

## Medtronic, Inc.

MyCareLink Relay Home Communicator 24960

FCC 22H:2018 FCC 24E:2018 FCC 27L:2018 Cellular Radio

Report # MDTR0649







NVLAP LAB CODE: 200881-0

## **CERTIFICATE OF TEST**



Last Date of Test: July 11, 2018

Medtronic, Inc.

## Model: MyCareLink Relay Home Communicator 24960

## **Radio Equipment Testing**

### **Standards**

| Specification                | Method            |
|------------------------------|-------------------|
| FCC 22H:2018<br>FCC 24E:2018 | ANSI C63,26;2015  |
| FCC 27L:2018                 | 74401 000.20.2010 |

### **Results**

| Method<br>Clause | Test Description                               | Applied | Results | Comments                                                    |
|------------------|------------------------------------------------|---------|---------|-------------------------------------------------------------|
| 5.2.4.2          | Conducted Output Power                         | No      | N/A     | Testing covered under FCC ID:<br>QIPELS61-US original Grant |
| 5.6              | Frequency Stability                            | No      | N/A     | Testing covered under FCC ID: QIPELS61-US original Grant    |
| 5.4              | Occupied Bandwidth Emission Mask               | No      | N/A     | Testing covered under FCC ID: QIPELS61-US original Grant    |
| 5.5              | Out of Band Emissions - UMTS - CLR850          | Yes     | Pass    |                                                             |
| 5.5              | Out of Band Emissions - UMTS - PCS1900         | Yes     | Pass    |                                                             |
| 5.5              | Out of Band Emissions - UMTS - AWS1700         | Yes     | Pass    |                                                             |
| 5.7              | Spurious Emissions at the Antenna<br>Terminals | No      | N/A     | Testing covered under FCC ID:  QIPELS61-US original Grant   |
| 5.2.7            | ERP of Fundamental - UMTS - CLR850             | Yes     | Pass    |                                                             |
| 5.2.7            | EIRP of Fundamental - UMTS - PCS1900           | Yes     | Pass    |                                                             |
| 5.2.7            | EIRP of Fundamental - UMTS - AWS1700           | Yes     | Pass    |                                                             |
| 5.2.4.2          | Conducted Output Power                         | No      | N/A     | Testing covered under FCC ID: QIPELS61-US original Grant    |
| 5.6              | Frequency Stability                            | No      | N/A     | Testing covered under FCC ID: QIPELS61-US original Grant    |
| 5.4              | Occupied Bandwidth Emission Mask               | No      | N/A     | Testing covered under FCC ID: QIPELS61-US original Grant    |
| 5.5              | Out of Band Emissions - LTE Band 2             | Yes     | Pass    |                                                             |
| 5.5              | Out of Band Emissions - LTE Band 4             | Yes     | Pass    |                                                             |
| 5.5              | Out of Band Emissions - LTE Band 5             | Yes     | Pass    |                                                             |
| 5.5              | Out of Band Emissions - LTE Band 12            | Yes     | Pass    |                                                             |
| 5.7              | Spurious Emissions at the Antenna<br>Terminals | No      | N/A     | Testing covered under FCC ID:<br>QIPELS61-US original Grant |
| 5.2.7            | ERP of Fundamental - LTE Band 2                | Yes     | Pass    |                                                             |
| 5.2.7            | ERP of Fundamental - LTE Band 4                | Yes     | Pass    |                                                             |
| 5.2.7            | ERP of Fundamental - LTE Band 5                | Yes     | Pass    |                                                             |
| 5.2.7            | ERP of Fundamental - LTE Band 12               | Yes     | Pass    |                                                             |

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

Report No. MDTR0649 2/42

# **CERTIFICATE OF TEST**



## **Deviations From Test Standards**

None

**Approved By:** 

Matt Nuernberg, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

# **REVISION HISTORY**



| Revision<br>Number | Description | Date<br>(yyyy-mm-dd) | Page Number |  |  |  |
|--------------------|-------------|----------------------|-------------|--|--|--|
| 00                 | None        |                      |             |  |  |  |

Report No. MDTR0649 4/42

# ACCREDITATIONS AND AUTHORIZATIONS



### **United States**

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

**A2LA** - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

### Canada

**ISED** - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

### **European Union**

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

#### Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

#### Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

#### Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

#### **Taiwan**

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

## **Singapore**

**IDA** – Recognized by IDA as a CAB for the acceptance of test data.

#### Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

### **Hong Kong**

**OFCA** – Recognized by OFCA as a CAB for the acceptance of test data.

### **Vietnam**

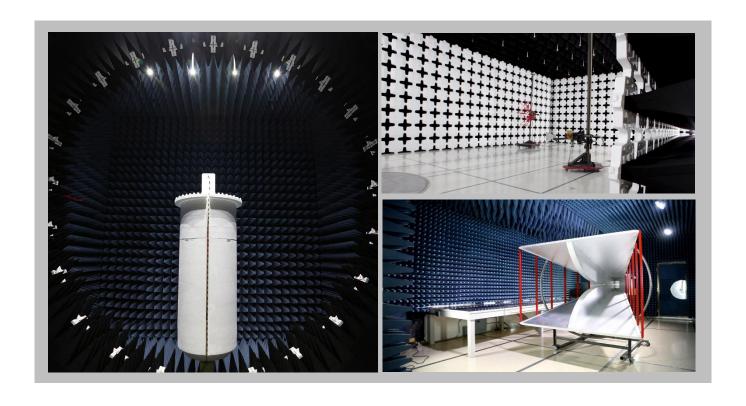
**MIC** – Recognized by MIC as a CAB for the acceptance of test data.

## SCOPE

For details on the Scopes of our Accreditations, please visit:

http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html

Report No. MDTR0649 5/42

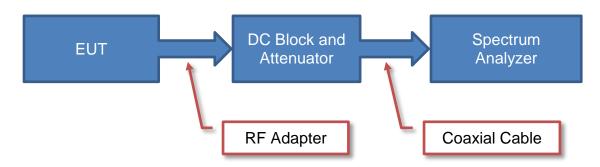

# **FACILITIES**



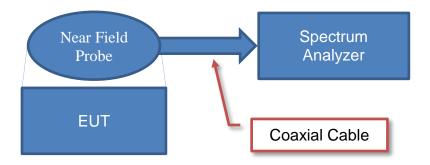




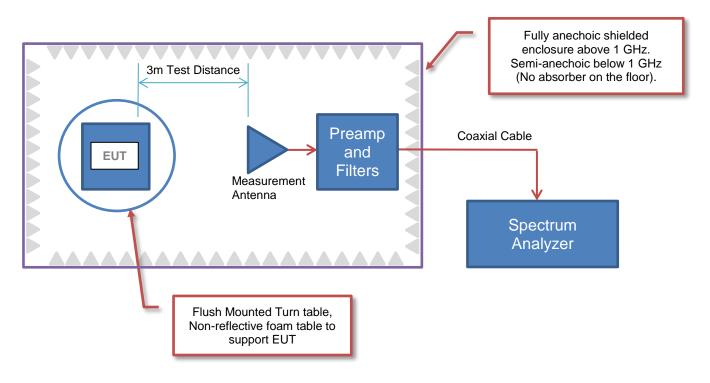
| California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918 (612)-638-5136 (612)-638-5136 |                                                                          | New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214 | Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066 | <b>Texas</b> Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255 | Washington Labs NC01-05 19201 120 <sup>th</sup> Ave NE Bothell, WA 98011 (425)984-6600 |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|
| (0.10) 00.1 00.10                                                                              | (0.12) 000 0.00                                                          |                                                                         | LAP                                                                                | (100) 001 0000                                                             | ( .==)== : ====                                                                        |  |  |  |  |  |
|                                                                                                |                                                                          |                                                                         |                                                                                    |                                                                            |                                                                                        |  |  |  |  |  |
| NVLAP Lab Code: 200676-0                                                                       | NVLAP Lab Code: 200881-0                                                 | NVLAP Lab Code: 200761-0                                                | NVLAP Lab Code: 200630-0                                                           | NVLAP Lab Code:201049-0                                                    | NVLAP Lab Code: 200629-0                                                               |  |  |  |  |  |
|                                                                                                | Innovation, Science and Economic Development Canada                      |                                                                         |                                                                                    |                                                                            |                                                                                        |  |  |  |  |  |
| 2834B-1, 2834B-3 2834E-1, 2834E-3                                                              |                                                                          | N/A                                                                     | 2834D-1, 2834D-2                                                                   | 2834G-1                                                                    | 2834F-1                                                                                |  |  |  |  |  |
|                                                                                                |                                                                          | BS                                                                      | МІ                                                                                 |                                                                            |                                                                                        |  |  |  |  |  |
| SL2-IN-E-1154R                                                                                 | SL2-IN-E-1152R                                                           | N/A                                                                     | SL2-IN-E-1017                                                                      | SL2-IN-E-1158R                                                             | SL2-IN-E-1153R                                                                         |  |  |  |  |  |
|                                                                                                | VCCI                                                                     |                                                                         |                                                                                    |                                                                            |                                                                                        |  |  |  |  |  |
| A-0029                                                                                         | A-0109                                                                   | N/A                                                                     | A-0108                                                                             | A-0201                                                                     | A-0110                                                                                 |  |  |  |  |  |
|                                                                                                | Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA |                                                                         |                                                                                    |                                                                            |                                                                                        |  |  |  |  |  |
| US0158                                                                                         | US0175                                                                   | N/A                                                                     | US0017                                                                             | US0191 US0157                                                              |                                                                                        |  |  |  |  |  |




Report No. MDTR0649 6/42


# **Test Setup Block Diagrams**




## **Antenna Port Conducted Measurements**



## **Near Field Test Fixture Measurements**



## **Spurious Radiated Emissions**



Report No. MDTR0649 7/42

## PRODUCT DESCRIPTION



## Client and Equipment Under Test (EUT) Information

| Company Name:            | Medtronic, Inc.                          |
|--------------------------|------------------------------------------|
| Address:                 | 710 Medtronic Parkway                    |
| City, State, Zip:        | Minneapolis, MN 55432                    |
| Test Requested By:       | Taylor Dowden                            |
| Model:                   | MyCareLink Relay Home Communicator 24960 |
| First Date of Test:      | July 2, 2018                             |
| Last Date of Test:       | July 11, 2018                            |
| Receipt Date of Samples: | June 25, 2018                            |
| Equipment Design Stage:  | Production                               |
| Equipment Condition:     | No Damage                                |
| Purchase Authorization:  | Verified                                 |

### Information Provided by the Party Requesting the Test

#### **Functional Description of the EUT:**

The MyCareLink Relay home communicator wirelessly transfers information between an implanted medical device and the Medtronic CareLink network. The wireless communication between the MyCareLink Relay and the Medtronic CareLink network is accomplished by means of a cellular radio. The four variations of the cellular radio support different combinations of 2G, 3G and 4G technologies.

#### **Testing Objective:**

To demonstrate compliance of the Cellular radio to FCC Part 22H, FCC Part 24E, and FCC Part 27L requirements. 3G and 4G band 5 data will also be used to support Australia and New Zealand radio compliance since AS/CA S042.4:2018 states that band 5 shall comply with the requirements of FCC Part 22H.

Report No. MDTR0649 8/42

# **CONFIGURATIONS**



## Configuration MDTR0649- 2

| Software/Firmware Running during test |          |  |  |  |  |
|---------------------------------------|----------|--|--|--|--|
| Description                           | Version  |  |  |  |  |
| blulite_test-eng AOSP                 | 1.10.588 |  |  |  |  |

| EUT                                         |                 |                   |               |  |  |  |  |  |  |
|---------------------------------------------|-----------------|-------------------|---------------|--|--|--|--|--|--|
| Description                                 | Manufacturer    | Model/Part Number | Serial Number |  |  |  |  |  |  |
| MyCareLink Relay Home<br>Communicator 24960 | Medtronic, Inc. | 24960             | MEA9963DEM    |  |  |  |  |  |  |
| Atech OEM Power Supply                      | Atech OEM       | ADS012T-W050200   | S1811003694   |  |  |  |  |  |  |

| Cables                       |        |            |         |                                                |                           |  |  |  |  |
|------------------------------|--------|------------|---------|------------------------------------------------|---------------------------|--|--|--|--|
| Cable Type                   | Shield | Length (m) | Ferrite | Connection 1                                   | Connection 2              |  |  |  |  |
| Atech OEM Power Supply Cable | No     | 1.9 m      | Yes     | MyCareLink Relay<br>Home Communicator<br>24960 | Atech OEM Power<br>Supply |  |  |  |  |

Report No. MDTR0649 9/42

# **MODIFICATIONS**



**Equipment Modifications** 

| Equipment Modifications |           |                                                 |                                      |                                                                     |                                             |  |  |  |  |
|-------------------------|-----------|-------------------------------------------------|--------------------------------------|---------------------------------------------------------------------|---------------------------------------------|--|--|--|--|
| Item                    | Date      | Test                                            | Modification                         | Note                                                                | Disposition of EUT                          |  |  |  |  |
| 1                       | 7/2/2018  | ERP of<br>Fundamental –<br>UMTS –<br>CLR850     | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |  |  |  |  |
| 2                       | 7/2/2018  | EIRP of<br>Fundamental –<br>UMTS –<br>PCS1900   | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |  |  |  |  |
| 3                       | 7/2/2018  | EIRP of<br>Fundamental –<br>UMTS –<br>AWS1700   | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |  |  |  |  |
| 4                       | 7/3/2018  | Out of Band<br>Emissions –<br>UMTS-<br>CLR850   | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |  |  |  |  |
| 5                       | 7/5/2018  | Out of Band<br>Emissions –<br>UMTS –<br>AWS1700 | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |  |  |  |  |
| 6                       | 7/5/2018  | Out of Band<br>Emissions –<br>UMTS –<br>PCS1900 | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |  |  |  |  |
| 7                       | 7/6/2018  | Out of Band<br>Emissions –<br>LTE Band 2        | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |  |  |  |  |
| 8                       | 7/9/2018  | Out of Band<br>Emissions –<br>LTE Band 4        | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |  |  |  |  |
| 9                       | 7/9/2018  | Out of Band<br>Emissions –<br>LTE Band 5        | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |  |  |  |  |
| 10                      | 7/10/2018 | Out of Band<br>Emissions –<br>LTE Band 12       | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |  |  |  |  |
| 11                      | 7/10/2018 | ERP of<br>Fundamental –<br>LTE Band 5           | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |  |  |  |  |
| 12                      | 7/10/2018 | ERP of<br>Fundamental –<br>LTE Band 12          | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |  |  |  |  |
| 13                      | 7/11/2018 | ERP of<br>Fundamental –<br>LTE Band 2           | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |  |  |  |  |
| 14                      | 7/11/2018 | ERP of<br>Fundamental –<br>LTE Band 4           | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | Scheduled testing was completed.            |  |  |  |  |

Report No. MDTR0649 10/42

# OUT OF BAND EMISSIONS - UMTS - CLR850



PSA-ESCI 2018 05 04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### MODES OF OPERATION

Tx WCDMA R99 CLR-850 (3G Band 5) on Low, Mid, or High channel at 826.4, 836.4, or 846.6 MHz.

#### **POWER SETTINGS INVESTIGATED**

110VAC/60Hz

#### **CONFIGURATIONS INVESTIGATED**

MDTR0649 - 2

#### FREQUENCY RANGE INVESTIGATED

Start Frequency | 30 MHz | Stop Frequency | 9 GHz

#### **SAMPLE CALCULATIONS**

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

| ILOI EQUI MENT                  |                    |                                |     |             |          |
|---------------------------------|--------------------|--------------------------------|-----|-------------|----------|
| Description                     | Manufacturer       | Model                          | ID  | Last Cal.   | Interval |
| Filter - Band Pass/Notch        | K&L Microwave      | 3TNF-500/1000-N/N              | HGS | 7-Aug-2017  | 12 mo    |
| Cellular Base Station Simulator | Anritsu            | MT8820C                        | AFK | NCR         | 0 mo     |
| Generator - Signal              | Rohde & Schwarz    | SML03                          | TII | 3-Apr-2018  | 36 mo    |
| Antenna - Double Ridge          | ETS Lindgren       | 3115                           | AJA | 27-Jun-2018 | 24 mo    |
| Meter - Power                   | Agilent            | N1913A                         | SQL | 17-Jul-2017 | 12 mo    |
| Power Sensor                    | Agilent            | N8481A                         | SQN | 17-Jul-2017 | 12 mo    |
| Amplifier - Pre-Amplifier       | Miteq              | AMF-6F-08001200-30-10P         | AVV | 13-Feb-2018 | 12 mo    |
| Antenna - Standard Gain         | ETS Lindgren       | 3160-07                        | AXP | NCR         | 0 mo     |
| Amplifier - Pre-Amplifier       | Miteq              | AMF-3D-00100800-32-13P         | AVT | 13-Feb-2018 | 12 mo    |
| Antenna - Double Ridge          | ETS Lindgren       | 3115                           | AIB | 25-Aug-2016 | 24 mo    |
| Filter - High Pass              | Micro-Tronics      | HPM50108                       | LFM | 20-Sep-2017 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Standard Gain Horn Cables      | MNJ | 12-Jul-2017 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Double Ridge Guide Horn Cables | MNI | 21-Nov-2017 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Bilog Cables                   | MNH | 9-Nov-2017  | 12 mo    |
| Attenuator                      | Fairview Microwave | SA18E-10                       | TYA | 20-Sep-2017 | 12 mo    |
| Analyzer - Spectrum Analyzer    | Agilent            | E4440A                         | AFD | 2-Aug-2017  | 12 mo    |

#### MEASUREMENT BANDWIDTHS

| Fre | equency Range<br>(MHz) | Peak Data<br>(kHz) | Quasi-Peak Data<br>(kHz) | Average Data<br>(kHz) |
|-----|------------------------|--------------------|--------------------------|-----------------------|
| '   | 0.01 - 0.15            | 1.0                | 0.2                      | 0.2                   |
| '   | 0.15 - 30.0            | 10.0               | 9.0                      | 9.0                   |
| '   | 30.0 - 1000            | 100.0              | 120.0                    | 120.0                 |
|     | Above 1000             | 1000.0             | N/A                      | 1000.0                |

#### TEST DESCRIPTION

At an approved test site, the transmitter was place on a remotely controlled turntable, and the measurement antenna was placed 3 meters from the transmitter. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis. The turntable azimuth was varied to maximize the level of spurious emissions. The height of the measurement antenna was also varied from 1 to 4 meters. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity. The amplitude and frequency of the highest emissions was noted.

The transmitter was then replaced with a ½ wave dipole that was successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator was connected to the dipole (horn antenna for frequencies above 1 GHz), and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the cable loss to the antenna and its gain, the power (dBm) was determined for each radiated spurious emission.

Report No. MDTR0649 11/42

# **OUT OF BAND EMISSIONS - UMTS - CLR850**



|                               | Work Order:         MDTR0649         Date:         3-Jul-2018           Project:         None         Temperature:         22.2 °C           Job Site:         MN05         Humidity:         55.8% RH           rial Number:         MEA9963DEM         Barometric Pres.:         1020 mbar |                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                              | 2 °C<br>% RH                             | Emirs 2018.05.07 PSA-ESCI 2018.05.04  Wayda Maddallan  Tested by: Kyle McMullan                                                                                                                                      |                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Seria                         |                                                                                                                                                                                                                                                                                              |                                                                                                                     |                                                                                                                                                                                    | Barome<br>ome Commu                                                                                                                                                                                          |                                          |                                                                                                                                                                                                                      | mbar                                                                                                        |                                                                                                                                                                                           | Tested by:                                                                                                                                                                                | : Kyle McMul                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lan                                                                                                                                                    |                |
|                               | iguration:                                                                                                                                                                                                                                                                                   | 2<br>Medtronic,                                                                                                     | Inc                                                                                                                                                                                |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
|                               |                                                                                                                                                                                                                                                                                              | Taylor Dov                                                                                                          |                                                                                                                                                                                    |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
|                               |                                                                                                                                                                                                                                                                                              | 110VAC/6                                                                                                            |                                                                                                                                                                                    | 950 (3C B                                                                                                                                                                                                    | and 5) on I                              | ow Mid o                                                                                                                                                                                                             | · Ligh char                                                                                                 | anal at 926                                                                                                                                                                               | 1 926 1 0                                                                                                                                                                                 | r 846.6 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |                |
| Operat                        | ing Mode:                                                                                                                                                                                                                                                                                    | TX WCDIVI                                                                                                           | IA K99 CLN                                                                                                                                                                         | K-050 (3G B                                                                                                                                                                                                  | and 5) on i                              | LOW, IVIIG, OI                                                                                                                                                                                                       | nigh chai                                                                                                   | iriei at ozo.                                                                                                                                                                             | 4, 030.4, 0                                                                                                                                                                               | 1 040.0 IVITIZ.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
| D                             | eviations:                                                                                                                                                                                                                                                                                   |                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
| C                             | omments:                                                                                                                                                                                                                                                                                     | -US                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
| Test Spec                     |                                                                                                                                                                                                                                                                                              |                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
| FCC 22.91                     | 29                                                                                                                                                                                                                                                                                           | Test Di                                                                                                             | stance (m)                                                                                                                                                                         | T 3                                                                                                                                                                                                          | Antenna                                  | a Height(s)                                                                                                                                                                                                          | ANSI COS                                                                                                    | 1 to 4(m)                                                                                                                                                                                 |                                                                                                                                                                                           | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P                                                                                                                                                      | rass           |
| IXIII #                       | 23                                                                                                                                                                                                                                                                                           | TCSt Di                                                                                                             | stance (III)                                                                                                                                                                       |                                                                                                                                                                                                              | Antonne                                  | a ricigit(3)                                                                                                                                                                                                         |                                                                                                             | 1 10 4(11)                                                                                                                                                                                |                                                                                                                                                                                           | results                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>'</u>                                                                                                                                               |                |
| -5 -                          |                                                                                                                                                                                                                                                                                              |                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
| -15 -                         |                                                                                                                                                                                                                                                                                              |                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                      |                |
| -25 -                         |                                                                                                                                                                                                                                                                                              |                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
|                               |                                                                                                                                                                                                                                                                                              |                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
| -35 -                         |                                                                                                                                                                                                                                                                                              |                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
| <b>E</b><br><b>8</b><br>-45 - |                                                                                                                                                                                                                                                                                              |                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                      | _   •                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
| <b>7</b> -45 -                |                                                                                                                                                                                                                                                                                              |                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                      | -                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
| -55 -                         |                                                                                                                                                                                                                                                                                              |                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
| -65 -                         |                                                                                                                                                                                                                                                                                              |                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
| -75 -                         |                                                                                                                                                                                                                                                                                              |                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
| -85                           |                                                                                                                                                                                                                                                                                              |                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |                |
| 1                             | 0                                                                                                                                                                                                                                                                                            |                                                                                                                     | 100                                                                                                                                                                                | )                                                                                                                                                                                                            |                                          | 1000<br><b>MHz</b>                                                                                                                                                                                                   |                                                                                                             |                                                                                                                                                                                           | 10000                                                                                                                                                                                     | ■ PK                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ◆ AV                                                                                                                                                   | 100000<br>• QP |
|                               | Freq<br>(MHz)                                                                                                                                                                                                                                                                                | Antenna<br>Height<br>(meters)                                                                                       | Azimuth (degrees)                                                                                                                                                                  | Polarity/<br>Transducer<br>Type                                                                                                                                                                              | Detector                                 | ERP<br>(Watts)                                                                                                                                                                                                       | ERP<br>(dBm)                                                                                                | Spec. Limit<br>(dBm)                                                                                                                                                                      | Compared to<br>Spec.<br>(dB)                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Comments                                                                                                                                               |                |
|                               | 2479.433<br>2478.617<br>2479.017<br>2479.983<br>2478.233<br>2479.550<br>1654.433<br>3301.600<br>3384.067<br>2509.533<br>3343.567<br>1654.267<br>2534.800<br>3382.467<br>3300.733<br>2504.483<br>2542.550<br>1671.700<br>1692.650<br>1692.783<br>1671.417                                     | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>2.1<br>1.0<br>2.6<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | 70.1<br>153.0<br>346.0<br>166.1<br>32.0<br>249.0<br>84.1<br>288.0<br>181.1<br>188.1<br>67.0<br>307.9<br>96.0<br>317.0<br>184.1<br>299.0<br>238.0<br>118.0<br>328.0<br>350.0<br>1.1 | Horz Vert Horz Vert Vert Horz Vert Horz Vert Horz Horz Horz Vert Horz Vert Vert Vert Horz Vert Vert Horz Vert Horz Vert Horz Vert Horz Vert Vert Vert Horz Vert Horz Vert Horz Vert Vert Horz Vert Horz Horz | PK P | 2.20E-07<br>1.59E-07<br>1.59E-07<br>1.00E-07<br>9.82E-08<br>7.11E-08<br>2.70E-08<br>2.52E-08<br>2.36E-08<br>2.20E-08<br>2.20E-08<br>2.20E-08<br>2.20E-08<br>1.75E-08<br>1.59E-08<br>1.45E-08<br>1.45E-08<br>1.29E-08 | -36.6 -38.0 -40.0 -40.1 -41.5 -45.7 -46.0 -46.1 -46.3 -46.6 -46.6 -46.6 -46.7 -47.6 -48.0 -48.0 -48.9 -49.0 | -13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0<br>-13.0 | -23.6<br>-25.0<br>-25.0<br>-27.0<br>-27.1<br>-28.5<br>-32.7<br>-33.0<br>-33.1<br>-33.3<br>-33.6<br>-33.6<br>-33.6<br>-33.6<br>-35.0<br>-35.0<br>-35.0<br>-35.4<br>-35.7<br>-35.9<br>-36.0 | EUT Horz, Lor EUT On Side, EUT Vert, Lov EUT Horz, Lor EUT Vert, Lov EUT Vert, Lov EUT On Side, EUT Horz, Lor EUT Horz, Mic EUT Horz, Mic EUT Horz, Mic EUT Horz, Mic EUT Horz, Hig EUT Horz, Lov EUT On Side, EUT Horz, Lor EUT On Side, EUT On Side, EUT Horz, Lor EUT On Side, EUT Horz, Lor EUT On Side, EUT On Side, EUT On Side, EUT Horz, Hig EUT Horz, Hig EUT Horz, Hig EUT Horz, Hig EUT Horz, Mic | Low Ch w Ch v Ch Low Ch Low Ch Jh Ch d Ch Low Ch Jh Ch d Ch High Ch High Ch Mid Ch High Ch |                |

Report No. MDTR0649 12/42

# OUT OF BAND EMISSIONS - UMTS - PCS1900



PSA-ESCI 2018 05 04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### MODES OF OPERATION

Tx WCDMA R99 PCS-1900 (3G Band 2) on Low, Mid, or High channel at 1852.4, 1880.0, or 1907.6 MHz.

#### POWER SETTINGS INVESTIGATED

110VAC/60Hz

#### **CONFIGURATIONS INVESTIGATED**

MDTR0649 - 2

#### FREQUENCY RANGE INVESTIGATED

#### SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

| TEOT EQUIT INIERT               |                        |                                |     |             |          |
|---------------------------------|------------------------|--------------------------------|-----|-------------|----------|
| Description                     | Manufacturer           | Model                          | ID  | Last Cal.   | Interval |
| Filter - High Pass              | Micro-Tronics          | HPM50111                       | LFN | 20-Sep-2017 | 12 mo    |
| Filter - Band Reject            | Wainwright Instruments | VTRCT10-1780-2200-22-40-40EEI  | HHP | 15-Feb-2018 | 12 mo    |
| Cellular Base Station Simulator | Anritsu                | MT8820C                        | AFK | NCR         | 0 mo     |
| Antenna - Double Ridge          | ETS Lindgren           | 3115                           | AJA | 27-Jun-2018 | 24 mo    |
| Meter - Power                   | Agilent                | N1913A                         | SQL | 17-Jul-2017 | 12 mo    |
| Power Sensor                    | Agilent                | N8481A                         | SQN | 17-Jul-2017 | 12 mo    |
| Amplifier - Pre-Amplifier       | Miteq                  | JSD4-18002600-26-8P            | APU | 12-Sep-2017 | 12 mo    |
| Cable                           | ESM Cable Corp         | TTBJ141 KMKM-72                | MNP | 12-Sep-2017 | 12 mo    |
| Antenna - Standard Gain         | ETS Lindgren           | 3160-09                        | AHG | NCR         | 0 mo     |
| Amplifier - Pre-Amplifier       | Miteq                  | AMF-6F-12001800-30-10P         | AVW | 13-Feb-2018 | 12 mo    |
| Antenna - Standard Gain         | ETS Lindgren           | 3160-08                        | AIQ | NCR         | 0 mo     |
| Amplifier - Pre-Amplifier       | Miteq                  | AMF-6F-08001200-30-10P         | AVV | 13-Feb-2018 | 12 mo    |
| Cable                           | ESM Cable Corp.        | Standard Gain Horn Cables      | MNJ | 12-Jul-2017 | 12 mo    |
| Antenna - Standard Gain         | ETS Lindgren           | 3160-07                        | AXP | NCR         | 0 mo     |
| Attenuator                      | Fairview Microwave     | SA18E-10                       | TYA | 20-Sep-2017 | 12 mo    |
| Amplifier - Pre-Amplifier       | Miteq                  | AMF-3D-00100800-32-13P         | AVT | 13-Feb-2018 | 12 mo    |
| Cable                           | ESM Cable Corp.        | Double Ridge Guide Horn Cables | MNI | 21-Nov-2017 | 12 mo    |
| Antenna - Double Ridge          | ETS Lindgren           | 3115                           | AIB | 25-Aug-2016 | 24 mo    |
| Filter - Low Pass               | Micro-Tronics          | LPM50004                       | LFK | 20-Sep-2017 | 12 mo    |
| Amplifier - Pre-Amplifier       | Miteq                  | AM-1616-1000                   | AVO | 9-Nov-2017  | 12 mo    |
| Cable                           | ESM Cable Corp.        | Bilog Cables                   | MNH | 9-Nov-2017  | 12 mo    |
| Antenna - Biconilog             | Teseq                  | CBL 6141B                      | AYD | 25-Jan-2018 | 24 mo    |
| Analyzer - Spectrum Analyzer    | Agilent                | E4440A                         | AFD | 2-Aug-2017  | 12 mo    |

#### **MEASUREMENT BANDWIDTHS**

| MILAGOREMENT DANDWIDTHS |           |                 |              |
|-------------------------|-----------|-----------------|--------------|
| Frequency Range         | Peak Data | Quasi-Peak Data | Average Data |
| (MHz)                   | (kHz)     | (kHz)           | (kHz)        |
| 0.01 - 0.15             | 1.0       | 0.2             | 0.2          |
| 0.15 - 30.0             | 10.0      | 9.0             | 9.0          |
| 30.0 - 1000             | 100.0     | 120.0           | 120.0        |
| Above 1000              | 1000.0    | N/A             | 1000.0       |

#### **TEST DESCRIPTION**

At an approved test site, the transmitter was place on a remotely controlled turntable, and the measurement antenna was placed 3 meters from the transmitter. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis. The turntable azimuth was varied to maximize the level of spurious emissions. The height of the measurement antenna was also varied from 1 to 4 meters. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity. The amplitude and frequency of the highest emissions was noted.

The transmitter was then replaced with a ½ wave dipole that was successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator was connected to the dipole (horn antenna for frequencies above 1 GHz), and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the cable loss to the antenna and its gain, the power (dBm) was determined for each radiated spurious emission.

Report No. MDTR0649 13/42

# **OUT OF BAND EMISSIONS - UMTS - PCS1900**



| We               | ark Ordan                                                | I MOTE                   | 20640                           |                              | Data                 | T = 11                                       | 2010                             | 1                                |                                  | EmiR5 2018.05.07                                                     | PSA-ESCI 2018.05                    |
|------------------|----------------------------------------------------------|--------------------------|---------------------------------|------------------------------|----------------------|----------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------------------------------------------|-------------------------------------|
| VVC              | ork Order:<br>Project:                                   |                          |                                 | Ton                          | Date:                | 5-Jui-<br>21.4                               | -2018<br>1 °C                    | 7                                | y la                             | man                                                                  | melen                               |
|                  | Job Site:                                                |                          |                                 |                              | Humidity:            |                                              | 6 RH                             |                                  | 7                                |                                                                      |                                     |
| Serial           | I Number:                                                |                          |                                 |                              | tric Pres.:          |                                              | mbar                             |                                  | Tested by:                       | Kyle McMulla                                                         | an                                  |
|                  |                                                          | MyCareLin                |                                 |                              |                      |                                              |                                  |                                  |                                  | i tyle meman                                                         |                                     |
| Conf             | iguration:                                               |                          | y . 1 C                         | 00111111                     |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          | Medtronic,               | Inc.                            |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          | Taylor Dov               |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          | 110VAC/60                |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| •                |                                                          | Tx WCDM                  | A R99 PCS                       | S-1900 (3G                   | Band 2) on           | Low. Mid.                                    | or High cha                      | annel at 18                      | 52.4. 1880.                      | 0, or 1907.6 N                                                       | ИНz.                                |
| Operati          | ing Mode:                                                |                          |                                 | `                            | ,                    | , ,                                          | Ü                                |                                  | ,                                | ,                                                                    |                                     |
|                  |                                                          | None                     |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| D                | eviations:                                               |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          | -US                      |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| Co               | omments:                                                 |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| Test Speci       | ifications                                               |                          |                                 |                              |                      |                                              | Test Meth                        | nod                              |                                  |                                                                      |                                     |
| CC 24.23         |                                                          |                          |                                 |                              |                      |                                              | ANSI C63                         |                                  |                                  |                                                                      |                                     |
| 00 24.23         | 0.2010                                                   |                          |                                 |                              |                      |                                              | A1101 C03                        | .20.2013                         |                                  |                                                                      |                                     |
|                  |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| Run #            | 54                                                       | Tost Die                 | stance (m)                      | 3                            | Antonna              | Height(s)                                    |                                  | 1 to 4(m)                        |                                  | Results                                                              | Pass                                |
| IVUII #          | 34                                                       | ו פאנ טופ                | nance (III)                     | J                            | Antenna              | i rieigiii(s)                                |                                  | 1 10 4(111)                      |                                  | Nesulis                                                              | 1 455                               |
| Г                |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| -5 -             |                                                          |                          | ++++                            |                              |                      | ++++                                         |                                  | +++                              |                                  |                                                                      |                                     |
| -                |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      | .                                   |
| -15 -            |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| -25 -            |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| 0.5              |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| -35 -            |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| Ε                |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| 표<br>명 -45 -     |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| <b>ʊ</b> -45 ⁻   |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| -55 -            |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| -65 -            |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| -75              |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| 0.5              |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
| -85 <sup>⊥</sup> | 0                                                        |                          | 100                             |                              |                      | 1000                                         | -                                |                                  | 10000                            |                                                                      | 100000                              |
| 10               | U                                                        |                          | 100                             | 1                            |                      | 1000                                         |                                  |                                  | 10000                            |                                                                      | 100000                              |
|                  |                                                          |                          |                                 |                              |                      | MHz                                          |                                  |                                  |                                  | ■ PK                                                                 | ♦ AV • QP                           |
|                  |                                                          |                          |                                 |                              |                      |                                              |                                  |                                  |                                  |                                                                      | - //                                |
|                  |                                                          |                          |                                 | Polarity/<br>Transducer      |                      |                                              |                                  |                                  | Compared to                      |                                                                      |                                     |
|                  | Freq                                                     | Antenna Height           | Azimuth                         | Type                         | Detector             | EIRP                                         | EIRP                             | Spec. Limit                      | Spec.                            |                                                                      | Comments                            |
|                  | (MHz)                                                    | (meters)                 | (degrees)                       |                              |                      | (Watts)                                      | (dBm)                            | (dBm)                            | (dB)                             |                                                                      |                                     |
|                  | 7444 447                                                 | 4.0                      | 405.0                           | He                           | Di/                  | 0.505.05                                     | 24.0                             | 40.0                             | 40.0                             | EUT On Cide 1                                                        | aw Ch                               |
|                  | 7414.417<br>7523.350                                     | 1.0<br>1.0               | 125.0<br>289.9                  | Horz<br>Horz                 | PK<br>PK             | 6.56E-07<br>5.99E-07                         | -31.8<br>-32.2                   | -13.0<br>-13.0                   | -18.8<br>-19.2                   | EUT On Side, I                                                       |                                     |
|                  | 7632.133                                                 | 1.0                      | 289.9<br>37.1                   | Horz                         | PK<br>PK             | 5.99E-07<br>5.46E-07                         | -32.2<br>-32.6                   | -13.0                            | -19.2<br>-19.6                   | EUT On Side, I                                                       |                                     |
|                  | 7517.550                                                 | 1.4                      | 250.0                           | Vert                         | PK                   | 5.46E-07                                     | -32.6                            | -13.0                            | -19.6                            | EUT Horz, Mid                                                        |                                     |
|                  | 7626.200                                                 | 1.0                      | 151.0                           | Vert                         | PK                   | 5.09E-07                                     | -32.9                            | -13.0                            | -19.9                            | EUT Horz, High                                                       |                                     |
|                  | 7409.917                                                 | 1.0                      | 91.1                            | Vert                         | PK                   | 4.75E-07                                     | -33.2                            | -13.0                            | -20.2                            | EUT Horz, Low                                                        |                                     |
|                  | 5725.850                                                 | 1.2                      | 55.1                            | Vert                         | PK<br>PK             | 2.74E-07                                     | -35.6<br>-35.9                   | -13.0                            | -22.6<br>-22.9                   | EUT Horz, High<br>EUT On Side, N                                     |                                     |
|                  | 5643.683<br>5553.033                                     | 1.0<br>1.0               | 310.0<br>0.0                    | Horz<br>Horz                 | PK<br>PK             | 2.55E-07<br>2.44E-07                         | -35.9<br>-36.1                   | -13.0<br>-13.0                   | -22.9<br>-23.1                   | EUT On Side, I                                                       |                                     |
|                  | 5720.017                                                 | 1.0                      | 99.0                            | Horz                         | PK                   | 2.33E-07                                     | -36.3                            | -13.0                            | -23.1                            | EUT On Side, I                                                       |                                     |
|                  | 5637.467                                                 | 1.8                      | 163.1                           | Vert                         | PK                   | 2.28E-07                                     | -36.4                            | -13.0                            | -23.4                            | EUT Horz, Mid                                                        | Ch                                  |
|                  | 5552.517                                                 | 1.0                      | 159.1                           | Vert                         | PK                   | 2.22E-07                                     | -36.5                            | -13.0                            | -23.5                            | EUT Horz, Low                                                        |                                     |
|                  | 3814.450                                                 | 1.9                      | 312.9                           | Horz                         | PK                   | 1.37E-07                                     | -38.6                            | -13.0                            | -25.6                            | EUT On Side, I                                                       |                                     |
|                  | 3817.867                                                 | 1.0                      | 222.0                           | Horz                         | PK<br>PK             | 9.49E-08                                     | -40.2<br>-40.5                   | -13.0                            | -27.2<br>27.5                    | EUT Vert, High<br>EUT On Side, I                                     |                                     |
|                  | 2700 267                                                 | 2.1                      | 235.0                           | Horz<br>Vert                 | PK<br>PK             | 8.85E-08                                     | -40.5<br>-40.5                   | -13.0                            | -27.5                            | EUT On Side, I                                                       |                                     |
|                  | 3700.367<br>3704.467                                     | 27                       | 0.0                             |                              |                      |                                              |                                  |                                  |                                  |                                                                      |                                     |
|                  | 3704.467                                                 | 2.7<br>1.0               | 0.0<br>274.0                    |                              |                      | 8.85E-08<br>8.46E-08                         |                                  | -13.0<br>-13.0                   | -27.5<br>-27.7                   | EUT Horz, High                                                       |                                     |
|                  |                                                          |                          | 0.0<br>274.0<br>337.9           | Vert<br>Horz                 | PK<br>PK             | 8.85E-08<br>8.46E-08<br>8.26E-08             | -40.5<br>-40.7<br>-40.8          | -13.0<br>-13.0<br>-13.0          | -27.5<br>-27.7<br>-27.8          |                                                                      | n Ch                                |
|                  | 3704.467<br>3818.983<br>3818.200<br>3817.983             | 1.0<br>1.0<br>1.0        | 274.0<br>337.9<br>28.0          | Vert<br>Horz<br>Vert         | PK<br>PK<br>PK       | 8.46E-08<br>8.26E-08<br>8.26E-08             | -40.7<br>-40.8<br>-40.8          | -13.0<br>-13.0<br>-13.0          | -27.7<br>-27.8<br>-27.8          | EUT Horz, High<br>EUT Horz, High<br>EUT Vert, High                   | n Ch<br>n Ch<br>Ch                  |
|                  | 3704.467<br>3818.983<br>3818.200<br>3817.983<br>3813.217 | 1.0<br>1.0<br>1.0<br>1.0 | 274.0<br>337.9<br>28.0<br>268.9 | Vert<br>Horz<br>Vert<br>Vert | PK<br>PK<br>PK<br>PK | 8.46E-08<br>8.26E-08<br>8.26E-08<br>7.03E-08 | -40.7<br>-40.8<br>-40.8<br>-41.5 | -13.0<br>-13.0<br>-13.0<br>-13.0 | -27.7<br>-27.8<br>-27.8<br>-28.5 | EUT Horz, High<br>EUT Horz, High<br>EUT Vert, High<br>EUT On Side, H | n Ch<br>n Ch<br>Ch<br>High Ch       |
|                  | 3704.467<br>3818.983<br>3818.200<br>3817.983             | 1.0<br>1.0<br>1.0        | 274.0<br>337.9<br>28.0          | Vert<br>Horz<br>Vert         | PK<br>PK<br>PK       | 8.46E-08<br>8.26E-08<br>8.26E-08             | -40.7<br>-40.8<br>-40.8          | -13.0<br>-13.0<br>-13.0          | -27.7<br>-27.8<br>-27.8          | EUT Horz, High<br>EUT Horz, High<br>EUT Vert, High                   | n Ch<br>n Ch<br>Ch<br>High Ch<br>Ch |

Report No. MDTR0649 14/42

# OUT OF BAND EMISSIONS - UMTS - AWS1700



PSA-ESCI 2018.05.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### **MODES OF OPERATION**

Tx WCDMA R99 AWS-1700 (3G Band 4) on Low, Mid, or High channel at 1712.4, 1735.4, or 1752.6 MHz.

#### **POWER SETTINGS INVESTIGATED**

110VAC/60Hz

#### **CONFIGURATIONS INVESTIGATED**

MDTR0649 - 2

#### FREQUENCY RANGE INVESTIGATED

| Start Frequency 30 MHz | Stop Frequency | 18 GHz |
|------------------------|----------------|--------|
|------------------------|----------------|--------|

#### **SAMPLE CALCULATIONS**

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model                          | ID  | Last Cal.   | Interval |
|------------------------------|--------------------|--------------------------------|-----|-------------|----------|
| Filter - Band Reject         | K&L Microwave      | 3TNF-1000/2000-N/N             | HGT | 7-Aug-2017  | 12 mo    |
| Attenuator                   | Fairview Microwave | SA18E-10                       | TYA | 20-Sep-2017 | 12 mo    |
| Cable                        | ESM Cable Corp.    | Standard Gain Horn Cables      | MNJ | 12-Jul-2017 | 12 mo    |
| Cable                        | ESM Cable Corp.    | Double Ridge Guide Horn Cables | MNI | 21-Nov-2017 | 12 mo    |
| Cable                        | ESM Cable Corp.    | Bilog Cables                   | MNH | 9-Nov-2017  | 12 mo    |
| Filter - High Pass           | Micro-Tronics      | HPM50111                       | LFN | 20-Sep-2017 | 12 mo    |
| Filter - Low Pass            | Micro-Tronics      | LPM50004                       | LFK | 20-Sep-2017 | 12 mo    |
| Antenna - Biconilog          | Teseq              | CBL 6141B                      | AYD | 25-Jan-2018 | 24 mo    |
| Antenna - Standard Gain      | ETS Lindgren       | 3160-07                        | AXP | NCR         | 0 mo     |
| Amplifier - Pre-Amplifier    | Miteq              | AMF-6F-08001200-30-10P         | AVV | 13-Feb-2018 | 12 mo    |
| Amplifier - Pre-Amplifier    | Miteq              | AM-1616-1000                   | AVO | 9-Nov-2017  | 12 mo    |
| Antenna - Standard Gain      | ETS Lindgren       | 3160-08                        | AIQ | NCR         | 0 mo     |
| Analyzer - Spectrum Analyzer | Agilent            | E4440A                         | AFD | 2-Aug-2017  | 12 mo    |

#### **MEASUREMENT BANDWIDTHS**

| Frequency Range<br>(MHz) | Peak Data<br>(kHz) | Quasi-Peak Data<br>(kHz) | Average Data<br>(kHz) |
|--------------------------|--------------------|--------------------------|-----------------------|
| 0.01 - 0.15              | 1.0                | 0.2                      | 0.2                   |
| 0.15 - 30.0              | 10.0               | 9.0                      | 9.0                   |
| 30.0 - 1000              | 100.0              | 120.0                    | 120.0                 |
| Above 1000               | 1000.0             | N/A                      | 1000.0                |

#### **TEST DESCRIPTION**

At an approved test site, the transmitter was place on a remotely controlled turntable, and the measurement antenna was placed 3 meters from the transmitter. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis. The turntable azimuth was varied to maximize the level of spurious emissions. The height of the measurement antenna was also varied from 1 to 4 meters. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity. The amplitude and frequency of the highest emissions was noted

The transmitter was then replaced with a ½ wave dipole that was successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator was connected to the dipole (horn antenna for frequencies above 1 GHz), and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the cable loss to the antenna and its gain, the power (dBm) was determined for each radiated spurious emission.

Report No. MDTR0649 15/42

# **OUT OF BAND EMISSIONS - UMTS - AWS1700**



|                    |                                  |                    |                        |                      |                 |                                  |                         | ,                        |                         | EmiR5 2018.05.07                                  |          | PSA-ESCI 2018.       |
|--------------------|----------------------------------|--------------------|------------------------|----------------------|-----------------|----------------------------------|-------------------------|--------------------------|-------------------------|---------------------------------------------------|----------|----------------------|
| Wo                 | ork Order:<br>Project:           |                    | R0649<br>one           | Ton                  | Date:           | 5-Jul                            | :2018<br>5 °C           | ~                        | y la                    | ma                                                | me       | -                    |
|                    | Job Site:                        |                    | N05                    |                      | Humidity:       |                                  | % RH                    | 1                        | 200                     |                                                   |          |                      |
| Serial             | Number:                          |                    | 63DEM                  |                      | tric Pres.:     |                                  | mbar                    |                          | Tested by:              | Kyle McMulla                                      | an       |                      |
|                    |                                  | MyCareLin          | nk Relay Ho            |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    | iguration:                       |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    |                                  | Medtronic,         |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    |                                  | Taylor Dov         |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
| EU                 | JT Power:                        | 110VAC/6           |                        | 0.4700.400           | D = = -1 4\ - = | . I Mid                          | and Disabata            | 1-47                     | 10 1 1705               | 4 4750.01                                         | NAL I-   |                      |
| Operati            | ing Mode:                        | IX WCDIVI          | A R99 AW               | 5-1700 (3G           | Band 4) or      | 1 LOW, IVIIA,                    | or High ch              | annel at 17              | 12.4, 1735              | .4, or 1752.6                                     | VIHZ.    |                      |
|                    |                                  | None               |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
| De                 | eviations:                       | INOTIC             |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    |                                  | -US                |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
| Co                 | omments:                         |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
| est Speci          | ifications                       |                    |                        |                      |                 |                                  | Test Meth               | od                       |                         |                                                   |          |                      |
| CC 27.53           |                                  |                    |                        |                      |                 |                                  | ANSI C63.               |                          |                         |                                                   |          |                      |
|                    |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
| Dec. #1            | 11                               | Tart P             | -t-u ( )               |                      | A m.1           | Haladitti                        |                         | 4 to 4/                  |                         | Deculta                                           |          | 1000                 |
| Run #              | 41                               | l est Dis          | stance (m)             | 3                    | Antenna         | Height(s)                        |                         | 1 to 4(m)                |                         | Results                                           | Р        | ass                  |
| Γ                  |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
| -5                 |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
| 45                 |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   | +        |                      |
| -15 -              |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
| -25                |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
| ₽ <sup>-35</sup> † |                                  |                    |                        |                      |                 |                                  |                         |                          | <b>-</b>                |                                                   |          |                      |
| Ē                  |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
| <u>2</u> -45       |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          | Ш                    |
| <b>ZHW/WB</b>      |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
| -55 -              |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
| -65                |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
| -03                |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
| -75 -              |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
| 0.5                |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
| -85 <sup>⊥</sup>   | <u> </u>                         |                    | 100                    |                      |                 | 1000                             |                         |                          | 10000                   |                                                   |          | 100000               |
| 10                 | J                                |                    | 100                    |                      |                 |                                  |                         |                          | 10000                   |                                                   |          | 100000               |
|                    |                                  |                    |                        |                      |                 | MHz                              |                         |                          |                         | ■ PK                                              | ◆ AV     | <ul><li>QP</li></ul> |
|                    |                                  |                    |                        | Polarity/            |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    | C                                | Antenna            | Azimuth                | Transducer           | Dut             | EIDD                             | EIRP                    | Cons. Lively             | Compared to             |                                                   | Commonts |                      |
|                    | Freq<br>(MHz)                    | Height<br>(meters) | (degrees)              | Туре                 | Detector        | EIRP<br>(Watts/MHz)              | (dBm/MHz)               | Spec. Limit<br>(dBm/MHz) | Spec.<br>(dB)           |                                                   | Comments |                      |
|                    |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   | 0.       |                      |
|                    | 6942.400                         | 1.0                | 339.0                  | Horz                 | PK              | 4.75E-07                         | -33.2                   | -13.0                    | -20.2                   | EUT Vert, Mid<br>EUT Vert, High                   |          |                      |
|                    | 7009.867<br>7007.233             | 1.9<br>1.6         | 307.0<br>53.0          | Horz<br>Vert         | PK<br>PK        | 4.54E-07<br>4.14E-07             | -33.4<br>-33.8          | -13.0<br>-13.0           | -20.4<br>-20.8          | EUT Horz, High                                    |          |                      |
|                    | 6942.850                         | 2.6                | 84.1                   | Vert                 | PK              | 4.14E-07                         | -33.8                   | -13.0                    | -20.8                   | EUT Horz, Mid                                     | Ch       |                      |
|                    | 6848.583                         | 2.7                | 4.1                    | Vert                 | PK              | 3.86E-07                         | -34.1                   | -13.0                    | -21.1                   | EUT Horz, Low                                     |          |                      |
|                    | 6846.350<br>5256.467             | 2.0<br>2.1         | 216.0<br>150.0         | Horz<br>Horz         | PK<br>PK        | 3.86E-07<br>2.28E-07             | -34.1<br>-36.4          | -13.0<br>-13.0           | -21.1<br>-23.4          | EUT Vert, Low<br>EUT Vert, High                   |          |                      |
|                    | 5260.217                         | 1.0                | 31.0                   | Vert                 | PK              | 2.20E-07<br>2.12E-07             | -36.4                   | -13.0                    | -23.4                   | EUT Horz, High                                    |          |                      |
|                    | 5132.233                         | 1.8                | 293.0                  | Horz                 | PK              | 1.89E-07                         | -37.2                   | -13.0                    | -24.2                   | EUT Vert, Low                                     | Ch       |                      |
|                    | 3507.900                         | 2.9                | 271.9                  | Vert                 | PK              | 1.85E-07                         | -37.3                   | -13.0                    | -24.3                   | EUT Horz, High                                    |          |                      |
|                    | 3472.067<br>5204.833             | 1.9<br>2.7         | 234.0<br>7.0           | Horz<br>Horz         | PK<br>PK        | 1.81E-07<br>1.81E-07             | -37.4<br>-37.4          | -13.0<br>-13.0           | -24.4<br>-24.4          | EUT Vert, Mid<br>EUT Vert, Mid                    |          |                      |
|                    | 5134.117                         | 1.0                | 178.1                  | Vert                 | PK              | 1.61E-07<br>1.57E-07             | -37.4                   | -13.0                    | -24.4                   | EUT Horz, Lov                                     |          |                      |
|                    | 5203.950                         | 1.7                | 14.0                   | Vert                 | PK              | 1.54E-07                         | -38.1                   | -13.0                    | -25.1                   | EUT Horz, Mid                                     | Ch       |                      |
|                    | 3509.450                         | 1.7                | 329.9                  | Horz                 | PK              | 1.14E-07                         | -39.4                   | -13.0                    | -26.4                   | EUT Vert, High                                    |          |                      |
|                    | 3507.300                         | 1.0                | 342.0                  | Horz                 | PK<br>PK        | 1.09E-07                         | -39.6<br>-40.1          | -13.0<br>-13.0           | -26.6<br>-27.1          | EUT On Side,<br>EUT Vert, Low                     |          |                      |
|                    | 3425.917<br>3470.933             | 2.0<br>1.0         | 324.0<br>128.0         | Horz<br>Vert         | PK<br>PK        | 9.71E-08<br>9.71E-08             | -40.1<br>-40.1          | -13.0<br>-13.0           | -27.1<br>-27.1          | EUT Horz, Mid                                     |          |                      |
|                    | 3503.450                         | 2.3                | 318.0                  | Vert                 | PK              | 8.07E-08                         | -40.9                   | -13.0                    | -27.9                   | EUT On Side,                                      | High Ch  |                      |
|                    |                                  |                    |                        |                      |                 |                                  |                         |                          |                         |                                                   |          |                      |
|                    | 3502.917                         | 1.0                | 89.0                   | Vert                 | PK              | 7.71E-08                         | -41.1                   | -13.0                    | -28.1                   | EUT Vert, High                                    |          |                      |
|                    | 3502.917<br>3507.383<br>3426.717 | 1.0<br>1.0<br>1.0  | 89.0<br>279.9<br>148.1 | Vert<br>Horz<br>Vert | PK<br>PK<br>PK  | 7.71E-08<br>7.03E-08<br>4.75E-08 | -41.1<br>-41.5<br>-43.2 | -13.0<br>-13.0<br>-13.0  | -28.1<br>-28.5<br>-30.2 | EUT Vert, High<br>EUT Horz, High<br>EUT Horz, Low | h Ch     |                      |

Report No. MDTR0649

# **ERP OF FUNDAMENTAL - UMTS - CLR850**



PSA-ESCI 2018.05.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### **MODES OF OPERATION**

Tx WCDMA R99 CLR-850 (3G Band 5) on Low, Mid, or High channel at 826.4, 836.4, or 846.6 MHz.

#### **POWER SETTINGS INVESTIGATED**

110VAC/60Hz

#### **CONFIGURATIONS INVESTIGATED**

MDTR0649 - 2

#### FREQUENCY RANGE INVESTIGATED

#### SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

| Description                     | Manufacturer       | Model        | ID  | Last Cal.   | Interval |
|---------------------------------|--------------------|--------------|-----|-------------|----------|
| Cellular Base Station Simulator | Anritsu            | MT8820C      | AFK | NCR         | 0 mo     |
| Antenna - Dipole                | EMCO               | 3121C-DB4    | ADI | 10-Feb-2016 | 36 mo    |
| Generator - Signal              | Rohde & Schwarz    | SML03        | TII | 3-Apr-2018  | 36 mo    |
| Meter - Power                   | Agilent            | N1913A       | SQL | 17-Jul-2017 | 12 mo    |
| Power Sensor                    | Agilent            | N8481A       | SQN | 17-Jul-2017 | 12 mo    |
| Attenuator                      | Fairview Microwave | SA18E-20     | TWZ | 20-Sep-2017 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Bilog Cables | MNH | 9-Nov-2017  | 12 mo    |
| Antenna - Biconilog             | Teseq              | CBL 6141B    | AYD | 25-Jan-2018 | 24 mo    |
| Analyzer - Spectrum Analyzer    | Agilent            | E4440A       | AFD | 2-Aug-2017  | 12 mo    |

#### **MEASUREMENT BANDWIDTHS**

| Frequency Range | Peak Data | Quasi-Peak Data | Average Data |
|-----------------|-----------|-----------------|--------------|
| (MHz)           | (kHz)     | (kHz)           | (kHz)        |
| 0.01 - 0.15     | 1.0       | 0.2             | 0.2          |
| 0.15 - 30.0     | 10.0      | 9.0             | 9.0          |
| 30.0 - 1000     | 100.0     | 120.0           | 120.0        |
| Above 1000      | 1000.0    | N/A             | 1000.0       |

#### **TEST DESCRIPTION**

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarizationThe amplitude and frequency of the highest emission were noted. The EUT was then replaced with a  $\frac{1}{2}$  wave dipole that was successively tuned to the highest emission. A signal generator was connected to the dipole, and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded. The signal generator, amplifier, and cable were then connected to an analyzer and the power output was recorded. By factoring in the dipole antenna gain (dBi), the effective radiated power for the maximum fundamental emission was determined. The ERP value was obtained from taking the value in EIRP -2.15.

Report No. MDTR0649 17/42

# **ERP OF FUNDAMENTAL - UMTS - CLR850**



| 2<br>Medtronic, Inc.<br>Taylor Dowden<br>110VAC/60Hz                                                      | ne Temperature: 21 25 Humidity: 57.9 3DEM Barometric Pres.: 1017 Relay Home Communicator 24960  nc. den Hz R99 CLR-850 (3G Band 5) on Low, Mid, c | 7 mbar Tested by:  or High channel at 826.4, 836.4, or  Test Method  ANSI C63.26:2015 | Kyle McMullan  846.6 MHz.  Results Pass |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------|
| MN05 MEA9963DEM MyCareLink Relay Ho 2 Medtronic, Inc. Taylor Dowden 110VAC/60Hz Tx WCDMA R99 CLF None -US | Barometric Pres.: 1017 Relay Home Communicator 24960  nc. den Hz R99 CLR-850 (3G Band 5) on Low, Mid, c                                           | 7 mbar Tested by:  or High channel at 826.4, 836.4, or  Test Method  ANSI C63.26:2015 | Kyle McMullan  846.6 MHz.               |
| MEA9963DEM MyCareLink Relay Ho 2 Medtronic, Inc. Taylor Dowden 110VAC/60Hz Tx WCDMA R99 CLF None -US      | 3DEM Barometric Pres.: 1017 Relay Home Communicator 24960  nc. den Hz R99 CLR-850 (3G Band 5) on Low, Mid, c                                      | 7 mbar Tested by:  or High channel at 826.4, 836.4, or  Test Method  ANSI C63.26:2015 | Kyle McMullan  846.6 MHz.               |
| MyCareLink Relay Ho 2 Medtronic, Inc. Taylor Dowden 110VAC/60Hz Tx WCDMA R99 CLF None -US                 | Relay Home Communicator 24960  nc. den Hz R99 CLR-850 (3G Band 5) on Low, Mid, c                                                                  | Test Method ANSI C63.26:2015                                                          | 846.6 MHz.                              |
| 2 Medtronic, Inc. Taylor Dowden 110VAC/60Hz Tx WCDMA R99 CLF None -US                                     | nc.<br>den<br>Hz<br>R99 CLR-850 (3G Band 5) on Low, Mid, c                                                                                        | Test Method ANSI C63.26:2015                                                          |                                         |
| Medtronic, Inc. Taylor Dowden 110VAC/60Hz Tx WCDMA R99 CLF None -US                                       | den<br>Hz<br>R99 CLR-850 (3G Band 5) on Low, Mid, c                                                                                               | Test Method ANSI C63.26:2015                                                          |                                         |
| Taylor Dowden<br>110VAC/60Hz<br>Tx WCDMA R99 CLF<br>None<br>-US                                           | den<br>Hz<br>R99 CLR-850 (3G Band 5) on Low, Mid, c                                                                                               | Test Method ANSI C63.26:2015                                                          |                                         |
| 110VAC/60Hz<br>Tx WCDMA R99 CLF<br>None<br>-US                                                            | Hz<br>R99 CLR-850 (3G Band 5) on Low, Mid, c                                                                                                      | Test Method ANSI C63.26:2015                                                          |                                         |
| Tx WCDMA R99 CLF<br>None<br>-US                                                                           | R99 CLR-850 (3G Band 5) on Low, Mid, o                                                                                                            | Test Method ANSI C63.26:2015                                                          |                                         |
| None<br>-US                                                                                               |                                                                                                                                                   | Test Method ANSI C63.26:2015                                                          |                                         |
| -US                                                                                                       | ance (m) 3 Antenna Height(s                                                                                                                       | ANSI C63.26:2015                                                                      | Results Pass                            |
|                                                                                                           | ance (m) 3 Antenna Height(s                                                                                                                       | ANSI C63.26:2015                                                                      | Results Pass                            |
| Test Distance (m)                                                                                         | ance (m)  3   Antenna Height(s                                                                                                                    | ANSI C63.26:2015                                                                      | Results Pass                            |
| Test Distance (m)                                                                                         | ance (m) 3 Antenna Height(s                                                                                                                       | ANSI C63.26:2015                                                                      | Results Pass                            |
| Test Distance (m)                                                                                         | ance (m) 3 Antenna Height(s                                                                                                                       |                                                                                       | Results Pass                            |
|                                                                                                           |                                                                                                                                                   | ,                                                                                     |                                         |
|                                                                                                           |                                                                                                                                                   |                                                                                       |                                         |
|                                                                                                           |                                                                                                                                                   |                                                                                       |                                         |
|                                                                                                           |                                                                                                                                                   |                                                                                       |                                         |
|                                                                                                           |                                                                                                                                                   |                                                                                       |                                         |
|                                                                                                           |                                                                                                                                                   |                                                                                       |                                         |
|                                                                                                           |                                                                                                                                                   |                                                                                       | -                                       |
|                                                                                                           |                                                                                                                                                   |                                                                                       |                                         |
|                                                                                                           | <b>*</b> •                                                                                                                                        |                                                                                       | •                                       |
|                                                                                                           |                                                                                                                                                   |                                                                                       |                                         |
|                                                                                                           |                                                                                                                                                   |                                                                                       |                                         |
|                                                                                                           |                                                                                                                                                   |                                                                                       |                                         |
|                                                                                                           | 829 834                                                                                                                                           | 839                                                                                   | 844 849                                 |
| 820                                                                                                       | JEU 004                                                                                                                                           |                                                                                       | ■ PK ◆ AV • QP                          |
| 829                                                                                                       | MHz                                                                                                                                               | =                                                                                     |                                         |
| 829  Antenna Height (degrees)                                                                             | Polarity/<br>Transducer<br>Azimuth Type Detector ERP                                                                                              | ERP Spec. Limit Spec. (dBm) (dBm) (dBm)                                               | Comments                                |
|                                                                                                           |                                                                                                                                                   |                                                                                       | Polarity/                               |

Report No. MDTR0649 18/42

# EIRP OF FUNDAMENTAL - UMTS - PCS1900



PSA-ESCI 2018.05.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### **MODES OF OPERATION**

Tx WCDMA R99 PCS-1900 (3G Band 2) on Low, Mid, or High channel at 1852.4, 1880.0, or 1907.6 MHz.

#### **POWER SETTINGS INVESTIGATED**

110VAC/60Hz

#### **CONFIGURATIONS INVESTIGATED**

MDTR0649 - 2

#### FREQUENCY RANGE INVESTIGATED

Start Frequency 1850 MHz Stop Frequency 1910 MHz

#### **SAMPLE CALCULATIONS**

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

| Description                     | Manufacturer       | Model                          | ID  | Last Cal.   | Interval |
|---------------------------------|--------------------|--------------------------------|-----|-------------|----------|
| Cellular Base Station Simulator | Anritsu            | MT8820C                        | AFK | NCR         | 0 mo     |
| Attenuator                      | Fairview Microwave | SA18E-20                       | TWZ | 20-Sep-2017 | 12 mo    |
| Antenna - Double Ridge          | ETS-Lindgren       | 3115                           | AJQ | 14-Nov-2016 | 24 mo    |
| Generator - Signal              | Rohde & Schwarz    | SML03                          | TII | 3-Apr-2018  | 36 mo    |
| Meter - Power                   | Agilent            | N1913A                         | SQL | 17-Jul-2017 | 12 mo    |
| Power Sensor                    | Agilent            | N8481A                         | SQN | 17-Jul-2017 | 12 mo    |
| Amplifier - Pre-Amplifier       | Miteq              | AMF-3D-00100800-32-13P         | AVT | 13-Feb-2018 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Double Ridge Guide Horn Cables | MNI | 21-Nov-2017 | 12 mo    |
| Antenna - Double Ridge          | ETS Lindgren       | 3115                           | AIB | 25-Aug-2016 | 24 mo    |
| Analyzer - Spectrum Analyzer    | Agilent            | E4440A                         | AFD | 2-Aug-2017  | 12 mo    |

#### **MEASUREMENT BANDWIDTHS**

| Frequency Range | Peak Data | Quasi-Peak Data | Average Data |
|-----------------|-----------|-----------------|--------------|
| (MHz)           | (kHz)     | (kHz)           | (kHz)        |
| 0.01 - 0.15     | 1.0       | 0.2             | 0.2          |
| 0.15 - 30.0     | 10.0      | 9.0             | 9.0          |
| 30.0 - 1000     | 100.0     | 120.0           | 120.0        |
| Above 1000      | 1000.0    | N/A             | 1000.0       |

#### TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes. The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The amplitude and frequency were noted. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the horn antenna the effective radiated power for each emission was determined.

Report No. MDTR0649 19/42

# **EIRP OF FUNDAMENTAL - UMTS -PCS1900**



| Wor           | rk Order                         | : MDT                                    | R0649                 |                    | Date:        | 2 <b>-</b> Jul       | -2018         |                      |                              | EmiR5 2018.05.07 |                                 | PSA-ESCI 201 |
|---------------|----------------------------------|------------------------------------------|-----------------------|--------------------|--------------|----------------------|---------------|----------------------|------------------------------|------------------|---------------------------------|--------------|
|               | Project                          |                                          | lone                  | Ter                | nperature:   |                      | 5 °C          | 74                   | rela                         | ma               | Mul                             | Can          |
|               | Job Site                         |                                          | N05                   |                    | Humidity:    |                      | % RH          |                      | 1                            |                  |                                 |              |
|               | Number                           |                                          | 963DEM                | Barome             | etric Pres.: |                      | mbar          |                      | Tested by:                   | Kyle McMu        | ullan                           |              |
|               |                                  | MyCareLink Relay Home Communicator 24960 |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
| Confid        | guration                         |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
|               |                                  | : Medtronic                              | c. Inc.               |                    |              |                      |               |                      |                              |                  |                                 |              |
|               |                                  | : Taylor Do                              |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
|               |                                  | : 110VAC/6                               |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
| Operatir      |                                  | T 14/004                                 |                       | S-1900 (3G         | Band 2) on   | Low, Mid,            | or High cha   | nnel at 185          | 2.4, 1880.0                  | ), or 1907.6     | MHz.                            |              |
| De            | viations                         |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
| Co            | mments                           | -US                                      |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
| st Specif     | ications                         |                                          |                       |                    |              |                      | Test Meth     | ad                   |                              |                  |                                 |              |
| C 24.232      |                                  |                                          |                       |                    |              |                      | ANSI C63.     |                      |                              |                  |                                 |              |
| D             | 0                                | Toot D                                   | istans (m)            |                    | Antonno      | Haimb#a              |               | 1 to 1/m             |                              | l Pagulta        |                                 | 2000         |
| Run #         | 8                                | l est D                                  | istance (m)           | 3                  | Antenna      | Height(s)            |               | 1 to 4(m)            |                              | Results          | <u> </u>                        | ass          |
| 40 ⊤          |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
|               |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
|               |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
| 35            |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 | +            |
| <b></b>       |                                  |                                          | ++++                  |                    | ++++         |                      |               |                      |                              | +++              |                                 | +++          |
|               |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
| 30 🗕          |                                  |                                          |                       |                    |              |                      |               |                      |                              | ++++             |                                 |              |
| - 1           |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
|               |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
| 25            |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
| 25            |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
|               |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
| E 🦼 📗         |                                  |                                          |                       |                    |              | _                    |               |                      |                              |                  |                                 |              |
| <b>교</b> 20 년 |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
| ٠             |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
|               |                                  |                                          |                       |                    |              | -                    |               |                      |                              |                  |                                 |              |
| 15            |                                  |                                          |                       |                    | ++++         |                      |               |                      |                              |                  |                                 | +            |
|               |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
|               |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
| 10            |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 | +            |
|               |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
|               |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
| 5 🗕           |                                  |                                          | +                     |                    | +            |                      |               |                      |                              | ++++             |                                 |              |
|               |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
|               |                                  |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
| 0 ↓           |                                  |                                          |                       |                    |              |                      |               |                      |                              | $\perp$          |                                 | $\perp$      |
| 1830          | )                                | 1840                                     | 1850                  | 1860               | 1870         | 1880                 | 1890          | 0 19                 | 00                           | 1910             | 1920                            | 1930         |
|               |                                  |                                          |                       |                    |              | MHz                  |               |                      |                              | <b>.</b> Biz     | A 817                           | • 05         |
|               |                                  |                                          |                       |                    |              |                      |               |                      |                              | ■ PK             | ◆ AV                            | • QF         |
|               |                                  |                                          |                       | Polarity/          |              |                      |               |                      | Comment                      |                  |                                 |              |
|               | Freq<br>(MHz)                    | Antenna Heigh<br>(meters)                | Azimuth (degrees)     | Transducer<br>Type | Detector     | EIRP<br>(Watts)      | EIRP<br>(dBm) | Spec. Limit<br>(dBm) | Compared to<br>Spec.<br>(dB) |                  | Comments                        | 5            |
|               | 1851.808                         | 1.0                                      | 49.0                  | Horz               | PK           | 3.94E-01             | 26.0          | 33.0                 | -7.0                         | EUT On Side      | e, Low Ch                       |              |
|               | 1906.967                         | 1.0                                      | 332.0                 | Vert               | PK           | 3.05E-01             | 24.8          | 33.0                 | -8.2                         | EUT Horz, H      | ligh Ch                         |              |
|               | 1851.575                         | 1.0                                      | 337.9                 | Vert               | PK           | 2.57E-01             | 24.1          | 33.0                 | -8.9                         | EUT Horz, L      |                                 |              |
|               |                                  | 1.0                                      | 40.1                  | Horz               | PK           | 2.22E-01             | 23.5          | 33.0                 | -9.5                         | EUT On Side      |                                 |              |
|               | 1906.242                         |                                          |                       |                    |              |                      |               |                      |                              |                  |                                 |              |
|               | 1879.183                         | 1.0                                      | 336.0                 | Vert               | PK           | 2.11E-01             | 23.3          | 33.0                 | -9.8                         | EUT Horz, M      |                                 |              |
|               | 1879.183<br>1879.625             | 1.0<br>1.0                               | 336.0<br>54.0         | Horz               | PK           | 2.11E-01             | 23.2          | 33.0                 | -9.8                         | EUT On Side      | e, Mid Ch                       |              |
|               | 1879.183<br>1879.625<br>1879.350 | 1.0<br>1.0<br>1.0                        | 336.0<br>54.0<br>76.1 | Horz<br>Vert       | PK<br>PK     | 2.11E-01<br>1.79E-01 | 23.2<br>22.5  | 33.0<br>33.0         | -9.8<br>-10.5                | EUT On Side      | e, Mid Ch<br>e, Mid Ch          |              |
|               | 1879.183<br>1879.625             | 1.0<br>1.0                               | 336.0<br>54.0         | Horz               | PK           | 2.11E-01             | 23.2          | 33.0                 | -9.8                         | EUT On Side      | e, Mid Ch<br>e, Mid Ch<br>id Ch |              |

Report No. MDTR0649 20/42

# **EIRP OF FUNDAMENTAL - UMTS - AWS1700**



PSA-ESCI 2018.05.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### **MODES OF OPERATION**

Tx WCDMA R99 AWS-1700 (3G Band 4) on Low, Mid, or High channel at 1712.4, 1735.4 or 1756.6 MHz.

#### **POWER SETTINGS INVESTIGATED**

110VAC/60Hz

#### **CONFIGURATIONS INVESTIGATED**

MDTR0649 - 2

#### FREQUENCY RANGE INVESTIGATED

|  | Start Frequency 1710 MHz | Stop Frequency | 1759 MHz |
|--|--------------------------|----------------|----------|
|--|--------------------------|----------------|----------|

#### SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

| Description                     | Manufacturer       | Model                          | ID  | Last Cal.   | Interval |
|---------------------------------|--------------------|--------------------------------|-----|-------------|----------|
| Cellular Base Station Simulator | Anritsu            | MT8820C                        | AFK | NCR         | 0 mo     |
| Antenna - Double Ridge          | ETS-Lindgren       | 3115                           | AJQ | 14-Nov-2016 | 24 mo    |
| Generator - Signal              | Rohde & Schwarz    | SML03                          | TII | 3-Apr-2018  | 36 mo    |
| Meter - Power                   | Agilent            | N1913A                         | SQL | 17-Jul-2017 | 12 mo    |
| Power Sensor                    | Agilent            | N8481A                         | SQN | 17-Jul-2017 | 12 mo    |
| Attenuator                      | Fairview Microwave | SA18E-20                       | TWZ | 20-Sep-2017 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Double Ridge Guide Horn Cables | MNI | 21-Nov-2017 | 12 mo    |
| Antenna - Double Ridge          | ETS Lindgren       | 3115                           | AIB | 25-Aug-2016 | 24 mo    |
| Analyzer - Spectrum Analyzer    | Agilent            | E4440A                         | AFD | 2-Aug-2017  | 12 mo    |

### MEASUREMENT BANDWIDTHS

| Frequency Range<br>(MHz) | Peak Data<br>(kHz) | Quasi-Peak Data<br>(kHz) | Average Data<br>(kHz) |
|--------------------------|--------------------|--------------------------|-----------------------|
| 0.01 - 0.15              | 1.0                | 0.2                      | 0.2                   |
| 0.15 - 30.0              | 10.0               | 9.0                      | 9.0                   |
| 30.0 - 1000              | 100.0              | 120.0                    | 120.0                 |
| Above 1000               | 1000.0             | N/A                      | 1000.0                |

#### **TEST DESCRIPTION**

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes. The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The amplitude and frequency were noted. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the horn antenna the effective radiated power for each emission was determined.

Report No. MDTR0649 21/42

# **EIRP OF FUNDAMENTAL - UMTS - AWS1700**



| Wo                    | ork Order:                                                                                   |                                                                                                  |                                                      | Date:                                  | 2-Jul-                                                                           |                                                              |                                                              | 600                                                          | EmiR5 2018.05.07                                                                                                                     |                                                            | PSA-ESCI 2018.0 |
|-----------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------|
|                       | Project:                                                                                     |                                                                                                  |                                                      | perature:                              | 21.4                                                                             |                                                              | 1/2                                                          | yla                                                          | Ma                                                                                                                                   | mel                                                        | m               |
|                       | Job Site:                                                                                    |                                                                                                  | H                                                    | lumidity:                              | 55.3%                                                                            |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
| Serial                | Number:                                                                                      |                                                                                                  | Baromet                                              |                                        | 1017                                                                             | mbar                                                         | •                                                            | Tested by:                                                   | Kyle McMul                                                                                                                           | lan                                                        |                 |
|                       |                                                                                              | MyCareLink Relay Ho                                                                              | me Commur                                            | nicator 2496                           | 0                                                                                |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
|                       | iguration:                                                                                   |                                                                                                  |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
|                       |                                                                                              | Medtronic, Inc.                                                                                  |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
|                       |                                                                                              | Taylor Dowden                                                                                    |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
| EL                    | JT Power:                                                                                    | 110VAC/60Hz                                                                                      |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
| Operati               | ng Mode:                                                                                     |                                                                                                  | S-1700 (3G E                                         | Band 4) on L                           | _ow, Mid,                                                                        | or High cha                                                  | annel at 171                                                 | 12.4, 1735.4                                                 | 4 or 1756.6 ľ                                                                                                                        | MHz.                                                       |                 |
| D                     | eviations:                                                                                   |                                                                                                  |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
| Co                    | omments:                                                                                     | -US                                                                                              |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
| act Spaci             | fications                                                                                    | l                                                                                                |                                                      |                                        |                                                                                  | Test Meth                                                    | od                                                           |                                                              |                                                                                                                                      |                                                            |                 |
| CC 27.50:             |                                                                                              |                                                                                                  |                                                      |                                        |                                                                                  | ANSI C63.                                                    |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
|                       |                                                                                              |                                                                                                  |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
| Run #                 | 7                                                                                            | Test Distance (m)                                                                                | 3                                                    | Antenna I                              | Height(s)                                                                        |                                                              | 1 to 4(m)                                                    |                                                              | Results                                                                                                                              | Pa                                                         | ass             |
| 40 T                  |                                                                                              |                                                                                                  |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
|                       |                                                                                              |                                                                                                  |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
| 35                    |                                                                                              |                                                                                                  |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
| 30                    |                                                                                              |                                                                                                  |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
| 25                    | -                                                                                            |                                                                                                  |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
| සූ <sub>20</sub>      |                                                                                              |                                                                                                  |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
| 15                    |                                                                                              |                                                                                                  |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
| 10                    |                                                                                              |                                                                                                  |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
| 5 —                   |                                                                                              |                                                                                                  |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
|                       |                                                                                              |                                                                                                  |                                                      |                                        |                                                                                  |                                                              |                                                              |                                                              |                                                                                                                                      |                                                            |                 |
| 0 <del>↓</del><br>171 | 0 1                                                                                          | 715 1720                                                                                         | 1725                                                 | 1730                                   | 1735                                                                             | 174                                                          | 40 1                                                         | 745                                                          | 1750                                                                                                                                 | 1755                                                       |                 |
|                       |                                                                                              |                                                                                                  |                                                      |                                        | MHz                                                                              |                                                              |                                                              |                                                              | ■ PK                                                                                                                                 | ◆ AV                                                       | • QP            |
|                       | Freq<br>(MHz)                                                                                | Antenna Height (meters) (degrees)                                                                | Polarity/<br>Transducer<br>Type                      | Detector                               | EIRP<br>(Watts)                                                                  | EIRP<br>(dBm)                                                | Spec. Limit<br>(dBm)                                         | Compared to<br>Spec.<br>(dB)                                 |                                                                                                                                      | Comments                                                   |                 |
|                       | 1734.692<br>1734.175<br>1751.517<br>1751.883<br>1711.483<br>1711.917<br>1734.725<br>1734.900 | 1.0 46.0<br>1.0 130.1<br>1.0 34.1<br>1.0 350.0<br>1.0 63.0<br>1.0 48.1<br>1.0 175.0<br>1.0 137.1 | Horz<br>Vert<br>Horz<br>Vert<br>Horz<br>Vert<br>Horz | PK<br>PK<br>PK<br>PK<br>PK<br>PK<br>PK | 4.62E-01<br>3.22E-01<br>2.99E-01<br>2.99E-01<br>2.85E-01<br>2.44E-01<br>2.32E-01 | 26.7<br>25.1<br>24.8<br>24.8<br>24.6<br>23.9<br>23.7<br>22.9 | 30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0 | -3.4<br>-4.9<br>-5.2<br>-5.2<br>-5.5<br>-6.1<br>-6.4<br>-7.1 | EUT On Side,<br>EUT Horz, Mide,<br>EUT On Side,<br>EUT Horz, Hig<br>EUT On Side,<br>EUT Horz, Lo'<br>EUT Horz, Mide<br>EUT Ver, Mide | d Ch<br>High Ch<br>gh Ch<br>Low Ch<br>w Ch<br>d Ch<br>I Ch |                 |
|                       | 1734.725                                                                                     | 1.0 175.0                                                                                        | Horz                                                 | PK<br>PK<br>PK                         | 2.32E-01                                                                         | 23.7                                                         | 30.0                                                         | -6.4                                                         | EUT Horz, Mic                                                                                                                        | d Ch<br>I Ch<br>Mid Ch                                     |                 |

Report No. MDTR0649 22/42

## **OUT OF BAND EMISSIONS - LTE BAND 2**



PSA-ESCI 2018.05.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### MODES OF OPERATION

Tx LTE Band 2 (PCS-1900) on Low, Mid, or High channel at 1850.7, 1880.0, or 1909.3 MHz using the modulations, bandwidths, and resource block configurations noted below.

#### **POWER SETTINGS INVESTIGATED**

110VAC/60Hz

#### **CONFIGURATIONS INVESTIGATED**

MDTR0649 - 2

#### FREQUENCY RANGE INVESTIGATED

| Start Frequency   30 MHz   Stop Frequency   20 GHz |
|----------------------------------------------------|
|----------------------------------------------------|

#### **SAMPLE CALCULATIONS**

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

| IESI EQUIPINENI                 |                        |                                |     |             |          |
|---------------------------------|------------------------|--------------------------------|-----|-------------|----------|
| Description                     | Manufacturer           | Model                          | ID  | Last Cal.   | Interval |
| Filter - High Pass              | Micro-Tronics          | HPM50111                       | LFN | 20-Sep-2017 | 12 mo    |
| Filter - Low Pass               | Micro-Tronics          | LPM50004                       | LFK | 20-Sep-2017 | 12 mo    |
| Filter - Band Reject            | Wainwright Instruments | WTRCT10-1780-2200-22-40-40EEk  | HHP | 15-Feb-2018 | 12 mo    |
| Cellular Base Station Simulator | Anritsu                | MT8820C                        | AFK | NCR         | 0 mo     |
| Amplifier - Pre-Amplifier       | Miteq                  | AMF-6F-12001800-30-10P         | AVW | 13-Feb-2018 | 12 mo    |
| Antenna - Standard Gain         | ETS Lindgren           | 3160-08                        | AIQ | NCR         | 0 mo     |
| Amplifier - Pre-Amplifier       | Miteq                  | AMF-6F-08001200-30-10P         | AVV | 13-Feb-2018 | 12 mo    |
| Cable                           | ESM Cable Corp.        | Standard Gain Horn Cables      | MNJ | 12-Jul-2017 | 12 mo    |
| Antenna - Standard Gain         | ETS Lindgren           | 3160-07                        | AXP | NCR         | 0 mo     |
| Amplifier - Pre-Amplifier       | Miteq                  | AMF-3D-00100800-32-13P         | AVT | 13-Feb-2018 | 12 mo    |
| Cable                           | ESM Cable Corp.        | Double Ridge Guide Horn Cables | MNI | 21-Nov-2017 | 12 mo    |
| Antenna - Double Ridge          | ETS Lindgren           | 3115                           | AIB | 25-Aug-2016 | 24 mo    |
| Amplifier - Pre-Amplifier       | Miteq                  | AM-1616-1000                   | AVO | 9-Nov-2017  | 12 mo    |
| Cable                           | ESM Cable Corp.        | Bilog Cables                   | MNH | 9-Nov-2017  | 12 mo    |
| Antenna - Double Ridge          | ETS Lindgren           | 3115                           | AJA | 27-Jun-2018 | 24 mo    |
| Meter - Power                   | Agilent                | N1913A                         | SQL | 17-Jul-2017 | 12 mo    |
| Power Sensor                    | Agilent                | N8481A                         | SQN | 17-Jul-2017 | 12 mo    |
| Cellular Base Station Simulator | Anritsu                | MT8820C                        | AFK | NCR         | 0 mo     |
| Analyzer - Spectrum Analyzer    | Agilent                | E4440A                         | AFD | 2-Aug-2017  | 12 mo    |
| Antenna - Biconilog             | Teseq                  | CBL 6141B                      | AYD | 25-Jan-2018 | 24 mo    |

#### MEASUREMENT BANDWIDTHS

| WEASONEWENT DANDWIDTHS |           |                 |              |
|------------------------|-----------|-----------------|--------------|
| Frequency Range        | Peak Data | Quasi-Peak Data | Average Data |
| (MHz)                  | (kHz)     | (kHz)           | (kHz)        |
| 0.01 - 0.15            | 1.0       | 0.2             | 0.2          |
| 0.15 - 30.0            | 10.0      | 9.0             | 9.0          |
| 30.0 - 1000            | 100.0     | 120.0           | 120.0        |
| Above 1000             | 1000.0    | N/A             | 1000.0       |

#### **TEST DESCRIPTION**

At an approved test site, the transmitter was place on a remotely controlled turntable, and the measurement antenna was placed 3 meters from the transmitter. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis. The turntable azimuth was varied to maximize the level of spurious emissions. The height of the measurement antenna was also varied from 1 to 4 meters. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity. The amplitude and frequency of the highest emissions was noted.

The transmitter was then replaced with a ½ wave dipole that was successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator was connected to the dipole (horn antenna for frequencies above 1 GHz), and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the cable loss to the antenna and its gain, the power (dBm) was determined for each radiated spurious emission.

Report No. MDTR0649 23/42

# **OUT OF BAND EMISSIONS - LTE BAND 2**



■ PK ◆ AV • QP

| Wo                                                              | ork Order: | MDTF       |           | Date                                          |              |                   | 72              | 11-              |             |
|-----------------------------------------------------------------|------------|------------|-----------|-----------------------------------------------|--------------|-------------------|-----------------|------------------|-------------|
|                                                                 | Project:   |            | ne        | Temperature                                   |              | °C /              | Lyli            | make             | reta        |
|                                                                 | Job Site:  |            | 105       | Humidit                                       |              | RH                |                 |                  |             |
| Seria                                                           | I Number:  |            | 63DEM     | Barometric Pres                               | 1035 n       | nbar              | Tested by:      | Kyle McMullan    |             |
|                                                                 | EUT:       | MyCareLin  | k Relay H | lome Communicator 2                           | 24960        |                   |                 |                  |             |
| Conf                                                            | iguration: | 2          |           |                                               |              |                   |                 |                  |             |
| (                                                               | Customer:  | Medtronic, | Inc.      |                                               |              |                   |                 |                  |             |
|                                                                 | Attendees: |            |           |                                               |              |                   |                 |                  |             |
| El                                                              | UT Power:  | 110VAC/6   | 0Hz       |                                               |              |                   |                 |                  |             |
| Operat                                                          | ing Mode:  |            |           | S-1900) on Low, Mid, ource block configura    |              |                   | .0, or 1909.3 N | /IHz using the m | odulations, |
| D                                                               | eviations: | None       |           |                                               |              |                   |                 |                  |             |
| C                                                               | omments:   |            |           | ab report UL0542015<br>urce block configurati |              | 2-2 leveraged for | determining w   | orst-case modu   | ulation,    |
| st Spec                                                         | ifications |            |           |                                               |              | Test Method       |                 |                  |             |
| C 24.23                                                         |            |            |           |                                               |              | ANSI C63.26:2015  | 5               |                  |             |
|                                                                 |            |            |           |                                               |              |                   |                 |                  |             |
| Run#                                                            | 85         | Test Dis   | stance (m | ) 3 Anten                                     | na Height(s) | 1 to 4(           | m)              | Results          | Pass        |
| Run#                                                            | 85         | Test Dis   | stance (m | ) 3 Anten                                     | na Height(s) | 1 to 4(           | m)              | Results          | Pass        |
|                                                                 | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) | 1 to 4(           | m)              | Results          | Pass        |
| Run #                                                           | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) | 1 to 4(           | m)              | Results          | Pass        |
|                                                                 | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) | 1 to 4(           | m)              | Results          | Pass        |
|                                                                 | 85         | Test Dis   | stance (m | Anten                                         | na Height(s) | 1 to 4(           | m)              | Results          | Pass        |
| -5 -                                                            | 85         | Test Dis   | stance (m | ) 3 Anten                                     | na Height(s) | 1 to 4(           | m)              | Results          | Pass        |
| -5 -<br>-15 -                                                   | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) | 1 to 4(           | m)              | Results          | Pass        |
| -5 -                                                            | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) | 1 to 4(           | m)              | Results          | Pass        |
| -5 -<br>-15 -                                                   | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) | 1 to 4(           | m)              | Results          | Pass        |
| -5 -<br>-15 -<br>-25 -                                          | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) | 1 to 4(           | m)              | Results          | Pass        |
| -5 -<br>-15 -<br>-25 -                                          | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) | 1 to 4(           | m)              | Results          | Pass        |
| -5 -<br>-15 -<br>-25 -                                          | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) |                   |                 | Results          | Pass        |
| -5 -<br>-15 -<br>-25 -                                          | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) |                   | m)              | Results          | Pass        |
| -5 -<br>-15 -<br>-25 -                                          | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) |                   |                 | Results          | Pass        |
| -5 -<br>-15 -<br>-25 -<br><b>2</b> -35 -                        | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) |                   |                 | Results          | Pass        |
| -15 -<br>-15 -<br>-25 -<br><b>×</b> -35 -<br><b>×</b> -45 -     | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) |                   |                 | Results          | Pass        |
| -5 -<br>-15 -<br>-25 -                                          | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) |                   |                 | Results          | Pass        |
| -15 -<br>-15 -<br>-25 -<br><b>×</b> -35 -<br><b>×</b> -45 -     | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) |                   |                 | Results          | Pass        |
| -15 -<br>-15 -<br>-25 -<br><b>×</b> -35 -<br><b>×</b> -45 -     | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) |                   |                 | Results          | Pass        |
| -15 -<br>-15 -<br>-25 -<br><b>24 -</b> 35 -<br><b>27 -</b> 45 - | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) |                   |                 | Results          | Pass        |
| -5565 -                                                         | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) |                   |                 | Results          | Pass        |
| -15 -<br>-15 -<br>-25 -<br><b>24 -</b> 35 -<br><b>27 -</b> 45 - | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) |                   |                 | Results          | Pass        |
| -5565 -                                                         | 85         | Test Dis   | stance (m | 3 Anten                                       | na Height(s) |                   |                 | Results          | Pass        |

MHz

| Freq<br>(MHz) | Antenna Height<br>(meters) | Azimuth (degrees) | Polarity/<br>Transducer<br>Type | Detector | EIRP<br>(Watts/MHz) | EIRP<br>(dBm/MHz) | Spec. Limit<br>(dBm/MHz) | Compared to<br>Spec.<br>(dB) | Comments                                                     |
|---------------|----------------------------|-------------------|---------------------------------|----------|---------------------|-------------------|--------------------------|------------------------------|--------------------------------------------------------------|
| 7672.800      | 1.0                        | 193.0             | Horz                            | AV       | 2.55E-07            | -35.9             | -13.0                    | -22.9                        | EUT On Side, High Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset   |
| 7672.950      | 1.0                        | 288.0             | Vert                            | AV       | 2.50E-07            | -36.0             | -13.0                    | -23.0                        | EUT Vert, High Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset      |
| 3836.430      | 1.0                        | 67.0              | Horz                            | AV       | 1.98E-07            | -37.0             | -13.0                    | -24.0                        | EUT On Side, High Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset   |
| 3836.450      | 1.0                        | 67.0              | Horz                            | AV       | 1.28E-07            | -38.9             | -13.0                    | -25.9                        | EUT On Side, High Ch, 16-QAM, 20 MHz BW, 1 RB, Max RB Offset |
| 7536.250      | 1.0                        | 2.0               | Vert                            | AV       | 1.28E-07            | -38.9             | -13.0                    | -25.9                        | EUT Vert, Mid Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset       |
| 7545.725      | 1.0                        | 88.1              | Horz                            | AV       | 1.25E-07            | -39.0             | -13.0                    | -26.0                        | EUT On Side, Mid Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset    |
| 3831.896      | 1.0                        | 67.0              | Horz                            | AV       | 1.09E-07            | -39.6             | -13.0                    | -26.6                        | EUT On Side, High Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset   |
| 5754.450      | 2.9                        | 223.0             | Horz                            | AV       | 1.09E-07            | -39.6             | -13.0                    | -26.6                        | EUT On Side, High Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset   |
| 5754.750      | 1.0                        | 318.0             | Vert                            | AV       | 1.09E-07            | -39.6             | -13.0                    | -26.6                        | EUT Vert, High Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset      |
| 7465.650      | 1.0                        | 101.1             | Horz                            | AV       | 1.04E-07            | -39.8             | -13.0                    | -26.8                        | EUT On Side, Low Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset    |
| 7453.800      | 3.0                        | 6.0               | Vert                            | AV       | 1.02E-07            | -39.9             | -13.0                    | -26.9                        | EUT Vert, Low Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset       |
| 3831.940      | 1.0                        | 208.0             | Vert                            | AV       | 7.71E-08            | -41.1             | -13.0                    | -28.1                        | EUT Vert, High Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset      |
| 3836.400      | 1.0                        | 219.0             | Vert                            | AV       | 7.36E-08            | -41.3             | -13.0                    | -28.3                        | EUT Vert, High Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset      |
| 3831.920      | 1.0                        | 286.9             | Horz                            | AV       | 6.87E-08            | -41.6             | -13.0                    | -28.6                        | EUT Horz, High Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset      |
| 3831.900      | 1.0                        | 27.0              | Vert                            | AV       | 5.99E-08            | -42.2             | -13.0                    | -29.2                        | EUT On Side, High Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset   |
| 3831.900      | 1.0                        | 270.0             | Vert                            | AV       | 5.85E-08            | -42.3             | -13.0                    | -29.3                        | EUT Horz, High Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset      |
| 5657.550      | 1.5                        | 347.9             | Vert                            | AV       | 5.72E-08            | -42.4             | -13.0                    | -29.4                        | EUT Vert, Mid Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset       |
| 5654.250      | 1.0                        | 186.0             | Horz                            | AV       | 5.72E-08            | -42.4             | -13.0                    | -29.4                        | EUT On Side, Mid Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset    |
| 3821.050      | 1.0                        | 67.0              | Horz                            | AV       | 5.09E-08            | -42.9             | -13.0                    | -29.9                        | EUT On Side, High Ch, QPSK, 3 MHz BW, 1 RB, Max RB Offset    |
| 5606.700      | 1.0                        | 351.0             | Horz                            | AV       | 5.09E-08            | -42.9             | -13.0                    | -29.9                        | EUT On Side, Low Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset    |

1000 10000

Report No. MDTR0649 24/42

| Fro  |      | Antenna Height<br>(meters) | Azimuth<br>(degrees) | Polarity/<br>Transducer<br>Type | Detector | EIRP<br>(Watts/MHz) | EIRP<br>(dBm/MHz) | Spec. Limit<br>(dBm/MHz) | Compared to<br>Spec.<br>(dB) | Comments                                                    |
|------|------|----------------------------|----------------------|---------------------------------|----------|---------------------|-------------------|--------------------------|------------------------------|-------------------------------------------------------------|
| 5626 | .800 | 1.0                        | 209.1                | Vert                            | AV       | 5.09E-08            | -42.9             | -13.0                    | -29.9                        | EUT Vert, Low Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset      |
| 3822 | .850 | 1.0                        | 67.0                 | Horz                            | AV       | 4.87E-08            | -43.1             | -13.0                    | -30.1                        | EUT On Side, High Ch, QPSK, 5 MHz BW, 1 RB, Max RB Offset   |
| 3827 | .400 | 1.0                        | 67.0                 | Horz                            | AV       | 4.65E-08            | -43.3             | -13.0                    | -30.3                        | EUT On Side, High Ch, QPSK, 10 MHz BW, 1 RB, Max RB Offset  |
| 3819 | .550 | 1.0                        | 67.0                 | Horz                            | AV       | 4.05E-08            | -43.9             | -13.0                    | -30.9                        | EUT On Side, High Ch, QPSK, 1.4 MHz BW, 1 RB, Max RB Offset |
| 3821 | .300 | 1.0                        | 67.0                 | Horz                            | AV       | 3.86E-08            | -44.1             | -13.0                    | -31.1                        | EUT On Side, High Ch, QPSK, 15 MHz BW, 75 RB                |
| 3805 | .250 | 1.0                        | 67.0                 | Horz                            | AV       | 3.52E-08            | -44.5             | -13.0                    | -31.5                        | EUT On Side, High Ch, QPSK, 15 MHz BW, 1 RB, No RB Offset   |
| 3777 | .775 | 1.0                        | 69.1                 | Horz                            | AV       | 2.33E-08            | -46.3             | -13.0                    | -33.3                        | EUT On Side, Mid Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset   |
| 3777 | .875 | 1.0                        | 212.0                | Vert                            | AV       | 1.85E-08            | -47.3             | -13.0                    | -34.3                        | EUT Vert, Mid Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset      |
| 3737 | .850 | 1.0                        | 76.1                 | Horz                            | AV       | 1.57E-08            | -48.0             | -13.0                    | -35.0                        | EUT On Side, Low Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset   |
| 3737 | .775 | 1.0                        | 128.0                | Vert                            | AV       | 1.44E-08            | -48.4             | -13.0                    | -35.4                        | EUT Vert, Low Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset      |
| 3832 | .705 | 1.8                        | 84.1                 | Horz                            | AV       | 1.04E-09            | -59.8             | -13.0                    | -46.8                        | EUT Vert, High Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset     |

Report No. MDTR0649 25/42

## **OUT OF BAND EMISSIONS - LTE BAND 4**



PSA-ESCI 2018 05 0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit

#### MODES OF OPERATION

Tx LTE Band 4 (AWS-1700) on Low, Mid, or High channel at 1710.7, 1732.5, or 1754.3 MHz using the modulations, bandwidths, and resource block configurations noted below.

#### POWER SETTINGS INVESTIGATED

110VAC/60Hz

#### **CONFIGURATIONS INVESTIGATED**

MDTR0649 - 2

#### FREQUENCY RANGE INVESTIGATED

#### SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

| 1201 24011 1112111              |                    |                                |     |             |          |
|---------------------------------|--------------------|--------------------------------|-----|-------------|----------|
| Description                     | Manufacturer       | Model                          | ID  | Last Cal.   | Interval |
| Filter - Band Reject            | K&L Microwave      | 3TNF-1000/2000-N/N             | HGT | 7-Aug-2017  | 12 mo    |
| Cellular Base Station Simulator | Anritsu            | MT8820C                        | AFK | NCR         | 0 mo     |
| Antenna - Double Ridge          | ETS Lindgren       | 3115                           | AJA | 27-Jun-2018 | 24 mo    |
| Antenna - Double Ridge          | ETS Lindgren       | 3115                           | AIB | 25-Aug-2016 | 24 mo    |
| Generator - Signal              | Agilent            | N5183A                         | TIK | 29-Sep-2017 | 36 mo    |
| Meter - Power                   | Agilent            | N1913A                         | SQL | 17-Jul-2017 | 12 mo    |
| Power Sensor                    | Agilent            | N8481A                         | SQN | 17-Jul-2017 | 12 mo    |
| Attenuator                      | Fairview Microwave | SA18E-20                       | TWZ | 20-Sep-2017 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Standard Gain Horn Cables      | MNJ | 12-Jul-2017 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Double Ridge Guide Horn Cables | MNI | 21-Nov-2017 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Bilog Cables                   | MNH | 9-Nov-2017  | 12 mo    |
| Filter - High Pass              | Micro-Tronics      | HPM50111                       | LFN | 20-Sep-2017 | 12 mo    |
| Filter - Low Pass               | Micro-Tronics      | LPM50004                       | LFK | 20-Sep-2017 | 12 mo    |
| Antenna - Biconilog             | Teseq              | CBL 6141B                      | AYD | 25-Jan-2018 | 24 mo    |
| Antenna - Standard Gain         | ETS Lindgren       | 3160-07                        | AXP | NCR         | 0 mo     |
| Amplifier - Pre-Amplifier       | Miteq              | AMF-6F-08001200-30-10P         | AVV | 13-Feb-2018 | 12 mo    |
| Amplifier - Pre-Amplifier       | Miteq              | AM-1616-1000                   | AVO | 9-Nov-2017  | 12 mo    |
| Antenna - Standard Gain         | ETS Lindgren       | 3160-08                        | AIQ | NCR         | 0 mo     |
| Analyzer - Spectrum Analyzer    | Agilent            | E4440A                         | AFD | 2-Aug-2017  | 12 mo    |

#### **MEASUREMENT BANDWIDTHS**

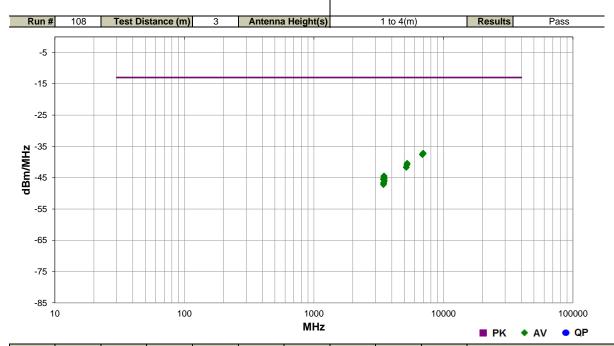
| Frequency Range | Peak Data | Quasi-Peak Data | Average Data |  |  |
|-----------------|-----------|-----------------|--------------|--|--|
| (MHz)           | (kHz)     | (kHz)           | (kHz)        |  |  |
| 0.01 - 0.15     | 1.0       | 0.2             | 0.2          |  |  |
| 0.15 - 30.0     | 10.0      | 9.0             | 9.0          |  |  |
| 30.0 - 1000     | 100.0     | 120.0           | 120.0        |  |  |
| Above 1000      | 1000.0    | N/A             | 1000.0       |  |  |

#### TEST DESCRIPTION

At an approved test site, the transmitter was place on a remotely controlled turntable, and the measurement antenna was placed 3 meters from the transmitter. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis. The turntable azimuth was varied to maximize the level of spurious emissions. The height of the measurement antenna was also varied from 1 to 4 meters. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity. The amplitude and frequency of the highest emissions was noted.

The transmitter was then replaced with a ½ wave dipole that was successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator was connected to the dipole (horn antenna for frequencies above 1 GHz), and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the cable loss to the antenna and its gain, the power (dBm) was determined for each radiated spurious emission.

Report No. MDTR0649 26/42


# **OUT OF BAND EMISSIONS - LTE BAND 4**



|                     |                                                                                                                   |                   |            |            |            | EmiR5 2018.05.07 | PSA-ESCI 2018.05.04 |  |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|------------|------------|------------|------------------|---------------------|--|--|--|--|
| Work Order:         | MDTR0649                                                                                                          | Date:             | 9-Jul-2018 |            | -          |                  |                     |  |  |  |  |
| Project:            | None                                                                                                              | Temperature:      | 21.7 °C    | 1/2        | yla        | math             | ella                |  |  |  |  |
| Job Site:           | MN05                                                                                                              | Humidity:         | 54.9% RH   | 22         |            |                  |                     |  |  |  |  |
| Serial Number:      | MEA9963DEM                                                                                                        | Barometric Pres.: | 1022 mbar  | -          | Tested by: | Kyle McMullan    |                     |  |  |  |  |
| EUT:                | MyCareLink Relay Home Communicator 24960                                                                          |                   |            |            |            |                  |                     |  |  |  |  |
| Configuration:      | 2                                                                                                                 |                   |            |            |            |                  |                     |  |  |  |  |
| Customer:           | Medtronic, Inc.                                                                                                   |                   |            |            |            |                  |                     |  |  |  |  |
| Attendees:          | Taylor Dowden                                                                                                     |                   |            |            |            |                  |                     |  |  |  |  |
| EUT Power:          | 110VAC/60Hz                                                                                                       |                   |            |            |            |                  |                     |  |  |  |  |
| Operating Mode:     | Tx LTE Band 4 (AWS-1700) on Low, Mid, or High channel at 1710.7, 1732.5, or 1754.3 MHz using the modulations,     |                   |            |            |            |                  |                     |  |  |  |  |
| Operating mode.     | bandwidths, and resource block configuarations noted below.                                                       |                   |            |            |            |                  |                     |  |  |  |  |
| Deviations:         | None                                                                                                              |                   |            |            |            |                  |                     |  |  |  |  |
| Dovidiono.          |                                                                                                                   |                   |            |            |            |                  |                     |  |  |  |  |
|                     | -US. Data from Unilab report UL05420151102FCC/IC042-2 leveraged for determining worst-case modulation, bandwidth, |                   |            |            |            |                  |                     |  |  |  |  |
| Comments:           | and resource block configuration.                                                                                 |                   |            |            |            |                  |                     |  |  |  |  |
|                     |                                                                                                                   |                   |            |            |            |                  |                     |  |  |  |  |
| Test Specifications |                                                                                                                   |                   | Test Me    | ethod      |            |                  |                     |  |  |  |  |
| FCC 27 F2:2010      | <b>!</b>                                                                                                          |                   | ANGLO      | C2 2C-201E |            |                  |                     |  |  |  |  |

FCC 27.53:2018

ANSI C63.26:2015



|  | Freq<br>(MHz) | Antenna<br>Height<br>(meters) | Azimuth<br>(degrees) | Polarity/<br>Transducer<br>Type | Detector | EIRP<br>(Watts/MHz) | EIRP<br>(dBm/MHz) | Spec. Limit<br>(dBm/MHz) | Compared to<br>Spec.<br>(dB) | Comments                                                    |
|--|---------------|-------------------------------|----------------------|---------------------------------|----------|---------------------|-------------------|--------------------------|------------------------------|-------------------------------------------------------------|
|  | 6956.900      | 1.0                           | 211.0                | Vert                            | AV       | 1.89E-07            | -37.2             | -13.0                    | -24.2                        | EUT Horz, Mid Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset      |
|  | 6999.350      | 1.0                           | 354.0                | Horz                            | AV       | 1.89E-07            | -37.2             | -13.0                    | -24.2                        | EUT On Side, High Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset  |
|  | 6999.500      | 1.0                           | 329.9                | Vert                            | AV       | 1.89E-07            | -37.2             | -13.0                    | -24.2                        | EUT Horz, High Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset     |
|  | 6930.800      | 1.9                           | 27.0                 | Horz                            | AV       | 1.81E-07            | -37.4             | -13.0                    | -24.4                        | EUT On Side, Mid Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset   |
|  | 6896.750      | 3.1                           | 307.9                | Vert                            | AV       | 1.73E-07            | -37.6             | -13.0                    | -24.6                        | EUT Horz, Low Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset      |
|  | 6896.750      | 1.0                           | 360.0                | Horz                            | AV       | 1.73E-07            | -37.6             | -13.0                    | -24.6                        | EUT On Side, Low Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset   |
|  | 5262.450      | 2.1                           | 246.9                | Horz                            | AV       | 9.06E-08            | -40.4             | -13.0                    | -27.4                        | EUT On Side, High Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset  |
|  | 5262.300      | 1.0                           | 264.9                | Vert                            | AV       | 9.06E-08            | -40.4             | -13.0                    | -27.4                        | EUT Horz, High Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset     |
|  | 5238.450      | 3.1                           | 321.0                | Vert                            | AV       | 8.26E-08            | -40.8             | -13.0                    | -27.8                        | EUT Horz, Mid Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset      |
|  | 5217.600      | 1.0                           | 53.0                 | Horz                            | AV       | 8.07E-08            | -40.9             | -13.0                    | -27.9                        | EUT On Side, Mid Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset   |
|  | 5172.450      | 2.2                           | 243.9                | Horz                            | AV       | 6.87E-08            | -41.6             | -13.0                    | -28.6                        | EUT On Side, Low Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset   |
|  | 5172.600      | 1.0                           | 253.9                | Vert                            | AV       | 6.72E-08            | -41.7             | -13.0                    | -28.7                        | EUT Horz, Low Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset      |
|  | 3478.300      | 3.5                           | 333.9                | Vert                            | AV       | 3.61E-08            | -44.4             | -13.0                    | -31.4                        | EUT Horz, Mid Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset      |
|  | 3478.150      | 1.6                           | 31.0                 | Horz                            | AV       | 3.52E-08            | -44.5             | -13.0                    | -31.5                        | EUT On Side, Mid Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset   |
|  | 3473.850      | 1.6                           | 31.0                 | Horz                            | AV       | 3.44E-08            | -44.6             | -13.0                    | -31.6                        | EUT On Side, Mid Ch, QPSK, 10 MHz BW, 1 RB, Max RB Offset   |
|  | 3482.850      | 1.6                           | 31.0                 | Horz                            | AV       | 3.14E-08            | -45.0             | -13.0                    | -32.0                        | EUT On Side, Mid Ch, QPSK, 20 MHz BW, 1 RB, Max RB Offset   |
|  | 3469.250      | 1.6                           | 31.0                 | Horz                            | AV       | 3.07E-08            | -45.1             | -13.0                    | -32.1                        | EUT On Side, Mid Ch, QPSK, 5 MHz BW, 1 RB, Max RB Offset    |
|  | 3508.300      | 1.0                           | 50.0                 | Horz                            | AV       | 3.07E-08            | -45.1             | -13.0                    | -32.1                        | EUT On Side, High Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset  |
|  | 3465.900      | 1.6                           | 31.0                 | Horz                            | AV       | 2.93E-08            | -45.3             | -13.0                    | -32.3                        | EUT On Side, Mid Ch, QPSK, 1.4 MHz BW, 1 RB, Max RB Offset  |
|  | 3467.450      | 1.6                           | 31.0                 | Horz                            | AV       | 2.93E-08            | -45.3             | -13.0                    | -32.3                        | EUT On Side, Mid Ch, QPSK, 3 MHz BW, 1 RB, Max RB Offset    |
|  | 3456.150      | 1.6                           | 31.0                 | Horz                            | AV       | 2.86E-08            | -45.4             | -13.0                    | -32.4                        | EUT On Side, Mid Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset    |
|  | 3478.300      | 1.6                           | 31.0                 | Horz                            | AV       | 2.86E-08            | -45.4             | -13.0                    | -32.4                        | EUT On Side, Mid Ch, 16-QAM, 15 MHz BW, 1 RB, Max RB Offset |

Report No. MDTR0649 27/42

| Freq<br>(MHz)                                 | Antenna<br>Height<br>(meters) | Azimuth (degrees) | Polarity/<br>Transducer<br>Type | Detector                                                | EIRP<br>(Watts/MHz) | EIRP<br>(dBm/MHz) | Spec. Limit<br>(dBm/MHz) | Compared to<br>Spec.<br>(dB) | Comments                                                  |
|-----------------------------------------------|-------------------------------|-------------------|---------------------------------|---------------------------------------------------------|---------------------|-------------------|--------------------------|------------------------------|-----------------------------------------------------------|
| 3465.750                                      | 1.6                           | 31.0              | Horz                            | AV                                                      | 2.80E-08            | -45.5             | -13.0                    | -32.5                        | EUT On Side, Mid Ch, QPSK, 10 MHz BW, 50 RB               |
| 3448.300                                      | 1.0                           | 47.1              | Horz                            | AV                                                      | 2.74E-08            | -45.6             | -13.0                    | -32.6                        | EUT On Side, Low Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset |
| 3508.450 1.0 220.1 Vert AV 2.50E-08 -46.0 -13 |                               | -13.0             | -33.0                           | EUT Horz, High Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset |                     |                   |                          |                              |                                                           |
| 3456.150                                      | 1.0                           | 78.0              | Vert                            | AV                                                      | 2.17E-08            | -46.6             | -13.0                    | -33.6                        | EUT Horz, Mid Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset     |
| 3456.150                                      | 1.0                           | 272.9             | Vert                            | AV                                                      | 2.17E-08            | -46.6             | -13.0                    | -33.6                        | EUT On Side, Mid Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset  |
| 3456.150                                      | 1.0                           | 25.0              | Horz                            | AV                                                      | 2.17E-08            | -46.6             | -13.0                    | -33.6                        | EUT Vert, Mid Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset     |
| 3456.300                                      | 1.5                           | 279.0             | Horz                            | AV                                                      | 2.03E-08            | -46.9             | -13.0                    | -33.9                        | EUT Horz, Mid Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset     |
| 3456.300                                      | 3.2                           | 99.0              | Vert                            | AV                                                      | 2.03E-08            | -46.9             | -13.0                    | -33.9                        | EUT Vert, Mid Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset     |
| 3448.300                                      | 1.0                           | 180.0             | Vert                            | AV                                                      | 1.89E-08            | -47.2             | -13.0                    | -34.2                        | EUT Horz, Low Ch, QPSK, 15 MHz BW, 1 RB, Max RB Offset    |

Report No. MDTR0649 28/42

## **OUT OF BAND EMISSIONS - LTE BAND 5**



DOA FOOL 0040 05 0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### MODES OF OPERATION

Tx LTE Band 5 (CLR-850) on Low, Mid, or High channel at 824.7, 836.5, or 848.3 MHz using the modulations, bandwidths, and resouce block conifigurations noted below.

#### **POWER SETTINGS INVESTIGATED**

110VAC/60Hz

#### CONFIGURATIONS INVESTIGATED

MDTR0649 - 2

#### FREQUENCY RANGE INVESTIGATED

#### SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

| Description                     | Manufacturer       | Model                          | ID  | Last Cal.   | Interval |
|---------------------------------|--------------------|--------------------------------|-----|-------------|----------|
| Filter - High Pass              | Micro-Tronics      | HPM50108                       | LFM | 20-Sep-2017 | 12 mo    |
| Filter - Band Pass/Notch        | K&L Microwave      | 3TNF-500/1000-N/N              | HGS | 7-Aug-2017  | 12 mo    |
| Cellular Base Station Simulator | Anritsu            | MT8820C                        | AFK | NCR         | 0 mo     |
| Filter - High Pass              | Micro-Tronics      | HPM50108                       | LFM | 20-Sep-2017 | 12 mo    |
| Attenuator                      | Fairview Microwave | SA18E-10                       | TYA | 20-Sep-2017 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Bilog Cables                   | MNH | 9-Nov-2017  | 12 mo    |
| Cable                           | ESM Cable Corp.    | Double Ridge Guide Horn Cables | MNI | 21-Nov-2017 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Standard Gain Horn Cables      | MNJ | 12-Jul-2017 | 12 mo    |
| Antenna - Standard Gain         | ETS Lindgren       | 3160-07                        | AXP | NCR         | 0 mo     |
| Amplifier - Pre-Amplifier       | Miteq              | AMF-6F-08001200-30-10P         | AVV | 13-Feb-2018 | 12 mo    |
| Amplifier - Pre-Amplifier       | Miteq              | AM-1616-1000                   | AVO | 9-Nov-2017  | 12 mo    |
| Antenna - Standard Gain         | ETS Lindgren       | 3160-08                        | AIQ | NCR         | 0 mo     |
| Analyzer - Spectrum Analyzer    | Agilent            | E4440A                         | AFD | 2-Aug-2017  | 12 mo    |
| Generator - Signal              | Agilent            | N5183A                         | TIK | 29-Sep-2017 | 36 mo    |
| Meter - Power                   | Agilent            | N1913A                         | SQL | 17-Jul-2017 | 12 mo    |
| Power Sensor                    | Agilent            | N8481A                         | SQN | 17-Jul-2017 | 12 mo    |
| Antenna - Dipole                | EMCO               | 3121C-DB4                      | ADI | 10-Feb-2016 | 36 mo    |
| Antenna - Biconilog             | Teseq              | CBL 6141B                      | AYD | 25-Jan-2018 | 24 mo    |

#### **MEASUREMENT BANDWIDTHS**

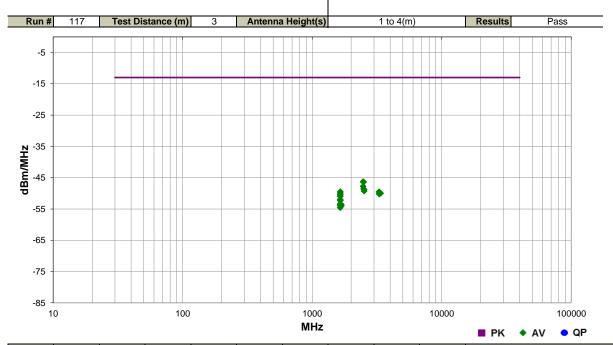
| Frequency Range<br>(MHz) | Peak Data<br>(kHz) | Quasi-Peak Data<br>(kHz) | Average Data<br>(kHz) |  |  |
|--------------------------|--------------------|--------------------------|-----------------------|--|--|
| 0.01 - 0.15              | 1.0                | 0.2                      | 0.2                   |  |  |
| 0.15 - 30.0              | 10.0               | 9.0                      | 9.0                   |  |  |
| 30.0 - 1000              | 100.0              | 120.0                    | 120.0                 |  |  |
| Above 1000               | 1000.0             | N/A                      | 1000.0                |  |  |

#### TEST DESCRIPTION

At an approved test site, the transmitter was place on a remotely controlled turntable, and the measurement antenna was placed 3 meters from the transmitter. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis. The turntable azimuth was varied to maximize the level of spurious emissions. The height of the measurement antenna was also varied from 1 to 4 meters. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity. The amplitude and frequency of the highest emissions was noted.

The transmitter was then replaced with a ½ wave dipole that was successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator was connected to the dipole (horn antenna for frequencies above 1 GHz), and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the cable loss to the antenna and its gain, the power (dBm) was determined for each radiated spurious emission.

Report No. MDTR0649 29/42


# **OUT OF BAND EMISSIONS - LTE BAND 5**



|                     |                                                                                                                   |                   |            |             |            | EmiR5 2018.05.07 | PSA-ESCI 2018.05.04 |  |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|------------|-------------|------------|------------------|---------------------|--|--|--|--|
| Work Order:         | MDTR0649                                                                                                          | Date:             | 9-Jul-2018 | -           |            |                  |                     |  |  |  |  |
| Project:            | None                                                                                                              | Temperature:      | 22.7 °C    | 1/2         | yla        | math             | ella                |  |  |  |  |
| Job Site:           | MN05                                                                                                              | Humidity:         | 59.2% RH   | 22          |            |                  |                     |  |  |  |  |
| Serial Number:      | MEA9963DEM                                                                                                        | Barometric Pres.: | 1023 mbar  |             | Tested by: | Kyle McMullan    |                     |  |  |  |  |
| EUT:                | MyCareLink Relay Home Communicator 24960                                                                          |                   |            |             |            |                  |                     |  |  |  |  |
| Configuration:      | 2                                                                                                                 |                   |            |             |            |                  |                     |  |  |  |  |
| Customer:           | Medtronic, Inc.                                                                                                   |                   |            |             |            |                  |                     |  |  |  |  |
| Attendees:          | Faylor Dowden                                                                                                     |                   |            |             |            |                  |                     |  |  |  |  |
| EUT Power:          | 110VAC/60Hz                                                                                                       |                   |            |             |            |                  |                     |  |  |  |  |
| Operating Mode:     | Tx LTE Band 5 (CLR-850) on Low, Mid, or High channel at 824.7, 836.5, or 848.3 MHz using the modulations,         |                   |            |             |            |                  |                     |  |  |  |  |
| -                   | pandwidths, and resouce block configurations noted below.                                                         |                   |            |             |            |                  |                     |  |  |  |  |
| Deviations:         | None                                                                                                              |                   |            |             |            |                  |                     |  |  |  |  |
| Deviations.         |                                                                                                                   |                   |            |             |            |                  |                     |  |  |  |  |
|                     | -US. Data from Unilab report UL05420151102FCC/IC042-2 leveraged for determining worst-case modulation, bandwidth, |                   |            |             |            |                  |                     |  |  |  |  |
| Comments:           | and resource block configuration.                                                                                 |                   |            |             |            |                  |                     |  |  |  |  |
|                     |                                                                                                                   |                   |            |             |            |                  |                     |  |  |  |  |
| Test Specifications |                                                                                                                   |                   | Test       | Method      |            |                  |                     |  |  |  |  |
| FCC 22 047:2048     | <b>!</b>                                                                                                          |                   |            | CC2 20:204F |            |                  |                     |  |  |  |  |

FCC 22.917:2018

ANSI C63.26:2015



| Freq<br>(MHz) | Antenna<br>Height<br>(meters) | Azimuth (degrees) | Polarity/<br>Transducer<br>Type | Detector | ERP<br>(Watts/MHz) | ERP<br>(dBm/MHz) | Spec. Limit<br>(dBm/MHz) | Compared to<br>Spec.<br>(dB) | Comments                                                   |
|---------------|-------------------------------|-------------------|---------------------------------|----------|--------------------|------------------|--------------------------|------------------------------|------------------------------------------------------------|
| <br>2473.762  | 1.0                           | 135.0             | Horz                            | AV       | 2.36E-08           | -46.3            | -13.0                    | -33.3                        | EUT Vert, Low Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset      |
| 2496.219      | 1.0                           | 137.1             | Horz                            | AV       | 2.30E-08           | -46.4            | -13.0                    | -33.4                        | EUT Vert, Mid Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset      |
| 2473.820      | 1.0                           | 48.1              | Vert                            | AV       | 1.67E-08           | -47.8            | -13.0                    | -34.8                        | EUT On Side, Low Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset   |
| 2496.300      | 1.0                           | 258.9             | Vert                            | AV       | 1.39E-08           | -48.6            | -13.0                    | -35.6                        | EUT On Side, Mid Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset   |
| 2518.800      | 1.0                           | 144.0             | Horz                            | AV       | 1.32E-08           | -48.8            | -13.0                    | -35.8                        | EUT Vert, High Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset     |
| 2518.800      | 1.0                           | 1.1               | Vert                            | AV       | 1.18E-08           | -49.3            | -13.0                    | -36.3                        | EUT On Side, High Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset  |
| 1649.180      | 1.0                           | 69.3              | Vert                            | AV       | 1.13E-08           | -49.5            | -13.0                    | -36.5                        | EUT On Side, Low Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset   |
| 3276.150      | 1.0                           | 67.0              | Vert                            | AV       | 1.10E-08           | -49.6            | -13.0                    | -36.6                        | EUT On Side, Low Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset   |
| 3298.350      | 1.1                           | 33.1              | Horz                            | AV       | 1.10E-08           | -49.6            | -13.0                    | -36.6                        | EUT Vert, Low Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset      |
| 1648.730      | 1.0                           | 69.2              | Vert                            | AV       | 1.03E-08           | -49.9            | -13.0                    | -36.9                        | EUT On Side, Low Ch, QPSK, 5 MHz BW, 1 RB, No RB Offset    |
| 3376.000      | 2.8                           | 318.9             | Vert                            | AV       | 1.00E-08           | -50.0            | -13.0                    | -37.0                        | EUT On Side, High Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset  |
| 3374.500      | 1.0                           | 13.0              | Horz                            | AV       | 1.00E-08           | -50.0            | -13.0                    | -37.0                        | EUT Vert, High Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset     |
| 3294.300      | 1.0                           | 286.0             | Horz                            | AV       | 9.59E-09           | -50.2            | -13.0                    | -37.2                        | EUT Vert, Mid Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset      |
| 3292.050      | 1.1                           | 184.1             | Vert                            | AV       | 9.59E-09           | -50.2            | -13.0                    | -37.2                        | EUT On Side, Mid Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset   |
| 1649.200      | 1.0                           | 69.3              | Vert                            | AV       | 9.16E-09           | -50.4            | -13.0                    | -37.4                        | EUT On Side, Low Ch, 16-QAM, 10 MHz BW, 1 RB, No RB Offset |
| 1648.510      | 1.0                           | 69.1              | Vert                            | AV       | 8.95E-09           | -50.5            | -13.0                    | -37.5                        | EUT On Side, Low Ch, QPSK, 1.4 MHz BW, 1 RB, No RB Offset  |
| 1646.850      | 1.0                           | 69.1              | Vert                            | AV       | 7.98E-09           | -51.0            | -13.0                    | -38.0                        | EUT On Side, Low Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset    |
| 1646.850      | 1.0                           | 127.1             | Horz                            | AV       | 6.34E-09           | -52.0            | -13.0                    | -39.0                        | EUT Vert, Low Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset       |
| 1651.950      | 1.0                           | 69.1              | Vert                            | AV       | 6.05E-09           | -52.2            | -13.0                    | -39.2                        | EUT On Side, Low Ch, QPSK, 3 MHz BW, 1 RB, Max RB Offset   |
| 1649.100      | 1.0                           | 69.1              | Vert                            | AV       | 5.92E-09           | -52.3            | -13.0                    | -39.3                        | EUT On Side, Low Ch, QPSK, 3 MHz BW, 15 RB                 |
| 1649.100      | 1.0                           | 116.1             | Horz                            | AV       | 5.92E-09           | -52.3            | -13.0                    | -39.3                        | EUT Vert, Low Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset      |
| 1646.850      | 1.0                           | 176.0             | Horz                            | AV       | 4.59E-09           | -53.4            | -13.0                    | -40.4                        | EUT On Side, Low Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset    |

Report No. MDTR0649 30/42

| Freq<br>(MHz) | Antenna<br>Height<br>(meters) | Azimuth<br>(degrees) | Polarity/<br>Transducer<br>Type | Detector | ERP<br>(Watts/MHz) | ERP<br>(dBm/MHz) | Spec. Limit<br>(dBm/MHz) | Compared to<br>Spec.<br>(dB) | Comments                                                  |
|---------------|-------------------------------|----------------------|---------------------------------|----------|--------------------|------------------|--------------------------|------------------------------|-----------------------------------------------------------|
| 1664.250      | 1.0                           | 114.0                | Horz                            | AV       | 4.49E-09           | -53.5            | -13.0                    | -40.5                        | EUT Vert, Mid Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset     |
| 1679.150      | 1.0                           | 32.0                 | Vert                            | AV       | 4.29E-09           | -53.7            | -13.0                    | -40.7                        | EUT On Side, High Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset |
| 1646.850      | 1.0                           | 161.0                | Vert                            | AV       | 4.19E-09           | -53.8            | -13.0                    | -40.8                        | EUT Vert, Low Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset      |
| 1664.100      | 1.0                           | 204.0                | Vert                            | AV       | 4.19E-09           | -53.8            | -13.0                    | -40.8                        | EUT On Side, Mid Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset  |
| 1646.850      | 1.0                           | 43.0                 | Horz                            | AV       | 4.09E-09           | -53.9            | -13.0                    | -40.9                        | EUT Horz, Low Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset      |
| 1679.150      | 1.0                           | 186.0                | Horz                            | AV       | 4.00E-09           | -54.0            | -13.0                    | -41.0                        | EUT Vert, High Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset    |
| 1646.850      | 1.0                           | 274.0                | Vert                            | AV       | 3.48E-09           | -54.6            | -13.0                    | -41.6                        | EUT Horz, Low Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset      |

Report No. MDTR0649 31/42

## **OUT OF BAND EMISSIONS - LTE BAND 12**



PSA-ESCI 2018.05.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit

#### MODES OF OPERATION

Tx LTE Band 12 (700 a) on Low, Mid, or High channel at 699.7, 707.5, 715.3 MHz using the modulations, bandwidths, and resource block configurations noted below.

#### **POWER SETTINGS INVESTIGATED**

110VAC/60Hz

#### **CONFIGURATIONS INVESTIGATED**

MDTR0649 - 2

#### FREQUENCY RANGE INVESTIGATED

| Start Frequency 30 MHz | Stop Frequency 18 GHz |  |
|------------------------|-----------------------|--|
|------------------------|-----------------------|--|

#### **SAMPLE CALCULATIONS**

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

| 1E31 EQUIPMENT                  |                    |                                |     |             |          |
|---------------------------------|--------------------|--------------------------------|-----|-------------|----------|
| Description                     | Manufacturer       | Model                          | ID  | Last Cal.   | Interval |
| Filter - High Pass              | Micro-Tronics      | HPM50108                       | LFM | 20-Sep-2017 | 12 mo    |
| Filter - Band Pass/Notch        | K&L Microwave      | 3TNF-500/1000-N/N              | HGS | 7-Aug-2017  | 12 mo    |
| Cellular Base Station Simulator | Anritsu            | MT8820C                        | AFK | NCR         | 0 mo     |
| Amplifier - Pre-Amplifier       | Miteq              | AM-1616-1000                   | AVO | 9-Nov-2017  | 12 mo    |
| Filter - High Pass              | Micro-Tronics      | HPM50108                       | LFM | 20-Sep-2017 | 12 mo    |
| Attenuator                      | Fairview Microwave | SA18E-10                       | TYA | 20-Sep-2017 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Double Ridge Guide Horn Cables | MNI | 21-Nov-2017 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Bilog Cables                   | MNH | 9-Nov-2017  | 12 mo    |
| Antenna - Biconilog             | Teseq              | CBL 6141B                      | AYD | 25-Jan-2018 | 24 mo    |
| Antenna - Double Ridge          | ETS Lindgren       | 3115                           | AIB | 25-Aug-2016 | 24 mo    |
| Antenna - Double Ridge          | ETS Lindgren       | 3115                           | AJA | 27-Jun-2018 | 24 mo    |
| Generator - Signal              | Agilent            | N5183A                         | TIK | 29-Sep-2017 | 36 mo    |
| Meter - Power                   | Agilent            | N1913A                         | SQL | 17-Jul-2017 | 12 mo    |
| Power Sensor                    | Agilent            | N8481A                         | SQN | 17-Jul-2017 | 12 mo    |
| Analyzer - Spectrum Analyzer    | Agilent            | E4440A                         | AFD | 2-Aug-2017  | 12 mo    |

#### **MEASUREMENT BANDWIDTHS**

| Frequency Range<br>(MHz) | Peak Data<br>(kHz) | Quasi-Peak Data<br>(kHz) | Average Data<br>(kHz) |
|--------------------------|--------------------|--------------------------|-----------------------|
| 0.01 - 0.15              | 1.0                | 0.2                      | 0.2                   |
| 0.15 - 30.0              | 10.0               | 9.0                      | 9.0                   |
| 30.0 - 1000              | 100.0              | 120.0                    | 120.0                 |
| Above 1000               | 1000.0             | N/A                      | 1000.0                |

#### TEST DESCRIPTION

At an approved test site, the transmitter was place on a remotely controlled turntable, and the measurement antenna was placed 3 meters from the transmitter. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis. The turntable azimuth was varied to maximize the level of spurious emissions. The height of the measurement antenna was also varied from 1 to 4 meters. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity. The amplitude and frequency of the highest emissions was noted.

The transmitter was then replaced with a  $\frac{1}{2}$  wave dipole that was successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator was connected to the dipole (horn antenna for frequencies above 1 GHz), and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the cable loss to the antenna and its gain, the power (dBm) was determined for each radiated spurious emission.

Report No. MDTR0649 32/42

# **OUT OF BAND EMISSIONS - LTE BAND 12**



|                  |           |                   |                                                    |                  |                      | EmiR5 2018.05.07     | PSA-ESCI 2018.0 |
|------------------|-----------|-------------------|----------------------------------------------------|------------------|----------------------|----------------------|-----------------|
|                  | k Order:  | MDTR0649          | Date:                                              | 10-Jul-2018      | 7/                   | , min                | - 00            |
|                  | Project:  | None              | Temperature:                                       | 21.7 °C          | Kryl                 | a man                | ella            |
|                  | lob Site: | MN05              | Humidity:                                          | 52.8% RH         |                      |                      |                 |
| Serial N         | Number:   | MEA9963DEM        | Barometric Pres.:                                  | 1025 mbar        | Tested               | l by: Kyle McMullan  |                 |
|                  |           |                   | ome Communicator 2496                              | 0                |                      |                      |                 |
|                  | uration:  |                   |                                                    |                  |                      |                      |                 |
| Cu               | stomer:   | Medtronic, Inc.   |                                                    |                  |                      |                      |                 |
|                  |           | Taylor Dowden     |                                                    |                  |                      |                      |                 |
| EUT              | Power:    | 110VAC/60Hz       |                                                    |                  |                      |                      |                 |
| Operatin         | g Mode:   |                   | a) on Low, Mid, or High                            |                  | 707.5, 715.3 MHz u   | sing the modulations | , bandwidths,   |
|                  |           |                   | onfigurations noted below                          | v                |                      |                      |                 |
| Dev              | viations: | None              |                                                    |                  |                      |                      |                 |
| Con              | mments:   |                   | b report UL05420151102<br>rce block configuration. | 2FCC/IC042-2 lev | eraged for determini | ng worst-case modu   | ation,          |
| est Specifi      | cations   |                   |                                                    | Test Me          | ethod                |                      |                 |
| CC 27.53:2       |           |                   |                                                    |                  | 63.26:2015           |                      |                 |
| Run#             | 126       | Test Distance (m) | 3 Antenna F                                        | leight(s)        | 1 to 4(m)            | Results              | Pass            |
|                  |           |                   |                                                    |                  |                      |                      |                 |
| -5               |           |                   |                                                    |                  |                      |                      |                 |
|                  |           |                   |                                                    |                  |                      |                      |                 |
| -15              |           |                   |                                                    |                  |                      |                      |                 |
|                  |           |                   |                                                    |                  |                      |                      |                 |
| -25              |           |                   |                                                    |                  |                      |                      |                 |
| 25               |           |                   |                                                    |                  |                      |                      |                 |
| -45<br>-45       |           |                   |                                                    |                  |                      |                      |                 |
| -45              |           |                   |                                                    |                  |                      |                      |                 |
| <b>8</b> ~       |           |                   |                                                    |                  |                      |                      |                 |
|                  |           |                   |                                                    | 🛊 🏲              | <b>-</b>             |                      |                 |
| -55              |           |                   |                                                    | ++++             |                      |                      |                 |
|                  |           |                   |                                                    |                  |                      |                      |                 |
|                  |           |                   |                                                    |                  |                      |                      |                 |
| -65              |           |                   |                                                    |                  |                      |                      |                 |
|                  |           |                   |                                                    |                  |                      |                      |                 |
|                  |           |                   |                                                    |                  |                      |                      |                 |
| -75              |           |                   |                                                    |                  |                      |                      |                 |
|                  |           |                   |                                                    |                  |                      |                      |                 |
| 0.5              |           |                   |                                                    |                  |                      |                      |                 |
| -85 <del> </del> |           |                   |                                                    | 4000             |                      | 00                   | 400000          |
| 10               |           | 100               | )                                                  | 1000             | 100                  | UU                   | 100000          |
|                  |           |                   |                                                    | MHz              |                      |                      |                 |

| Freq<br>(MHz) | Antenna Height (meters) | Azimuth (degrees) | Polarity/<br>Transducer<br>Type | Detector | ERP<br>(Watts/MHz) | ERP<br>(dBm/MHz) | Spec. Limit<br>(dBm/MHz) | Compared to<br>Spec.<br>(dB) | Comments                                                   |
|---------------|-------------------------|-------------------|---------------------------------|----------|--------------------|------------------|--------------------------|------------------------------|------------------------------------------------------------|
| 2097.750      | 1.0                     | 347.0             | Vert                            | AV       | 1.05E-08           | -49.8            | -13.0                    | -36.8                        | EUT On Side, Low Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset    |
| 2097.750      | 1.0                     | 23.1              | Horz                            | AV       | 1.00E-08           | -50.0            | -13.0                    | -37.0                        | EUT Horz, Low Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset       |
| 2139.750      | 1.0                     | 19.1              | Horz                            | AV       | 9.16E-09           | -50.4            | -13.0                    | -37.4                        | EUT Horz, High Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset      |
| 2139.750      | 1.0                     | 344.9             | Vert                            | AV       | 8.75E-09           | -50.6            | -13.0                    | -37.6                        | EUT On Side, High Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset   |
| 2897.700      | 1.0                     | 195.1             | Horz                            | AV       | 8.75E-09           | -50.6            | -13.0                    | -37.6                        | EUT Horz, High Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset      |
| 2895.600      | 1.0                     | 325.0             | Vert                            | AV       | 8.55E-09           | -50.7            | -13.0                    | -37.7                        | EUT On Side, High Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset   |
| 2118.750      | 1.2                     | 27.0              | Horz                            | AV       | 8.55E-09           | -50.7            | -13.0                    | -37.7                        | EUT Horz, Mid Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset       |
| 2118.750      | 1.0                     | 314.0             | Vert                            | AV       | 8.36E-09           | -50.8            | -13.0                    | -37.8                        | EUT On Side, Mid Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset    |
| 2866.550      | 1.0                     | 154.0             | Horz                            | AV       | 7.98E-09           | -51.0            | -13.0                    | -38.0                        | EUT Horz, Mid Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset       |
| 2865.650      | 2.0                     | 322.0             | Vert                            | AV       | 7.98E-09           | -51.0            | -13.0                    | -38.0                        | EUT On Side, Mid Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset    |
| 1426.580      | 1.0                     | 33.2              | Vert                            | AV       | 7.80E-09           | -51.1            | -13.0                    | -38.1                        | EUT On Side, High Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset   |
| 1428.060      | 1.0                     | 33.2              | Vert                            | AV       | 7.80E-09           | -51.1            | -13.0                    | -38.1                        | EUT On Side, High Ch, QPSK, 1.4 MHz BW, 1 RB, No RB Offset |
| 2759.050      | 1.1                     | 303.0             | Vert                            | AV       | 7.80E-09           | -51.1            | -13.0                    | -38.1                        | EUT On Side, Low Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset    |
| 2759.350      | 1.0                     | 168.0             | Horz                            | AV       | 7.80E-09           | -51.1            | -13.0                    | -38.1                        | EUT Horz, Low Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset       |
| 1422.690      | 1.0                     | 33.1              | Vert                            | AV       | 7.11E-09           | -51.5            | -13.0                    | -38.5                        | EUT On Side, High Ch, QPSK, 5 MHz BW, 1 RB, No RB Offset   |
| 1431.300      | 1.0                     | 33.1              | Vert                            | AV       | 6.79E-09           | -51.7            | -13.0                    | -38.7                        | EUT On Side, High Ch, QPSK, 5 MHz BW, 1 RB, Max RB Offset  |
| 1428.500      | 1.0                     | 33.1              | Vert                            | AV       | 6.19E-09           | -52.1            | -13.0                    | -39.1                        | EUT On Side, High Ch, QPSK, 5 MHz BW, Max RB               |
| 1430.050      | 1.0                     | 355.9             | Vert                            | AV       | 5.92E-09           | -52.3            | -13.0                    | -39.3                        | EUT On Side, High Ch, QPSK, 5 MHz BW, 8 RB, Max RB Offset  |
| 1426.500      | 1.0                     | 67.0              | Horz                            | AV       | 5.65E-09           | -52.5            | -13.0                    | -39.5                        | EUT Horz, High Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset      |
| 1426.500      | 1.0                     | 44.1              | Vert                            | AV       | 5.52E-09           | -52.6            | -13.0                    | -39.6                        | EUT On Side, Mid Ch, 16-QAM, 3 MHz BW, 1 RB, No RB Offset  |

Report No. MDTR0649 33/42

| Freq<br>(MHz) | Antenna Height<br>(meters) | Azimuth (degrees) | Polarity/<br>Transducer<br>Type | Detector | ERP<br>(Watts/MHz) | ERP<br>(dBm/MHz) | Spec. Limit<br>(dBm/MHz) | Compared to<br>Spec.<br>(dB) | Comments                                                  |
|---------------|----------------------------|-------------------|---------------------------------|----------|--------------------|------------------|--------------------------|------------------------------|-----------------------------------------------------------|
| 1430.200      | 1.0                        | 274.0             | Horz                            | AV       | 4.59E-09           | -53.4            | -13.0                    | -40.4                        | EUT Horz, High Ch, QPSK, 5 MHz BW, 8 RB, Max RB Offset    |
| 1430.050      | 1.0                        | 293.0             | Vert                            | AV       | 4.49E-09           | -53.5            | -13.0                    | -40.5                        | EUT Vert, High Ch, QPSK, 5 MHz BW, 8 RB, Max RB Offset    |
| 1430.050      | 1.0                        | 23.1              | Horz                            | AV       | 4.39E-09           | -53.6            | -13.0                    | -40.6                        | EUT On Side, High Ch, QPSK, 5 MHz BW, 8 RB, Max RB Offset |
| 1430.050      | 1.0                        | 53.0              | Horz                            | AV       | 4.39E-09           | -53.6            | -13.0                    | -40.6                        | EUT Vert, High Ch, QPSK, 5 MHz BW, 8 RB, Max RB Offset    |
| 1413.050      | 1.0                        | 33.1              | Vert                            | AV       | 4.19E-09           | -53.8            | -13.0                    | -40.8                        | EUT On Side, High Ch, QPSK, 10 MHz BW, 1 RB, No RB Offset |
| 1412.500      | 1.0                        | 342.0             | Vert                            | AV       | 3.91E-09           | -54.1            | -13.0                    | -41.1                        | EUT On Side, Mid Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset   |
| 1430.200      | 1.0                        | 33.1              | Vert                            | AV       | 3.56E-09           | -54.5            | -13.0                    | -41.5                        | EUT Horz, High Ch, QPSK, 5 MHz BW, 8 RB, Max RB Offset    |
| 1398.350      | 1.0                        | 6.0               | Vert                            | AV       | 3.56E-09           | -54.5            | -13.0                    | -41.5                        | EUT On Side, Low Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset   |
| 1412.500      | 1.0                        | 6.0               | Horz                            | AV       | 3.48E-09           | -54.6            | -13.0                    | -41.6                        | EUT Horz, Mid Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset      |
| 1398.500      | 1.0                        | 52.1              | Horz                            | AV       | 3.18E-09           | -55.0            | -13.0                    | -42.0                        | EUT Horz, Low Ch, QPSK, 3 MHz BW, 1 RB, No RB Offset      |

Report No. MDTR0649 34/42



PSA-ESCI 2018.05.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### **MODES OF OPERATION**

Tx LTE Band 2 (PCS-1900) on Low, Mid, or High channel at 1860.0, 1880.0, 1900.0 MHz using the modulations, bandwidths, and resource block configurations noted below.

#### **POWER SETTINGS INVESTIGATED**

110VAC/60Hz

#### **CONFIGURATIONS INVESTIGATED**

MDTR0649 - 2

#### FREQUENCY RANGE INVESTIGATED

#### **SAMPLE CALCULATIONS**

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

| Description                     | Manufacturer       | Model                          | ID  | Last Cal.   | Interval |
|---------------------------------|--------------------|--------------------------------|-----|-------------|----------|
| Generator - Signal              | Agilent            | N5183A                         | TIK | 29-Sep-2017 | 36 mo    |
| Cellular Base Station Simulator | Anritsu            | MT8820C                        | AFK | NCR         | 0 mo     |
| Antenna - Double Ridge          | ETS Lindgren       | 3115                           | AJA | 27-Jun-2018 | 24 mo    |
| Meter - Power                   | Agilent            | N1913A                         | SQL | 17-Jul-2017 | 12 mo    |
| Power Sensor                    | Agilent            | N8481A                         | SQN | 17-Jul-2017 | 12 mo    |
| Attenuator                      | Fairview Microwave | SA18E-20                       | TWZ | 20-Sep-2017 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Double Ridge Guide Horn Cables | MNI | 21-Nov-2017 | 12 mo    |
| Antenna - Double Ridge          | ETS Lindgren       | 3115                           | AIB | 25-Aug-2016 | 24 mo    |
| Analyzer - Spectrum Analyzer    | Agilent            | E4440A                         | AFD | 2-Aug-2017  | 12 mo    |

#### **MEASUREMENT BANDWIDTHS**

| Frequency Range | Peak Data | Quasi-Peak Data | Average Data |
|-----------------|-----------|-----------------|--------------|
| (MHz)           | (kHz)     | (kHz)           | (kHz)        |
| 0.01 - 0.15     | 1.0       | 0.2             | 0.2          |
| 0.15 - 30.0     | 10.0      | 9.0             | 9.0          |
| 30.0 - 1000     | 100.0     | 120.0           | 120.0        |
| Above 1000      | 1000.0    | N/A             | 1000.0       |

### **TEST DESCRIPTION**

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes. The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The amplitude and frequency were noted. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the horn antenna the effective radiated power for each emission was determined.

Report No. MDTR0649 35/42



■ PK ◆ AV • QP

|                 |                                   |                           |                      | EmiR5 2018.05.07 PSA-                            | ESCI 2018.05.04 |  |  |  |  |  |  |
|-----------------|-----------------------------------|---------------------------|----------------------|--------------------------------------------------|-----------------|--|--|--|--|--|--|
| Work Order:     | MDTR0649                          | Date:                     | 11-Jul-2018          |                                                  | 4               |  |  |  |  |  |  |
| Project:        | None                              | Temperature:              | 21.8 °C              | Knyla Mathella                                   | -               |  |  |  |  |  |  |
| Job Site:       | MN05                              | Humidity:                 | 54.1% RH             |                                                  |                 |  |  |  |  |  |  |
| Serial Number:  | MEA9963DEM                        | Barometric Pres.:         | 1020 mbar            | Tested by: Kyle McMullan, Chris Pa               | atterson        |  |  |  |  |  |  |
| EUT:            | MyCareLink Relay Ho               | me Communicator 2496      | 60                   |                                                  |                 |  |  |  |  |  |  |
| Configuration:  | 2                                 |                           |                      |                                                  |                 |  |  |  |  |  |  |
| Customer:       | Medtronic, Inc.                   | nic, Inc.                 |                      |                                                  |                 |  |  |  |  |  |  |
| Attendees:      | Taylor Dowden                     |                           |                      |                                                  |                 |  |  |  |  |  |  |
| EUT Power:      | 110VAC/60Hz                       |                           |                      |                                                  |                 |  |  |  |  |  |  |
| Operating Mode: | Tx LTE Band 2 (PCS-               | 1900) on Low, Mid, or H   | ligh channel at 1860 | 0.0, 1880.0, 1900.0 MHz using the modulations,   |                 |  |  |  |  |  |  |
| operating mode. | bandwidths, and resor             | urce block configuration: | s noted below.       |                                                  |                 |  |  |  |  |  |  |
| Deviations:     | None                              |                           |                      |                                                  |                 |  |  |  |  |  |  |
|                 |                                   |                           |                      |                                                  |                 |  |  |  |  |  |  |
|                 |                                   | •                         | 2FCC/IC042-2 leve    | raged for determining worst-case modulation, bar | ndwidth,        |  |  |  |  |  |  |
| Comments:       | and resource block configuration. |                           |                      |                                                  |                 |  |  |  |  |  |  |
|                 |                                   |                           |                      |                                                  |                 |  |  |  |  |  |  |

Test Specifications

FCC 24.232:2018

Test Method ANSI C63.26:2015

| Run# | 137 | Test Dista | ance (m) 3 | Ant  | tenna Height(s) | 1 to 4(n | า)   | Results | Pass |
|------|-----|------------|------------|------|-----------------|----------|------|---------|------|
| 40 ⊤ |     |            |            |      |                 |          |      |         |      |
|      |     |            |            |      |                 |          |      |         |      |
| 30   |     |            |            |      |                 |          |      |         |      |
| 20   |     |            |            |      | <b>     </b>    |          |      |         |      |
| 20   |     | 1          |            | •    |                 |          |      |         |      |
| 10   |     |            |            |      |                 |          |      |         |      |
|      |     |            |            |      |                 |          |      |         |      |
| 0    |     |            |            | 1    |                 |          |      |         |      |
|      |     |            |            |      |                 |          |      |         |      |
| -10  |     |            |            |      |                 |          |      |         |      |
| -20  |     |            |            |      |                 |          |      |         |      |
|      |     |            |            |      |                 |          |      |         |      |
| -30  |     |            |            |      |                 |          |      |         |      |
| -40  |     |            |            |      |                 |          |      |         |      |
| 1840 |     | 1850       | 1860       | 1870 | 1880            | 1890     | 1900 | 1910    | 1920 |

|  | Freq<br>(MHz) | Antenna<br>Height<br>(meters) | Azimuth<br>(degrees) | Polarity/<br>Transducer<br>Type | Detector | EIRP<br>(Watts) | EIRP<br>(dBm) | Spec. Limit<br>(dBm) | Compared to<br>Spec.<br>(dB) | Comments                                                 |
|--|---------------|-------------------------------|----------------------|---------------------------------|----------|-----------------|---------------|----------------------|------------------------------|----------------------------------------------------------|
|  | 1850.195      | 1.0                           | 246.9                | Vert                            | AV       | 2.38E-01        | 23.8          | 33.0                 | -9.2                         | EUT Horz, Low Ch, QPSK, 3 MHz BW, 1 RB, No offset RB     |
|  | 1850.263      | 1.0                           | 246.9                | Vert                            | AV       | 2.33E-01        | 23.7          | 33.0                 | -9.3                         | EUT Horz, Low Ch, QPSK, 1.4 MHz BW, 1 RB, No offset RB   |
|  | 1850.590      | 1.0                           | 246.9                | Vert                            | AV       | 2.17E-01        | 23.4          | 33.0                 | -9.6                         | EUT Horz, Low Ch, QPSK, 10 MHz BW, 1 RB, No offset RB    |
|  | 1850.818      | 1.0                           | 246.9                | Vert                            | AV       | 2.12E-01        | 23.3          | 33.0                 | -9.7                         | EUT Horz, Low Ch, QPSK, 15 MHz BW, 1 RB, No offset RB    |
|  | 1850.315      | 1.0                           | 246.9                | Vert                            | AV       | 2.12E-01        | 23.3          | 33.0                 | -9.7                         | EUT Horz, Low Ch, QPSK, 5 MHz BW, 1 RB, No offset RB     |
|  | 1850.240      | 1.0                           | 246.9                | Vert                            | AV       | 2.12E-01        | 23.3          | 33.0                 | -9.7                         | EUT Horz, Low Ch, 16-QAM, 3 MHz BW, 1 RB, No offset RB   |
|  | 1851.085      | 1.0                           | 103.0                | Vert                            | AV       | 1.76E-01        | 22.5          | 33.0                 | -10.5                        | EUT Horz, Low Ch, QPSK, 20 MHz BW, 1 RB, No offset RB    |
|  | 1878.690      | 1.0                           | 246.9                | Vert                            | AV       | 1.62E-01        | 22.1          | 33.0                 | -10.9                        | EUT Horz, Mid Ch, QPSK, 3 MHz BW, 1 RB, No offset RB     |
|  | 1858.360      | 1.0                           | 246.9                | Vert                            | AV       | 1.43E-01        | 21.6          | 33.0                 | -11.4                        | EUT Horz, Low Ch, QPSK, 15 MHz BW, 75 RB                 |
|  | 1858.680      | 1.0                           | 246.9                | Vert                            | AV       | 1.31E-01        | 21.2          | 33.0                 | -11.8                        | EUT Horz, Low Ch, QPSK, 20 MHz BW, 100 RB                |
|  | 1878.727      | 1.2                           | 52.1                 | Horz                            | AV       | 1.26E-01        | 21.0          | 33.0                 | -12.0                        | EUT On Side, Mid Ch, QPSK, 3 MHz BW, 1 RB, No offset RB  |
|  | 1907.250      | 1.0                           | 250.9                | Vert                            | AV       | 1.02E-01        | 20.1          | 33.0                 | -12.9                        | EUT Horz, High Ch, QPSK, 3 MHz BW, 1 RB, No offset RB    |
|  | 1851.085      | 1.0                           | 257.0                | Horz                            | AV       | 9.20E-02        | 19.6          | 33.0                 | -13.4                        | EUT On Side, Low Ch, QPSK, 20 MHz BW, 1 RB, No offset RB |
|  | 1864.168      | 1.0                           | 246.9                | Vert                            | AV       | 9.14E-02        | 19.6          | 33.0                 | -13.4                        | EUT Horz, Low Ch, QPSK, 15 MHz BW, 1 RB, Max RB offset   |
|  | 1907.250      | 1.0                           | 33.1                 | Horz                            | AV       | 9.04E-02        | 19.6          | 33.0                 | -13.4                        | EUT On Side, High Ch, QPSK, 3 MHz BW, 1 RB, No offset RB |
|  | 1851.123      | 1.8                           | 260.0                | Vert                            | AV       | 7.18E-02        | 18.6          | 33.0                 | -14.4                        | EUT On Side, Low Ch, QPSK, 20 MHz BW, 1 RB, No offset RB |
|  | 1868.893      | 1.0                           | 246.9                | Vert                            | AV       | 6.87E-02        | 18.4          | 33.0                 | -14.6                        | EUT Horz, Low Ch, QPSK, 20 MHz BW, 1 RB, Max RB offset   |
|  | 1850.227      | 1.0                           | 60.0                 | Horz                            | AV       | 5.96E-02        | 17.8          | 33.0                 | -15.3                        | EUT On Side, Low Ch, QPSK, 3 MHz BW, 1 RB, No offset RB  |
|  | 1851.010      | 1.0                           | 257.0                | Horz                            | AV       | 5.19E-02        | 17.2          | 33.0                 | -15.9                        | EUT Vert, Low Ch, QPSK, 20 MHz BW, 1 RB, No offset RB    |
|  | 1851.055      | 1.0                           | 134.1                | Vert                            | AV       | 4.23E-02        | 16.3          | 33.0                 | -16.7                        | EUT Vert, Low Ch, QPSK, 20 MHz BW, 1 RB, No offset RB    |
|  | 1851.054      | 1.0                           | 276.9                | Horz                            | AV       | 3.27E-02        | 15.1          | 33.0                 | -17.9                        | EUT Horz, Low Ch, QPSK, 20 MHz BW, 1 RB, No offset RB    |

Report No. MDTR0649 36/42



PSA-ESCI 2018.05.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### MODES OF OPERATION

Tx LTE Band 4 (AWS-1700) on Low, Mid, or High channel at 1717.5, 1732.5, 1747.5 MHz using the modulations, bandwidths, and resource block configurations noted below.

#### **POWER SETTINGS INVESTIGATED**

110VAC/60Hz

#### **CONFIGURATIONS INVESTIGATED**

MDTR0649 - 2

#### FREQUENCY RANGE INVESTIGATED

#### SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

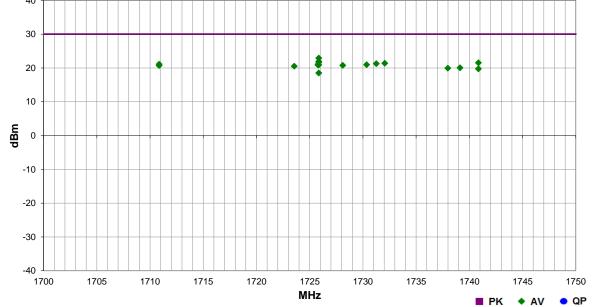
#### **TEST EQUIPMENT**

| Description                     | Manufacturer       | Model                          | ID  | Last Cal.   | Interval |
|---------------------------------|--------------------|--------------------------------|-----|-------------|----------|
| Generator - Signal              | Agilent            | N5183A                         | TIK | 29-Sep-2017 | 36 mo    |
| Cellular Base Station Simulator | Anritsu            | MT8820C                        | AFK | NCR         | 0 mo     |
| Antenna - Double Ridge          | ETS Lindgren       | 3115                           | AJA | 27-Jun-2018 | 24 mo    |
| Meter - Power                   | Agilent            | N1913A                         | SQL | 17-Jul-2017 | 12 mo    |
| Power Sensor                    | Agilent            | N8481A                         | SQN | 17-Jul-2017 | 12 mo    |
| Attenuator                      | Fairview Microwave | SA18E-20                       | TWZ | 20-Sep-2017 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Double Ridge Guide Horn Cables | MNI | 21-Nov-2017 | 12 mo    |
| Antenna - Double Ridge          | ETS Lindgren       | 3115                           | AIB | 25-Aug-2016 | 24 mo    |
| Analyzer - Spectrum Analyzer    | Agilent            | E4440A                         | AFD | 2-Aug-2017  | 12 mo    |

#### **MEASUREMENT BANDWIDTHS**

| Frequency Range | Peak Data | Quasi-Peak Data | Average Data |
|-----------------|-----------|-----------------|--------------|
| (MHz)           | (kHz)     | (kHz)           | (kHz)        |
| 0.01 - 0.15     | 1.0       | 0.2             | 0.2          |
| 0.15 - 30.0     | 10.0      | 9.0             | 9.0          |
| 30.0 - 1000     | 100.0     | 120.0           | 120.0        |
| Above 1000      | 1000.0    | N/A             | 1000.0       |

#### **TEST DESCRIPTION**


The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes. The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The amplitude and frequency were noted. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the horn antenna the effective radiated power for each emission was determined.

Report No. MDTR0649 37/42



|                                                                                                                    |                                           |                          |                   |                |            | EmiR5 2018.05.07 | PSA-ESCI 2018.05.04 |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------|-------------------|----------------|------------|------------------|---------------------|--|--|--|--|
| Work Order:                                                                                                        | MDTR0649                                  | Date:                    | 11-Jul-2018       |                |            |                  |                     |  |  |  |  |
| Project:                                                                                                           | None                                      | Temperature:             | 21.9 °C           | 1/2            | yla        | math             | ella                |  |  |  |  |
| Job Site:                                                                                                          | MN05                                      | Humidity:                | 58.4% RH          |                |            |                  |                     |  |  |  |  |
| Serial Number:                                                                                                     | MEA9963DEM                                | Barometric Pres.:        | 1019 mbar         | -              | Tested by: | Kyle McMullan,   | Chris Patterson     |  |  |  |  |
| EUT:                                                                                                               | MyCareLink Relay Ho                       | me Communicator 2496     | 30                |                |            |                  |                     |  |  |  |  |
| Configuration:                                                                                                     |                                           |                          |                   |                |            |                  |                     |  |  |  |  |
| Customer:                                                                                                          | Medtronic, Inc.                           |                          |                   |                |            |                  |                     |  |  |  |  |
| Attendees:                                                                                                         | Taylor Dowden                             |                          |                   |                |            |                  |                     |  |  |  |  |
| EUT Power:                                                                                                         | 110VAC/60Hz                               | 10VAC/60Hz               |                   |                |            |                  |                     |  |  |  |  |
| Operating Mode: Tx LTE Band 4 (AWS-1700) on Low, Mid, or High channel at 1717.5, 1732.5, 1747.5 MHz using the modu |                                           |                          |                   |                |            |                  |                     |  |  |  |  |
| Operating wode.                                                                                                    | bandwidths, and resor                     | urce block configuration | s noted below.    |                |            |                  |                     |  |  |  |  |
| Deviations:                                                                                                        | None                                      |                          |                   |                |            |                  |                     |  |  |  |  |
| Dovidiono.                                                                                                         |                                           |                          |                   |                |            |                  |                     |  |  |  |  |
|                                                                                                                    | <ul> <li>-US. Data from Unilal</li> </ul> | b report UL0542015110    | 2FCC/IC042-2 leve | eraged for det | ermining w | orst-case modula | ation,              |  |  |  |  |
| Comments:                                                                                                          | bandwidth, and resour                     | rce block configuration. |                   |                |            |                  |                     |  |  |  |  |
|                                                                                                                    |                                           |                          |                   |                |            |                  |                     |  |  |  |  |
| Test Specifications                                                                                                |                                           |                          | Test Me           | thod           |            |                  |                     |  |  |  |  |
| FCC 27.50:2018                                                                                                     |                                           |                          | ANSI C6           | 3.26:2015      |            |                  |                     |  |  |  |  |
|                                                                                                                    |                                           |                          |                   |                |            |                  |                     |  |  |  |  |

| Run # | 138 | Test Distance (m) | 3 | Antenna Height(s) | 1 to 4(m) | Results | Pass | 40 | 30 |



| Freq<br>(MHz) | Antenna Height<br>(meters) | Azimuth (degrees) | Polarity/<br>Transducer<br>Type | Detector | EIRP<br>(Watts) | EIRP<br>(dBm) | Spec. Limit<br>(dBm) | Compared to<br>Spec.<br>(dB) | Comments                                                   |
|---------------|----------------------------|-------------------|---------------------------------|----------|-----------------|---------------|----------------------|------------------------------|------------------------------------------------------------|
| 1725.855      | 1.0                        | 25.0              | Vert                            | AV       | 1.95E-01        | 22.9          | 30.0                 | -7.1                         | EUT Horz, Mid Ch, QPSK, 15 MHz BW, 1 RB, No RB offset      |
| 1725.855      | 1.0                        | 56.0              | Horz                            | AV       | 1.55E-01        | 21.9          | 30.0                 | -8.1                         | EUT On Side, Mid Ch, QPSK, 15 MHz BW, 1 RB, No RB offset   |
| 1725.855      | 1.0                        | 312.9             | Horz                            | AV       | 1.48E-01        | 21.7          | 30.0                 | -8.3                         | EUT Horz, Mid Ch, QPSK, 15 MHz BW, 1 RB, No RB offset      |
| 1740.855      | 1.0                        | 137.1             | Vert                            | AV       | 1.42E-01        | 21.5          | 30.0                 | -8.5                         | EUT Horz, High Ch, QPSK, 15 MHz BW, 1 RB, No RB offset     |
| 1732.058      | 1.0                        | 63.0              | Horz                            | AV       | 1.37E-01        | 21.4          | 30.0                 | -8.6                         | EUT On Side, Mid Ch, QPSK, 1.4 MHz BW, 1 RB, No RB offset  |
| 1731.258      | 1.0                        | 63.0              | Horz                            | AV       | 1.34E-01        | 21.3          | 30.0                 | -8.7                         | EUT On Side, Mid Ch, QPSK, 3 MHz BW, 1 RB, No RB offset    |
| 1710.855      | 1.0                        | 100.0             | Vert                            | AV       | 1.29E-01        | 21.1          | 30.0                 | -8.9                         | EUT Horz, Low Ch, QPSK, 15 MHz BW, 1 RB, No RB offset      |
| 1725.803      | 1.0                        | 73.1              | Vert                            | AV       | 1.29E-01        | 21.1          | 30.0                 | -8.9                         | EUT Vert, Mid Ch, QPSK, 15 MHz BW, 1 RB, No RB offset      |
| 1730.353      | 1.0                        | 63.0              | Horz                            | AV       | 1.25E-01        | 21.0          | 30.0                 | -9.0                         | EUT On Side, Mid Ch, QPSK, 5 MHz BW, 1 RB, No RB offset    |
| 1725.780      | 1.0                        | 63.0              | Horz                            | AV       | 1.23E-01        | 20.9          | 30.0                 | -9.1                         | EUT On Side, Mid Ch, 16-QAM, 15 MHz BW, 1 RB, No RB offset |
| 1725.855      | 1.0                        | 57.0              | Vert                            | AV       | 1.23E-01        | 20.9          | 30.0                 | -9.1                         | EUT On Side, Mid Ch, QPSK, 15 MHz BW, 1 RB, No RB offset   |
| 1728.113      | 1.0                        | 63.0              | Horz                            | AV       | 1.19E-01        | 20.8          | 30.0                 | -9.2                         | EUT On Side, Mid Ch, QPSK, 10 MHz BW, 1 RB, No RB offset   |
| 1710.855      | 1.0                        | 84.1              | Horz                            | AV       | 1.17E-01        | 20.7          | 30.0                 | -9.3                         | EUT On Side, Low Ch, QPSK, 15 MHz BW, 1 RB, No RB offset   |
| 1723.548      | 1.0                        | 63.0              | Horz                            | AV       | 1.12E-01        | 20.5          | 30.0                 | -9.5                         | EUT On Side, Mid Ch, QPSK, 20 MHz BW, 1 RB, No RB offset   |
| 1739.123      | 1.0                        | 63.0              | Horz                            | AV       | 1.01E-01        | 20.0          | 30.0                 | -10.0                        | EUT On Side, Mid Ch, QPSK, 15 MHz BW, 1 RB, Max RB offset  |
| 1737.980      | 1.0                        | 63.0              | Horz                            | AV       | 9.84E-02        | 19.9          | 30.0                 | -10.1                        | EUT On Side, Mid Ch, QPSK, 15 MHz BW, 75 RB                |
| 1740.855      | 1.0                        | 67.0              | Horz                            | AV       | 9.42E-02        | 19.7          | 30.0                 | -10.3                        | EUT On Side, High Ch, QPSK, 15 MHz BW, 1 RB, No RB offset  |
| 1725.855      | 1.0                        | 106.1             | Horz                            | AV       | 7.10E-02        | 18.5          | 30.0                 | -11.5                        | EUT Vert, Mid Ch, QPSK, 15 MHz BW, 1 RB, No RB offset      |

Report No. MDTR0649 38/42



PSA-ESCI 2018.05.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### **MODES OF OPERATION**

Tx LTE Band 5 (CLR-850) on Low, Mid, or High channel at 824.7, 836.5, 848.3 MHz using the modulations, bandwidths, and resou

#### **POWER SETTINGS INVESTIGATED**

110VAC/60Hz

#### **CONFIGURATIONS INVESTIGATED**

MDTR0649 - 2

#### FREQUENCY RANGE INVESTIGATED

| Start Frequency | 823 MHz | Stop Frequency | 850 MHz |
|-----------------|---------|----------------|---------|
|                 |         |                |         |

#### SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

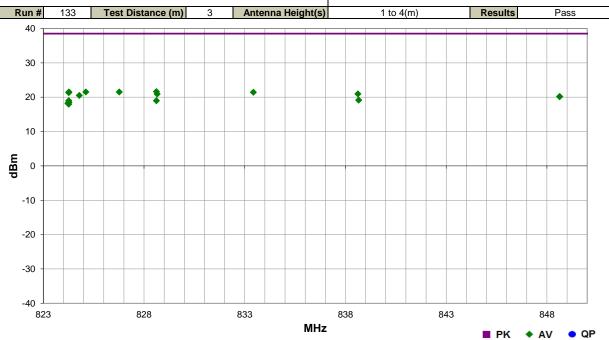
| Description                     | Manufacturer       | Model        | ID  | Last Cal.   | Interval |
|---------------------------------|--------------------|--------------|-----|-------------|----------|
| Cellular Base Station Simulator | Anritsu            | MT8820C      | AFK | NCR         | 0 mo     |
| Attenuator                      | Fairview Microwave | SA18E-20     | TWZ | 20-Sep-2017 | 12 mo    |
| Generator - Signal              | Agilent            | N5183A       | TIK | 29-Sep-2017 | 36 mo    |
| Antenna - Dipole                | EMCO               | 3121C-DB4    | ADI | 10-Feb-2016 | 36 mo    |
| Meter - Power                   | Agilent            | N1913A       | SQL | 17-Jul-2017 | 12 mo    |
| Power Sensor                    | Agilent            | N8481A       | SQN | 17-Jul-2017 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Bilog Cables | MNH | 9-Nov-2017  | 12 mo    |
| Antenna - Biconilog             | Teseq              | CBL 6141B    | AYD | 25-Jan-2018 | 24 mo    |
| Analyzer - Spectrum Analyzer    | Agilent            | E4440A       | AFD | 2-Aug-2017  | 12 mo    |

#### **MEASUREMENT BANDWIDTHS**

| Frequency Range | Peak Data | Quasi-Peak Data | Average Data |
|-----------------|-----------|-----------------|--------------|
| (MHz)           | (kHz)     | (kHz)           | (kHz)        |
| 0.01 - 0.15     | 1.0       | 0.2             | 0.2          |
| 0.15 - 30.0     | 10.0      | 9.0             | 9.0          |
| 30.0 - 1000     | 100.0     | 120.0           | 120.0        |
| Above 1000      | 1000.0    | N/A             | 1000.0       |

#### **TEST DESCRIPTION**

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarizationThe amplitude and frequency of the highest emission were noted. The EUT was then replaced with a ½ wave dipole that was successively tuned to the highest emission. A signal generator was connected to the dipole, and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded. The signal generator, amplifier, and cable were then connected to an analyzer and the power output was recorded. By factoring in the dipole antenna gain (dBi), the effective radiated power for the maximum fundamental emission was determined. The ERP value was obtained from taking the value in EIRP – 2.15.


Report No. MDTR0649 39/42



|                     |                       |                          |                     |                       | EmiR5 2018.05.07  | PSA-ESCI 2018.05.04 |  |  |  |  |
|---------------------|-----------------------|--------------------------|---------------------|-----------------------|-------------------|---------------------|--|--|--|--|
| Work Order:         | MDTR0649              | Date:                    | 10-Jul-2018         |                       |                   |                     |  |  |  |  |
| Project:            | None                  | Temperature:             | 21.5 °C             | Kryla                 | math              | ela                 |  |  |  |  |
| Job Site:           | MN05                  | Humidity:                | 55.5% RH            |                       |                   |                     |  |  |  |  |
| Serial Number:      | MEA9963DEM            | Barometric Pres.:        | 1023 mbar           | Tested by:            | Kyle McMullan     |                     |  |  |  |  |
| EUT:                | MyCareLink Relay Ho   | me Communicator 2496     | 60                  |                       |                   |                     |  |  |  |  |
| Configuration:      | 2                     |                          |                     |                       |                   |                     |  |  |  |  |
| Customer:           | Medtronic, Inc.       |                          |                     |                       |                   |                     |  |  |  |  |
| Attendees:          | Taylor Dowden         |                          |                     |                       |                   |                     |  |  |  |  |
| EUT Power:          | 110VAC/60Hz           | 10VAC/60Hz               |                     |                       |                   |                     |  |  |  |  |
| Operating Mode:     | ng the modulations    | s, bandwidths,           |                     |                       |                   |                     |  |  |  |  |
| Operating wode.     | and resource block co | nfigurations noted belov | N.                  |                       |                   |                     |  |  |  |  |
| Deviations:         | None                  |                          |                     |                       |                   |                     |  |  |  |  |
| Deviations.         |                       |                          |                     |                       |                   |                     |  |  |  |  |
|                     | -US. Data from Unilal | report UL0542015110      | 2FCC/IC042-2 levera | ged for determining w | orst-case modulat | ion, bandwidth,     |  |  |  |  |
| Comments:           | and resource block co | nfiguration.             |                     |                       |                   |                     |  |  |  |  |
|                     |                       | •                        |                     |                       |                   |                     |  |  |  |  |
| Test Specifications |                       |                          | Test Meth           | od                    |                   |                     |  |  |  |  |
| FCC 00 040:0040     | 1                     |                          | ANGLOGO             |                       |                   |                     |  |  |  |  |

FCC 22.913:2018

ANSI C63.26:2015



| Freq<br>(MHz) | Antenna Height (meters) | Azimuth (degrees) | Polarity/<br>Transducer<br>Type | Detector | ERP<br>(Watts) | ERP<br>(dBm) | Spec. Limit<br>(dBm) | Compared to<br>Spec.<br>(dB) | Comments                                                  |
|---------------|-------------------------|-------------------|---------------------------------|----------|----------------|--------------|----------------------|------------------------------|-----------------------------------------------------------|
| 828.615       | 1.0                     | 351.9             | Horz                            | AV       | 1.45E-01       | 21.6         | 38.5                 | -16.9                        | EUT Horz, Low Ch, QPSK, 5 MHz BW, 1 RB, Max RB Offset     |
| 826.773       | 1.0                     | 351.9             | Horz                            | AV       | 1.42E-01       | 21.5         | 38.5                 | -17.0                        | EUT Horz, Low Ch, QPSK, 3 MHz BW, 1 RB, Max RB Offset     |
| 825.113       | 1.0                     | 351.9             | Horz                            | AV       | 1.42E-01       | 21.5         | 38.5                 | -17.0                        | EUT Horz, Low Ch, QPSK, 1.4 MHz BW, 1 RB, Max RB Offset   |
| 824.273       | 1.0                     | 352.0             | Horz                            | AV       | 1.41E-01       | 21.5         | 38.5                 | -17.0                        | EUT Horz, Low Ch, QPSK, 1.4 MHz BW, 1 RB, No RB Offset    |
| 833.427       | 1.0                     | 351.9             | Horz                            | AV       | 1.39E-01       | 21.4         | 38.5                 | -17.1                        | EUT Horz, Low Ch, QPSK, 10 MHz BW, 1 RB, Max RB Offset    |
| 824.265       | 1.0                     | 358.9             | Horz                            | AV       | 1.35E-01       | 21.3         | 38.5                 | -17.2                        | EUT On Side, Low Ch, QPSK, 1.4 MHz BW, 1 RB, No RB Offset |
| 838.620       | 1.0                     | 358.0             | Horz                            | AV       | 1.24E-01       | 21.0         | 38.5                 | -17.6                        | EUT Horz, Mid Ch, QPSK, 5 MHz BW, 1 RB, Max RB Offset     |
| 828.655       | 1.0                     | 351.9             | Horz                            | AV       | 1.24E-01       | 20.9         | 38.5                 | -17.6                        | EUT Horz, Low Ch, 16-QAM, 5 MHz BW, 1 RB, Max RB Offset   |
| 824.790       | 1.0                     | 351.9             | Horz                            | AV       | 1.12E-01       | 20.5         | 38.5                 | -18.0                        | EUT Horz, Low Ch, QPSK, 1.4 MHz BW, 6 RB                  |
| 848.629       | 1.0                     | 348.9             | Horz                            | AV       | 1.04E-01       | 20.2         | 38.5                 | -18.3                        | EUT Horz, High Ch, QPSK, 5 MHz BW, 1 RB, Max RB Offset    |
| 848.642       | 1.1                     | 100.0             | Vert                            | AV       | 1.04E-01       | 20.2         | 38.5                 | -18.3                        | EUT On Side, High Ch, QPSK, 5 MHz BW, 1 RB, Max RB Offset |
| 838.658       | 1.1                     | 100.0             | Vert                            | AV       | 8.20E-02       | 19.1         | 38.5                 | -19.4                        | EUT On Side, Mid Ch, QPSK, 5 MHz BW, 1 RB, Max RB Offset  |
| 828.615       | 1.1                     | 103.0             | Vert                            | AV       | 7.89E-02       | 19.0         | 38.5                 | -19.5                        | EUT On Side, Low Ch, QPSK, 5 MHz BW, 1 RB, Max RB Offset  |
| 824.265       | 1.2                     | 110.0             | Vert                            | AV       | 7.85E-02       | 19.0         | 38.5                 | -19.6                        | EUT On Side, Low Ch, QPSK, 1.4 MHz BW, 1 RB, No RB Offset |
| 824.273       | 1.0                     | 215.0             | Horz                            | AV       | 7.08E-02       | 18.5         | 38.5                 | -20.0                        | EUT Vert, Low Ch, QPSK, 1.4 MHz BW, 1 RB, No RB Offset    |
| 824.220       | 1.2                     | 56.0              | Vert                            | AV       | 6.68E-02       | 18.3         | 38.5                 | -20.2                        | EUT Vert, Low Ch, QPSK, 1.4 MHz BW, 1 RB, No RB Offset    |
| 824.265       | 1.8                     | 270.0             | Vert                            | AV       | 6.24E-02       | 18.0         | 38.5                 | -20.6                        | EUT Horz, Low Ch, QPSK, 1.4 MHz BW, 1 RB, No RB Offset    |

Report No. MDTR0649 40/42



PSA-ESCI 2018.05.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### **MODES OF OPERATION**

Tx LTE Band 12 (700 a) on Low, Mid, or High channel at 699.7, 707.5, 715.3 MHz using the modulations, bandwidths, and resource

#### **POWER SETTINGS INVESTIGATED**

110VAC/60Hz

#### **CONFIGURATIONS INVESTIGATED**

MDTR0649 - 2

#### FREQUENCY RANGE INVESTIGATED

|  | Start Frequency | 698 MHz | Stop Frequency | 717 MHz |
|--|-----------------|---------|----------------|---------|
|--|-----------------|---------|----------------|---------|

#### SAMPLE CALCULATIONS

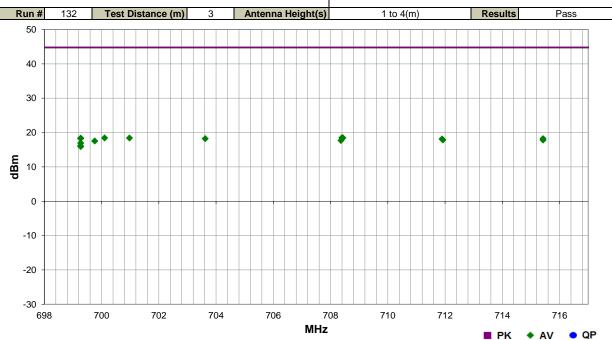
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

| Description                     | Manufacturer       | Model        | ID  | Last Cal.   | Interval |
|---------------------------------|--------------------|--------------|-----|-------------|----------|
| Cellular Base Station Simulator | Anritsu            | MT8820C      | AFK | NCR         | 0 mo     |
| Generator - Signal              | Agilent            | N5183A       |     | 29-Sep-2017 | 36 mo    |
| Antenna - Dipole                | EMCO               | 3121C-DB4    | ADI | 10-Feb-2016 | 36 mo    |
| Meter - Power                   | Agilent            | N1913A       | SQL | 17-Jul-2017 | 12 mo    |
| Power Sensor                    | Agilent            | N8481A       | SQN | 17-Jul-2017 | 12 mo    |
| Attenuator                      | Fairview Microwave | SA18E-20     | TWZ | 20-Sep-2017 | 12 mo    |
| Cable                           | ESM Cable Corp.    | Bilog Cables | MNH | 9-Nov-2017  | 12 mo    |
| Antenna - Biconilog             | Teseq              | CBL 6141B    | AYD | 25-Jan-2018 | 24 mo    |
| Analyzer - Spectrum Analyzer    | Agilent            | E4440A       | AFD | 2-Aug-2017  | 12 mo    |

#### **MEASUREMENT BANDWIDTHS**

| Frequency Range | Peak Data | Quasi-Peak Data | Average Data |  |
|-----------------|-----------|-----------------|--------------|--|
| (MHz)           | (kHz)     | (kHz)           | (kHz)        |  |
| 0.01 - 0.15     | 1.0       | 0.2             | 0.2          |  |
| 0.15 - 30.0     | 10.0      | 9.0             | 9.0          |  |
| 30.0 - 1000     | 100.0     | 120.0           | 120.0        |  |
| Above 1000      | 1000.0    | N/A             | 1000.0       |  |


#### **TEST DESCRIPTION**

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarizationThe amplitude and frequency of the highest emission were noted. The EUT was then replaced with a ½ wave dipole that was successively tuned to the highest emission. A signal generator was connected to the dipole, and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded. The signal generator, amplifier, and cable were then connected to an analyzer and the power output was recorded. By factoring in the dipole antenna gain (dBi), the effective radiated power for the maximum fundamental emission was determined. The ERP value was obtained from taking the value in EIRP – 2.15.

Report No. MDTR0649 41/42



| Wash Oaks           | MDTDoodo                                                                                                                             | D. C.                                | 40 1 1 0040     |                        | EmiR5 2018.05.07  | PSA-ESCI 2018.05.04 |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------|------------------------|-------------------|---------------------|--|
| Work Order:         | MDTR0649                                                                                                                             | Date:                                | 10-Jul-2018     | 7/- 0                  | man               | E CC                |  |
| Project:            | None                                                                                                                                 | Temperature:                         | 21.3 °C         | Myla                   | 4                 | un                  |  |
| Job Site:           | MN05<br>MEA9963DEM                                                                                                                   | Humidity:                            | 53.3% RH        | Tastad b               | TIZ I - NA-NA III |                     |  |
| Serial Number:      |                                                                                                                                      | Barometric Pres.:                    | 1026 mbar       | rested b               | y: Kyle McMullan  |                     |  |
|                     |                                                                                                                                      | me Communicator 24960                | )               |                        |                   |                     |  |
| Configuration:      | Medtronic, Inc.                                                                                                                      |                                      |                 |                        |                   |                     |  |
|                     |                                                                                                                                      |                                      |                 |                        |                   |                     |  |
|                     | Taylor Dowden                                                                                                                        |                                      |                 |                        |                   |                     |  |
| EUI Power:          | 110VAC/60Hz                                                                                                                          | \                                    | 1 1 1 000 7     | 707.5.745.0.141.       |                   | 1 1 1 1 1 1         |  |
| Operating Mode:     | Operating Mode: Tx LTE Band 12 (700 a) on Low, Mid, or High channel at 699.7, 707.5, 715.3 MHz using the modulations, bandwidths, an |                                      |                 |                        |                   |                     |  |
|                     | resource block configu                                                                                                               | irations noted below.                |                 |                        |                   |                     |  |
| Deviations:         | None                                                                                                                                 |                                      |                 |                        |                   |                     |  |
| Comments:           | -US. Data from Unilab<br>and resource block co                                                                                       | report UL05420151102<br>nfiguration. | FCC/IC042-2 lev | eraged for determining | worst-case modul  | ation, bandwidth,   |  |
| Test Specifications |                                                                                                                                      |                                      | Test Me         | ethod                  |                   |                     |  |
| CC 27.50:2018       | ANSI C63.26:2015                                                                                                                     |                                      |                 |                        |                   |                     |  |
|                     |                                                                                                                                      |                                      |                 |                        |                   |                     |  |
| Run # 132           | Test Distance (m)                                                                                                                    | 3 Antenna H                          | eight(s)        | 1 to 4(m)              | Results           | Pass                |  |
| 50                  |                                                                                                                                      |                                      |                 |                        |                   |                     |  |
| 40                  |                                                                                                                                      |                                      |                 |                        |                   |                     |  |



|               | <u> </u>                |                   |                                 |          |                |              |                      |                              |                                                           |
|---------------|-------------------------|-------------------|---------------------------------|----------|----------------|--------------|----------------------|------------------------------|-----------------------------------------------------------|
| Freq<br>(MHz) | Antenna Height (meters) | Azimuth (degrees) | Polarity/<br>Transducer<br>Type | Detector | ERP<br>(Watts) | ERP<br>(dBm) | Spec. Limit<br>(dBm) | Compared to<br>Spec.<br>(dB) | Comments                                                  |
| <br>708.395   | 1.0                     | 219.0             | Horz                            | AV       | 7.01E-02       | 18.5         | 44.8                 | -26.3                        | EUT Vert, Low Ch, QPSK, 10 MHz BW, 1 RB, Max RB Offset    |
| 708.432       | 1.0                     | 322.9             | Vert                            | AV       | 7.01E-02       | 18.5         | 44.8                 | -26.3                        | EUT On Side, Low Ch, QPSK, 10 MHz BW, 1 RB, Max RB Offset |
| 700.108       | 1.0                     | 219.0             | Horz                            | AV       | 6.95E-02       | 18.4         | 44.8                 | -26.4                        | EUT Vert, Low Ch, QPSK, 1.4 MHz BW, 1 RB, Max RB Offset   |
| 700.975       | 1.0                     | 219.0             | Horz                            | AV       | 6.93E-02       | 18.4         | 44.8                 | -26.4                        | EUT Vert, Low Ch, QPSK, 3 MHz BW, 1 RB, Max RB Offset     |
| 699.273       | 1.0                     | 219.0             | Horz                            | AV       | 6.79E-02       | 18.3         | 44.8                 | -26.5                        | EUT Vert, Low Ch, QPSK, 1.4 MHz BW, 1 RB, No RB Offset    |
| 699.265       | 1.0                     | 249.0             | Vert                            | AV       | 6.79E-02       | 18.3         | 44.8                 | -26.5                        | EUT On Side, Low Ch, QPSK, 1.4 MHz BW, 1 RB, No RB Offset |
| 699.273       | 1.3                     | 82.0              | Vert                            | AV       | 6.79E-02       | 18.3         | 44.8                 | -26.5                        | EUT Horz, Low Ch, QPSK, 1.4 MHz BW, 1 RB, No RB Offset    |
| 703.622       | 1.0                     | 219.0             | Horz                            | AV       | 6.59E-02       | 18.2         | 44.8                 | -26.6                        | EUT Vert, Low Ch, QPSK, 5 MHz BW, 1 RB, Max RB Offset     |
| 715.425       | 1.0                     | 308.9             | Vert                            | AV       | 6.61E-02       | 18.2         | 44.8                 | -26.6                        | EUT On Side, Low Ch, QPSK, 10 MHz BW, 1 RB, Max RB Offset |
| 711.895       | 1.7                     | 328.0             | Vert                            | AV       | 6.50E-02       | 18.1         | 44.8                 | -26.6                        | EUT On Side, Mid Ch, QPSK, 10 MHz BW, 1 RB, Max RB Offset |
| 711.925       | 1.0                     | 210.1             | Horz                            | AV       | 6.07E-02       | 17.8         | 44.8                 | -26.9                        | EUT Vert, Mid Ch, QPSK, 10 MHz BW, 1 RB, Max RB Offset    |
| 715.425       | 1.0                     | 103.0             | Horz                            | AV       | 6.03E-02       | 17.8         | 44.8                 | -27.0                        | EUT Vert, High Ch, QPSK, 10 MHz BW, 1 RB, Max RB Offset   |
| 708.365       | 1.0                     | 219.0             | Horz                            | AV       | 5.83E-02       | 17.7         | 44.8                 | -27.1                        | EUT Vert, Low Ch, 16-QAM, 10 MHz BW, 1 RB, Max RB Offset  |
| 699.760       | 1.0                     | 219.0             | Horz                            | AV       | 5.65E-02       | 17.5         | 44.8                 | -27.3                        | EUT Vert, Low Ch, QPSK, 1.4 MHz BW, Max RB                |
| 699.273       | 1.0                     | 150.0             | Horz                            | AV       | 4.92E-02       | 16.9         | 44.8                 | -27.9                        | EUT Horz, Low Ch, QPSK, 1.4 MHz BW, 1 RB, No RB Offset    |
| 699.265       | 1.0                     | 347.9             | Vert                            | AV       | 4.09E-02       | 16.1         | 44.8                 | -28.7                        | EUT Vert, Low Ch, QPSK, 1.4 MHz BW, 1 RB, No RB Offset    |
| 699.273       | 1.2                     | 343.0             | Horz                            | AV       | 3.91E-02       | 15.9         | 44.8                 | -28.9                        | EUT On Side, Low Ch, QPSK, 1.4 MHz BW, 1 RB, No RB Offset |

Report No. MDTR0649 42/42