Report No.: 18220WC000018-01 Page 1 of 57 # SAR TEST REPORT Client Name : RM ACQUISITIONS LLC Address : 9855 Woods Drive Skokie. IL 60077 U.S.A Product Name : GPS Device FCC ID A4C- TND750 IC ID 10199A- TND750 Date : Mar. 20, 2020 # **Shenzhen Anbotek Compliance Laboratory Limited** Report No.: 18220WC000018-01 Page 2 of 57 # Contents | 1. | | ement of Compliance | 6 | |-----|-------|---------------------------------------------------------------------|----------| | 2. | Gene | eral Information | 7 | | | 2. 1. | Client Information | 7 | | | 2. 2. | Testing Laboratory Information | 7 | | | 2. 3. | Description of Equipment Under Test (EUT) | 7 | | | 2. 4. | Device Category and SAR Limits | 8 | | anb | 2. 5. | Applied Standard | | | | 2. 6. | Environment of Test Site | | | | 2. 7. | Test Configuration | 8 | | 3. | Spec | cific Absorption Rate (SAR) | 9 | | | 3. 1. | Introduction | 9 | | | 3. 2. | SAR Definition | 9 | | 4. | SAR | R Measurement System | 10 | | | 4. 1. | E-Field Probe | 11 | | | 4. 2. | Data Acquisition Electronics (DAE) | 11 | | | 4. 3. | Robot | 12 | | | 4. 4. | Measurement Server | 13 | | | 4. 5. | Phantom | 14 | | | 4. 6. | Device Holder | 15 | | | 4. 7. | Data Storage and Evaluation | 16 | | 5. | Test | Data Storage and Evaluationt<br>Equipment Listue Simulating Liquids | 18 | | 6. | Tissı | ue Simulating Liquids. | 19 | | 7. | Syste | tem Verification Procedures | 20 | | 8. | | surement Procedures | | | Oto | 9. 1. | Spatial Peak SAR Evaluation | 22 | | | 9. 2. | Power Reference Measurement | 23 | | | 9. 3. | Area Scan Procedures | | | | 9. 4. | Zoom Scan Procedures | | | | 9. 5. | Volume Scan Procedures | | | | 9. 6. | | 25 | | 9 | | ducted Powerducted | 26 | | | | enna Location | 29 | | 010 | 10.1 | | 29 | | 11 | | R Test Results Summary | 30 | | | | ultaneous Transmission Analysis | | | | | surement Uncertainty | 31<br>32 | | | | ix A. EUT Photos and Test Setup Photos | 32<br>33 | | _ | _ | Anbotek Compliance Laboratory Limited | 33 | | | | | | | Report No.: 18 | 220WC000018-01 | Page 3 of 57 | |----------------|-------------------------------------|--------------| | Appendix B. | Plots of SAR System Check | 34 | | Appendix C. | Plots of SAR Test Data | 35 | | Appendix D | DASY System Calibration Certificate | 36 | Report No.: 18220WC000018-01 Page 4 of 57 # **TEST REPORT** Applicant : RM ACQUISITIONS LLC Manufacturer : SHEN ZHEN APICAL TECHNOLOGY CO., LTD Product Name : GPS Device Model No. : TND750 Trade Mark RAND MSNALLY Rating(s) : DC 3.7V from Battery Test Standard(s) : FCC 47 CFR Part2.1093 IEEE 1528:2013 ANSI C95.1:1992 RSS 102 Issue 5 IEC 62209-2:2010 The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the IEEE 1528-2013, ANSI C95.1:1992, RSS 102 Issue 5 and FCC 47 CFR Part 2.1093 requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited. Date of Receipt Mar. 13, 2020 Date of Test Mar.13~Mar. 20, 2020 Prepared By Anbotek Product Safety \* Approved \* (Engineer / Bobby Wang) Reviewer \_\_\_\_\_ (Supervisor / Snowy Meng) Approved & Authorized Signer (Manager / Sally Zhang) Shenzhen Anbotek Compliance Laboratory Limited Report No.: 18220WC000018-01 Page 5 of 57 # Version | Version No. | Date | Description | |----------------------|----------------|-------------------------------------| | Anbotek 01 Anbountek | Mar. 20, 2020 | Original | | Anbotes Anbo | tek Anbotek An | tek sobotek Anbotek Anbo | | Auborn Mus | kotek Anbotes | Anbotek Anbotek Anbotek An | | tek Anbotek | Anbotek Anbote | Anbotek Anbotek Anbotek Anbotek | | notek anbotek | Amboran Ambor | K Wiposek Vipose Wiposek Viposek | | anbotek Anbotek | Anbour Ani | Otek Pupoley Pupolek Pupolek Pupole | Report No.: 18220WC000018-01 Page 6 of 57 # 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing are as follows. # <Highest SAR Summary> | Fraguency Band | Highest Reported 1g-SAR(W/Kg) | SAR Test Limit | | | |----------------|-------------------------------|----------------|--|--| | Frequency Band | Body | (W/Kg) | | | | WIFI 2.4G | 0.220 | 1.6 | | | | BT 2.4G | 0.084 | 1.6 | | | | Test Result | PASS | hotek Anboren | | | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093), RSS 102 Issue 5 and ANSI C95.1:1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528:2013. Report No.: 18220WC000018-01 Page 7 of 57 # 2. General Information # 2.1. Client Information | Applicant | : | RM ACQUISITIONS LLC | |--------------|---|----------------------------------------------------------------------------------------------------------------| | Address | : | 9855 Woods Drive Skokie. IL 60077 U.S.A | | Manufacturer | : | SHEN ZHEN APICAL TECHNOLOGY CO., LTD | | Address | : | 9/F,B Building, Tinghua Unis Infoport, Langshan RD, North district, Hi-tech Industrial Park, Nanshan, Shenzhen | # 2.2. Testing Laboratory Information | Test Site: | : Shenzhen Anbotek Compliance Laboratory Limited | |------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Address: | <ul> <li>1/F, Building D, Sogood Science and Technology Park, Sanwei<br/>community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,<br/>China.518102</li> </ul> | # 2.3. Description of Equipment Under Test (EUT) | Product Name | : | GPS Device | Anbotek Anbotek Anbotek Anbotek | |-------------------|---------|----------------------|-------------------------------------------------------------------------------------| | Model No. | : | TND750 | Anbottek Anbotek Anbotek Anbotek | | Trade Mark | : | RAND MENALLY | tek anbotek Anbotek Anbotek Anbot | | Test Power Supply | : | DC 3.7V from Battery | tek obotek Anbote Am otek An | | Product | Anboise | Operation Frequency: | 802.11b/ g/ n(HT20): 2412-2462MHz<br>802.11n(HT40):2422-2462 MHz<br>BT:2402-2480MHz | | Description | | Modulation Type: | 802.11b: CCK; 802.11g/n: OFDM<br>BT: GFSK, π/4DQPSK, 8DPSK | **Remark:** 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual. Report No.: 18220WC000018-01 Page 8 of 57 # 2.4. Device Category and SAR Limits This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue. # 2.5. Applied Standard The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: - IEEE 1528:2013 - RSS 102 Issue 5 - IEC 62209-2:2010 - FCC 47 CFR Part 2.1093 - ANSI C95.1:1992 - KDB 248227 D01 - KDB 447498 D01 - KDB 616217 D04 - KDB 865664 D01 - TCB workshop April 2019; RF Exposure Procedures (Tissue Simulating Liquids) # 2. 6. Environment of Test Site | Items | Required | Actual | |------------------|----------|--------| | Temperature (°C) | 18-25 | 22~23 | | Humidity (%RH) | 30-70 | 55~65 | ### 2.7. Test Configuration The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal. Report No.: 18220WC000018-01 Page 9 of 57 # 3. Specific Absorption Rate (SAR) #### 3. 1. Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. # 3. 2. SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left( \frac{dW}{dm} \right) = \frac{d}{dt} \left( \frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by $$SAR = C\left(\frac{\delta T}{\delta t}\right)$$ Where: C is the specific head capacity, $\delta T$ is the temperature rise and $\delta t$ is the exposure duration, or related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: $\sigma$ is the conductivity of the tissue, $\rho$ is the mass density of the tissue and E is the RMS electrical field strength. However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. Report No.: 18220WC000018-01 Page 10 of 57 # 4. SAR Measurement System # **DASY System Configurations** The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items: - A standard high precision 6-axis robot with controller, a teach pendant and software - A data acquisition electronic (DAE) attached to the robot arm extension - A dosimetric probe equipped with an optical surface detector system - The electro-optical converter (EOC) performs the conversion between optical and electrical signals - A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - A probe alignment unit which improves the accuracy of the probe positioning - A computer operating Windows XP - DASY software - Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc. - The SAM twin phantom - A device holder - Tissue simulating liquid - Dipole for evaluating the proper functioning of the system components are described in details in the following sub-sections. Report No.: 18220WC000018-01 Page 11 of 57 ### 4. 1. E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. # > E-Field Probe Specification #### <EX3DV4 Probe> | Construction | Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | | |---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------| | Frequency | 10 MHz to 6 GHz; Linearity: ± 0.2 dB | | | Directivity | ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis) | | | Dynamic Range | 10 μW/g to 100 mW/g; Linearity: ± 0.2 dB (noise: typically < 1 μW/g) | Phot | | Dimensions | Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | Photo of EX3DV4 ### E-Field Probe Calibration Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm$ 10%. The spherical isotropy shall be evaluated and within $\pm$ 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report. ### 4. 2. Data Acquisition Electronics (DAE) The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB. Report No.: 18220WC000018-01 **Photo of DAE** # Page 12 of 57 #### 4. 3. Robot The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application: - ➤ High precision (repeatability ±0.035 mm) - ➤ High reliability (industrial design) - Jerk-free straight movements - Low ELF interference (the closed metallic construction shields against motor control fields) **Photo of DASY5** Report No.: 18220WC000018-01 Page 13 of 57 ## 4. 4. Measurement Server The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chip disk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations. **Photo of Server for DASY5** Report No.: 18220WC000018-01 Page 14 of 57 ### 4. 5. Phantom ### <SAM Twin Phantom> | Shell Thickness | 2 ± 0.2 mm;<br>Center ear point: 6 ± 0.2 mm | L ALON KOBO | |-----------------|------------------------------------------------------------|----------------------| | Filling Volume | Approx. 25 liters | Cut. The | | Dimensions | Length: 1000 mm; Width: 500 mm;<br>Height: adjustable feet | 200 | | Measurement | Left Hand, Right Hand, Flat | | | Areas | Phantom | Andrew Andrew Andrew | | | Anbotes And Obotek Anbotek | Photo of SAM Phantom | The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. # <ELI4 Phantom> | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | |-----------------|----------------------------------------------| | Filling Volume | Approx. 30 liters | | Dimensions | Major ellipse axis: 600 mm Minor axis:400 mm | | | Photo of ELI4 Phantom | The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. Report No.: 18220WC000018-01 Page 15 of 57 #### 4. 6. Device Holder The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of $\pm 0.5$ mm would produce a SAR uncertainty of $\pm 20\%$ . Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon$ = 3 and loss tangent $\delta$ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. **Device Holder** Report No.: 18220WC000018-01 Page 16 of 57 # 4. 7. Data Storage and Evaluation # Data Storage The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages. #### **Data Evaluation** The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: Probe parameters: - Sensitivity Normi, aio, ai1, ai2 > - Conversion factor ConvF<sub>i</sub> - Diode compression point dcpi - Frequency **Device parameters:** > - Crest factor cf Media parameters: - Conductivity - Density These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. Report No.: 18220WC000018-01 Page 17 of 57 The formula for each channel can be given as: $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ with $V_i$ = compensated signal of channel i, (i = x, y, z) $U_i$ = input signal of channel i, (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcpi = diode compression point (DASY parameter) From the compensated input signals, the primary field data for each channel can be evaluated E-field Probes: $$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$ H-field Probes: $$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$ with $V_i$ = compensated signal of channel i,(i = x, y, z) Norm<sub>i</sub>= sensor sensitivity of channel i, (i = x, y, z), µV/(V/m)² for E-field Probes ConvF= sensitivity enhancement in solution a<sub>ij</sub>= sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E<sub>i</sub>= electric field strength of channel i in V/m H<sub>i</sub>= magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$ with SAR = local specific absorption rate in mW/g Etot= total field strength in V/m $\sigma$ = conductivity in [mho/m] or [Siemens/m] $\rho$ = equivalent tissue density in g/cm<sup>3</sup> Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid. Report No.: 18220WC000018-01 Page 18 of 57 # 5. Test Equipment List | Manufacture | Name of Equipment | Tour o /B/Lo al o l | Carial Number | Calibration | | |-------------|-------------------------------|---------------------|---------------|------------------|------------------| | r | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 910 | Jun.15,2018 | Jun.14,2021 | | SPEAG | Data Acquisition Electronics | DAE4 | 1549 | Mar.19.2019 | Mar.18.2020 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 7396 | May.06,2019 | May.05,2020 | | Agilent | ENA Series Network Analyzer | E5071C | MY46317418 | Dec. 06,<br>2019 | Dec. 05,<br>2020 | | SPEAG | DAK | DAK-3.5 | 1226 | NCR | NCR | | SPEAG | ELI Phantom | QDOVA004AA | 2058 | NCR | NCR | | AR | Amplifier | ZHL-42W | QA1118004 | NCR | NCR | | Agilent | Power Meter | N1914A | MY50001102 | Dec. 06,<br>2019 | Dec. 05,<br>2020 | | Agilent | Power Sensor | N8481H | MY51240001 | Dec. 06,<br>2019 | Dec. 05,<br>2020 | | R&S | Spectrum Analyzer | N9020A | MY51170037 | Dec. 06,<br>2019 | Dec. 05,<br>2020 | | Agilent | Signal Generation | N5182A | MY48180656 | Dec. 06,<br>2019 | Dec. 05,<br>2020 | | Worken | Directional Coupler | 0110A05601O-1<br>0 | COM5BNW1A2 | Dec. 06,<br>2019 | Dec. 05,<br>2020 | #### Note: - 1. The calibration certificate of DASY can be referred to appendix D of this report. - 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval. - 3. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check. - 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent. - 5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it Report No.: 18220WC000018-01 Page 19 of 57 # 6. Tissue Simulating Liquids For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed: Photo of Liquid Height for Head SAR Photo of Liquid Height for Body SAR The following table shows the measuring results for simulating liquid. | | Measured | Target | Tissue | Measured Tissue | | | | | | |----------------|------------------------|--------|--------|-----------------|-------------|-------|-------------|-----------------|------------| | Tissue<br>Type | Frequenc<br>y<br>(MHz) | εr | σ | εr | Dev.<br>(%) | σ | Dev.<br>(%) | Liquid<br>Temp. | Test Data | | 2450HSI | 2450 | 39.2 | 1.80 | 1.823 | 1.28 | 38.14 | -2.70 | 22.2 | 03/15/2020 | Report No.: 18220WC000018-01 Page 20 of 57 # 7. System Verification Procedures Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. # Purpose of System Performance check The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure. # System Setup In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below: **System Setup for System Evaluation** Report No.: 18220WC000018-01 Page 21 of 57 **Photo of Dipole Setup** ### > Validation Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix B of this report. | 19 De 17 | Frequenc<br>y<br>(MHz) | Liquid<br>Type | Power fed<br>onto<br>reference<br>dipole (mW) | Targeted<br>SAR<br>(W/kg) | Measured<br>SAR<br>(W/kg) | Normalized<br>SAR<br>(W/kg) | Deviation<br>(%) | Date | |----------|------------------------|----------------|-----------------------------------------------|---------------------------|---------------------------|-----------------------------|------------------|------------| | | 2450 | Head | 250 | 52.4 | 13.2 | 52.80 | 0.76 | 03/15/2020 | Target and Measurement SAR after Normalized Report No.: 18220WC000018-01 Page 22 of 57 # 8. Measurement Procedures The measurement procedures are as follows: - (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel. - (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable) - (c) Measure output power through RF cable and power meter. - (d) Place the EUT in the positions as setup photos demonstrates. - (e) Set scan area, grid size and other setting on the DASY software. - (f) Measure SAR transmitting at the middle channel for all applicable exposure positions. - (g) Identify the exposure position and device configuration resulting the highest SAR - (h) Measure SAR at the lowest and highest channels at the worst exposure position and device configuration if applicable. According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement #### 9. 1. Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from Report No.: 18220WC000018-01 Page 23 of 57 sensor to surface (f) Calculation of the averaged SAR within masses of 1g and 10g #### 9. 2. Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. ### 9.3. Area Scan Procedures The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | |--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | $\leq$ 2 GHz: $\leq$ 15 mm<br>2 – 3 GHz: $\leq$ 12 mm | 3 – 4 GHz: ≤ 12 mm<br>4 – 6 GHz: ≤ 10 mm | | Maximum area scan spatial resolution: $\Delta x_{Area}$ , $\Delta y_{Area}$ | When the x or y dimension of measurement plane orientation the measurement resolution is x or y dimension of the test of measurement point on the test of the measurement point on the test of tes | on, is smaller than the above,<br>must be ≤ the corresponding<br>device with at least one | Report No.: 18220WC000018-01 Page 24 of 57 # 9.4. Zoom Scan Procedures Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. | | -30 | | ≤3 GHz | > 3 GHz | | |--------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--| | Maximum zoom scan s | patial reso | lution: $\Delta x_{Zoom}$ , $\Delta y_{Zoom}$ | $\leq$ 2 GHz: $\leq$ 8 mm<br>2 – 3 GHz: $\leq$ 5 mm <sup>*</sup> | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$<br>$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | | uniform | grid: Δz <sub>Zoom</sub> (n) | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm<br>4 – 5 GHz: ≤ 3 mm<br>5 – 6 GHz: ≤ 2 mm | | | Maximum zoom scan<br>spatial resolution,<br>normal to phantom<br>surface | resolution, to phantom graded grid $\Delta z_{Zoom}(n>1):$ between subsequent points | | ≤ 4 mm | $3 - 4 \text{ GHz}: \le 3 \text{ mm}$<br>$4 - 5 \text{ GHz}: \le 2.5 \text{ mm}$<br>$5 - 6 \text{ GHz}: \le 2 \text{ mm}$ | | | Surface | | | ≤ 1.5·Δz | Zoom(n-1) | | | Minimum zoom scan<br>volume | | | ≥ 30 mm | $3 - 4 \text{ GHz:} \ge 28 \text{ mm}$<br>$4 - 5 \text{ GHz:} \ge 25 \text{ mm}$<br>$5 - 6 \text{ GHz:} \ge 22 \text{ mm}$ | | Note: $\delta$ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. When zoom scan is required and the <u>reported</u> SAR from the *area scan based 1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. Report No.: 18220WC000018-01 Page 25 of 57 ### 9. 5. Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. # 9. 6. Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested. Report No.: 18220WC000018-01 Page 26 of 57 # 9. Conducted Power #### <WIFI 2.4GHz Conducted Power> | Mode | Channel | Frequency<br>(MHz) | Conducted Power (dBm) | Tune-up(dBm) | |----------------|-------------|--------------------|-----------------------|--------------| | | mbole 1 Ame | 2412 | 13.86 | 14.0 | | 802.11b | 6 and | 2437 | 14.66 | 14.0 | | | 11 | 2462 | 14.39 | 14.0 | | | 8000 1 k | 2412 | 11.32 | 11.0 | | 802.11g | 6 | 2437 | 11.12 | 11.0 | | • | 11 | 2462 | 11.83 | 11.0 | | | 018 1400 | 2412 | 10.71 | 11.0 | | 802.11n(20MHz) | 4 6 About | 2437 | 10.44 | 11.0 | | | .11 | 2462 | 11.14 | 11.0 | | | Anto 3 Anto | 2422 | 12.19 | 12.0 | | 802.11n(40MHz) | 6 | 2437 | 12.44 | 12.0 | | · , | 9 | 2452 | 12.57 | 12.0 | #### Note: 1. Per KDB 447498 D01, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] · [ $\sqrt{f(GHz)}$ ] ≤ 3.0 for 1-g SAR, where f(GHz) is the RF channel transmit frequency in GHz Power and distance are rounded to the nearest mW and mm before calculation The result is rounded to one decimal place for comparison | 100 | Mode | Frequency<br>(GHz) | Tune-up<br>Power (dBm) | Max. Power<br>(mW) | Test distance (mm) | Result | exclusion<br>thresholds for<br>1-g SAR | |-----|---------|--------------------|------------------------|--------------------|--------------------|--------|----------------------------------------| | 17 | 802.11b | 2.462 | 15.0 | 31.62 | 5 Antonio 5 | 9.9 | 3.0 | - 2. Base on the result of note1, RF exposure evaluation of 802.11 b mode is required. - 3. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion. - 4. Per KDB 248227 D01, In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR is not required for the following 2.4 GHz OFDM conditions: - 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration. - 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. Report No.: 18220WC000018-01 **Solution Conducted Power>** Page 27 of 57 | Mode | Channel | Frequency (MHz) | Conducted Average<br>Power (dBm) | Tune-up(dBm) | |----------|---------|-----------------|----------------------------------|--------------| | | 00 | 2402 | -0.150 | 0.00 | | GFSK | 39 | 2441 | 0.480 | 0.00 | | | 78 | 2480 | 0.990 | 0.00 | | | 00 | 2402 | 1.480 | 3.00 | | π/4DQPSK | 39 | 2441 | 2.020 | 3.00 | | | 78 | 2480 | 2.560 | 3.00 | | | 00 | 2402 | 1.860 | 3.00 | | 8DPSK | 39 | 2441 | 2.430 | 3.00 | | | 78 | 2480 | 2.950 | 3.00 | ### For FCC ID: Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and $\le 7.5$ for 10-g extremity SAR f(GHz) is the RF channel transmit frequency in GHz Power and distance are rounded to the nearest mW and mm before calculation The result is rounded to one decimal place for comparison | Mode | Frequency<br>(GHz) | Tune-up<br>Power (dBm) | Max. Power<br>(mW) | Test distance (mm) | Result | exclusion<br>thresholds for<br>1-g SAR | |------|--------------------|------------------------|--------------------|--------------------|--------|----------------------------------------| | GFSK | 2.480 | 3.00 | 1.995 | 5.11bar | 0.63 | 3.0 | Per KDB 447498 D01, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 1.57 which is<= 3, SAR testing is not required. # **Estimated SAR for Bluetooth** | Anbore A | £ (CU=) | Distance | Upper lim | it of power * | Estimated <sub>1g</sub> | |----------|---------|----------|-----------|---------------|-------------------------| | Position | f (GHz) | (mm) | dBm | mW mW | (W/kg) | | Body | 2.480 | 5 | 3.00 | 1.995 | 0.084 | <sup>\* -</sup> Maximum possible output power declared by manufacturer When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion: # Shenzhen Anbotek Compliance Laboratory Limited Report No.: 18220WC000018-01 Page 28 of 57 (max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]· $[\sqrt{f(GHz)/x}]$ W/kg for test separation distances $\leq$ 50 mm; Where x = 7.5 for 1-g SAR. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion ### For IC ID: According to section 2.5.1 (Exemption from Routine Evaluation Limits – SAR Evaluation) of RSS-102 Issue 5. SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1. Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance<sup>4,5</sup> | Frequency | Exemption Limits (mW) | | | | | | | | | |-----------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--|--|--|--| | (MHz) | At separation<br>distance of<br>≤5 mm | At separation<br>distance of<br>10 mm | At separation<br>distance of<br>15 mm | At separation<br>distance of<br>20 mm | At separation<br>distance of<br>25 mm | | | | | | ≤300 | 71 mW | 101 mW | 132 mW | 162 mW | 193 mW | | | | | | 450 | 52 mW | 70 mW | 88 mW | 106 mW | 123 mW | | | | | | 835 | 17 mW | 30 mW | 42 mW | 55 mW | 67 mW | | | | | | 1900 | 7 mW | 10 mW | 18 mW | 34 mW | 60 mW | | | | | | 2450 | 4 mW | 7 mW | 15 mW | 30 mW | 52 mW | | | | | | 3500 | 2 mW | 6 mW | 16 mW | 32 mW | 55 mW | | | | | | 5800 | 1 mW | 6 mW | 15 mW | 27 mW | 41 mW | | | | | | Frequency | Exemption Limits (mW) | | | | | | | | | |-----------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|--|--|--|--| | (MHz) | At separation<br>distance of<br>30 mm | At separation<br>distance of<br>35 mm | At separation<br>distance of<br>40 mm | At separation<br>distance of<br>45 mm | At separation<br>distance of<br>≥50 mm | | | | | | ≤300 | 223 mW | 254 mW | 284 mW | 315 mW | 345 mW | | | | | | 450 | 141 mW | 159 mW | 177 mW | 195 mW | 213 mW | | | | | | 835 | 80 mW | 92 mW | 105 mW | 117 mW | 130 mW | | | | | | 1900 | 99 mW | 153 mW | 225 mW | 316 mW | 431 mW | | | | | | 2450 | 83 mW | 123 mW | 173 mW | 235 mW | 309 mW | | | | | | 3500 | 86 mW | 124 mW | 170 mW | 225 mW | 290 mW | | | | | | 5800 | 56 mW | 71 mW | 85 mW | 97 mW | 106 mW | | | | | # The Gain of the ant is 0dBi | | , | Standalone | e SAR test | exclusio | on consid | lerations | | | |---------------|--------------------|---------------|-----------------------------|--------------------------|----------------------|--------------------------|-------------------------------|--------------------------------| | Modulation | Frequency<br>(MHz) | Configuration | Maximum Average Power (dBm) | Maximum<br>EIRP<br>(dBm) | Maximum<br>EIRP (mW) | Separation Distance (mm) | SAR Exclusion Thresholds (mW) | Standalone<br>SAR<br>Exclusion | | WIFI(802.11b) | 2462 | Body* | 15.0 | 17.48 | 55.97576 | tek 5 Anb | ote 4 An | Yes | | BT(GFSK) | 2480 | Body* | 3.00 | 3.00 | 1.99 | 5 | 4 | No | Report No.: 18220WC000018-01 Page 29 of 57 # 10. Antenna Location # 10.1 Antenna Location **EUT Bottom Edge** Report No.: 18220WC000018-01 Page 30 of 57 # 11. SAR Test Results Summary #### General Note: Per KDB 447498 D01v05r01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. Reported SAR(W/kg)= Measured SAR(W/kg)\* Scaling Factor 2. Per KDB 447498 D01v05r01, for each exposure position, if the highest output channel reported SAR≤0.8W/kg, other channels SAR testing are not necessary #### <WIFI 2.4GHz> | Plot<br>No. | Band | Mode | Test<br>Position | Gap<br>(cm) | Ch. | Freq.<br>(MHz) | rowei | Tune-Up<br>Limit<br>(dBm) | Scaling<br>Factor | JAK1a | Reported<br>SAR <sub>1g</sub><br>(W/kg) | |-------------|-------------|---------|------------------|-------------|-----|----------------|-------|---------------------------|-------------------|--------|-----------------------------------------| | #1 | WIFI 2.4GHz | 802.11b | Front | 0 | 11 | 2437 | 14.66 | 15.00 | 1.081 | 0.203 | 0.220 | | Aupole | WIFI 2.4GHz | 802.11b | Rear | 0 | 11 | 2437 | 14.66 | 15.00 | 1.081 | 0.169 | 0.183 | | dina | WIFI 2.4GHz | 802.11b | Left Side | 0000 | 11 | 2437 | 14.66 | 15.00 | 1.081 | - Pro | 1-070V | | 8 | WIFI 2.4GHz | 802.11b | Right Side | 0 | 11 | 2437 | 14.66 | 15.00 | 1.081 | 0.053 | 0.057 | | 16 | WIFI 2.4GHz | 802.11b | Top Side | 0 | 11 | 2437 | 14.66 | 15.00 | 1.081 | 0.187 | 0.202 | | | WIFI 2.4GHz | 802.11b | Bottom Side | 0 | 11 | 2437 | 14.66 | 15.00 | 1.081 | "Dolek | - Puppy | Note: Appendix C. Plots of SAR Test Data Report No.: 18220WC000018-01 Page 31 of 57 # 12. Simultaneous Transmission Analysis WIFI 2.4GHz and Bluetooth share the same antenna, and can not transmit simultaneously. Report No.: 18220WC000018-01 Page 32 of 57 #### **Measurement Uncertainty 13.** Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is< 1.5 W/Kg, the extensive SAR measurement uncertainty analysis described in IEC 62209-2:2010 is not required in SAR reports submitted for equipment approval. www.anbotek.com Report No.: 18220WC000018-01 Page 33 of 57 # Appendix A. EUT Photos and Test Setup Photos **Body Front(0mm)** Body Back(0mm) Top (0mm) Bottom (0mm) Left(0mm) Right(0mm) Report No.: 18220WC000018-01 Page 34 of 57 # Appendix B. Plots of SAR System Check Date: 03/15/2020 2450MHz Head System Check DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:919 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.823$ S/m; $\epsilon_r = 38.142$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section DASY5 Configuration: - Probe: EX3DV4 SN7396; ConvF(7.57, 7.57, 7.57); Calibrated: 05.06.2019; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1549; Calibrated: 03.19.2019 - Phantom: SAM; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) Configuration/Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 15.1W/kg Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 91.905 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 25.8 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.08 W/kg Maximum value of SAR (measured) = 20.5 W/kg 0 dB = 20.5 W/kg = 13.12 dBW/kg ### **Shenzhen Anbotek Compliance Laboratory Limited** Report No.: 18220WC000018-01 Page 35 of 57 # Appendix C. Plots of SAR Test Data #### #1 # WIFI 2.4G\_802.11b\_Front\_Ch6 Communication System: UID 0, Generic WIFI (0); Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma$ = 1.843 S/m; $\epsilon_r$ = 37.992; $\rho$ = 1000 kg/m<sup>3</sup> Phantom section: Flat Section ### DASY5 Configuration: Probe: EX3DV4 – SN7396; ConvF(7.57, 7.57, 7.57); Calibrated: 05.06.2019; Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1549; Calibrated: 3/19/2019 Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) Rear/CH 6/Area Scan (131x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.217W/kg Rear/CH 6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.79 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.252 W/kg SAR(1 g) = 0.203 W/kg; SAR(10 g) = 0.135W/kg Maximum value of SAR (measured) = 0.211 W/kg Report No.: 18220WC000018-01 Page 36 of 57 # Appendix D. DASY System Calibration Certificate Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Fernail: cttl@chinattl.com Http://www.chinattl.com Client Anbotek (Auden) Certificate No: Z19-68716 # CALIBRATION CERTIFICATE Object EX3DV4 - SN:7396 Calibration Procedure(s) FF-Z11-007-03 Calibration Procedures for Dosimetric E-field Probes Calibration date: May06, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22 $\pm$ 3)°C and humidity<70%. ### Calibration Equipment used (M&TE critical for calibration) | Frimary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | |-------------------------|-------------|------------------------------------------|-----------------------|--| | Power Meter NRP2 | 101919 | 20-Jun-18 (CTTL, No.J18X07447) | Jun-19 | | | Power sensor NRP-Z91 | 101547 | 20-Jun-18 (CTTL, No.J18X07447) | Jun-19 | | | Power sensor NRP-Z91 | 101548 | 20-Jun-18 (CTTL, No.J18X07447) | Jun-19 | | | Reference10dBAttenuator | 18N50W-10dB | 13-Mar-19(CTTL,No.J19X01547) | Mar-20 | | | Reference20dBAttenuator | 18N50W-20dB | 13-Mar-19(CTTL, No.J19X01548) | Mar-20 | | | Reference Probe EX3DV4 | SN 7433 | 26-Sep-18(SPEAG,No.EX3-7433_Sep18) | Sep-19 | | | DAE4 | SN 549 | 13-Dec-18(SPEAG, No.DAE4-549_Dec18) | Dec -19 | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | | SignalGeneratorMG3700A | 6201052605 | 27-Jun-18 (CTTL, No.J18X04776) | Jun-19 | | | Network Analyzer E5071C | MY46110673 | 13-Jan-19 (CTTL, No.J19X00285) | Jan -20 | | | | Name | Function | Signature | | | Calibrated by: | Yu Zongying | SAR Test Engineer | | | | Reviewed by: | Lin Hao | SAR Test Engineer | 林杨 | | | Approved by: | Oi Dianvuan | SAR Project Leader | 75 | | Issued: May 07, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-68716 Page 1 of 11 Report No.: 18220WC000018-01 Page 37 of 57 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: =86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ctil@chinattl.com Http://www.chinattl.cn Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty\_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta$ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz; waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z\* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z\* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: Z19-68716 Page 2 of 11 Report No.: 18220WC000018-01 Page 38 of 57 Http://www.chinattl.cn # Probe EX3DV4 SN: 7396 Calibrated: May 06, 2019 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Page 3 of 11 Report No.: 18220WC000018-01 Page 39 of 57 # DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.54 | 0.53 | 0.50 | ±10.0% | | DCP(mV) <sup>B</sup> | 97.8 | 104.5 | 102.5 | | ## **Modulation Calibration Parameters** | UID | Communication<br>System Name | | A<br>dB | B<br>dBõV | С | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) | |-----|------------------------------|---|---------|-----------|-----|---------|----------|---------------------------| | 0 | CW | х | 0.0 | 0.0 | 1.0 | 0.00 | 199.9 | ±2.4% | | | | Y | 0.0 | 0.0 | 1.0 | | 203.3 | | | | | Z | 0.0 | 0.0 | 1.0 | | 195.0 | 70 | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. <sup>B</sup> Numerical linearization parameter: uncertainty not required. Certificate No: Z19-68716 Page 4 of 11 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6). <sup>&</sup>lt;sup>E</sup> Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Report No.: 18220WC000018-01 Page 40 of 57 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.82 | 9.82 | 9.82 | 0.30 | 0.85 | ±12.1% | | 835 | 41.5 | 0.90 | 9.71 | 9.71 | 9.71 | 0.15 | 1.36 | ±12.1% | | 900 | 41.5 | 0.97 | 9.87 | 9.87 | 9.87 | 0.16 | 1.37 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.61 | 8.61 | 8.61 | 0.25 | 1.04 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.13 | 8.13 | 8.13 | 0.24 | 1.01 | ±12.1% | | 2100 | 39.8 | 1.49 | 8.14 | 8.14 | 8.14 | 0.24 | 1.04 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.85 | 7.85 | 7.85 | 0.40 | 0.75 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.57 | 7.57 | 7.57 | 0.50 | 0.75 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.38 | 7.38 | 7.38 | 0.64 | 0.68 | ±12.1% | | 5250 | 35.9 | 4.71 | 5.33 | 5.33 | 5.33 | 0.45 | 1.30 | ±13.3% | | 5600 | 35.5 | 5.07 | 4.89 | 4.89 | 4.89 | 0.45 | 1.35 | ±13.3% | | 5750 | 35.4 | 5.22 | 4.92 | 4.92 | 4.92 | 0.45 | 1.45 | ±13.3% | $<sup>^{\</sup>rm C}$ Frequency validity above 300 MHz of $\pm 100$ MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to $\pm 50$ MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm$ 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm$ 110 MHz. Certificate No: Z19-68716 Page 5 of 11 <sup>&</sup>lt;sup>F</sup> At frequency below 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) is restricted to $\pm 5\%$ . The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>&</sup>lt;sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm$ 1% for frequencies below 3 GHz and below $\pm$ 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Report No.: 18220WC000018-01 Page 41 of 57 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396 ### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 10.09 | 10.09 | 10.09 | 0.30 | 0.90 | ±12.1% | | 835 | 55.2 | 0.97 | 9.88 | 9.88 | 9.88 | 0.19 | 1.32 | ±12.1% | | 900 | 55.0 | 1.05 | 9.82 | 9.82 | 9.82 | 0.23 | 1.15 | ±12.1% | | 1750 | 53.4 | 1.49 | 8.24 | 8.24 | 8.24 | 0.24 | 1.06 | ±12.1% | | 1900 | 53.3 | 1.52 | 7.97 | 7.97 | 7.97 | 0.19 | 1.24 | ±12.1% | | 2100 | 53.2 | 1.62 | 8.18 | 8.18 | 8.18 | 0.19 | 1.39 | ±12.1% | | 2300 | 52.9 | 1.81 | 7.88 | 7.88 | 7.88 | 0.55 | 0.80 | ±12.1% | | 2450 | 52.7 | 1.95 | 7.53 | 7.53 | 7.53 | 0.46 | 0.89 | ±12.1% | | 2600 | 52.5 | 2.16 | 7.38 | 7.38 | 7.38 | 0.52 | 0.80 | ±12.1% | | 5250 | 48.9 | 5.36 | 4.93 | 4.93 | 4.93 | 0.45 | 1.80 | ±13.3% | | 5600 | 48.5 | 5.77 | 4.19 | 4.19 | 4.19 | 0.48 | 1.90 | ±13.3% | | 5750 | 48.3 | 5.94 | 4.52 | 4.52 | 4.52 | 0.48 | 1.95 | ±13.3% | <sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No; Z19-68716. Page 6 of 11 F At frequency below 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>&</sup>lt;sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm$ 1% for frequencies below 3 GHz and below $\pm$ 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Report No.: 18220WC000018-01 Page 42 of 57 # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No: Z19-68716 Page 7 of 11 Report No.: 18220WC000018-01 Page 43 of 57 Add: No.51 Xueyuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Receiving Pattern (Φ), θ=0° # f=600 MHz, TEM # f=1800 MHz, R22 Certificate No: Z19-68716 Page 8 of 11 Report No.: 18220WC000018-01 Page 44 of 57 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Famail: ettl@chinattl.com Hup://www.chinattl.cn # Dynamic Range f(SAR<sub>head</sub>) (TEM cell, f = 900 MHz) 105 Input Signal[μV] 103 10-2 10 10° 10 10<sup>2</sup> SAR[mW/cm3] not compensated compensated SAR[mW/cm not compensated Uncertainty of Linearity Assessment: ±0.9% (k=2) Page 9 of 11 ### Shenzhen Anbotek Compliance Laboratory Limited Certificate No: Z19-68716 Report No.: 18220WC000018-01 Page 45 of 57 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Conversion Factor Assessment # f=900 MHz, WGLS R9(H\_convF) # f=1750 MHz, WGLS R22(H\_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2) Certificate No: Z19-68716 Page 10 of 11 Report No.: 18220WC000018-01 Page 46 of 57 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com <a href="http://www.chinattl.cn">http://www.chinattl.cn</a> # DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396 ## Other Probe Parameters | Sensor Arrangement | Triangular | |-----------------------------------------------|------------| | Connector Angle (°) | 156.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No: Z19-68716 Page 11 of 11 Report No.: 18220WC000018-01 Page 47 of 57 HTW Certificate No: Z19-60066 Client : # CALIBRATION CERTIFICATE Object DAE4 - SN: 1549 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: March 19, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|------------------------------------------|-----------------------| | Process Calibrator 753 | 1971018 | 20-Jun-18 (CTTL, No.J18X05034) | June-19 | Name Function Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: March 20, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60066 Page 1 of 3 Report No.: 18220WC000018-01 Page 48 of 57 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z19-60066 Page 2 of 3 Report No.: 18220WC000018-01 Page 49 of 57 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1 μV , full range = -100...+300 m Low Range: 1LSB = 61nV , full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec -100...+300 mV | Calibration Factors | x | Y | z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 406.354 ± 0.15% (k=2) | 406.056 ± 0.15% (k=2) | 406.182 ± 0.15% (k=2) | | Low Range | 3.98644 ± 0.7% (k=2) | 3.99365 ± 0.7% (k=2) | 3.99469 ± 0.7% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system | 18° ± 1 ° | |-------------------------------------------|-----------| | Connector Angle to be used in DASY system | 18° ± 1 ° | Certificate No: Z19-60066 Page 3 of 3 Report No.: 18220WC000018-01 Page 50 of 57 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn Anbotek (Auden) **Certificate No:** Z18-97091 ## **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 910 Calibration Procedure(s) FD-Z11-2-003-01 Calibration Procedures for dipole validation kits Calibration date: Jun 15, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|------------------------------------------|-----------------------| | Power Meter NRP2 | 101919 | 01-Jul-17 (CTTL, No.J17X04256) | Jun-18 | | Power sensor NRP-Z91 | 101547 | 01-Jul-17 (CTTL, No.J17X04256) | Jun-18 | | Reference Probe EX3DV4 | SN 7307 | 19-Feb-18(SPEAG,No.EX3-7307_Feb18) | Feb-19 | | DAE4 | SN 771 | 02-Feb-18(CTTL-SPEAG,No.Z18-97011) | Feb-19 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-18 (CTTL, No.J18X00893) | Jan-19 | | Network Analyzer E5071C | MY46110673 | 26-Jan-18 (CTTL, No.J18X00894) | Jan-19 | | | | | | | | Name | Function | Signature | |----------------|-------------|-----------------------------------|--------------------------------------------| | Calibrated by: | Zhao Jing | SAR Test Engineer | Ser la | | Reviewed by: | Qi Dianyuan | SAR Project Leader | Too | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | - Justs | | | | | () (公里) | Issued: Jun 17, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z18-97091 Report No.: 18220WC000018-01 Page 51 of 57 s p e a q CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z18-97091 Page 2 of 8 Report No.: 18220WC000018-01 Page 52 of 57 In Collaboration with S D E A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52.8.8.1258 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.77 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 $cm^3$ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.0 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 52.4 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.06 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 mW /g ± 20.4 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.97 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 $cm^3$ (1 g) of Body TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.0 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 51.8 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.18 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.7 mW /g ± 20.4 % (k=2) | Certificate No: Z18-97091 Page 3 of 8 Report No.: 18220WC000018-01 Page 53 of 57 Add: No.51 Xueyuan Road, Haidian District, Bejjing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.6Ω+ 2.77jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.8dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.7Ω+ 4.28jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.3dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.263 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| Certificate No: Z18-97091 Page 4 of 8 Report No.: 18220WC000018-01 Page 54 of 57 e CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Bejjing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 910 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma$ = 1.767 S/m; $\epsilon r$ = 39.01; $\rho$ = 1000 kg/m3 Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7307; ConvF(7.36, 7.36, 7.36); Calibrated: 2/19/2018; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2018-02-02 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) Date: 06.15.2018 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.5 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.06 W/kg Maximum value of SAR (measured) = 19.7 W/kg 0 dB = 19.7 W/kg = 12.94 dBW/kg Certificate No: Z18-97091 Page 5 of 8 Report No.: 18220WC000018-01 Page 55 of 57 ### Shenzhen Anbotek Compliance Laboratory Limited Report No.: 18220WC000018-01 Page 56 of 57 In Collaboration with S P E A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn **DASY5 Validation Report for Body TSL** Date: 06.15.2018 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 910 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.972$ S/m; $\epsilon_r = 52.92$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7307; ConvF(7.22, 7.22, 7.22); Calibrated: 2/19/2018; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2018-02-02 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.89 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 25.6 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.18 W/kgMaximum value of SAR (measured) = 19.3 W/kg 0 dB = 19.3 W/kg = 12.86 dBW/kg Certificate No: Z18-97091 Page 7 of 8 Report No.: 18220WC000018-01 Page 57 of 57 \*\*\*\*\*END OF REPORT\*\*\*\* ### Shenzhen Anbotek Compliance Laboratory Limited