

RF TEST REPORT

Applicant Smawave Technology Co. ,Ltd

FCC ID 2AU8HSPH320-A

Product smart phone

Brand Smawave

Model SPH320-a

Report No. R2005A0340-R1V1

Issue Date January 12, 2022

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC CFR47 Part 2 (2019)/ FCC CFR 47 Part 96E (2019). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Peng Tao

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

Report No: R2005A0340-R1V1

1. Te	est Laboratory	5
1.1.	Notes of the Test Report	5
1.2.	Test facility	5
1.3.	Testing Location	5
2. G	eneral Description of Equipment under Test	6
	Applicant and Manufacturer Information	
2.4.	General Information	6
3. Ap	pplied Standards	7
4. Te	est Configuration	
5. Te	est Case Results	g
5.1.	RF power output and Effective Radiated power	9
5.2.	Radiates Spurious Emission	13
6. Ma	ain Test Instruments	16

Version	Revision description	Issue Date
Rev.0	Initial issue of report.	November 19, 2020
Rev.1	Update description. Add RF power output and Effective Radiated power.	January 12, 2022

Note: This revised report (Report No. R2005A0340-R1V1) supersedes and replaces the previously issued report (Report No. R2005A0340-R1). Please discard or destroy the previously issued report and dispose of it accordingly.

Summary of measurement results

No.	Test Type	Clause in FCC rules	Verdict
1	RF power output and Effective Radiated power	2.1046/ 96.41(b)	PASS
2	Radiates Spurious Emission	2.1051 / 96.41(e)	PASS

Date of Testing: June 16, 2020~ July 20, 2020

Note: PASS: The EUT complies with the essential requirements in the standard. FAIL: The EUT does not comply with the essential requirements in the standard.

All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

There is only tested RF power output and Effective Radiated power and Radiates Spurious Emission in this report. Other test items please refer to the module report (Report No.: R2003A0164-R1V1; FCC ID: 2AU8HMGM5607A).

FCC RF Test Report

1. Test Laboratory

1.1. Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of TA technology

(shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the

Report No: R2005A0340-R1V1

conditions and modes of operation as described herein .Measurement Uncertainties were not taken

into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission

list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company:

TA Technology (Shanghai) Co., Ltd.

Address:

No.145, Jintang Rd, Tangzhen Industry Park, Pudong

City:

Shanghai

Post code:

201201

Country:

P. R. China

Contact:

Xu Kai

Telephone:

+86-021-50791141/2/3

Fax:

+86-021-50791141/2/3-8000

Website:

http://www.ta-shanghai.com

E-mail:

xukai@ta-shanghai.com

2. General Description of Equipment under Test

2.3. Applicant and Manufacturer Information

Applicant	Smawave Technology Co. ,Ltd
Applicant address	3/F, Building 8, 1001 North Qinzhou Road, Xuhui District, Shanghai, China
Manufacturer	Smawave Technology Co. ,Ltd
Manufacturer address	3/F, Building 8, 1001 North Qinzhou Road, Xuhui District, Shanghai, China

Report No: R2005A0340-R1V1

2.4. General Information

EUT Description								
Model	SPH320-a							
IMEI	IMEI 1:869922040046018	3						
IIVIEI	IMEI 2:869922040056017	7						
Hardware Version	V2.2							
Software Version	SMAWAVE-SPH320-a							
Power Supply	Battery/ AC Adapter							
Antenna Type	Internal Antenna							
Antenna Gain	3.1dBi							
Test Mode(s)	LTE Band 48;							
Test Modulation	QPSK 16QAM 64QAM;							
Maximum E.I.R.P.	LTE Band 48:		19.29 dBm					
LTE Category	6							
Rated Power Supply Voltage	3.8V							
Extreme Voltage	Minimum: 3.6V Maxim	um: 4.	35V					
Extreme Temperature	Lowest: -20°C Highes	st: +55	°C					
	Band	Г	Γx (MHz)	Rx (MHz)				
Operating Frequency Range(s)	LTE Band 48	3	550-3700	3550-3700				
	LTE Band 43	3	650-3700	3650-3700				
	EUT Accessory							
Adapter	Manufacturer: Shenzhen Aquilstar Technology Co., LTD							
Adapter	Model: ASSA107W-050200							
Battery	Manufacturer: Guangdong fenghua New Energy Co.,Ltd							
Dattery	Model: A106							

Note: 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.

2. According to TCB workshop October, 2014 RF Exposure Prcedures Update (Overlappong LTE Bands): a) Test result for LTE Band 43 (Frequency range: 3650-3700 MHz) is covered by LTE Band 48 (Frequency range 3550-3700 MHz) due to similar frequency range, same maximum tune up limit and same channel bandwidth.

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC 47 CFR Part 96E (2019)

ANSI / TIA-603-E

Reference standard:

FCC 47 CFR Part 2 (2019)

FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01

4. Test Configuration

There is more than one SIM card slot, each one should be applied throughout the compliance test re spectively, and however, only the worst case (SIM 1) will be recorded in this report.

Report No: R2005A0340-R1V1

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes. EUT stand-up position (Z axis), lie-down position (X, Y axis). Receiver antenna polarization (horizontal and vertical), the worst emission was found in position (X axis, vertical polarization) and the worst case was recorded.

All mode and data rates and positions were investigated. Subsequently, only the worst case emissions are reported.

The following testing in LTE is set based on the maximum RF Output Power.

Test modes are chosen to be reported as the worst case configuration below:

Test modes are chosen as the worst case configuration below for LTE Band 48.

Test items	Bandwidth (MHz)			h	Modulation				RB			Test Channel		
	5	10	15	20	QPSK	16QAM	64QAM	1	50%	100%	L	М	Н	
RF power output and Effective Radiated power	0	0	0	0	0	0	0	0	0	0	0	0	0	
Radiates Spurious Emission	0	-	-	0	0	-	-	0	-	-	1	0	-	
Note	The mark "O" means that this configuration is chosen for testing. The mark "-" means that this configuration is not testing.													

5. Test Case Results

FCC RF Test Report

5.1. RF power output and Effective Radiated power

Ambient condition

Temperature	Relative humidity
21°C ~25°C	40%~60%

Methods of Measurement


During the process of the testing, The EUT was connected to the Base Station Simulator with a known loss. The EUT is controlled by the Base Station Simulator test set to ensure max power transmission with proper modulation.

ERP can then be calculated as follows:

EIRP (dBm) = Output Power (dBm) - Losses (dB) + Antenna Gain (dBi) where:dBd refers to gain relative to an ideal dipole.

EIRP (dBm) = ERP (dBm) + 2.15 (dB).

Test Setup

Limits

According to FCC §2.1046 & 90.1321(a) Base and fixed stations are limited to 25 watts/25 MHz equivalent isotropically radiated power (EIRP). In any event, the peak EIRP power density shall not exceed 1 Watt in any one-megahertz slice of spectrum.

(c) Mobile and portable stations are limited to 1 watt/25 MHz EIRP. In any event, the peak EIRP density shall not exceed 40 milliwatts in any one-megahertz slice of spectrum.

Limit	Limit		
Base Station/ Fixed Station	25 watts/25 MHz		
Mobile and portable stations	1 watt/25 MHz		

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.4 dB for RF power output, k = 2, U = 1.19 dB for EIRP.

Test Results

L	TE TDD Ba	and 48		Maximun	n Output Pov	ver(dBm)	EIRP (dBm)			
		RB		Chann	Channel/Frequency(MHz)			Channel/Frequency(MHz)		
Bandwidth	Modulation	allocation	offset	55265/3552.5	55990/3625	56715/3697.5	55265/3552.5	55990/3625	56715/3697.5	
		1	0	15.03	16.18	15.61	18.13	19.28	18.71	
		1	13	15.04	16.03	15.62	18.14	19.13	18.72	
		1	24	14.95	16.06	15.66	18.05	19.16	18.76	
	QPSK	12	0	14.51	16.13	15.66	17.61	19.23	18.76	
		12	6	14.98	16.04	15.56	18.08	19.14	18.66	
		12	13	14.88	16.09	15.57	17.98	19.19	18.67	
		25	0	14.48	16.12	14.55	17.58	19.22	17.65	
		1	0	14.55	14.50	14.51	17.65	17.60	17.61	
		1	13	14.69	14.61	14.67	17.79	17.71	17.77	
		1	24	15.10	15.02	14.48	18.20	18.12	17.58	
5MHz	16QAM	12	0	13.01	13.80	13.97	16.11	16.90	17.07	
		12	6	13.44	13.68	13.56	16.54	16.78	16.66	
		12	13	13.71	13.61	13.39	16.81	16.71	16.49	
		25	0	13.35	13.73	13.30	16.45	16.83	16.40	
		1	0	13.42	14.13	12.92	16.52	17.23	16.02	
	64QAM	1	13	13.36	14.06	12.82	16.46	17.16	15.92	
		1	24	14.17	14.05	12.83	17.27	17.15	15.93	
		12	0	12.32	13.15	12.85	15.42	16.25	15.95	
		12	6	12.66	13.09	12.87	15.76	16.19	15.97	
		12	13	13.25	13.13	12.90	16.35	16.23	16.00	
		25	0	12.75	13.16	13.06	15.85	16.26	16.16	
Randwidth	Modulation	RB	offset	Chann	el/Frequency	/(MHz)	Chann	/(MHz)		
Dariawiatii	Modulation	allocation	OHSCE	55290/3555	55990/3625	56690/3695	55290/3555	55990/3625	56690/3695	
		1	0	15.05	16.19	15.64	18.15	19.29	18.74	
		1	25	15.07	16.08	15.66	18.17	19.18	18.76	
		1	49	14.97	16.10	15.69	18.07	19.20	18.79	
	QPSK	25	0	14.54	16.18	15.70	17.64	19.28	18.80	
		25	13	15.01	16.09	15.60	18.11	19.19	18.70	
		25	25	14.90	16.13	15.62	18.00	19.23	18.72	
		50	0	14.56	16.14	14.59	17.66	19.24	17.69	
10MHz		1	0	14.57	14.53	14.53	17.67	17.63	17.63	
		1	25	14.72	14.65	14.70	17.82	17.75	17.80	
		1	49	15.13	15.04	14.51	18.23	18.14	17.61	
	16QAM	25	0	13.04	13.85	14.01	16.14	16.95	17.11	
		25	13	13.46	13.72	13.59	16.56	16.82	16.69	
		25	25	13.74	13.66	13.43	16.84	16.76	16.53	
		50	0	13.38	13.78	13.34	16.48	16.88	16.44	
	64QAM	1	0	13.44	14.16	12.94	16.54	17.26	16.04	

FCC RF Test Report Report No: R2005A0340-R1V1

							Report No: R2005A0340-R1V1			
		1	25	13.39	14.10	12.85	16.49	17.20	15.95	
		1	49	14.20	14.07	12.86	17.30	17.17	15.96	
		25	0	12.35	13.20	12.89	15.45	16.30	15.99	
		25	13	12.68	13.13	12.90	15.78	16.23	16.00	
		25	25	13.28	13.18	12.94	16.38	16.28	16.04	
		50	0	12.78	13.21	13.10	15.88	16.31	16.20	
Bandwidth Modul	otion	RB	offset	Chann	el/Frequency	/(MHz)	Chann	el/Frequenc	y(MHz)	
Bariuwidii iivioddi	allon	allocation	Oliset	55315/3557.5	55990/3625	56665/3692.5	55315/3557.5	55990/3625	56665/3692.5	
		1	0	15.04	16.15	15.62	18.14	19.25	18.72	
		1	38	15.05	16.07	15.63	18.15	19.17	18.73	
		1	74	14.94	16.05	15.65	18.04	19.15	18.75	
QPS	SK	36	0	14.52	16.14	15.67	17.62	19.24	18.77	
		36	18	14.98	16.04	15.56	18.08	19.14	18.66	
		36	39	14.87	16.10	15.58	17.97	19.20	18.68	
		75	0	14.54	16.10	14.54	17.64	19.20	17.64	
		1	0	14.52	14.51	14.51	17.62	17.61	17.61	
		1	38	14.70	14.62	14.68	17.80	17.72	17.78	
	16QAM	1	74	15.10	15.00	14.48	18.20	18.10	17.58	
15MHz 16Q		36	0	13.01	13.83	13.98	16.11	16.93	17.08	
		36	18	13.43	13.67	13.55	16.53	16.77	16.65	
		36	39	13.72	13.62	13.40	16.82	16.72	16.50	
		75	0	13.35	13.73	13.30	16.45	16.83	16.40	
		1	0	13.39	14.14	12.92	16.49	17.24	16.02	
		1	38	13.37	14.07	12.83	16.47	17.17	15.93	
		1	74	14.17	14.03	12.83	17.27	17.13	15.93	
64Q.	AM	36	0	12.32	13.18	12.86	15.42	16.28	15.96	
		36	18	12.65	13.08	12.86	15.75	16.18	15.96	
		36	39	13.26	13.14	12.91	16.36	16.24	16.01	
		75	0	12.75	13.16	13.06	15.85	16.26	16.16	
Pandwidth Madul	otion	RB	offoot	Channel/Frequency(MHz)			Channel/Frequency(MHz)			
Bandwidth Modul	alion	allocation	offset	55340/3560	55990/3625	56640/3690	55340/3560	55990/3625	56640/3690	
		1	0	15.01	16.11	15.59	18.11	19.21	18.69	
		1	50	15.04	16.03	15.61	18.14	19.13	18.71	
		1	99	14.92	16.04	15.62	18.02	19.14	18.72	
QPS	SK	50	0	14.49	16.09	15.63	17.59	19.19	18.73	
		50	25	14.96	16.00	15.53	18.06	19.10	18.63	
20MHz		50	50	14.84	16.05	15.54	17.94	19.15	18.64	
20MHz		100	0	14.51	16.05	14.50	17.61	19.15	17.60	
		1	0	14.50	14.47	14.46	17.60	17.57	17.56	
		1	50	14.66	14.60	14.64	17.76	17.70	17.74	
16Q.	AM	1	99	15.08	14.97	14.46	18.18	18.07	17.56	
		50	0	12.98	13.79	13.95	16.08	16.89	17.05	
		50	25	13.40	13.65	13.52	16.50	16.75	16.62	

100

0

12.73

	F	CC RF Test F	Report		Report No: R2005A0340-R1V1				
		50	50	13.69	13.57	13.36	16.79	16.67	16.46
		100	0	13.33	13.69	13.27	16.43	16.79	16.37
		1	0	13.37	14.10	12.87	16.47	17.20	15.97
		1	50	13.33	14.05	12.79	16.43	17.15	15.89
	64QAM	1	99	14.15	14.00	12.81	17.25	17.10	15.91
		50	0	12.29	13.14	12.83	15.39	16.24	15.93
		50	25	12.62	13.06	12.83	15.72	16.16	15.93
		50	50	13.23	13.09	12.87	16.33	16.19	15.97

13.12

13.03

15.83

16.22

16.13

5.2. Radiates Spurious Emission

FCC RF Test Report

Ambient condition

Temperature	Relative humidity	Pressure			
23°C ~25°C	45%~50%	101.5kPa			

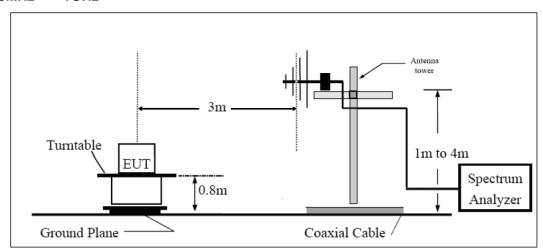
Method of Measurement

- 1. The testing follows FCC KDB 971168 D01 v03r01 Section 5.8 and ANSI C63.26 (2015).
- 2. Below 1GHz: The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). Above 1GHz: (Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).
- 3. A loop antenna, A log-periodic antenna or horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 4. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=200Hz,VBW=600Hz for 9kHz150kHz, RBW=10kHz, VBW=30kHz 150kHz-30MHz,RBW=100kHz,VBW=300kHz for 30MHz to 1GHz and RBW=1MHz, VBW=3MHz for above 1GHz And the maximum value of the receiver should be recorded as (Pr).
- 5. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 6. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 7. The measurement results are obtained as described below:

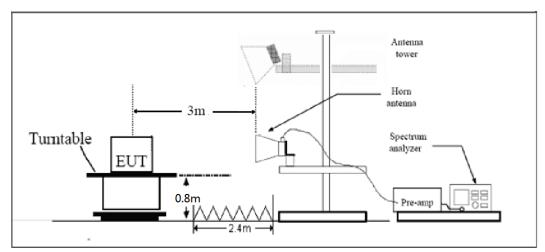
Power(EIRP)=PMea- PAg - Pcl + Ga

The measurement results are amend as described below:

Power(EIRP)=PMea- Pcl + Ga


8. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

Report No: R2005A0340-R1V1


The modulation mode and RB allocation refer to section 5.1, using the maximum output power configuration.

Test setup

30MHz~~~ 1GHz

Above 1GHz

Note: Area side: 2.4mX3.6m

Limits

Rule Part 96.41(e) (2) specifies that "Additional protection levels. Notwithstanding paragraph (e)(1) of this section, for CBSDs and End User Devices, the conducted power of emissions below 3540 MHz or above 3710 MHz shall not exceed -25 dBm/MHz, and the conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz."

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 3.55 dB.

Test Result

LTE Band 48 5MHz CH-Middle, RB 1

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	EIRP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	7250.0	-62.95	2.50	11.35	Vertical	-54.10	-40.00	14.10	45
3	10875.0	-60.05	4.20	12.05	Vertical	-52.20	-40.00	12.20	180
4	14500.0	-63.63	5.50	14.23	Vertical	-54.90	-40.00	14.90	225
5	18125.0								
6	21750.0								
7	25375.0								
8	29000.0								
9	32625.0								
10	36250.0								

Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor.

LTE Band 48 20MHz CH-Middle, RB 1

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	EIRP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	7250.0	-61.47	2.50	11.35	Vertical	-52.62	-40.00	12.62	45
3	10875.0	-59.05	4.20	12.05	Vertical	-51.20	-40.00	11.20	315
4	14500.0	-62.68	5.50	14.23	Vertical	-53.95	-40.00	13.95	270
5	18125.0								
6	21750.0				-				
7	25375.0								
8	29000.0								
9	32625.0								
10	36250.0								

Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor.

2. The worst emission was found in the antenna is Vertical position.

Report No: R2005A0340-R1V1

^{2.} The worst emission was found in the antenna is Vertical position.

6. Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Date	
Base Station Simulator	R&S	CMW500	113824	2020-05-18	2021-05-17	
Power Splitter	Hua Xiang	SHX-GF2-2-13	10120101	/	/	
Spectrum Analyzer	Key sight	N9010A	MY50210259	2020-05-18	2021-05-17	
Signal Analyzer	R&S	FSV30	100815 2019-12-1		2020-12-14	
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2017-09-26	2020-09-25	
Trilog Antenna	SCHWARZBECK	VUBL 9163	9163-201	2017-11-18	2020-11-17	
Horn Antenna	R&S	HF907	102723	2018-08-11	2021-08-10	
Horn Antenna	ETS-Lindgren	3160-09	00102643	2018-06-20	2021-06-19	
Signal generator	R&S	SMB 100A	102594	2020-05-18	2021-05-17	
Climatic Chamber	ESPEC	SU-242	93000506	2017-12-17	2020-12-16	
Preampflier	R&S	SCU18	102327	2020-05-18	2021-05-17	
MOB COMMS DC SUPPLY	Keysight	66319D	MY43004105	2020-05-18	2021-05-17	
RF Cable	Agilent	SMA 15cm	0001	2020-06-12	2020-12-11	
Software	R&S	EMC32	9.26.0	/	/	

******END OF REPORT ******

Report No: R2005A0340-R1V1