

Address

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 1 of 31

FCC Test Report

Applicant : Shenzhen Qianyan Technology LTD

No. 3301, Block C, Section 1, Chuangzhi

Yuncheng Building, Liuxian Avenue, Xili

Community, Xili Street, Nanshan District,

Shenzhen, 518000, China

Product Name : Govee Christmas String Lights 2

Report Date : Jul. 24, 2024

Shenzhen Anbotek Compliance

_aboratory Limited

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 2 of 31

Contents

1. Gene	ral Information	- Jode ^k Af	por	VII.	Kop _c		Anba	atel	
1.1	Client Information Description of Devi	ce (FIIT)	Vupo _{te} ,	Anu	,a ^Y Ye,	,botek	Vupo,	ik	310
1.3	Auxiliary Equipmen	t Used Durina	Test	.v	010r	DUD"		You.	γo,
14	Operation channel	liet						,	
1.5 1.6	Description of Test Measurement Unce	Modes	ek an			ن	,070 /	7496;	P ز
1.7	Measurement Unce Test Summary Description of Test			botek	Anbo	·**	zotek	anbore	}
1.8	Description of Test	Facility	00,	b	<u>,00/14</u>	(6,	YUP TON	, abotek	9
1.9 1.1	Disclaimer	et more	Pupoje,	······································	ek v	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- Nupp	k '200	10
2 Anter	0. Test Equipment Li na requirement Conclusion	wo tek	Anboier	Anto	e.Y	Spotek	Anbo	-/- 	-1° -4°
2. Alliel	Caralysian	Mariek	nboti	P.U.	°	~040	K Anb	948),	,MZ
2.1	Conclusion	- <u>A</u> Mb9,		otek	Anbote	p.:07	otek .	ok	<i>b</i> ₁
3. Cond	ucted Emission at A EUT Operation Test Setup	C power line		ek	botek	bio)?			1
3.1	EUT Operation		oi ^{ek}	Vupo.		y	"pose"	Yu. Jek	. 13
3.2	. Test Setup Test Data	-6/4	abotek	Anbatt		otek	Aupolek		.T. ĕħ
4 Occu	Test Setup Test Data pied Bandwidth EUT Operation Test Setup	Aupo	Potek	Anboth	V.	-tek	nboiel	Anbo	1
4. Occu	FUT Operation	Anbore	V.	k not)O18/4.	AUPO		itek An	00
4.1	Test Setup	4.000 Poly	VI.pc.		,botek	Aupore		otek	. 19 .dá
5. Maxir	num Conducted Out	put Power	otek.	upoter	Anb.		botek	Anbor	.18
5.1	num Conducted Out EUT Operation Test Setup	upose. Aur	rek	nobotek	Anbo.		Jose K	Anbore.	.1/
5.2	Test Setup		'up.		yaq	0,0	bu.		. 18
6. Powe	r Spectral Density EUT Operation Test Setup	. Holek	Anbore'	And	Yor	, nbotek		, ok	.19
6.1	EUT Operation	Ans	·	itek b	upo.		celtpo	pore !	1
6.2 6.3	. Test Setup . Test Data	181po2	rek F	abotek.	Anbor		-otek	anboter	. 19 10
7 Emis	sions in non-restricte	nd fraguancy h	ande	hotek	Anbore	D.	isk.	anbotek	. '.
7. EIIIIS		ed frequency b	ai ius	- Blogg	الماري ع	o _f S	AUPO!	notel	رکر م
7.1 7.2	. EUT Operation Test Setup	Ant	Vupolek			botek	Anbote		. 20
7.3	Test Data	Vu _D	batek	² dn4			¹ 00/n ₂₁	er Anb	. 2
8. Band	edge emissions (Ra	adiated)		iek o	opoter	AUD		ootek P	2
o ^{tek} 8.1	EUT Operation	ek Aupoter	And	Yor	anbotek	Vupo,	bi.	botek	. 2
8.2	Test Setup	?dy,	iek Vi	/po	Notely K	p.c/	oore	Vu.	2
8.3	Test Data	or r	100/0¥	Aupore	ν Ση	ret.	Anbotek	Yo.	. 2
9. Emis	EUT Operation Test Setup edge emissions (Ra EUT Operation Test Setup Test Setup Sions in frequency ba EUT Operation EUT Operation Test Data	ands (below 10	GHz)	Anbotek	Anbe	-10K	, Josek	Milpore	2
9.1	EUT Operation	Kupo _{ter}	YUR.		iek V	¹ / ₀ ,		y nobe	. 2
9.2	Test Setup	Vupotek	Pupo,	ok Bi.	botek	Aupote."	And	otek	. 2
9.3	. 1691 Dala			×	v		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	×	. ∠:

Report No.: 18220WC40091301	missions in frequency bands (above 1GHz)				
10. Emissions in frequency bands (above 1G	Hz)	Anbore	Vu. Potek	Vupolek K	.27
10.1. EUT Operation	ak botel	k Aupo,	Ai.	Vapo _{ie} .	. 27
10.2. Test Setup	N.	9 ^{†0} 0ds	Anbo	in the second	. 27
10.3. Test Data	otek Anb	D	You doYou	Se VUD.	. 28
APPENDIX I TEST SETUP PHOTOGRAPH	1ek	nbotek Anb	o, b.,	otek Anb	ે ['] ે . 3′
APPENDIX II EXTERNAL PHOTOGRAPH.	Augo	ate ^k	upote All		.31
APPENDIX III INTERNAL PHOTOGRAPH.	poier	Aug	-otek	Aupo, b	31

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 4 of 31

TEST REPORT

Applicant : Shenzhen Qianyan Technology LTD

Manufacturer : Shenzhen Qianyan Technology LTD

Product Name : Govee Christmas String Lights 2

Test Model No. : H70C9

Reference Model No. : N/A

Trade Mark : Govee

Rating(s) : Input: 24V=3A

47 CFR Part 15.247

Test Standard(s) : ANSI C63.10-2020

KDB 558074 D01 15.247 Meas Guidance v05r02

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	May 06, 2024
Date of Test:	May 06, 2024 ~ Jun. 14, 2024
Anbotek Anbotek Anbotek Anbotek Anbotek	Ella Liang
Prepared By:	Anbotek Anbotek Anbotek
	(Ella Liang)
Anborek Anborek Anborek Anborek	Bolward pan
Approved & Authorized Signer:	ak abdek Anbo
Air. Tek Upotek Aupo	(Edward Pan)

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 5 of 31

Revision History

	Report Version	Description	Issued Date
	Anbores R00 potek Ant	Original Issue.	Jul. 24, 2024
9,	Anbotek Anbotek	Anbotek Anbotek Anbotek	K Anbotek Anbotek Anb
10	ore Ambotek Anboten	Anbotek Anbotek Anbot	otek Anbotek Anbotek

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 6 of 31

1. General Information

1.1. Client Information

	V U	(No. 1. No
	Applicant	:	Shenzhen Qianyan Technology LTD
KG.	Address	:	No. 3301, Block C, Section 1, Chuangzhi Yuncheng Building, Liuxian Avenue, Xili Community, Xili Street, Nanshan District, Shenzhen, 518000, China
10	Manufacturer	:	Shenzhen Qianyan Technology LTD
	Address	:	No. 3301, Block C, Section 1, Chuangzhi Yuncheng Building, Liuxian Avenue, Xili Community, Xili Street, Nanshan District, Shenzhen, 518000, China

1.2. Description of Device (EUT)

- AU"		
Product Name	:	Govee Christmas String Lights 2
Test Model No.	:	H70C9
Reference Model No.		PN/A Ambotek Anbotek Anbotek Anbotek Anbotek
Trade Mark	:	Govee her hipotek Anborek Anborek Anborek
Test Power Supply	:	DC 24V from adapter input AC 120V/60Hz
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	Manufacturer: ShenZhen SOY Technology Co., Ltd Model: SOY-2400300US-306 Input: 100-240V~, 50/60Hz, 1.8A Output: 24.0V 3.0A 72.0W
Length of light string	:	100M
RF Specification		
Operation Frequency	:	2402MHz to 2480MHz
Number of Channel	:	140° Anborek Anborek Anborek Anborek
Modulation Type	:	GFSK Anborek Anborek Anborek Anborek
Antenna Type	:	PCB antenna
Antenna Gain(Peak)	:	3.98dBiodek Anbotek Anbotek Anbotek Anbotek
Remarko		A roter And rek about An

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 7 of 31

1.3. Auxiliary Equipment Used During Test

Title		Manufacturer	Model No.	Serial No.	
	Anbores / Anbores	Ant stek/ subotek	Anbor A All botek	Anboret And	

1.4. Operation channel list

Operation Band:

Oporation D			20. P.	0.0	70,		40
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
Aupojo	2402	10 ×	2422	20	2442	Ann 30 tek	2462
Antoien	2404	1,50tek	2424	21 otek	2444	31	2464
2, nbores	2406	12 _{nb} ote	2426	22	2446	32	2466
rek 3 Anbo	2408	otek 13 Anb	2428	23	2448 M	33	2468
botek 4 Ar	2410	, e14	2430	24	2450	34	2470
mbo'5	2412	15	2432	25	2452	Anh 35	2472
M6 tek	2414	16	2434	^{An} 26	2454	36	2474
7 _{nbotek}	2416	17 botel	2436	27	2456	37 ¹⁰⁰¹⁰	2476
ek 8 anbol	2418	18	2438	28	2458	38 Anbo	2478
botek 9 An	2420 Maria	19	2440 And	29	2460	o ^{delk} 39 M	2480

1.5. Description of Test Modes

	Pretest Modes	Descriptions
4	Anbotek TM1 ^{Anbo} obotek	Keep the EUT in continuously transmitting mode with GFSK modulation.

Hotline

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 8 of 31

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Conducted Spurious Emission	1.24dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status
Antenna requirement	hotek Anberek Anbe	olek P
Conducted Emission at AC power line	Mode1	P.
Occupied Bandwidth	Mode1	Prek
Maximum Conducted Output Power	Mode1	And P _{hote}
Power Spectral Density	Mode1	P P
Emissions in non-restricted frequency bands	Mode1	P P
Band edge emissions (Radiated)	Mode1	P
Emissions in frequency bands (below 1GHz)	Mode1	Anber Pek
Emissions in frequency bands (above 1GHz)	Mode1	Anber P otek
Note: P: Pass N: N/A, not applicable	Anbotek Anbotek	ik Aupo

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 9 of 31

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- The test report is invalid if there is any evidence and/or falsification.
- The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 10 of 31

1.10. Test Equipment List

Cond	ucted Emission at A	C power line				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
. 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
otek 2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
3 _{of}	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	Alooiek	Anborotek
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11

Occupied Bandwidth

Maximum Conducted Output Power

Power Spectral Density

Emis	sions in non-restricte	d frequency bands	- ek	70010	V.	- Loiek	
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date	
1 _{Anh}	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A nbox	2023-10-16	2024-10-15	
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19	
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05	
An4ote	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-02-22	2025-02-21	
5.nb	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11	
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03	

Hotline

www.anbotek.com.cn

400-003-0500

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 11 of 31

	edge emissions (Ra sions in frequency ba		Aupotek	Anborek	Aupotek	Anborek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 00	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
nbole 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Andotek	Aupolok
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
e ^k 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06

Emissions in frequency bands (below 1GHz)											
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date					
1	1 EMI Test Receiver Rohde &		ESR26	101481	2024-01-23	2025-01-22					
. 2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16					
34	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22					
Antel	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11					
5,00	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	y Aupon	k Anbotek					

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 12 of 31

2. Antenna requirement

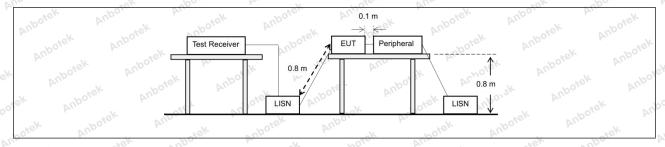
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1. Conclusion

The antenna is a PCB antenna which permanently attached, and the best case gain of the antenna is 3.98dBi . It complies with the standard requirement.

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 13 of 31

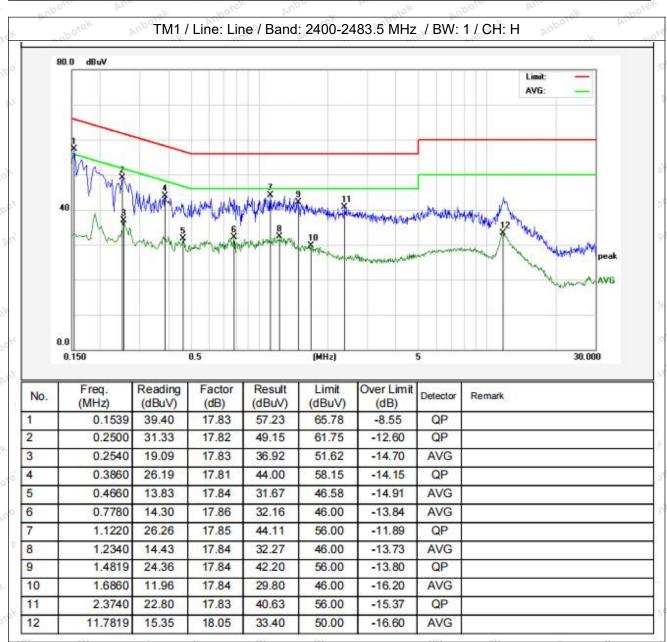

3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Exce section, for an intentional radiator public utility (AC) power line, the back onto the AC power line on a band 150 kHz to 30 MHz, shall no measured using a 50 µH/50 ohms (LISN).	that is designed to be cor radio frequency voltage tha ny frequency or frequencie ot exceed the limits in the f	nnected to the at is conducted es, within the following table, as			
botek Anbor	Frequency of emission (MHz)	Conducted limit (dBµV)				
rue sek abotek	Anbo k hotek Anbort	Quasi-peak	Average			
Aupor Air	0.15-0.5	66 to 56*	56 to 46*			
Test Limit:	0.5-5 And Andrews	56 NOTE AT	46			
Ans abore	5-30 And 5	60	50 And			
k Aupora Au	*Decreases with the logarithm of	the frequency.				
Test Method:	ANSI C63.10-2020 section 6.2					
Procedure:	Refer to ANSI C63.10-2020 section line conducted emissions from ur					

3.1. EUT Operation

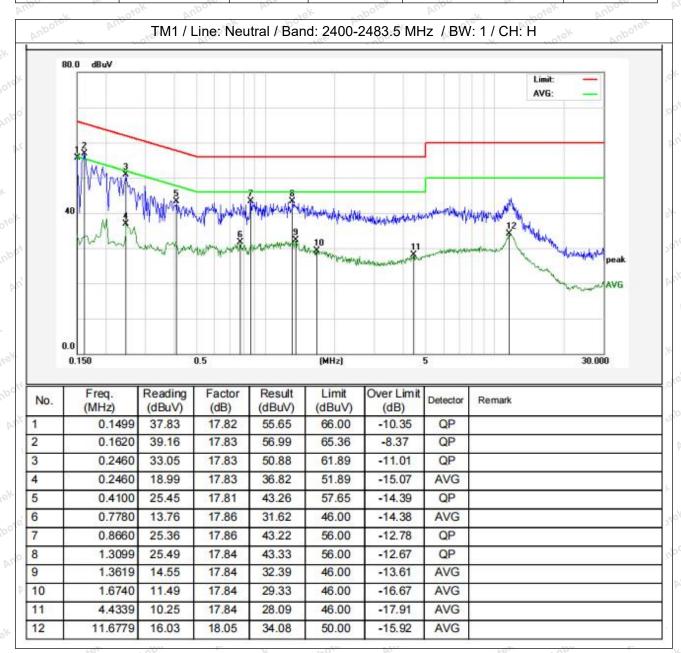
Operating Envi	ronment:	Aupor	boiek .	Aupole	Ann	upotek	Vupo.
Test mode:	1: TX mode modulation	1.	EUT in continu	uously transr	mitting mode w	ith GFSK	ok Anbo

3.2. Test Setup



Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 14 of 31

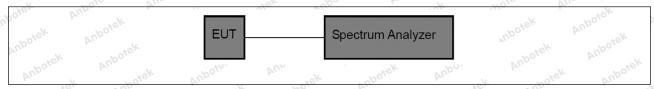
3.3. Test Data


Temperature:	21.4 °C	Hum	idity: 52 %	aboje	Atmospheric Pressure:	101 kPa
--------------	---------	-----	-------------	-------	-----------------------	---------

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 15 of 31

Temperature: 21.4 °C Humidity: 52 % Atmospheric Pressure: 101 kPa

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 16 of 31


4. Occupied Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Anbotek Anbotek	11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz.
	 b) Set the VBW ≥ [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold.
botek Anbotek	e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize.
Procedure:	g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value.
	11.8.2 Option 2
Anbotek Anbotek Anbotek Anbotek	The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function.
	When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

4.1. EUT Operation

Operating Env	rironment:	otek	Anborek	Aupo.	abovek.	Anboile.	Annatek
Test mode:	1: TX mode modulation.	100	EUT in con	tinuously trar	nsmitting mo	de with GFSK	Anbe
L. CAY	modulation.	Ville	vo*	Sk aupo	F	well short	Viin

4.2. Test Setup

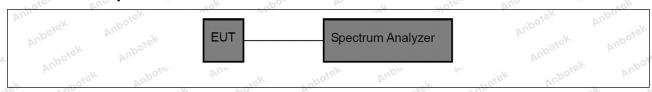
Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 17 of 31

4.3. Test Data

77.	de as a subs		640.04 50	ALAIN I I DO STOR	40470
Temperature:	25.3° C	Humidity:	48 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

Report No.: 18220WC40091301 Page 18 of 31


5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Anbotek	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

5.1. EUT Operation

1/5	Operating Environment:		anborek	Anbo. ak	botek	Anbore	And	anbo
,d	Test mode:	1: TX mode: modulation.	Keep the El	JT in continu	ously transm	nitting mode	with GFSK	5k V2

5.2. Test Setup

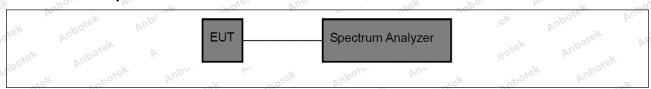
5.3. Test Data

Temp	perature: 25	5.3° C	Humidity:	48 %	Atmospheric Pressure:	101 kPa
7/0	V (1)	40.	100	Part Control	160. Van	

Please Refer to Appendix for Details.

Hotline

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 19 of 31


6. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

6.1. EUT Operation

Operating Envi	onment:	abotek	Anbore.	Arra	orek.	Anborek	Aupo.	ek abojek
Test mode:	1: TX mo modulat	. ~0,	p the EUT in	continu	ously t	ransmitting n	node with (GFSK Anbotek

6.2. Test Setup

6.3. Test Data

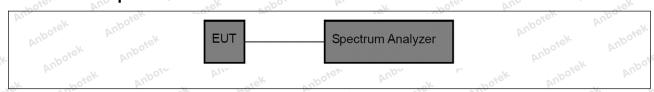
K	Temperature:	25.3° C	Humidity:	48 %	Atmospheric Pressure:	101 kPa	E

Please Refer to Appendix for Details.

Hotline

400-003-0500 www.anbotek.com.cn

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 20 of 31


7. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit: Anborek Anborek Anborek Anborek Anborek Anborek Anborek Anborek	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

7.1. EUT Operation

N.	Operating Envir	onment:	Aupotek	Anbo sek	botek	Anboro	Vu. Potek	DUPO.
,o [®]	Test mode:	1: TX mode: modulation.	Keep the El	JT in continuo	usly transmit	ting mode wi	th GFSK	b ₂

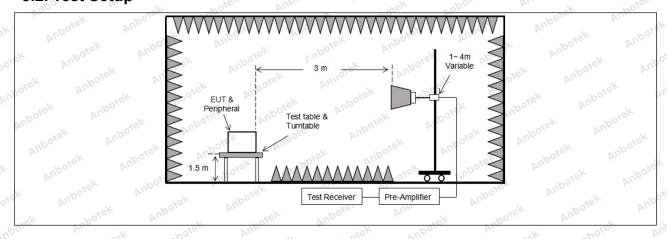
7.2. Test Setup

7.3. Test Data

Temperature:	25.3° C	-ek	Humidity:	48 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

Report No.: 18220WC40091301 Page 21 of 31

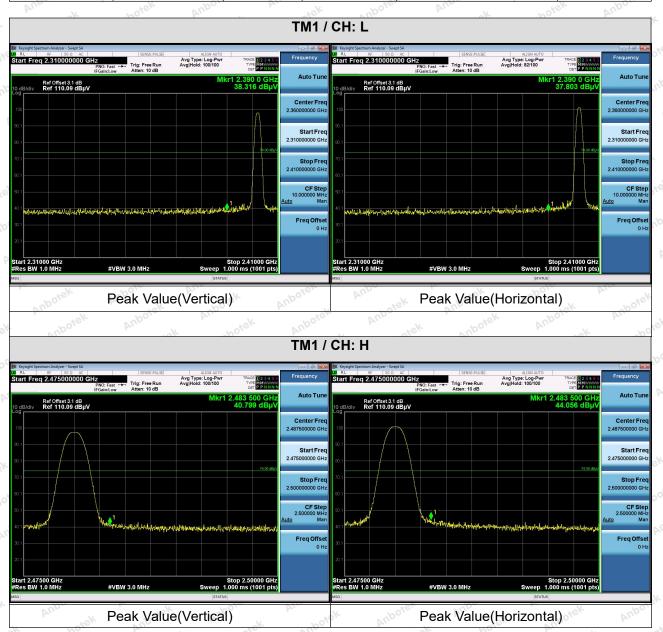

8. Band edge emissions (Radiated)

		10k	
Test Requirement:		, In addition, radiated emissions d in § 15.205(a), must also comp	
Anbore		ecified in § 15.209(a)(see § 15.2	
k Anbotek Anbot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300 Mbor
abotek Anbo	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3,ek abore
	88-216	150 **	3
	216-960	200 **	3 boten And
	Above 960	500 horek Anbo	3 rek ab
nbotek Anbotek	frequency bands 54-72 MH However, operation within to sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-190 kHz, 110–490 kHz and a	ing under this section shall not be 1z, 76-88 MHz, 174-216 MHz or these frequency bands is permit § 15.231 and 15.241. In the tighter limit applies at the being the above table are based on beak detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	470-806 MHz. ted under other pand edges. measurements quency bands 9– ssion limits in
too, by	ANSI C63.10-2020 section	6 10 Anbor Ar	ek vupoter
Test Method:	KDB 558074 D01 15.247 N		otek Anbotek
Procedure:	ANSI C63.10-2020 section	6.10.5.2	notek Anbotek

8.1. EUT Operation

Operating Envir	onment:					abotek	An
Test mode:	1: TX mode: Ke modulation.	eep the EUT i	n continuous	sly transmittir	ng mode with (GFSK	3/K

8.2. Test Setup



Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 22 of 31

8.3. Test Data

Temperature: 25.3° C Humidity: 48 % Atmospheric Pressure: 101 kPa

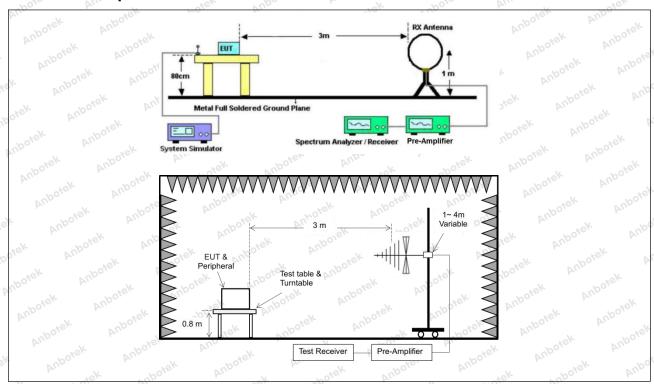
Remark: Note: When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 23 of 31

9. Emissions in frequency bands (below 1GHz)

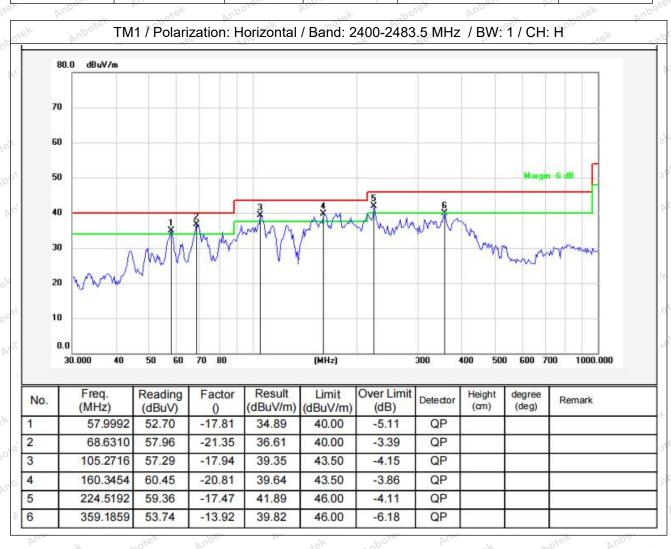
" Joseph Programme of the Programme of t	70,0	10 VD	10 MO1
Test Requirement:	restricted bands, as defined	In addition, radiated emissions d in § 15.205(a), must also comp ecified in § 15.209(a)(see § 15.2	ly with the
k Anbotek Anbot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300 Mboro
abovek Anbo	0.490-1.705	24000/F(kHz)	30 Ste ^V
	1.705-30.0	30°, kek	30
	30-88	100 **	3,ek Anbore
	88-216	150 **	3 , , ,
	216-960	200 **	3 boter And
	Above 960	500 More Andre	3 rek ho
	frequency bands 54-72 MH However, operation within to sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-part of the control of	ng under this section shall not be z, 76-88 MHz, 174-216 MHz or these frequency bands is permitted as 15.231 and 15.241. If the tighter limit applies at the bein the above table are based on beak detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	470-806 MHz. ed under other and edges. measurements uency bands 9– sion limits in
Pole VII.	PUD.	analek Anbore An	ak aboter
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 M		otek Anbotek
Procedure:	ANSI C63.10-2020 section	6.6.4 Notek Ambore Am	rek anboiek
	by. 748/2	No.	**************************************

9.1. EUT Operation


Operating	Environment:					abotek	Ank
Test mode	1: TX mode: K modulation.	eep the EUT in	continuously	r transmitting	g mode with G	FSK Anbotek	K

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 24 of 31

9.2. Test Setup

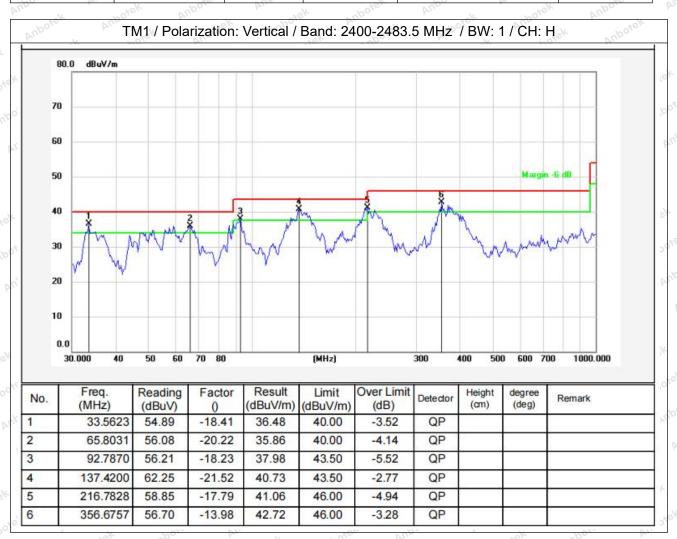


Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 25 of 31

9.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

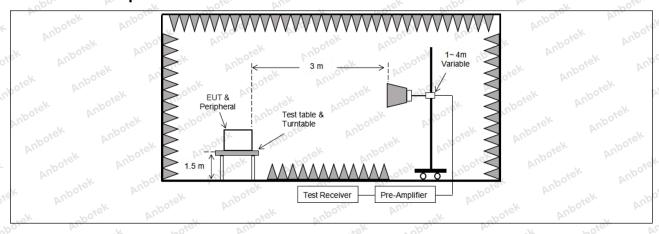
Temperature:	23.5 °C	Humidity:	49 %	Atmos	pheric Pre	ssure:	101 kPa	,-



Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 26 of 31

Temperature: 23.5 °C Humidity: 49 % Atmospheric Pressure: 101 kPa

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 27 of 31


10. Emissions in frequency bands (above 1GHz)

700 N	POLE VILLE	- AGL VIDO	-k 5070
Test Requirement:	in § 15.205(a), must also co	ons which fall in the restricted ba omply with the radiated emissior	
And And	in § 15.209(a)(see § 15.205	ō(c)).`	in sk shote
k Anbotek Anbot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
O. M. Siek	0.009-0.490	2400/F(kHz)	300 000
abotek Anbo	0.490-1.705	24000/F(kHz)	30 STONE
all abotek	1.705-30.0	30	30
Vupo, Vick	30-88	100 **	3,ek nbote
shorek Anbo	88-216	150 **	3
Arm rek abore	216-960	200 **	3 poten And
Yupo, Ai	Above 960	500 And	3 rek mb
Test Limit: of the Anti- nbotek Anti- Anti	intentional radiators operatifrequency bands 54-72 MH However, operation within t sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-p 90 kHz, 110–490 kHz and a	ragraph (g), fundamental emissing under this section shall not be 2, 76-88 MHz, 174-216 MHz or these frequency bands is permitt § 15.231 and 15.241. The tighter limit applies at the bein the above table are based on beak detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	e located in the 470-806 MHz. ted under other pand edges. measurements uency bands 9—ssion limits in
Votek	ANSI C63.10-2020 section	6.6.4	sk Aupo,
Test Method:	KDB 558074 D01 15.247 M		otek Anbotek
Procedure:	ANSI C63.10-2020 section	6.6.4 Anbore An	otek Anbotek

10.1. EUT Operation

01	Operating Envir	onment:	Anbo. K	Ar. Potek	Anboter	Anti	abotek	VU
lo,	Test mode:	1: TX mode: h modulation.	Keep the EUT	in continuous	sly transmittir	ng mode with C	SFSK Anborek	N.

10.2. Test Setup

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 28 of 31

10.3. Test Data

b	///	100		4 50	VII.	- 20	
8.	Temperature:	23.5 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa	
ı	Tomporatare.	P20.0	triumaity.	TO 70 per	7 turiospriorio i ressure.	I TO I KI G	40.

VU _D	hotek Anb		atek anboti	And	ak hotek	Anbo.
			TM1 / CH: L			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	28.31	15.27	43.58	74.00	-30.42	Vertical
7206.00	28.40	18.09	46.49	74.00	-27.51	Vertical
9608.00	29.20	23.76	52.96	74.00	-21.04	Vertical
12010.00	Aupote * A	iek .	abořek Anb	74.00	otek Anbote	Vertical
14412.00	*Upo*sk	Anbo.	hoiek E	74.00	siek onk	Vertical
4804.00	27.99	15.27	43.26	74.00	-30.74	Horizontal
7206.00	28.87	18.09	46.96	74.00	-27.04	Horizontal
9608.00	28.05	23.76	51.81	74.00	-22.19	Horizontal
12010.00	otek * Aupo	-k 20	ick Aupote	74.00	. nbotek	Horizontal
14412.00	hotek* An	ports Ant	iek inbo	74.00	ak hotel	Horizontal
Average value: Frequency	Reading	Factor	Result	Limit	Over Limit	
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	polarization
4804.00	16.58	15.27	31.85	54.00	-22.15	Vertical
7206.00	17.45	18.09	35.54	54.00	-18.46	Vertical
9608.00	18.67	23.76	42.43	54.00	-11.57	Vertical
12010.00	NO tek	Aupote, Au	iek .	54.00	. Br.	Vertical
14412.00	Ant *	, upotek	Aupo.	54.00	port. And	Vertical
4804.00	16.32	15.27	31.59	54.00	-22.41	Horizontal
7206.00	17.90	18.09	35.99	54.00	-18.01	Horizontal
9608.00	17.56	23.76	41.32	54.00	-12.68	Horizontal
12010.00	sek *	otek Wipor	ek hoj	54.00	Yup_	Horizontal
14412.00	Vpo. *	otek ant	oto. Aug	54.00	ek Aupo	Horizontal

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 29 of 31

arbo.	A. Siek	anbore.	And	hotek	Aupo. W.	rek
			ГМ1 / CH: M			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	27.86	15.42	43.28	74.00	-30.72	Vertical
7320.00	28.37	18.02	46.39	74.00	-27.61	Vertical
9760.00	28.70	23.80	52.50	74.00	-21.50	Vertical
12200.00	ek * nbotek	Aupor	hotek	74.00	And	Vertical
14640.00	*	tek Wipose	Pun de	74.00	Aupo	Vertical
4880.00	27.80	15.42	43.22	74.00	-30.78	Horizontal
7320.00	28.74	18.02	46.76	74.00	-27.24	Horizontal
9760.00	27.77	23.80	51.57	74.00	-22.43	Horizontal
12200.00	*otek	Aupole.	Aug	74.00	YUpor bu	Horizontal
14640.00	Art rek	nbotek	Aupo	74.00	Anbore	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4880.00	16.67	15.42	32.09	54.00	-21.91	Vertical V
7320.00	17.31	18.02	35.33	54.00	-18.67	Vertical
9760.00	18.52	23.80	42.32	54.00	-11.68	Vertical
12200.00	k *upor	N. Siek	anbotek	54.00	boiek	Vertical
14640.00	otek * Anbot	Anb	sk spojek	54.00	pi, potek	Vertical
4880.00	16.43	15.42	31.85	54.00	-22.15	Horizontal
7320.00	18.25	18.02	36.27	54.00	-17.73	Horizontal
9760.00	17.86	23.80	41.66	54.00	-12.34	Horizontal
12200.00	anbotek	Aupo	abotek	54.00	in otek	Horizontal
14640.00	* week	Anbor	K. K.	54.00	VUD.	Horizontal

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 30 of 31

Le. Ville	- dek	vupo.	N. OK	hote	VUL	rek
			TM1 / CH: H			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	27.99	15.58	43.57	74.00	-30.43	Vertical
7440.00	28.53	17.93	46.46	74.00	-27.54	Vertical
9920.00	29.40	23.83	53.23	74.00	-20.77	Vertical
12400.00	* P.	Aupolei	And	74.00	Aupo,	Vertical
14880.00	* 400	iek "potel	Aupo.	74.00	Aupole	Vertical
4960.00	27.94	15.58	43.52	74.00	-30.48	Horizontal
7440.00	28.95	17.93	46.88	74.00	-27.12	Horizontal
9920.00	28.15	23.83	51.98	74.00	-22.02	Horizontal
12400.00	Anb *	abotek	Aupo,	74.00	Anbote, Ant	Horizontal
14880.00	V. Apo,	Kotek	Anbore	74.00	abotek	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	17.79	15.58	33.37	54.00	-20.63	Vertical
7440.00	18.58	17.93	36.51	54.00	-17.49 N	Vertical
9920.00	19.17	23.83	43.00	54.00	-11.00	Vertical
12400.00	* * hotek	Anbo.	hotek	54.00	And	Vertical
14880.00	* * *	sk Aupolo	Aug	54.00	Vupo.	Vertical
4960.00	17.61	15.58	33.19	54.00	-20.81	Horizontal
7440.00	19.05	17.93	36.98	54.00	-17.02°	Horizontal
9920.00	18.01	23.83	41.84	54.00	-12.16	Horizontal
12400.00	* tolek	Aupole	Ann	54.00	100. br.	Horizontal
14880.00	An*	anbotek	Aupo	54.00	Aupore	Horizontal

Remark:

- 1. Result =Reading + Factor
- "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Report No.: 18220WC40091301 FCC ID: 2A7VD-H70C9 Page 31 of 31

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

