTION	4
3	SUM	IMARY OF TEST RESULT	5
4	TES	T METHODOLOGY	6
	4.1 4.2 4.3	GENERAL DESCRIPTION OF APPLIED STANDARDS MEASUREMENT EQUIPMENT USED DESCRIPTION OF TEST MODES	6
5	FAC	ILITIES AND ACCREDITATIONS	8
	5.1 5.2	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS	
6	TES	T SYSTEM UNCERTAINTY	9
7	SET	UP OF EQUIPMENT UNDER TEST	10
	7.1 7.2 7.3 7.4	RADIO FREQUENCY TEST SETUP 1 RADIO FREQUENCY TEST SETUP 2 CONDUCTED EMISSION TEST SETUP SUPPORT EQUIPMENT	
8	TES	T REQUIREMENTS	
	8.1 8.2 8.3 8.4	BANDWIDTH TEST RADIATED SPURIOUS EMISSION CONDUCTED EMISSIONS TEST ANTENNA APPLICATION	

源圳值测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

1 TEST RESULT CERTIFICATION

Applicant	:	Cherry Europe GmbH
Address :		Cherrystraβe 2,91275 Auerbach i.d. OPf. Germany
Manufacturer	:	Zhu hai Cherry Electronics Co., Ltd
Address :		No.8, Jinyuan 1st Road, Tangjiawan Town, High Tech Industial Zone, Zhuhai City,Guangdong Province,P.R.of China
EUT	:	CHERRY MX 8.2 TKL Wireless
Model Name	:	G80-3882
Trademark	:	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS			
STANDARD TEST RESULT			
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C	PASS		

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.249

The test results of this report relate only to the tested sample identified in this report

Date of Test :	October 20, 2021 to December 22, 2021
Prepared by :	Yu Xiaolan/Editor
Reviewer :	Joe Xia/Supervisor
Approve & Authorized Signer :	Lisa Wang/Manager

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

2 EUT TECHNICAL DESCRIPTION

Product:	CHERRY MX 8.2 TKL Wireless		
Model Number:	G80-3882		
Power Supply	DC 3.7V from Battery DC 5.0V from PC		
Modulation:	GFSK		
Frequency Range:	2402 MHz to 2480 MHz		
Number of Channels:	40 Channels		
Max Transmit Power:	89.52 dBuV/m		
Antenna Gain:	0.338 dBi		
Antenna:	PCB Antenna		
Temperature Range:	0°C ~ +50°C		

Note: for more details, please refer to the User's manual of the EUT.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

3 SUMMARY OF TEST RESULT

FCC Part Clause	Test Parameter	Verdict	Remark				
15.207	Conducted Emission	PASS					
15.209	Radiated Emission	PASS					
15.249	Radiated Spurious Emission	PASS					
15.249	Band edge test	PASS					
15.249 20dB Bandwidth		PASS					
15.203	15.203 Antenna Requirement						
NOTE1: N/A (Not	NOTE1: N/A (Not Applicable)						
NOTE2: The report use radiated measurements in the restricted frequency bands. In addition,							
		from the devi	the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.				

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: GDDMX3882 filing to comply with Section 15.249 of the FCC Part 15, Subpart C Rules.

濠圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C

4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LASTCAL.
Test Receiver	Rohde & Schwarz	ESCI	26115-010-0027	May 15, 2021
L.I.S.N.	Rohde & Schwarz	ENV216	101161	May 15, 2021
50ΩCoaxial Switch	Anritsu	MP59B	6100175589	May 15, 2021
Voltage Probe	Rohde & Schwarz	ESH2-Z3	100122	May 15, 2021
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100006	May 15, 2021
I.S.N	Teseq GmbH	ISN T800	30327	May 15, 2021

4.2.2 Radiated Emission Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.
EMI Test Receiver	Rohde & Schwarz	ESU	1302.6005.26	May 15, 2021
Pre-Amplifier	HP	8447F	2944A07999	May 15, 2021
Bilog Antenna	Schwarzbeck	VULB9163	142	May 15, 2021
Loop Antenna	ARA	PLA-1030/B	1029	May 15, 2021
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170399	May 15, 2021
Horn Antenna	Schwarzbeck	BBHA 9120	D143	May 15, 2021
Cable	Schwarzbeck	AK9513	ACRX1	May 15, 2021
Cable	Rosenberger	N/A	FP2RX2	May 15, 2021
Cable	Schwarzbeck	AK9513	CRPX1	May 15, 2021
Cable	Schwarzbeck	AK9513	CRRX2	May 15, 2021

4.2.3 Radio Frequency Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LASTCAL.
Spectrum Analyzer	Agilent	E4407B	88156318	May 15, 2021
EMI Test Receiver	Rohde & Schwarz	ESCI	101045	May 15, 2021
Signal Analyzer	Agilent	N9010A	My53470879	May 15, 2021
Power meter	Anritsu	ML2495A	0824006	May 15, 2021
Power sensor	Anritsu	MA2411B	0738172	May 15, 2021

Remark: Each piece of equipment is scheduled for calibration once a year.

源圳值测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

The EUT has been tested under its typical operating condition so those modulation and channel were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Frequency and Channel list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	19	2440		
1	2404	20	2442	37	2476
2	2406	21	2444	38	2478
				39	2480
Note: fc=2402MHz+k×2MHz k=0 to 39					

Test Frequency and Channel list:

Lowest I	Frequency	Middle F	requency	Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	19	2440	39	2480

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
EMC Lab.	: Accredited by CNAS
	The Certificate Registration Number is L2291.
	The Laboratory has been assessed and proved to be in compliance with CNAS-CL01 (identical to ISO/IEC 17025:2017)
	Accredited by FCC
	Designation Number: CN1204
	Test Firm Registration Number: 882943
	Accredited by A2LA
	The Certificate Number is 4321.01.
	Accredited by Industry Canada
	The Conformity Assessment Body Identifier is CN0008
Name of Firm	: EMTEK (SHENZHEN) CO., LTD.
Site Location	: Building 69, Majialong Industry Zone,
	Nanshan District, Shenzhen, Guangdong, China

源圳值测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5 °C
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

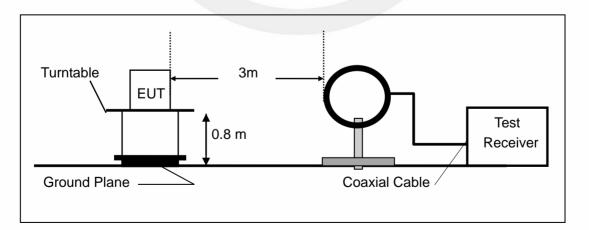
The EUT wireless component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

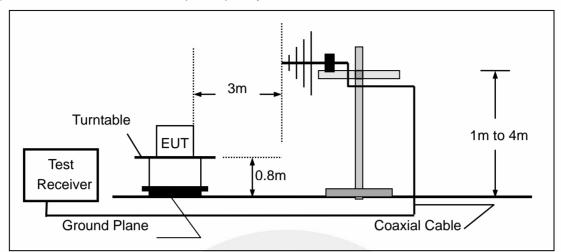
Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

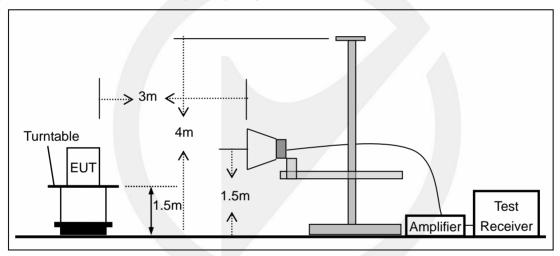

30MHz-1GHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:


The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

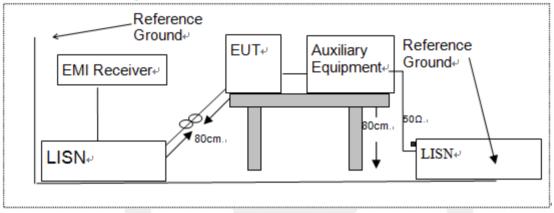
(a) Radiated Emission Test Set-Up, Frequency Below 30MHz


深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz

濠圳值测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn



7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 SUPPORT EQUIPMENT

EUT Cable List and Details				
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite				
1	1	1	/	

Auxiliary Cable List and Details					
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite					
/	/	/	/		

Auxiliary Equipment List and Details						
Description Manufacturer Model Serial Number						

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

8 TEST REQUIREMENTS

8.1 BANDWIDTH TEST

8.1.1 Applicable Standard

According to FCC Part 15.249

8.1.2 Conformance Limit

N/A

8.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.1.4 Test Procedure

The EUT was operating in controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW \geq 1% of the 20 dB bandwidth(30KHz)

Set the video bandwidth (VBW) \geq RBW(100KHz).

Set Span= approximately 2 to 3 times the 20 dB bandwidth

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

Measure and record the results in the test report.

Test Results

Temperature:	22° C
Relative Humidity:	53%
ATM Pressure:	1011 mbar

Operation Mode	Channel Number	Channel Frequenc	20db Measurement Bandwidth	Limit (kHz)	Verdict
		y (MHz)	(MHz)		
	0	2402	1.136	N/A	PASS
1M	19	2440	1.133	N/A	PASS
	39	2480	1.131	N/A	PASS
	0	2402	2.103	N/A	PASS
2M	19	2440	2.108	N/A	PASS
	39	2480	2.108	N/A	PASS
Note: N/A (N	Not Applicable))			

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

STATUS

Occupied Bandwidth Test Model GFSK Channel 39: 2480MHz

源圳值测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Occupied Bandwidth Test Model GFSK Channel 39: 2480MHz

Agilent Spectrum Analyzer - Occupied B	W				- 6 ×
Center Freq 2.48000000	0 GHz Cent	SENSE:INT ter Freg: 2.480000000 GHz		M Nov 18, 2021 : None	Frequency
001110111092.4000000	Trig	: Free Run Avg Ho en: 10 dB	ld:>10/10 Radio Dev	vice: BTS	
	#IFGain:Low #Att		Radio Del	ice. BTS	
Ref Offset 2 dB 10 dB/div Ref 10.00 dE					
Log 0.00					Center Freq
-10.0					2.48000000 GHz
-20.0	m	www.			
-30.0	and we have	لىرىر			
-40.0			<u></u>		
-50.0	<i>f</i>		h m m		
-60.0 When the second s	V			and the second second	
-70.0				1010 mg/s	
-80.0					
				an C Mila	
Center 2.48 GHz #Res BW 30 kHz		#VBW 100 kHz		an 6 MHz 6.333 ms	CF Step 600.000 kHz
Occupied Bandwic	ith	Total Power	2.49 dBm		<u>Auto</u> Man
2	.0537 MHz				Freq Offset
					0 Hz
Transmit Freq Error	-15.649 kHz	OBW Power	99.00 %		0112
x dB Bandwidth	2.108 MHz	x dB	-20.00 dB		
MSG			STATUS		

源圳值测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

8.2 RADIATED SPURIOUS EMISSION

8.2.1 Applicable Standard

According to FCC Part 15.249 and 15.209

8.2.2 Conformance Limit

According to FCC Part 15.249: radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 art 10.			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	2400/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50(94 dBV/m)	500(54 dBV/m)
2400-2483.5 MHz	50(94 dBV/m)	500(54 dBV/m)
5725-5875 MHz	50(94 dBV/m)	500(54 dBV/m)
24.0-24.25 GHz	250(108 dBV/m)	2500(68 dBV/m)

Field strength of fundamental and Field strength of harmonics Limit:

As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation

For this report

	Fundamental Frequency	Field Strength	Field Strength of Spurious
	Fundamental Frequency	Of Fundamental	Emissions
		AV:94 dBuV/m at 3m distance	AV:54 dBuV/m at 3m
	2400-2483.5 MHz	Av.94 ubu v/m at 5m distance	distance
		PK:114 dBuV/m at 3m	PK:74 dBuV/m at 3m
		distance	distance

8.2.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.2.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz(1GHz to 25GHz), 100 kHz for f < 1 GHz(30MHz to 1GHz)

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

8.2.5 Test Results

Temperature:	24° C
Relative Humidity:	53%
ATM Pressure:	1011 mbar

Spurious Emission below 30MHz (9KHz to 30MHz)

Freq.	Ant.Pol.		sion BuV/m)	Limit 3m	(dBuV/m)	Ove	er(dB)
(MHz)	H/V	PK	ÂV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor

Field Strength of the fundamental signal

Freq.	Ant.Pol.	Emis Level(d		Limit 3m	(dBuV/m)	Ove	er(dB)
(MHz)	H/V	PK	ÁV	PK	AV	PK	AV
2401.957	V	89.3	79.01	114	94	-24.70	-14.99
2401.992	Н	89.52	79.44	114	94	-24.48	-14.56
2440.002	V	88.95	78.78	114	94	-25.05	-15.22
2439.914	Н	88.49	78.32	114	94	-25.51	-15.68
2479.833	V	88.81	78.5	114	94	-25.19	-15.50
2480.353	Н	87.44	77.01	114	94	-26.56	-16.99

Note: (1) Correct Factor= Antenna Factor + Cable Loss- Amplifier Gain (2) Emission Level= Reading Level+Probe Factor +Cable Loss

Out of Band Emissions Test mode:

GFSK

GFSK

Frequency:

Channel 0: 2402MHz

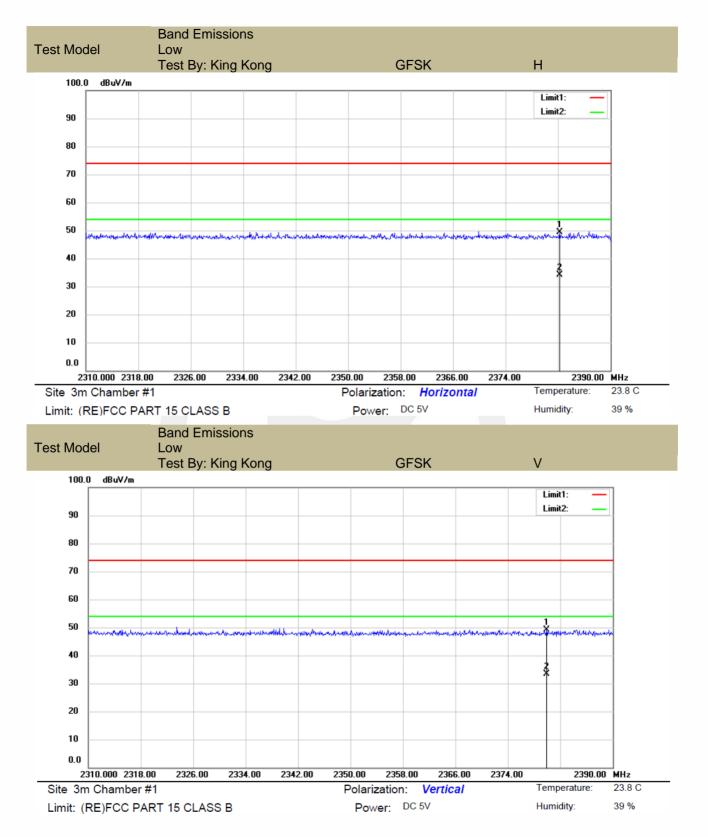
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over(dB)
2379.940	V	49.10	74	-24.90	33.50	54	-20.50
2382.244	Н	49.48	74	-24.52	34.10	54	-19.90

Test mode:

Frequency:

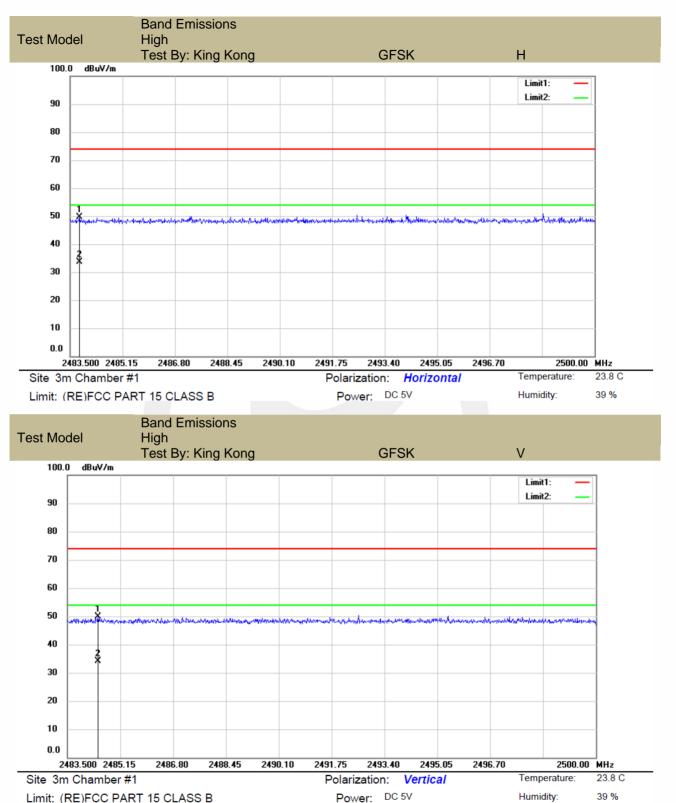
Channel 39: 2480MHz

Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over(dB)
2484.468	V	49.85	74	-24.15	34.20	54	-19.80
2483.801	Н	49.65	74	-24.35	33.60	54	-20.40


Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

- (2) Emission Level= Reading Level+Correct Factor +Cable Loss.
 - (3) Correct Factor= Ant F + Cab L Preamp

(4)Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.


深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Limit: (RE)FCC PART 15 CLASS B

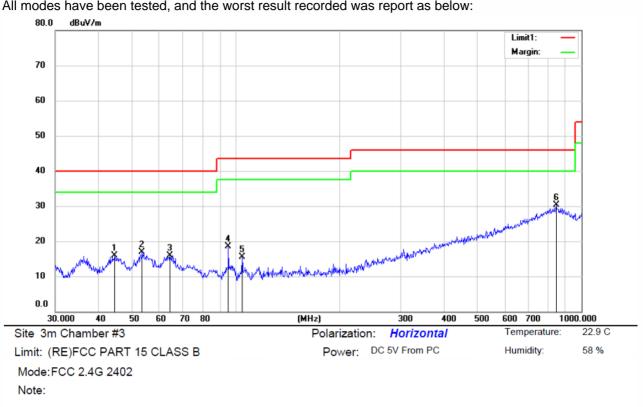
深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

 Spurious Emission Above 1GHz (1GHz 	to 25GHz)
--	-----------

Test mode:	GFS	К	Frequ	ency:	Channe	l 0: 2402MH	Ζ
Freq.	Ant.Pol.		ssion BuV/m)	Limit 3m	(dBuV/m)	Ove	er(dB)
(MHz)	H/V	PK `	ÁV	PK	AV	PK	AV
7293.518	V	56.14	40.5	74	54	-17.86	-13.5
12336.96	V	58.88	42.5	74	54	-15.12	-11.5
17953.23	V	65.41	50.3	74	54	-8.59	-3.7
7413.604	Н	56.73	40.8	74	54	-17.27	-13.2
14702.91	Н	58.66	42.3	74	54	-15.34	-11.7
17958.42	Н	66.32	51.2	74	54	-7.68	-2.8
Test mode:	GFS		Frequ	ency:	Channe	I 19: 2440MI	Hz
Freq.	Ant.Pol.		ssion BuV/m)	Limit 3m	(dBuV/m)	Ove	er(dB)
(MHz)	H/V	PK `	ÁV	PK	AV	PK	AV
11363.07	V	56.16	41.3	74	54	-17.84	-12.7
14962.28	V	58.09	41.5	74	54	-15.91	-12.5
17992.19	V	64.85	48.6	74	54	-9.15	-5.4
11410.79	Н	55.29	40.2	74	54	-18.71	-13.8
15040.32	Н	57.48	43.1	74	54	-16.52	-10.9
18000.00	Н	65.6	50.5	74	54	-8.4	-3.5
Test mode:	GFS	к	Frequ	ency:	Channe	l 39: 2480MH	Ηz
Freq.	Ant.Pol.	Emis Level(d	ssion BuV/m)	Limit 3m	(dBuV/m)	Ove	er(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
10690.78	V	55.33	40.1	74	54	-18.67	-13.9
14867.44	V	57.39	41.2	74	54	-16.61	-12.8
17981.80	V	65.38	50.3	74	54	-8.62	-3.7
11005.88	Н	55.36	39.9	74	54	-18.64	-14.1
14429.26	Н	57.65	41.5	74	54	-16.35	-12.5
17984.39	Н	64.68	48.5	74	54	-9.32	-5.5

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

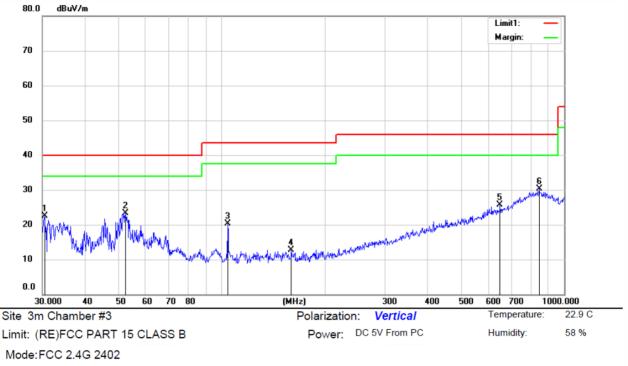
(2) Emission Level= Reading Level+Correct Factor +Cable Loss.


(3) Correct Factor= Ant_F + Cab_L - Preamp

(4)Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

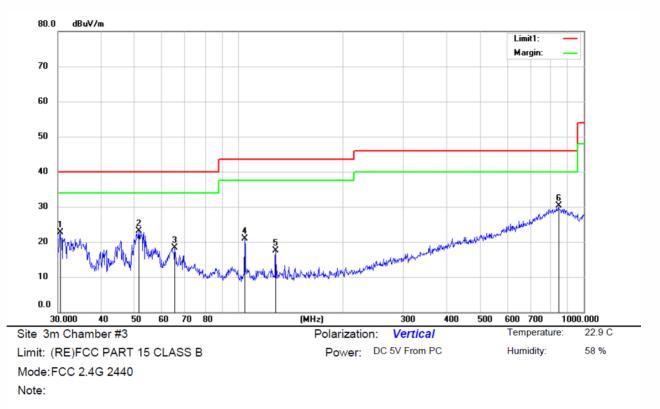
EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		44.5868	31.37	-15.37	16.00	40.00	-24.00	QP			
2		53.5052	31.69	-14.76	16.93	40.00	-23.07	QP			
3		64.4331	30.69	-14.83	15.86	40.00	-24.14	QP			
4		95.0930	36.00	-17.52	18.48	43.50	-25.02	QP			
5		104.1701	32.77	-17.29	15.48	43.50	-28.02	QP			
6	*	845.0878	29.27	1.07	30.34	46.00	-15.66	QP			

Spurious Emission below 1GHz (30MHz to 1GHz)

All modes have been tested, and the worst result recorded was report as below:

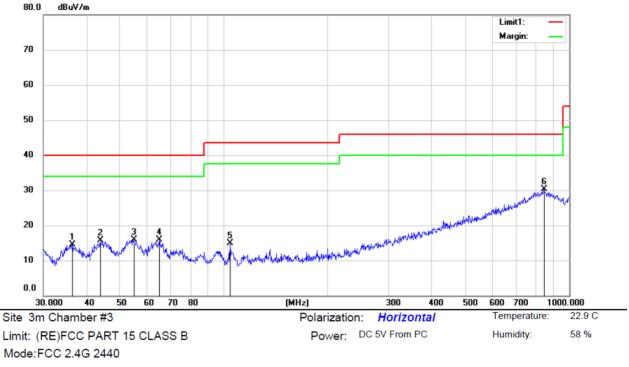
深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn



Note:

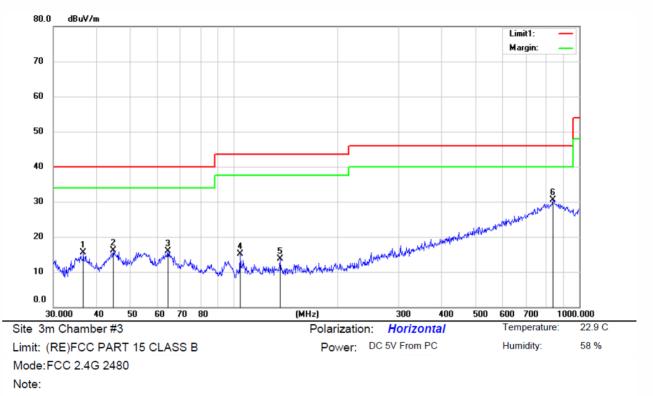
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		30.4238	39.59	-17.17	22.42	40.00	-17.58	QP			
2		52.3912	37.91	-14.66	23.25	40.00	-16.75	QP			
3		104.1701	37.68	-17.29	20.39	43.50	-23.11	QP			
4		159.7844	30.07	-17.27	12.80	43.50	-30.70	QP			
5		649.6597	29.64	-3.84	25.80	46.00	-20.20	QP			
6	*	845.0878	29.27	1.07	30.34	46.00	-15.66	QP			

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		30.4238	39.80	-17.17	22.63	40.00	-17.37	QP			
2		51.4807	37.78	-14.67	23.11	40.00	-16.89	QP			
3		65.3432	33.20	-14.93	18.27	40.00	-21.73	QP			
4		104.1701	38.15	-17.29	20.86	43.50	-22.64	QP			
5		128.1130	34.98	-17.49	17.49	43.50	-26.01	QP			
6	*	845.0878	29.27	1.07	30.34	46.00	-15.66	QP			

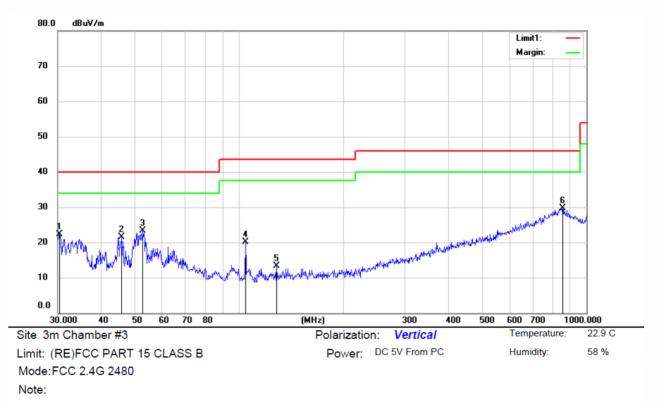
源圳值测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn



Note:

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	36.3814	30.70	-16.19	14.51	40.00	-25.49	QP			
2	43.8120	31.13	-15.45	15.68	40.00	-24.32	QP			
3	54.8348	30.72	-14.76	15.96	40.00	-24.04	QP			
4	65.1145	30.87	-14.88	15.99	40.00	-24.01	QP			
5	104.1701	32.20	-17.29	14.91	43.50	-28.59	QP			
6 *	845.0878	29.27	1.07	30.34	46.00	-15.66	QP			

源圳值测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn



1 2 3	MHz	JD. M			Limit	Over		Height	Degree	
_		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
_	36.6375	31.65	-16.17	15.48	40.00	-24.52	QP			
3	44.7433	31.46	-15.36	16.10	40.00	-23.90	QP			
9	64.4331	30.71	-14.83	15.88	40.00	-24.12	QP			
4	104.1701	32.43	-17.29	15.14	43.50	-28.36	QP			
5	135.9822	31.11	-17.49	13.62	43.50	-29.88	QP			
6 *	839.1818	29.40	1.04	30,44	46.00	-15.56	QP			

源圳值测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	30.3173	39.51	-17.17	22.34	40.00	-17.66	QP			
2	45.8553	36.72	-15.24	21.48	40.00	-18.52	QP			
3	52.7600	37.98	-14.70	23.28	40.00	-16.72	QP			
4	104.1701	37.32	-17.29	20.03	43.50	-23.47	QP			
5	128.1130	30.70	-17.49	13.21	43.50	-30.29	QP			
6 *	854.0247	28.93	0.76	29.69	46.00	-16.31	QP			

深圳值测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

8.3 CONDUCTED EMISSIONS TEST

8.3.1 Applicable Standard

According to FCC Part 15.207(a)

8.3.2 Conformance Limit

	Conducted Emission Limit	
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

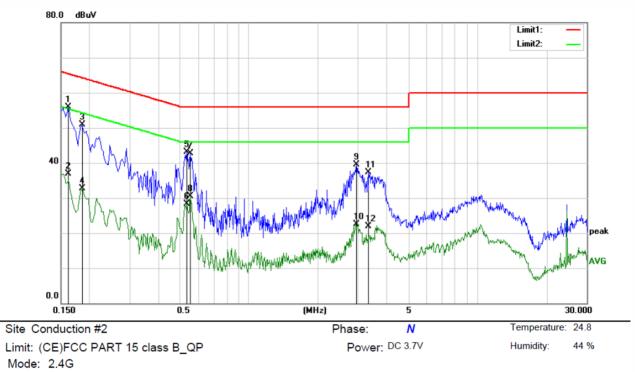
Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

8.3.3 Test Configuration

Test according to clause 7.3 conducted emission test setup

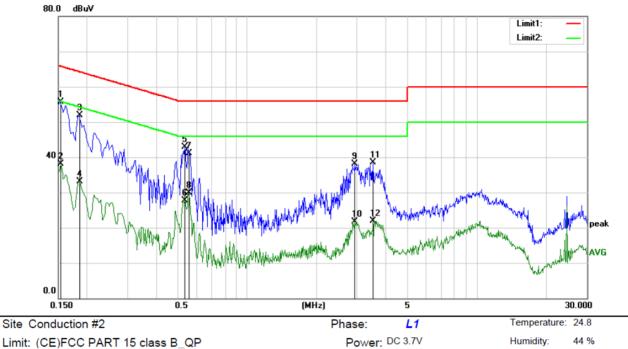
8.3.4 Test Procedure


The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

8.3.5 Test Results

PASS

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn



Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1620	45.34	10.60	55.94	65.36	-9.42	QP	
2		0.1620	26.25	10.60	36.85	55.36	-18.51	AVG	
3		0.1860	40.34	10.47	50.81	64.21	-13.40	QP	
4		0.1860	22.18	10.47	32.65	54.21	-21.56	AVG	
5		0.5340	32.64	10.45	43.09	56.00	-12.91	QP	
6		0.5340	17.93	10.45	28.38	46.00	-17.62	AVG	
7		0.5540	32.29	10.45	42.74	56.00	-13.26	QP	
8		0.5540	20.14	10.45	30.59	46.00	-15.41	AVG	
9		2.9580	29.32	10.25	39.57	56.00	-16.43	QP	
10		2.9580	12.29	10.25	22.54	46.00	-23.46	AVG	
11		3.3300	27.02	10.26	37.28	56.00	-18.72	QP	
12		3.3300	11.74	10.26	22.00	46.00	-24.00	AVG	

濠圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Limit: (CE)FCC PART 15 class B_ Mode: 2.4G Note:

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1540	45.06	10.64	55.70	65.78	-10.08	QP	
2	0.1540	27.48	10.64	38.12	55.78	-17.66	AVG	
3	0.1860	41.40	10.47	51.87	64.21	-12.34	QP	
4	0.1860	22.57	10.47	33.04	54.21	-21.17	AVG	
5	0.5340	32.50	10.45	42.95	56.00	-13.05	QP	
6	0.5340	17.32	10.45	27.77	46.00	-18.23	AVG	
7	0.5580	30.60	10.45	41.05	56.00	-14.95	QP	
8	0.5580	19.36	10.45	29.81	46.00	-16.19	AVG	
9	2.9340	27.91	10.25	38.16	56.00	-17.84	QP	
10	2.9340	11.41	10.25	21.66	46.00	-24.34	AVG	
11	3.5260	28.31	10.27	38.58	56.00	-17.42	QP	
12	3.5260	11.70	10.27	21.97	46.00	-24.03	AVG	

源圳值测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

8.4 ANTENNA APPLICATION

8.4.1 Antenna Requirement

Standard	Requirement An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical
FCC CRF Part 15.203	connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

8.4.2 Result

PASS.

Note:

The EUT has 1 antenna: an PCB Antenna for 2.4G, antenna has a gain of 0.338 dBi;

- \boxtimes Antenna use a permanently attached antenna which is not replaceable.
 - Not using a standard antenna jack or electrical connector for antenna replacement
 - The antenna has to be professionally installed (please provide method of installation)

which in accordance to section 15.203, please refer to the internal photos.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Frequency(MHz)	Ant_F(dB)	Cab_L(dB)	Preamp(dB)	Correct Factor(dB)
0.009	20.6	0.03	\	20.63
0.15	20.7	0.1	\	20.8
1	20.9	0.15	\	21.05
10	20.1	0.28	\	20.38
30	18.8	0.45	\	19.25
30	11.7	0.62	27.9	-15.58
100	12.5	1.02	27.8	-14.28
300	12.9	1.91	27.5	-12.69
600	19.2	2.92	27	-4.88
800	21.1	3.54	26.6	-1.96
1000	22.3	4.17	26.2	0.27
1000	25.6	1.76	41.4	-14.04
3000	28.9	3.27	43.2	-11.03
5000	31.1	4.2	44.6	-9.3
8000	36.2	5.95	44.7	-2.55
10000	38.4	6.3	43.9	0.8
12000	38.5	7.14	42.3	3.34
15000	40.2	8.15	41.4	6.95
18000	45.4	9.02	41.3	13.12
18000	37.9	1.81	47.9	-8.19
21000	37.9	1.95	48.7	-8.85
25000	39.3	2.01	42.8	-1.49
28000	39.6	2.16	46.0	-4.24
31000	41.2	2.24	44.5	-1.06
34000	41.5	2.29	46.6	-2.81
37000	43.8	2.30	46.4	-0.3
40000	43.2	2.50	42.2	3.5

Detail of factor for radiated emission

潦圳值漂标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn