

Page 1 of 92

JQA File No.: KL80160359 Issue Date: September 9, 2016

TEST REPORT

Applicant : SHARP CORPORATION, Consumer Electronics Company,

Communication Systems Division

Address : 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, Japan

Products : Smart Phone

Model No. : SH-02J

Serial No. : 004401115841112

004401115841138

FCC ID : APYHRO00242

Test Standard : CFR 47 FCC Rules and Regulations Part 15

Test Results : Passed

Date of Test : August $16 \sim 29$, 2016

Asm

Kousei Shibata

Manager

Japan Quality Assurance Organization

KITA-KANSAI Testing Center

SAITO EMC Branch

7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The test results in this test report was made by using the measuring instruments which are traceable to national standards of measurement in accordance with ISO/IEC 17025.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 2 of 92

TABLE OF CONTENTS

		Page
1	Description of the Equipment Under Test	3
2	Summary of Test Results	4
3	Test Procedure	5
4	Test Location	5
5	Recognition of Test Laboratory	5
6	Description of Test Setup	6
7	Test Requirements	9

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

EUT: Equipment Under TestEMC: Electromagnetic CompatibilityAE: Associated EquipmentEMI: Electromagnetic InterferenceN/A: Not ApplicableEMS: Electromagnetic Susceptibility

N/T : Not Tested

☑ - indicates that the listed condition, standard or equipment is applicable for this report.

 \Box - indicates that the listed condition, standard or equipment is not applicable for this report.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 3 of 92

1 Description of the Equipment Under Test

1. Manufacturer : SHARP CORPORATION, Consumer Electronics Company,

Communication Systems Division

2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, Japan

2. Products : Smart Phone

3. Model No. : SH-02J

4. Serial No. : 004401115841112

004401115841138

5. Product Type : Pre-production

6. Date of Manufacture : June, 2016

7. Power Rating : 4.0VDC (Lithium-ion Battery UBATIA273AFN1 2700mAh)

8. Grounding : None

9. Transmitting Frequency : WLAN: 2412.0 MHz(01CH) –2462.0MHz(11CH)

Bluetooth LE: 2402.0 MHz(00CH) – 2480.0MHz(39CH)

10. Receiving Frequency : WLAN: 2412.0 MHz(01CH) -2462.0MHz(11CH)

Bluetooth LE: 2402.0 MHz(00CH) – 2480.0MHz(39CH)

11. Max. RF Output Power : 15.77 dBm(Measure Value of IEEE802.11b)

22.10 dBm(Measure Value of IEEE802.11g) 22.07 dBm(Measure Value of IEEE802.11n) 5.15 dBm(Measure Value of Bluetooth LE)

12. Antenna Type : Inverted-L Type Antenna (Integral)

13. Antenna Gain : 1 dBi14. Category : DTS

15. EUT Authorization : Certification16. Received Date of EUT : August 1, 2016

17. Channel Plan

WLAN:

The carrier spacing is 5 MHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN).

The carrier frequency is expressed in the equation shown as follows:

Transmitting Frequency (in MHz) = 2407.0 + 5*n Receiving Frequency (in MHz) = 2407.0 + 5*n

where, n: channel number $(1 \le n \le 11)$

Bluetooth Low Energy Mode:

The carrier spacing is 2 MHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN).

The carrier frequency is expressed in the equation shown as follows:

Transmitting Frequency (in MHz) = 2402.0 + 2*n

Receiving Frequency (in MHz) = 2402.0 + 2*n

where, n : channel number $(0 \le n \le 39)$

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 4 of 92

2 Summary of Test Results

Applied Standard : CFR 47 FCC Rules and Regulations Part 15

Subpart C – Intentional Radiators

The EUT described in clause 1 was tested according to the applied standard shown above.

Details of the test configuration is shown in clause 6.

The conclusion for the test items of which are required by the applied standard is indicated under the test result.

 \square - The test result was **passed** for the test requirements of the applied standard.

 \Box - The test result was **failed** for the test requirements of the applied standard.

 \square - The test result was **not judged** the test requirements of the applied standard.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.

- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

Shigeru Kinoshita

Assistant Manager JQA KITA-KANSAI Testing Center

SAITO EMC Branch

Tested by:

Shigeru Osawa

Deputy Manager

JQA KITA-KANSAI Testing Center

higen Osawa

SAITO EMC Branch

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 5 of 92

3 Test Procedure

Test Requirements : §15.247, §15.207 and §15.209

Test Procedure : ANSI C63.10–2013

Testing unlicensed wireless devices.

KDB 558074 D01

DTS Meas Guidance v03r05: April 8, 2016.

KDB937606 (Publication Date: October 10, 2014)

Test Site Requirements for Part 15 and 18 Devices Operating Below 30MHz.

4 Test Location

Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

5 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No. : VLAC-001-2 (Expiry date: March 30, 2018) VCCI Registration No. : A-0002 (Expiry date: March 30, 2018)

BSMI Registration No. : SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006

(Expiry date: September 14, 2016)

IC Registration No. : 2079E-3, 2079E-4 (Expiry date: July 16, 2017)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date: February 22, 2019)

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 6 of 92

6 Description of Test Setup

6.1 Test Configuration

The equipment under test (EUT) consists of:

	Item	Manufacturer	Model No.	Serial No.	FCC ID
A	Smart Phone	Sharp	SH-02J	004401115841112 *1) 004401115841138 *2)	APYHRO00242
В	AC Adapter	Fujitsu Corporation	05	YKA	N/A
С	Stereo Handsfree	Sharp	SHLDL1		N/A

^{*1)} Used for AC Powerline Conducted Emission and Field Strength of Spurious Emission.

The auxiliary equipment used for testing:

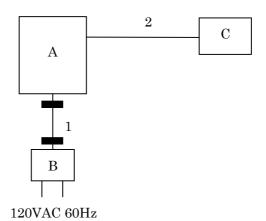
None

Type of Cable:

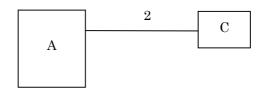
	VI							
No. Descr		Decemination	Identification	Connector	Cable	Ferrite	Length	
ľ	NO.	Description	(Manu. etc.)	Shielded	Shielded	Core	(m)	
	1	USB conversion cable			NO	YES	1.2	
	2	Handsfree Cable			NO	NO	1.5	

^{*2)} Used for Antenna Conducted Emission.

Standard : CFR 47 FCC Rules and Regulations Part 15


Page 7 of 92

6.2 Test Arrangement (Drawings)


a) Single Unit

b) AC Adapter used

c) Earphone used

: Ferrite Core

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 8 of 92

6.3 Operating Condition

Power Supply Voltage : 4.0 VDC (for Battery)

120 VAC, 60 Hz (For AC Adapter)

Transmitting/Receiving

WLAN:

Transmitting frequency : 2412.0 MHz(1CH) - 2462.0 MHz(11CH)Receiver frequency : 2412.0 MHz(1CH) - 2462.0 MHz(11CH)

Bluetooth Low Energy Mode(Bluetooth 4.2 + EDR + LE):

Transmitting frequency : 2402.0 MHz(0CH) - 2480.0 MHz(39CH)Receiver frequency : 2402.0 MHz(0CH) - 2480.0 MHz(39CH)

Modulation Type 1. 802.11b: DSSS 2. 802.11g: OFDM 3. 802.11n: OFDM

4. LE Packet (Modulation Type: GFSK)

Other Clock Frequency

19.2MHz, 48MHz, 12MHz, 27.12MHz

The tests were performed in the following worst condition.

Mode	Condition
IEEE802.11b	11 Mbps
IEEE802.11g	36 Mbps
IEEE802.11n	MCS3 (26 Mbps)

Note: The worst condition was determined based on the test result of Maximum Peak Output Power(Mid channel).

The EUT was rotated through three orthogonal axis (X, Y and Z axis) in radiated measurement.

The EUT with temporary antenna port was used in conducted measurement.

The test were carried out using the following test program supplied by applicant;

- Software Name: SH-02J_WLAN_BT Manual test mode operation
- Software Version: -- (Dated 2016/07/26)
- Storage Location: Controller PC(supplied by applicant)

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 9 of 92

7 Test Requirements

7.0 Summary of the Test Results

Test Item	FCC Specification	Reference of the Test Report	Results	Remarks
Antenna Requirement	Section 15.203	Section 1.12	Passed	-
Channel Separation	Section 15.247(a)(1)	-		-
Minimum Hopping Channel	Section 15.247(a)(1)(iii)	-	-	-
Occupied Bandwidth	Section 15.247(a)(2)	Section 7.3	Passed	-
Dwell Time	Section 15.247(a)(1)(iii)	-	-	-
Peak Output Power (Conduction)	Section 15.247(b)(3)	Section 7.5	Passed	-
Peak Power Density (Conduction)	Section 15.247(e)	Section 7.6	Passed	-
Spurious Emissions (Conduction)	Section 15.247(d)	Section 7.7	Passed	-
AC Powerline Conducted Emission	Section 15.207	Section 7.8	Passed	-
Radiated Emission	Section 15.247(d)	Section 7.9	Passed	-

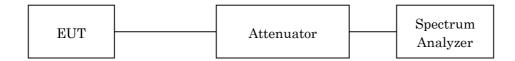
Standard : CFR 47 FCC Rules and Regulations Part 15

Page 10 of 92

7.1	Channel Separation	1			
Fo	or the requirements,	□ - Applicable☑ - Not Applica		□ - Not tested by	applicant request.]
Re	emarks:				
7.2	Minimum Hopping	Channel			
Fo	or the requirements,	□ - Applicable☑ - Not Applica		□ - Not tested by	applicant request.]
Re	emarks:				
7.3	Occupied Bandwidt	h			
Fo	or the requirements,	☑ - Applicable □ - Not Applica		□ - Not tested by	applicant request.]
7.3.1	Test Results				
Fo	or the standard,	abla - Passed	\square - Failed	\square - Not judged	
T} T}	ne 99% Bandwidth of ne 99% Bandwidth of ne 99% Bandwidth of ne 99% Bandwidth of	IEEE802.11g is IEEE802.11n is	_ _ _ _	13.999 MHz 16.479 MHz 17.654 MHz 1093.8 kHz	at 2412.0 MHz at 2437.0 MHz at 2412.0 MHz at 2480.0 MHz
T} T}	ne 6dB Bandwidth of ne 6dB Bandwidth of ne 6dB Bandwidth of ne 6dB Bandwidth of	IEEE802.11g is IEEE802.11n is	_ _ _ _	9.467 MHz 16.531 MHz 17.725 MHz 675.1 kHz	at 2437.0 MHz at 2437.0 MHz at 2437.0 MHz at 2402.0 MHz
U	ncertainty of Measure	ement Results			<u>± 0.9</u> %(2 σ)
Re	emarks:				

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 11 of 92


7.3.2 Test Instruments

Shielded Room S4						
Type	Model	Serial No. (ID)	Manufacturer	Cal. Due		
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2017/08/02		
Attenuator	54A-10	W5675 (D-28)	Weinschel	2017/08/02		
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2017/08/02		

NOTE: The calibration interval of the above test instruments is 12 months.

7.3.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

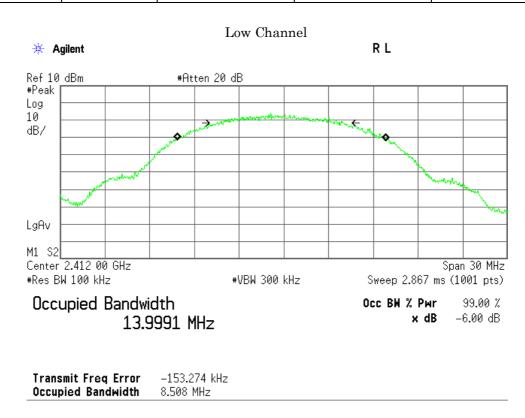
The setting of the spectrum analyzer are shown as follows:

	WLAN	Bluetooth
Res. Bandwidth	$100~\mathrm{kHz}$	100 kHz
Video Bandwidth	$300~\mathrm{kHz}$	$300~\mathrm{kHz}$
Span	$30~\mathrm{MHz}$	3 MHz
Sweep Time	AUTO	AUTO
Trace	Maxhold	Maxhold

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 12 of 92

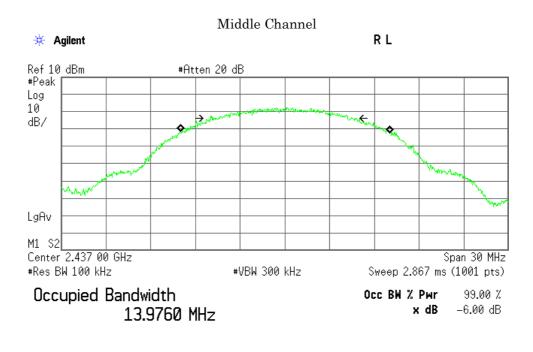
7.3.4 Test Data

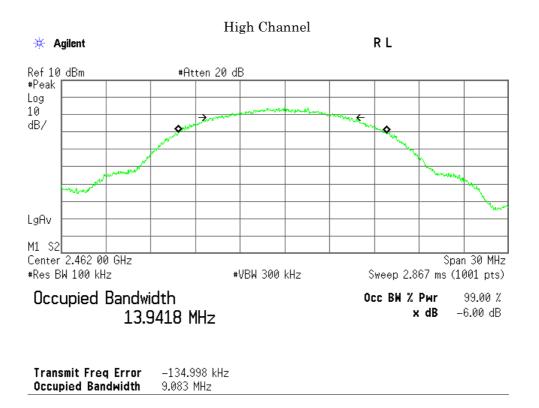

Mode of EUT: WLAN

Test Date :August 17, 2016 Temp.:27°C, Humi:66%

The resolution bandwidth was set to 100 kHz, -6dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

1) IEEE 802.11b

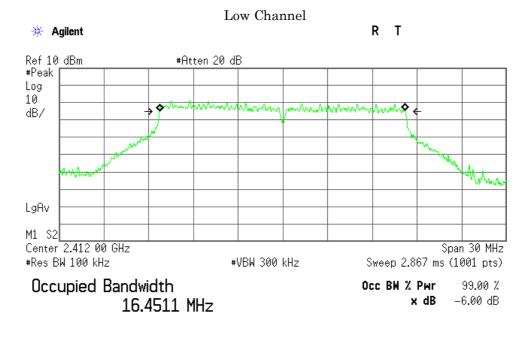

<u> </u>				
Channel	Frequency (MHz)	99% Bandwidth (MHz)	-6dBc Bandwidth (MHz)	Minimum -6dBc Bandwidth Limit (kHz)
01	2412.0	13.999	8.508	500
06	2437.0	13.976	9.467	500
11	2462.0	13.942	9.083	500



Standard : CFR 47 FCC Rules and Regulations Part 15

Page 13 of 92

Transmit Freq Error 39.289 kHz **Occupied Bandwidth** 9.467 MHz

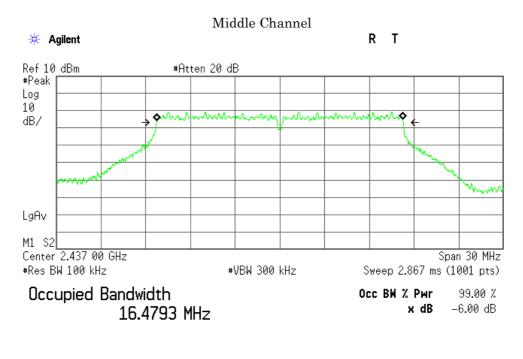


Standard : CFR 47 FCC Rules and Regulations Part 15

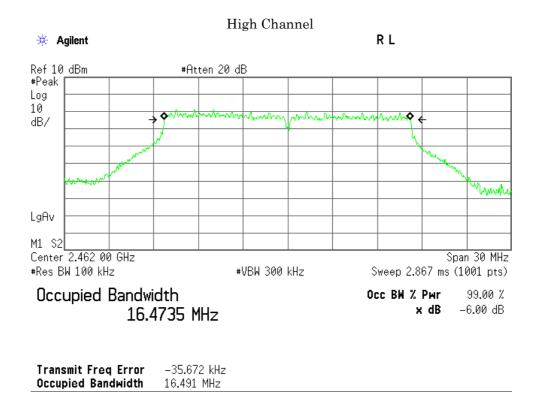
Page 14 of 92

2) IEEE 802.11g

Channel	Frequency (MHz)	99% Bandwidth (MHz)	-6dBc Bandwidth (MHz)	Minimum -6dBc Bandwidth Limit (kHz)
01	2412.0	16.451	16.458	500
06	2437.0	16.479	16.531	500
11	2462.0	16.474	16.491	500



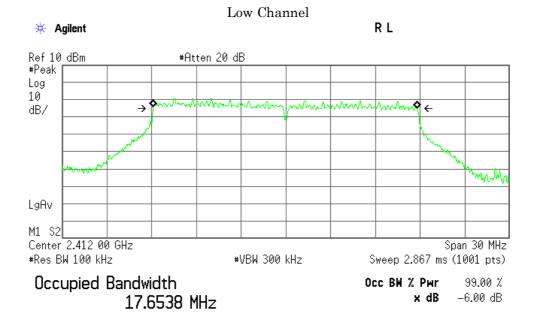
Transmit Freq Error -30.302 kHz Occupied Bandwidth 16.458 MHz



Standard : CFR 47 FCC Rules and Regulations Part 15

Page 15 of 92

Transmit Freq Error -3.175 kHz Occupied Bandwidth 16.531 MHz

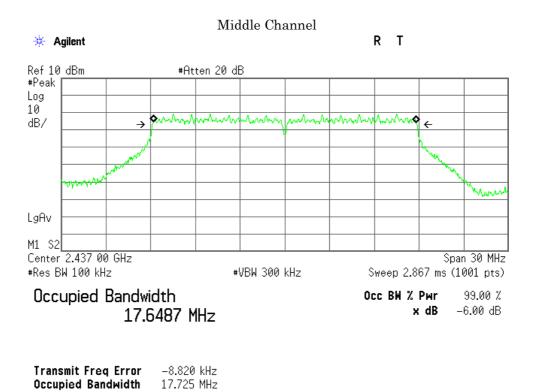


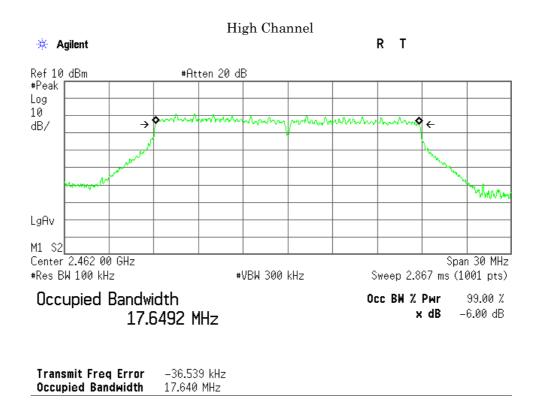
Standard : CFR 47 FCC Rules and Regulations Part 15

Page 16 of 92

3) IEEE 802.11n

Channel	Frequency (MHz)	99% Bandwidth (MHz)	-6dBc Bandwidth (MHz)	Minimum -6dBc Bandwidth Limit (kHz)
01	2412.0	17.654	17.672	500
06	2437.0	17.649	17.725	500
11	2462.0	17.649	17.640	500




Transmit Freq Error -41.855 kHz Occupied Bandwidth 17.672 MHz

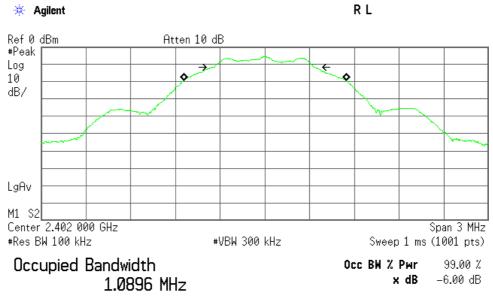
Standard : CFR 47 FCC Rules and Regulations Part 15

Page 17 of 92

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 18 of 92

Mode of EUT: Bluetooth Low Energy

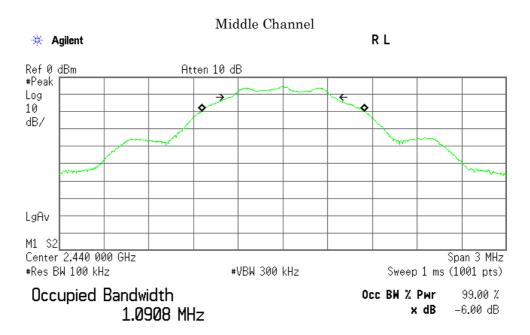

Test Date :August 17, 2016 Temp.:27°C, Humi:65%

The resolution bandwidth was set to 100 kHz, -6dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

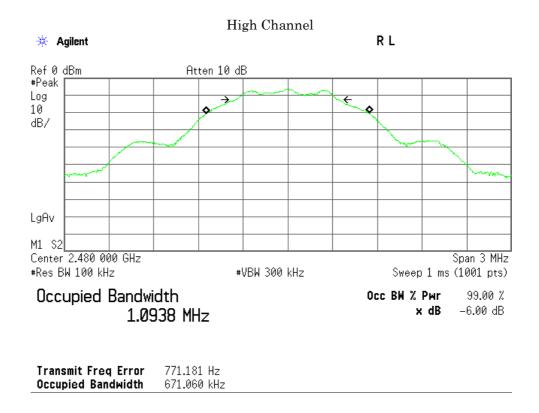
4) Packet Setting: LE (Modulation type: GFSK)

Channel	Frequency (MHz)	99% Bandwidth (kHz)	-6dBc Bandwidth (kHz)	Minimum -6dBc Bandwidth Limit (kHz)
00	2402.0	1089.6	675.1	500
19	2440.0	1090.8	673.8	500
39	2480.0	1093.8	671.1	500

Packet Setting: LE (Modulation type: GFSK)
Low Channel



Transmit Freq Error 1.532 kHz Occupied Bandwidth 675.143 kHz



Standard : CFR 47 FCC Rules and Regulations Part 15

Page 19 of 92

Transmit Freq Error 1.161 kHz Occupied Bandwidth 673.759 kHz

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 20 of 92

7.4	Dwell Time				
Fo	or the requirements,	□ - Applicable ☑ - Not Applica		□ - Not tested by	y applicant request.]
R	emarks:				
7.5	Peak Output Power	(Conduction)			
Fo	or the requirements,	☑ - Applicable □ - Not Applica		□ - Not tested by	y applicant request.]
7.5.1	Test Results				
Fo	or the standard,		\square - Failed	\square - Not judged	
Pe Pe	eak Output Power of leak Output Power out	IEEE802.11g is IEEE802.11n is Bluetooth LE is	- - - -	15.77 dBm 22.10 dBm 22.07 dBm 5.15 dBm	$\begin{array}{cccc} \text{at} & \underline{2462.0} & \text{MHz} \\ \text{at} & \underline{2462.0} & \text{MHz} \\ \text{at} & \underline{2462.0} & \text{MHz} \\ \text{at} & \underline{2440.0} & \text{MHz} \\ & \underline{\pm 0.9} & \text{dB}(2\sigma) \end{array}$
Re	emarks:				

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 21 of 92

7.5.2 Test Instruments

Shielded Room S4								
Type Model Serial No. (ID) Manufacturer Cal. 1								
Power Meter	N1911A	GB45100291 (B-63)	Agilent	2017/07/10				
Power Sensor	N1921A	US44510470 (B-64)	Agilent	2017/07/10				
Attenuator	54A-10	W5675 (D-28)	Weinschel	2017/08/02				
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2017/08/02				

NOTE: The calibration interval of the above test instruments is 12 months.

7.5.3 Test Method and Test Setup (Diagrammatic illustration)

The Conducted RF Power Output was measured with a power meter, one attenuator and a short, low loss cable.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 22 of 92

7.5.4 Test Data

1) IEEE 802.11b

Data Rate: 11Mbps

Test Date: August 16, 2016 Temp.: 27 °C, Humi: 66 %

Trans mi	tting Fre que ncy	Correction Factor	Meter Reading		lucted tput Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.39	5.26	15.65	36.73	30.00	+14.35
06	2437	10.41	4.42	14.83	30.41	30.00	+15.17
11	2462	10.42	5.35	15.77	37.76	30.00	+14.23

Calculated result at 2462.000 MHz, as the worst point shown on underline:

Minimum Margin: 30.00 - 15.77 = 14.23 (dB)

NOTES

- 1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 2. Setting of measuring instrument(s):

Detector Function	Video B.W.
Peak	OFF

06	2437	
Rate	Meter Reading	Remark
	[dBm]	
1Mbps	4.13	
2Mbps	4.34	
5.5Mbps	4.40	
11Mbps	4.42	*

[MHz]

*: Worst Rate

CH

All comparison were performed on the same measurement condition.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 23 of 92

2) IEEE 802.11g

 Test Date: August 16, 2016

 Data Rate : 36Mbps
 Temp.: 27 °C, Humi: 66 %

Trans mi	tting Frequency	Correction Factor	Meter Reading		ducted tput Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.39	11.70	22.09	161.81	30.00	+ 7.91
06	2437	10.41	11.64	22.05	160.32	30.00	+ 7.95
11	2462	10.42	11.68	22.10	162.18	30.00	+ 7.90

Calculated result at 2462.000 MHz, as the worst point shown on underline:

Minimum Margin: 30.00 - 22.10 = 7.90 (dB)

NOTES

 \mathbf{CH}

 $1. \ The \ correction \ factor \ shows \ the \ attenuation \ pad \ loss \ including \ the \ short, low \ loss \ cable \ or \ adapter.$

2. Setting of measuring instrument(s):

Detector Function	Video B.W.
Peak	OFF

06	2437	
Rate	Meter Reading	Remark
	[dBm]	
6Mbps	11.09	
9Mbps	10.96	
12Mbps	11.29	
18Mbps	11.62	
24Mbps	11.21	
36Mbps	11.64	*
48Mbps	11.20	
54Mbps	11.45	

[MHz]

*: Worst Rate

All comparison were performed on the same measurement condition.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 24 of 92

3) IEEE 802.11n

 Test Date: August 16, 2016

 Data Rate: MCS3
 Temp.: 27 °C, Humi: 66 %

Trans mi	tting Frequency	Correction	Meter Reading		ducted tput Power	Limits	Margin
СН	[MHz]	Factor [dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.39	11.64	22.03	159.59	30.00	+ 7.97
06	2437	10.41	11.60	22.01	158.85	30.00	+ 7.99
11	2462	10.42	11.65	22.07	161.06	30.00	+ 7.93

Calculated result at 2462.000 MHz, as the worst point shown on underline:

Correction Factor = 10.42 dB +) Meter Reading = 11.65 dBm Result = 22.07 dBm = 161.06 mW

Minimum Margin: 30.00 - 22.07 = 7.93 (dB)

NOTES

- $1. \ The \ correction \ factor \ shows \ the \ attenuation \ pad \ loss \ including \ the \ short, low \ loss \ cable \ or \ adapter.$
- 2. Setting of measuring instrument(s):

Detector Function	Video B.W.
Peak	OFF

CH 06	[MHz] 2437	
Rate	Meter Reading	Remark
	[dBm]	
MCS0	11.03	
MCS1	11.09	
MCS2	11.51	
MCS3	11.60	*
MCS4	11.16	
MCS5	11.15	
MCS6	11.15	
MCS7	11.23	

*: Worst Rate

All comparison were performed on the same measurement condition.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 25 of 92

4) Bluetooth LE(Modulation type: GFSK)

Test Date: August 17, 2016 Temp.: 27 °C, Humi: 65 %

Transm	itting Fre quency	Correction Factor	Meter Reading		lucted put Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
00	2402	10.39	-5.38	5.01	3.17	30.00	+24.99
19	2440	10.42	-5.27	5.15	3.27	30.00	+24.85
39	2480	10.43	-6.18	4.25	2.66	30.00	+25.75

Calculated result at $2440.000\,\mathrm{MHz}$, as the worst point shown on underline:

Correction Factor = 10.42 dB+) Meter Reading = -5.27 dBm

Result = 5.15 dBm = 3.27 mW

Minimum Margin: 30.00 - 5.15 = 24.85 (dB)

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s):

Detector Function	Video B.W.
Peak	Off

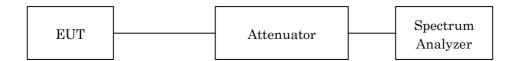
Standard : CFR 47 FCC Rules and Regulations Part 15

Page 26 of 92

7.6 Peak Power Density(Conduction)

7.6.1 Test Results

For the standard,		\square - Failed	□ - Not	judged			
Peak Power Density of Peak Power Density of Peak Power Density of Peak Power Density of	of IEEE802.11g is of IEEE802.11n is		-0.30 -2.69 -2.98 1.76	_ dBm _ dBm _ dBm _ dBm	at at at at	2462.0 2462.0 2462.0 2440.0	MHz MHz MHz MHz
Uncertainty of Measu	rement Results					± 1.7	dB(2σ)
Remarks:							


7.6.2 Test Instruments

Shielded Room S4							
Type Model Serial No. (ID) Manufacturer Cal. Due							
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2017/08/02			
Attenuator	54A-10	W5675 (D-28)	Weinschel	2017/08/02			
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2017/08/02			

NOTE: The calibration interval of the above test instruments is 12 months.

7.6.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 27 of 92

7.6.4 Test Data

1) IEEE 802.11b

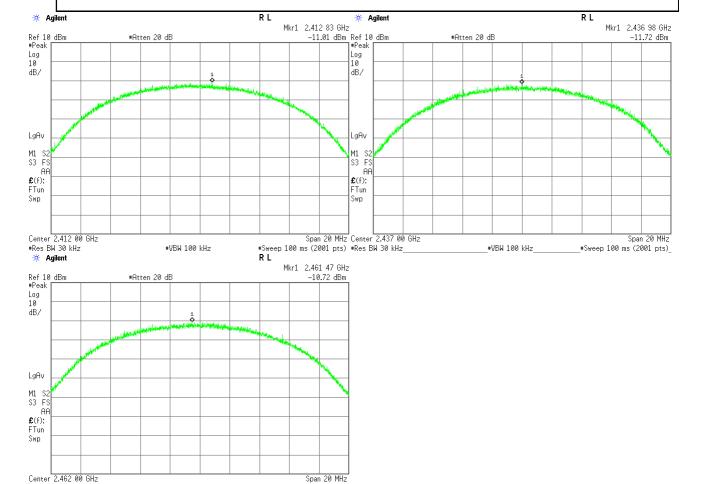
Data Rate: 11Mbps

Test Date: August 17, 2016 Temp.: 27 °C, Humi: 66 %

Transmi	itting Frequency	Correction	Meter Reading		ucte d	Limits	Margin
		Factor			er Density		
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.39	-11.01	-0.62	0.87	8.00	+ 8.62
06	2437	10.41	-11.72	-1.31	0.74	8.00	+ 9.31
11	2462	10.42	-10.72	-0.30	0.93	8.00	+ 8.30

Calculated result at 2462.000 MHz, as the worst point shown on underline:

Correction Factor = 10.42 dB+) Meter Reading = 10.72 dBm


Result = -0.30 dBm = 0.93 mW

Minimum Margin: 8.00 - 0.30 = 8.30 (dB)

NOTES

- 1. The peak power density complied with the limit using 30 kHz resolution bandwidth of Spectrum Analyzer.
- 2. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 3. Setting of measuring instrument(s):

Detector Function	RES B.W.	Video B.W.
Peak	30kHz	100kHz

#Sweep 100 ms (2001 pts)

#VBW 100 kHz

*Res BW 30 kHz

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 28 of 92

2) IEEE 802.11g

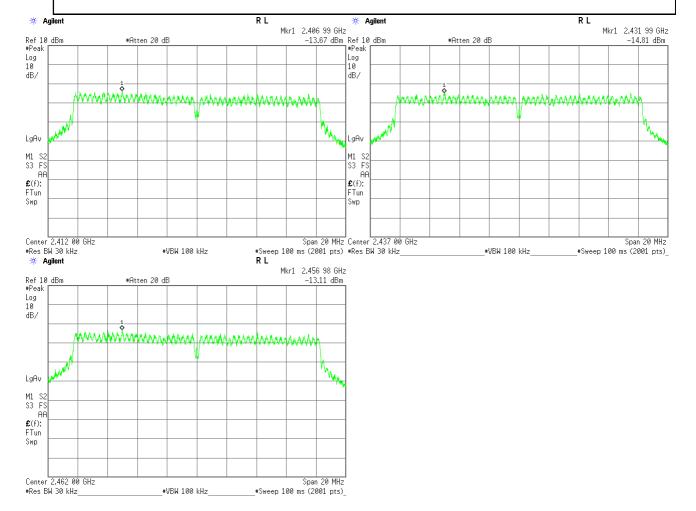
 Data Rate : 36Mbps
 Test Date: August 17, 2016

 Temp.: 27 °C, Humi: 66 %

Transm	itting Frequency	Correction	Meter Reading		ucted	Limits	Margin
СН	[MHz]	Factor [dB]	[dBm]	Peak Pow [dBm]	er Density [mW]	[dBm]	[dB]
01	2412	10.39	-13.67	-3.28	0.47	8.00	+11.28
06	2437	10.41	-14.81	-4.40	0.36	8.00	+12.40
11	2462	10.42	-13.11	-2.69	0.54	8.00	+10.69

Calculated result at 2462.000 MHz, as the worst point shown on underline:

Correction Factor = 10.42 dB+) Meter Reading = -13.11 dBm


Result = -2.69 dBm = 0.54 mW

Minimum Margin: 8.00 - -2.69 = 10.69 (dB)

NOTES

- 1. The peak power density complied with the limit using 30 kHz resolution bandwidth of Spectrum Analyzer.
- 2. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 3. Setting of measuring instrument(s):

Detector Function	RES B.W.	Video B.W.
Peak	30kHz	100kHz

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 29 of 92

3) IEEE 802.11n

 Data Rate : MCS3
 Test Date: August 17, 2016

 Test Date: August 17, 2016
 ™

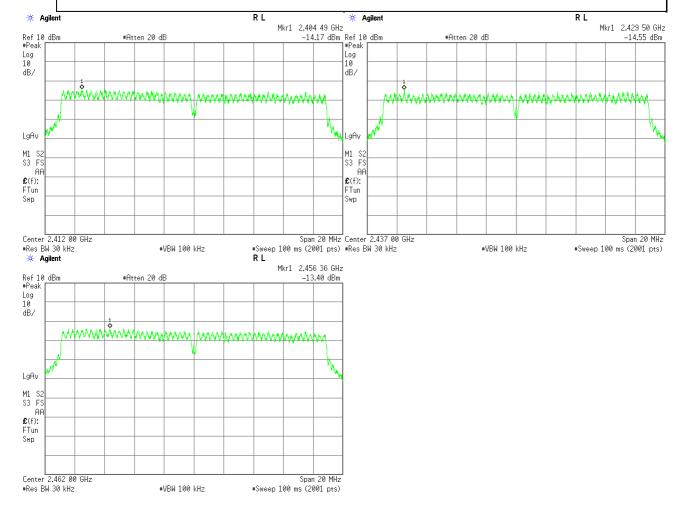
 Temp.: 27 °C, Humi: 66 %

Transm	itting Frequency	Correction Factor	Meter Reading	Cond Peak Pow		Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.39	-14.17	-3.78	0.42	8.00	+11.78
06	2437	10.41	-14.55	-4.14	0.39	8.00	+12.14
11	2462	10.42	-13.40	-2.98	0.50	8.00	+10.98

Calculated result at 2462.000 MHz, as the worst point shown on underline:

Correction Factor = 10.42 dB+) Meter Reading = -13.40 dB

 Meter Reading
 =
 -13.40 dBm


 Result
 =
 -2.98 dBm = 0.50 mW

Minimum Margin: 8.00 - -2.98 = 10.98 (dB)

NOTES

- 1. The peak power density complied with the limit using 30 kHz resolution bandwidth of Spectrum Analyzer.
- 2. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 3. Setting of measuring instrument(s):

Detector Function	RES B.W.	Video B.W.
Peak	$30 \mathrm{kHz}$	100kHz

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 30 of 92

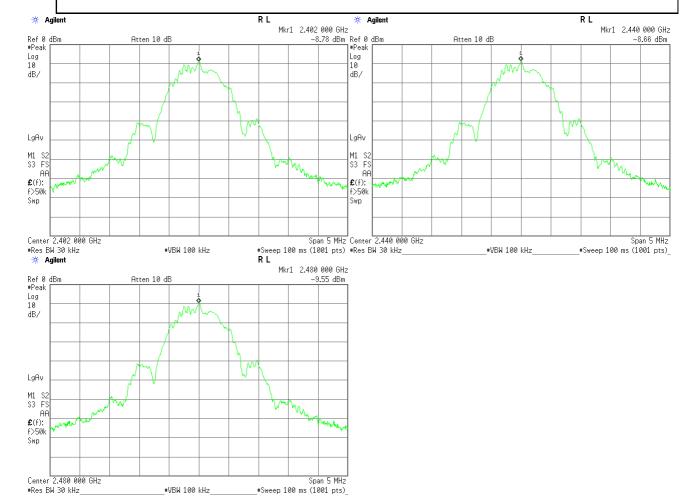
4) Bluetooth LE(Modulation type : GFSK)

Test Date: August 17, 2016 Temp.: 27 °C, Humi: 65 %

Transmi	tting Frequency	Correction Factor	Meter Reading		lucted er Density	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
00	2402	10.39	-8.78	1.61	1.45	8.00	+ 6.39
19	2440	10.42	-8.66	1.76	1.50	8.00	+ 6.24
39	2480	10.43	-9.55	0.88	1.22	8.00	+ 7.12

Calculated result at 2440.000 MHz, as the worst point shown on underline:

Correction Factor = 10.42 dB +) Meter Reading = -8.66 dBm


Result = 1.76 dBm = 1.50 mW

Minimum Margin: 8.00 - 1.76 = 6.24 (dB)

NOTES

- 1. The peak power density complied with the limit using 30 kHz resolution bandwidth of Spectrum Analyzer.
- 2. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 3. Setting of measuring instrument(s):

Detector Function	RES B.W.	Video B.W.
Peak	30kHz	100kHz

Standard : CFR 47 FCC Rules and Regulations Part 15

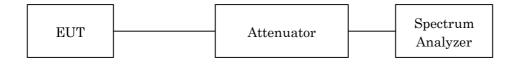
Page 31 of 92

7.7 Spurious Emissions(Conduction)

For the requirements, $\ \ \, \square$ - Applicable $\ \ \, \square$ - Not tested by applicant request. $\ \ \, \square$ - Not Applicable

7.7.1 Test Results

7.7.2 Test Instruments


Remarks:

Shielded Room S4							
Type	Model	Serial No. (ID)	Manufacturer	Cal. Due			
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2017/08/02			
Attenuator	54A-10	W5675 (D-28)	Weinschel	2017/08/02			
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2017/08/02			

NOTE: The calibration interval of the above test instruments is 12 months.

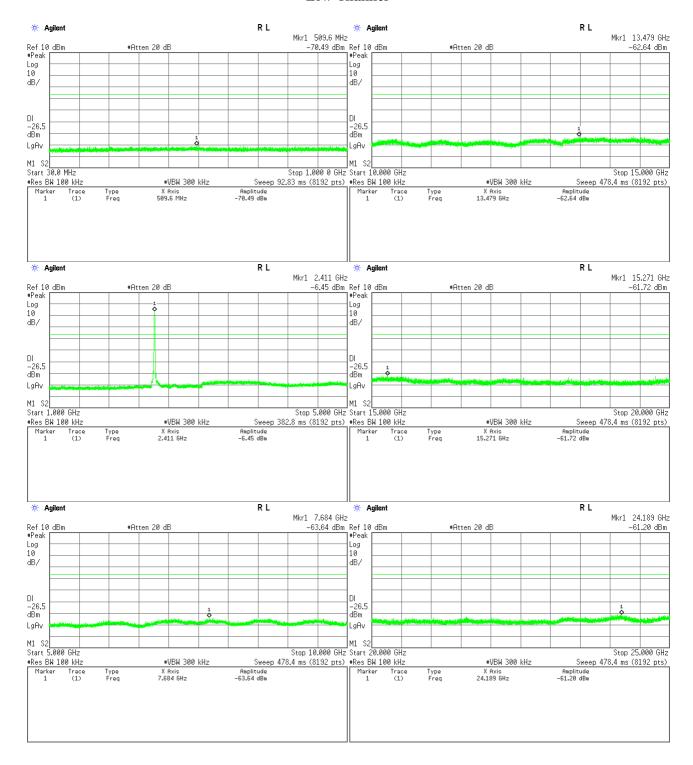
7.7.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

Frequency Range	30 MHz - 25 GHz	Band-Edge
Res. Bandwidth	$100~\mathrm{kHz}$	$100~\mathrm{kHz}$
Video Bandwidth	$300~\mathrm{kHz}$	$300~\mathrm{kHz}$
Sweep Time	AUTO	AUTO
Trace	Maxhold	Maxhold

Standard : CFR 47 FCC Rules and Regulations Part 15

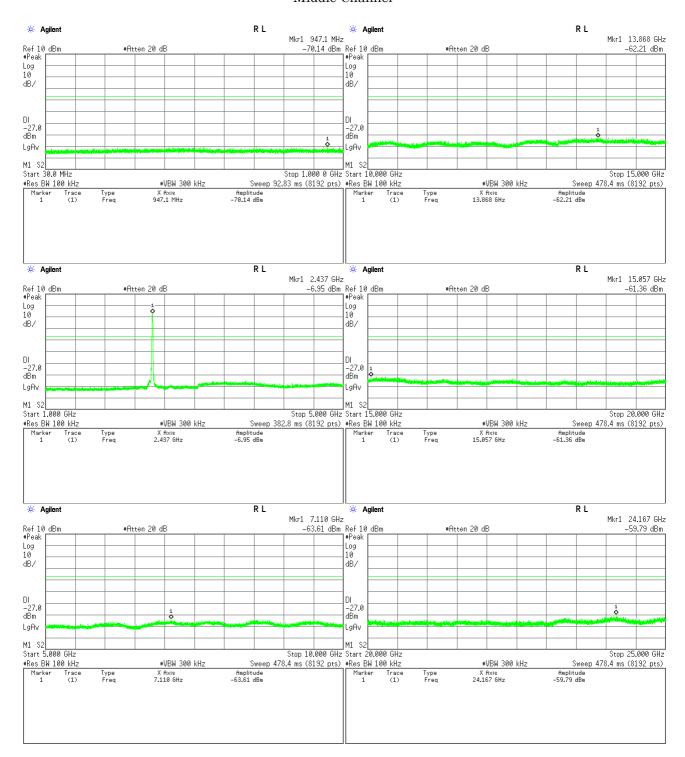

Page 32 of 92

7.7.4 Test Data

Test Date :August 17, 2016 Temp.:27°C, Humi:66%

1) IEEE 802.11b

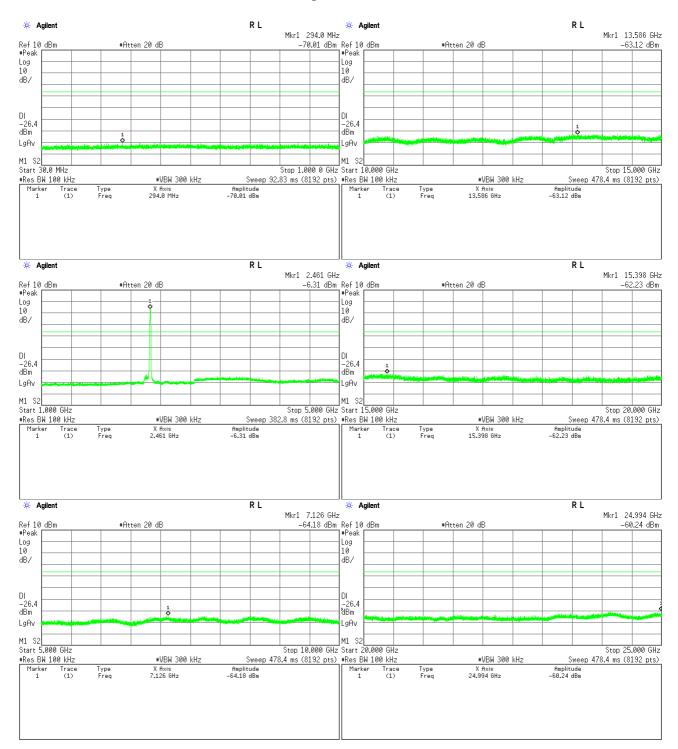
Low Channel



Standard : CFR 47 FCC Rules and Regulations Part 15

Page 33 of 92

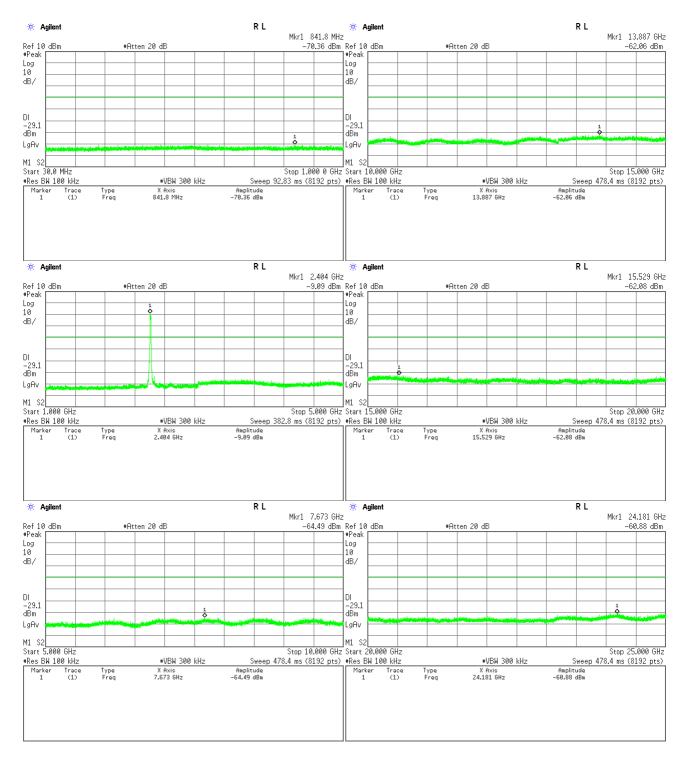
Middle Channel



Standard : CFR 47 FCC Rules and Regulations Part 15

Page 34 of 92

High Channel

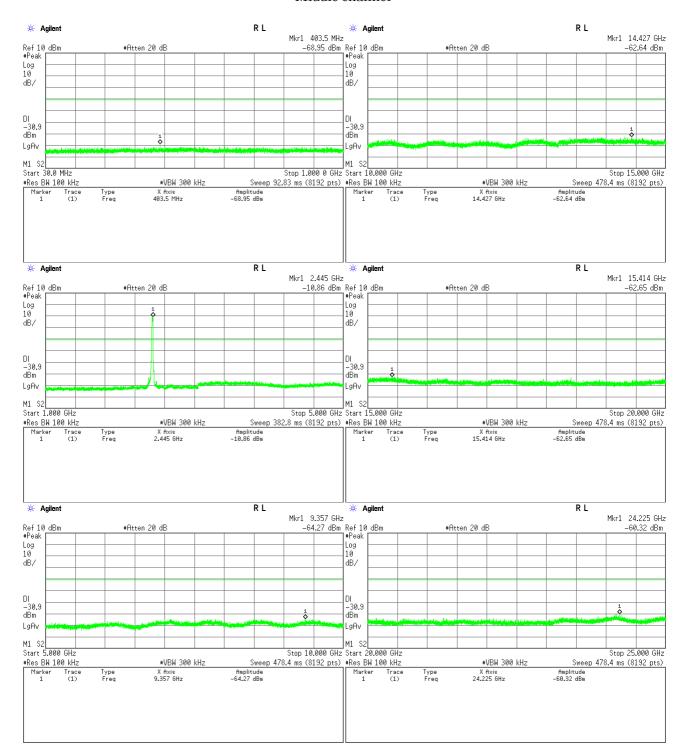


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 35 of 92

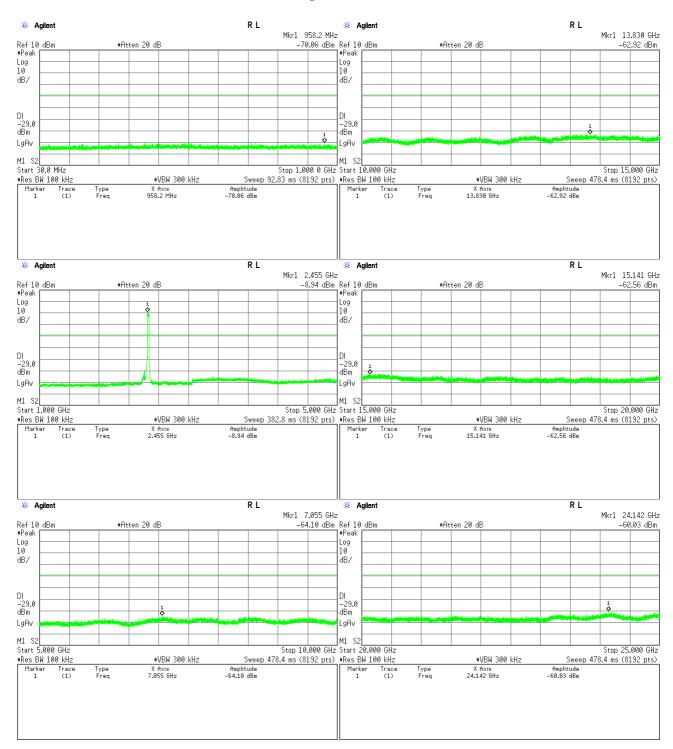
2) IEEE 802.11g

Low Channel



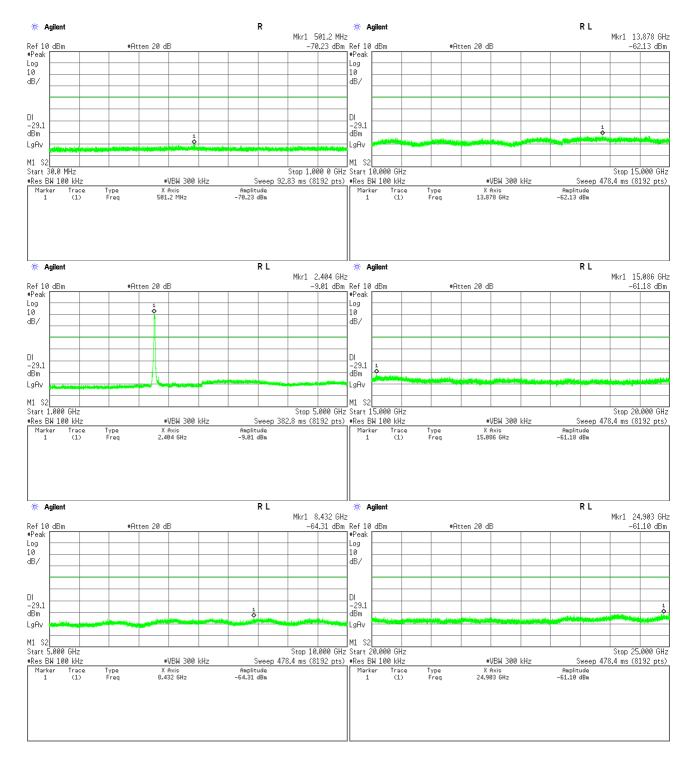
Standard : CFR 47 FCC Rules and Regulations Part 15

Page 36 of 92


Middle channel

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 37 of 92

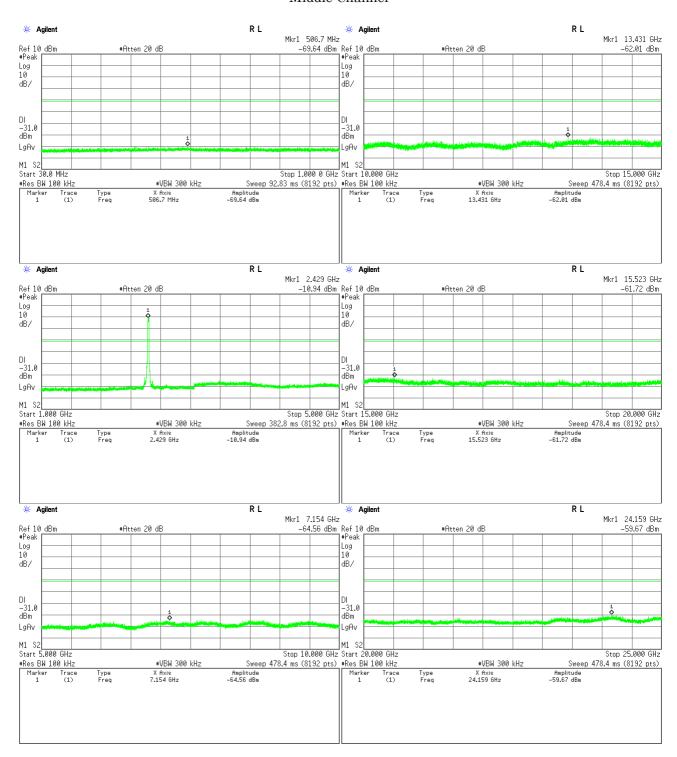


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 38 of 92

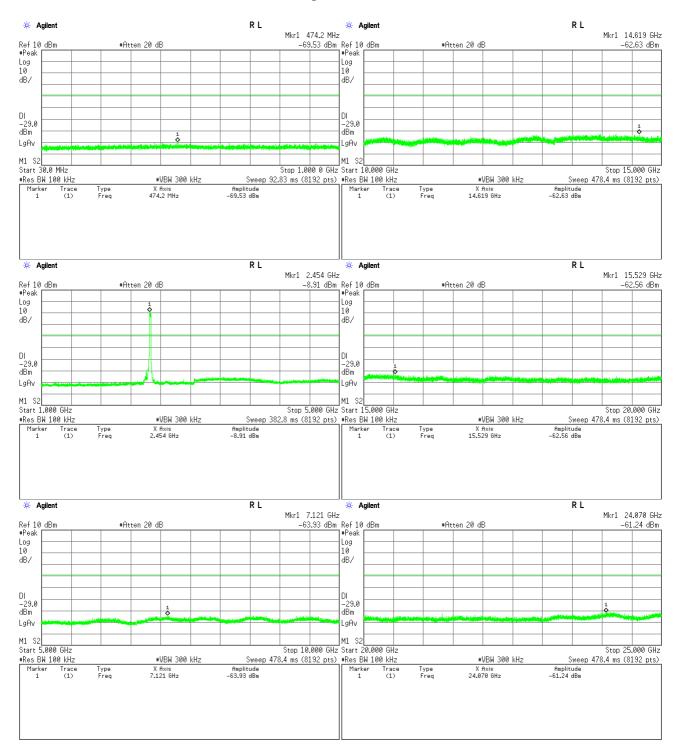
3) IEEE 802.11n

Low Channel



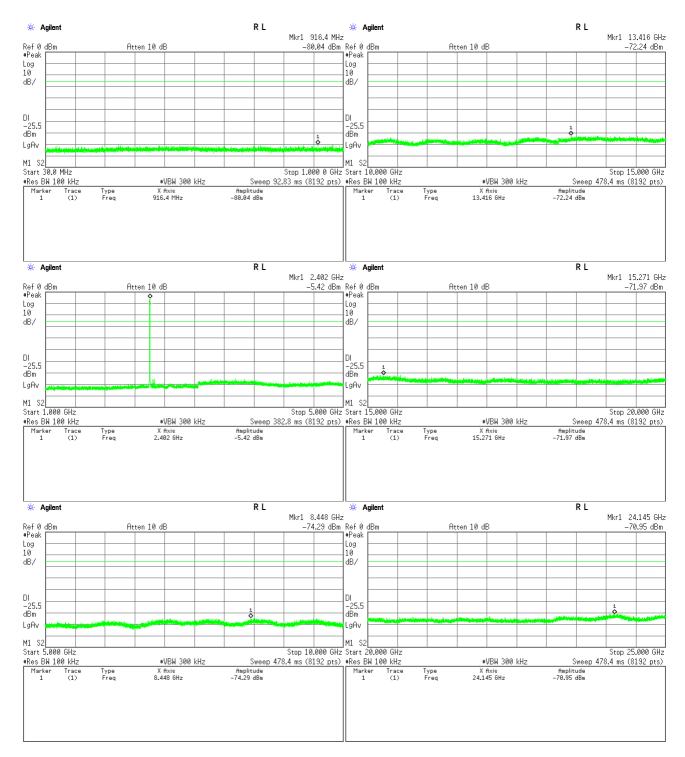
Standard : CFR 47 FCC Rules and Regulations Part 15

Page 39 of 92


Middle Channel

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 40 of 92

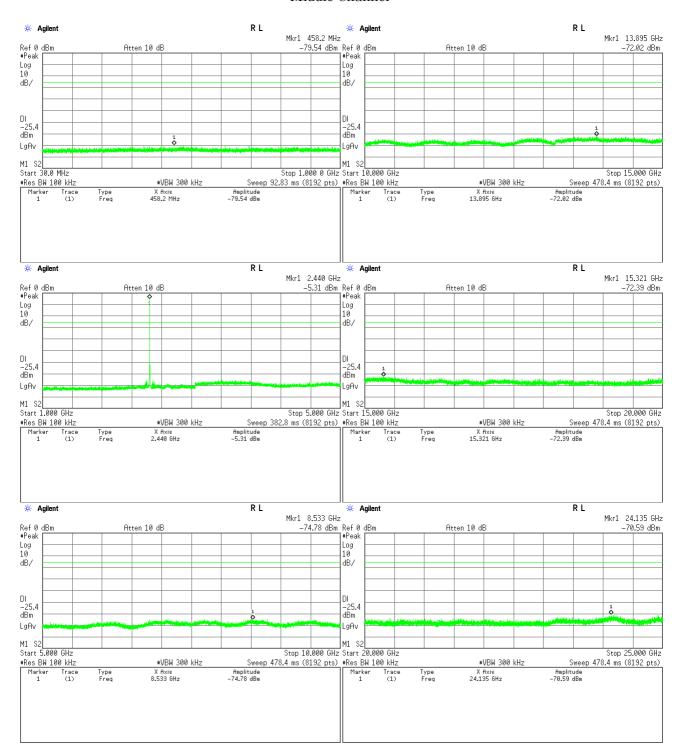

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 41 of 92

Test Date: August 17, 2016 Temp.:27°C, Humi:65

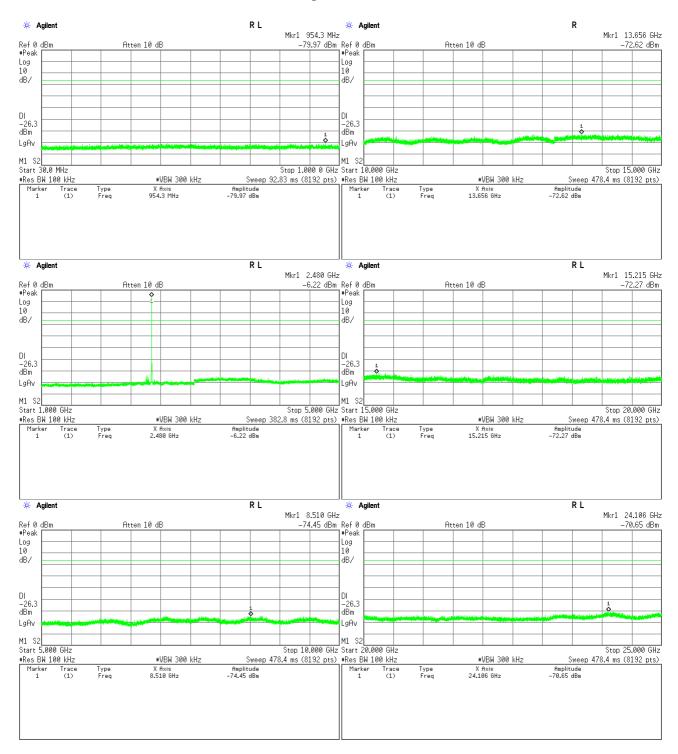
4) Bluetooth Low Energy

Low Channel



Standard : CFR 47 FCC Rules and Regulations Part 15

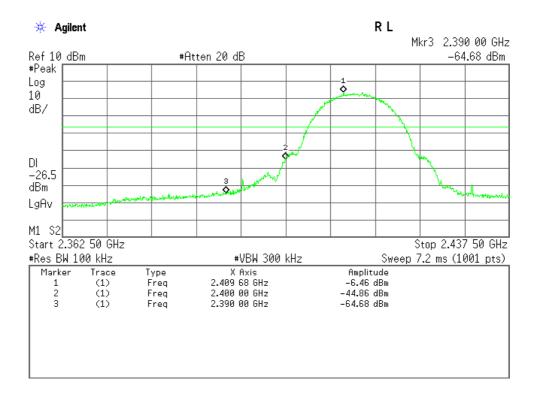
Page 42 of 92

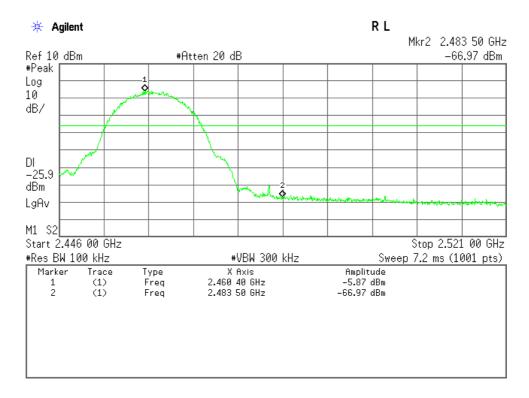

Middle Channel

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 43 of 92

Standard : CFR 47 FCC Rules and Regulations Part 15

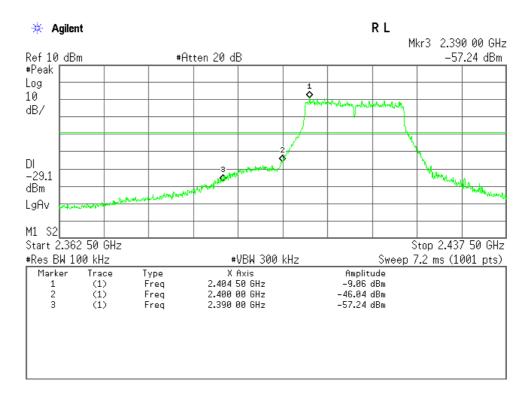

Page 44 of 92

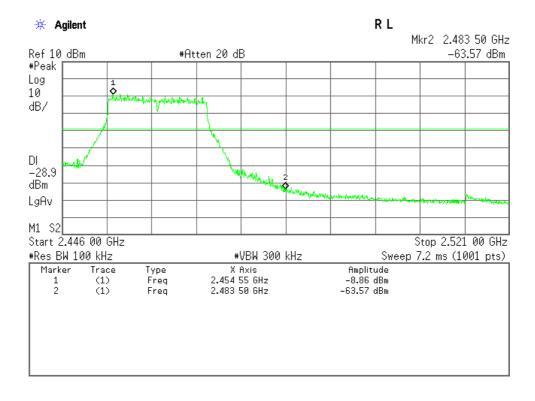

Band-Edge Emission

Test Date :August 17, 2016 Temp.:27°C, Humi:66%

1) IEEE 802.11b

Low Channel

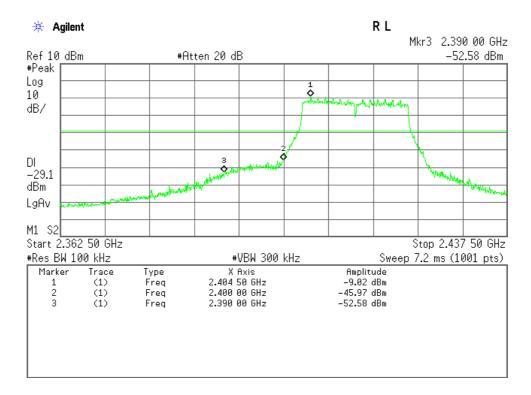


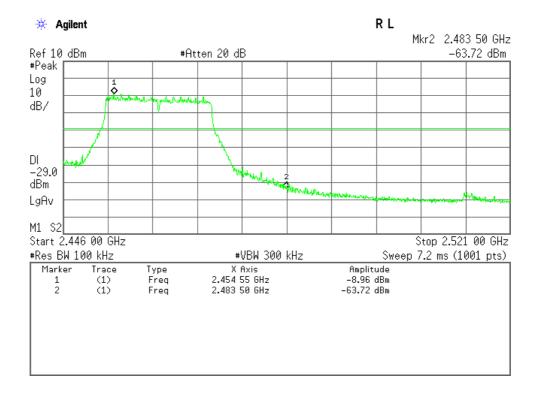

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 45 of 92

2) IEEE 802.11g

Low Channel

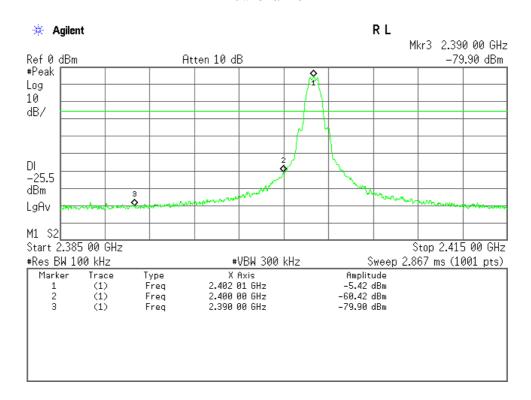


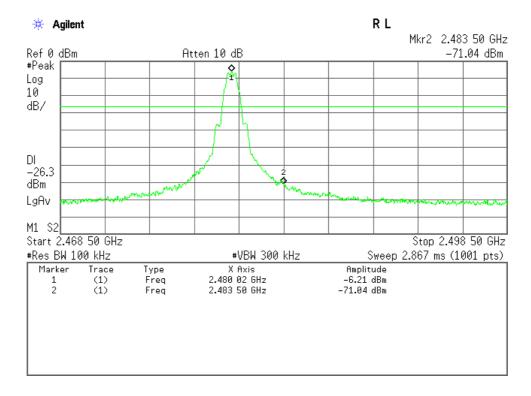

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 46 of 92

3) IEEE 802.11n

Low Channel


Standard : CFR 47 FCC Rules and Regulations Part 15


Page 47 of 92

Test Date :August 17, 2016 Temp.:27°C, Humi:65%

4) Bluetooth Low Energy

Low Channel

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 48 of 92

7.8 AC Powerline Conducted Emission

For the requirements,	☑ - Applicable □ - Not Applica		□ - Not tested by	у арр	licant reques	t.]
7.8.1 Test Results						
For the standard,		\square - Failed	\square - Not judged			
Min. Limit Margin (Qu	asi-Peak)	_	22.8 dB	at	0.557	MHz
Uncertainty of Measure	ement Results				± 2.6	dB(2σ)
Remarks: Bluetooth r	node					

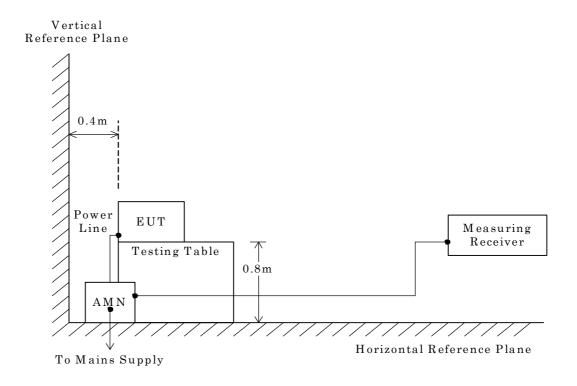
7.8.2 Test Instruments

Measurement Room M2								
Type	Model	Serial No. (ID)	Manufacturer	Cal. Due				
Test Receiver	ESCI	100453 (A-42)	Rohde & Schwarz	2016/12/09				
AMN (main)	KNW-407FR	8-2019-1 (D-103)	Kyoritsu	2016/10/15				
RF Cable	RG223/U	(H-7)	HUBER+SUHNER	2016/11/19				

NOTE: The calibration interval of the above test instruments is 12 months.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 49 of 92


7.8.3 Test Method and Test Setup (Diagrammatic illustration)

The preliminary tests were performed using the scan mode of test receiver or spectrum analyzer to observe the emissions characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for final tests.

- Side View -

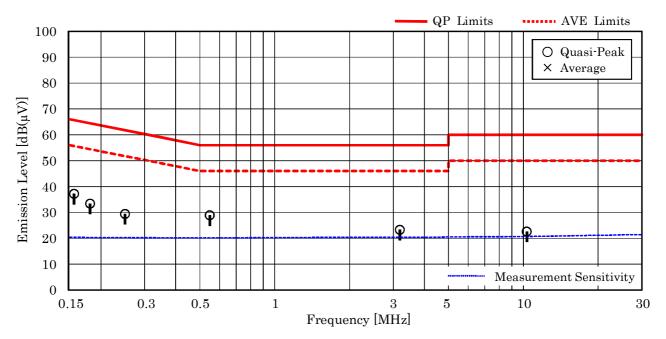
NOTE

AMN : Artificial Mains Network

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 50 of 92

7.8.4 Test Data


1) Mode of EUT: (WLAN) All modes have been investigated and the worst case mode for channel (06ch: 2437MHz/IEEE 802.11b, IEEE 802.11g and IEEE 802.11n) has been listed.

Test voltage: 120VAC 60Hz

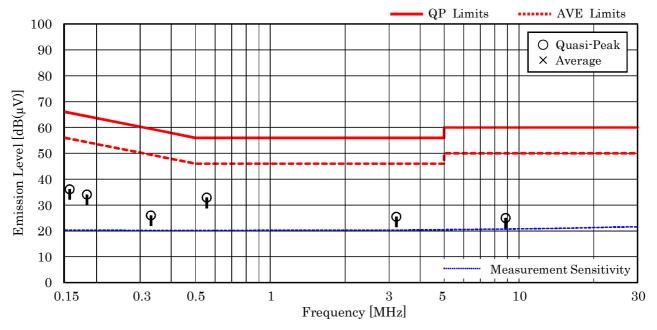
Test Date: August 29, 2016 Temp.: 26 °C, Humi.: 69 %

Measured phase: L1

Frequency	Corr. Factor	Meter R [dB(U		nits [μV)]	Res [dB(Mar [dB	0	Remarks
[MHz]	[dB]	QP	AVE	QP	AVE	QP	AVE	QP	AVE	
0.156	10.3	26.9		65.7	55.7	37.2		+28.5		_
0.181	10.3	23.1		64.4	54.4	33.4		+31.0		_
0.250	10.2	19.2		61.8	51.8	29.4		+32.4		_
0.548	10.2	18.7		56.0	46.0	28.9		+27.1		_
3.186	10.4	12.9		56.0	46.0	23.3		+32.7		_
10.320	10.7	11.9		60.0	50.0	22.6		+37.4		_

- 1. The spectrum was checked from $150~\mathrm{kHz}$ to $30~\mathrm{MHz}$.
- 2. The correction factor includes the AMN insertion loss and the cable loss.
- 3. The symbol of "<" means "or less".
- 4. The symbol of ">" means "more than".
- 5. The symbol of "--" means "not applicable".
- 6. Calculated result at 0.548 MHz, as the worst point shown on underline: Correction Factor + Meter Reading (QP) = 10.2 + 18.7 = 28.9 dB(μ V)
- 7. QP: Quasi-Peak Detector / AVE: Average Detector
- 8. Test receiver setting(s) : CISPR QP 9 kHz / Average 9 kHz

Standard : CFR 47 FCC Rules and Regulations Part 15


Page 51 of 92

Test voltage: 120VAC 60Hz

Test Date: August 29, 2016 Temp.: 26 °C, Humi.: 69 %

Measured phase: L2

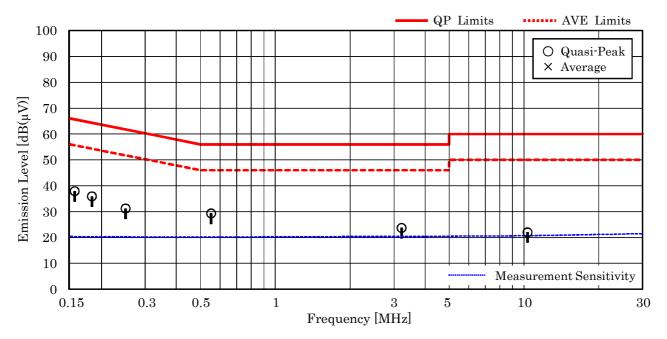
Frequency	Corr. Factor	Meter R [dB(8	Lin [dB(Res [dB()		Mar [dB	0	Remarks
[MHz]	[dB]	QP	AVE	QP	AVE	QP	AVE	QP	AVE	
0.156	10.3	25.8		65.7	55.7	36.1		+29.6		_
0.183	10.3	23.8		64.3	54.3	34.1		+30.2		_
0.331	10.2	15.8		59.4	49.4	26.0		+33.4		_
0.555	10.2	22.7		56.0	46.0	32.9		+23.1		_
3.212	10.4	15.1		56.0	46.0	25.5		+30.5		_
8.845	10.7	14.3		60.0	50.0	25.0		+35.0		_

- 1. The spectrum was checked from 150 kHz to 30 MHz.
- 2. The correction factor includes the AMN insertion loss and the cable loss.
- 3. The symbol of "<" means "or less".
- 4. The symbol of ">" means "more than".
- 5. The symbol of "--" means "not applicable".
- 6. Calculated result at 0.555 MHz, as the worst point shown on underline: Correction Factor + Meter Reading (QP) = 10.2 + 22.7 = 32.9 dB(μ V)
- 7. QP : Quasi-Peak Detector / AVE : Average Detector
- 8. Test receiver setting(s) : CISPR QP 9 kHz / Average 9 kHz

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 52 of 92

2) Mode of EUT: Bluetooth Low Energy


<u>Test voltage : 120VAC 60Hz</u>

<u>Test Date</u>: August 29, 2016

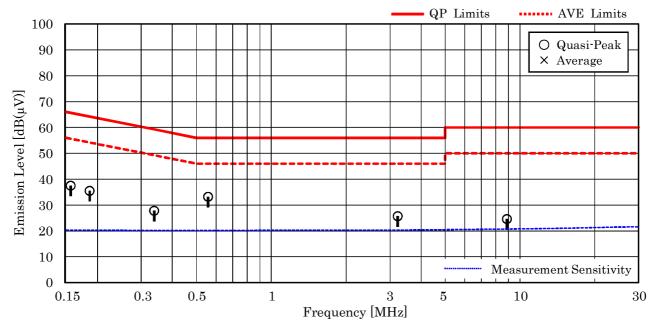
<u>Temp.: 26 °C, Humi.: 69 %</u>

Measured phase: L1

Frequency	Corr. Factor	Meter R [dB(j	U		nits μV)]	Res [dB(Mar [dB	0	Remarks
[MHz]	[dB]	QP	AVE	QP	AVE	QP	AVE	QP	AVE	
0.156	10.3	27.6		65.7	55.7	37.9		+27.8		-
0.183	10.3	25.6		64.3	54.3	35.9		+28.4		_
0.250	10.2	21.0		61.8	51.8	31.2		+30.6		_
0.552	10.2	19.1		56.0	46.0	29.3		+26.7		_
3.221	10.4	13.3		56.0	46.0	23.7		+32.3		-
10.340	10.7	11.3		60.0	50.0	22.0		+38.0		_

- 1. The spectrum was checked from 150 kHz to 30 MHz.
- 2. The correction factor includes the AMN insertion loss and the cable loss.
- 3. The symbol of "<" means "or less".
- 4. The symbol of ">" means "more than".
- 5. The symbol of "--" means "not applicable".
- 6. Calculated result at 0.552 MHz, as the worst point shown on underline: Correction Factor + Meter Reading (QP) = 10.2 + 19.1 = 29.3 dB(μ V)
- 7. QP : Quasi-Peak Detector / AVE : Average Detector
- 8. Test receiver setting(s) : CISPR QP 9 kHz / Average 9 kHz

Standard : CFR 47 FCC Rules and Regulations Part 15


Page 53 of 92

Test voltage: 120VAC 60Hz

Test Date: August 29, 2016 Temp.: 26 °C, Humi.: 69 %

Measured phase: L2

Frequency	Corr. Factor	Meter R [dB(j	U		nits [μV)]	Res [dB(ults μV)]	Mar [dB	0	Remarks
[MHz]	[dB]	QP	AVE	QP	AVE	QP	AVE	QP	AVE	
0.156	10.3	27.2		65.7	55.7	37.5		+28.2		_
0.186	10.3	25.2		64.2	54.2	35.5		+28.7		_
0.338	10.2	17.6		59.3	49.3	27.8		+31.5		_
0.557	10.2	23.0		56.0	46.0	33.2		+22.8		
3.226	10.4	15.3		56.0	46.0	25.7		+30.3		_
8.864	10.7	13.9		60.0	50.0	24.6		+35.4		_

- 1. The spectrum was checked from 150 kHz to 30 MHz.
- 2. The correction factor includes the AMN insertion loss and the cable loss.
- 3. The symbol of "<" means "or less".
- 4. The symbol of ">" means "more than".
- 5. The symbol of "--" means "not applicable".
- 6. Calculated result at 0.557 MHz, as the worst point shown on underline: Correction Factor + Meter Reading (QP) = 10.2 + 23.0 = 33.2 dB(μ V)
- 7. QP: Quasi-Peak Detector / AVE: Average Detector
- 8. Test receiver setting(s) : CISPR QP 9 kHz / Average 9 kHz

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 54 of 92

7.9 Radiated Emission

For the requirements, $\ \ \, \square$ - Applicable $\ \ \, \square$ - Not tested by applicant request. $\ \ \, \square$ - Not Applicable

7.9.1 Test Results

For the standard,	o - Passed	\square - Failed	\Box - Not judged			
Min. Limit Margin (A	verage)		9.7 dB	at	2390.0	MHz
Uncertainty of Measu	rement Results		9 kHz – 30 N 30 MHz – 300 N		$\frac{\pm \ 3.0}{\pm \ 3.8}$	dB(2σ) dB(2σ)
			300 MHz - 1000 N	$_{ m IHz}$	\pm 4.8	_ dB(2σ)
			$1 \mathrm{GHz} - 6 \mathrm{G}$	$_{ m Hz}$	\pm 4.7	_ dB(2σ)
			$6 \mathrm{GHz} - 18 \mathrm{G}$	ЗНz	\pm 4.6	_ dB(2σ)
			$18 \mathrm{GHz} - 40 \mathrm{G}$	$_{ m Hz}$	\pm 5.5	$dB(2\sigma)$

Remarks: WLAN IEEE802.11n mode, Y-axis position.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 55 of 92

7.9.2 Test Instruments

Anechoic Chamber A2								
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due				
Test Receiver	ESU 26	100170 (A-6)	Rohde & Schwarz	2017/04/27				
Loop Antenna	HFH2-Z2	872096/25 (C-2)	Rohde & Schwarz	2017/07/21				
RF Cable	RG213/U	(H-28)	HUBER+SUHNER	2017/07/21				
Pre-Amplifier	310N	304573 (A-17)	SONOMA	2017/04/03				
Biconical Antenna	VHA9103/BBA9106	2355 (C-30)	Schwarzbeck	2017/05/18				
Log-periodic Antenna	UHALP9108-A1	0694 (C-31)	Schwarzbeck	2017/05/18				
RF Cable	S 10162 B-11 etc.	(H-4)	HUBER+SUHNER	2017/04/03				
Pre-Amplifier	TPA0118-36	1010 (A-37)	TOYO	2017/05/17				
Horn Antenna	91888-2	562 (C-41-1)	EATON	2017/06/12				
Horn Antenna	91889-2	568 (C-41-2)	EATON	2017/06/12				
Horn Antenna	3160-04	9903-1053 (C-55)	EMCO	2017/06/13				
Horn Antenna	3160-05	9902-1061 (C-56)	EMCO	2017/06/13				
Horn Antenna	3160-06	9712-1045 (C-57)	EMCO	2017/06/13				
Horn Antenna	3160-07	9902-1113 (C-58)	EMCO	2017/06/13				
Horn Antenna	3160-08	9904-1099 (C-59)	EMCO	2017/06/13				
Horn Antenna	3160-09	9808-1117 (C-48)	EMCO	2017/06/15				
Attenuator	54A-10	W5713 (D-29)	Weinschel	2017/08/02				
Attenuator	2-10	BA6214 (D-79)	Weinschel	2016/11/19				
RF Cable	SUCOFLEX104	267479/4 (C-66)	HUBER+SUHNER	2017/01/06				
RF Cable	SUCOFLEX104	267414/4 (C-67)	HUBER+SUHNER	2017/01/06				
RF Cable	SUCOFLEX102EA	3041/2EA (C-69)	HUBER+SUHNER	2017/01/06				
Band Rejection Filter	BRM50701	029 (D-93)	MICRO-TRONICS	2017/02/17				

NOTE: The calibration interval of the above test instruments is 12 months.

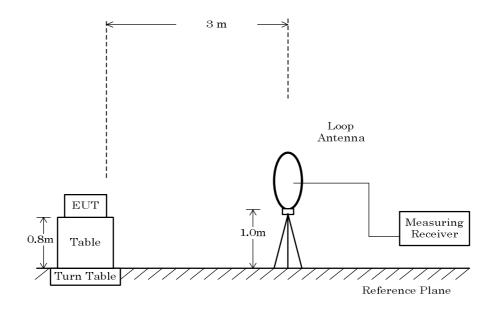
Standard : CFR 47 FCC Rules and Regulations Part 15

Page 56 of 92

7.9.3 Test Method and Test Setup (Diagrammatic illustration)

7.9.3.1 Radiated Emission 9 kHz – 30 MHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.


The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

The measurement were performed about three antenna orientations (parallel, perpendicular, and ground-parallel).

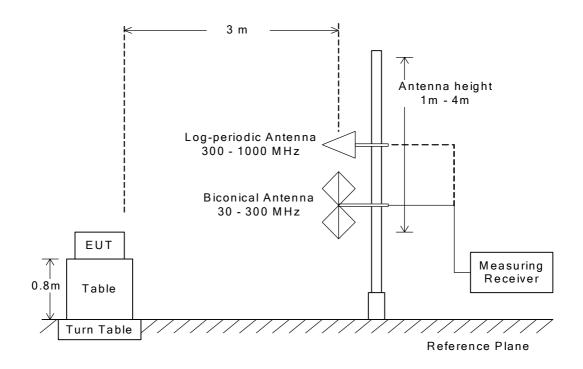
According to KDB 937606, a used anechoic chamber were equivalent to those on an open fields site based on comparison measurements.

This configurations was used for the final tests.

- Side View -

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 57 of 92


7.9.3.2 Radiated Emission 30 MHz - 1000 MHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

- Side View -

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 58 of 92

7.9.3.3 Radiated Emission above 1 GHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

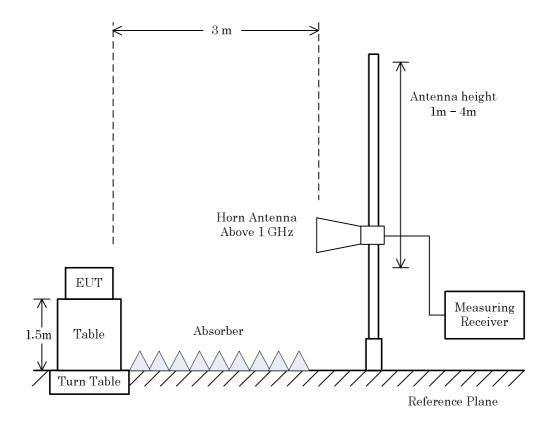
This configurations was used for the final tests.

The setting of the measuring instruments are shown as follows:

Туре	Peak	Average
Detector Function	Peak	Peak
Res. Bandwidth	1 MHz	$1~\mathrm{MHz}$
Video Bandwidth	3 MHz	≥ 1/T *1)
Video Filtering	Linear Voltage	Linear Voltage
Sweep Time	AUTO	AUTO
Trace	Max Hold	Max Hold

Note: 1. T: Minimum transmission duration

Average (VBW) Setting:


25.1	Interval	Cycle	Duty cycle	Burst on period(T)	Min. VBW(1/T)	VBW Setting
Mode	(msec)	(msec)	(%)	(msec)	(kHz)	(kHz))
IEEE802.11b(11Mbps)	0.02	0.94	97.9%	0.92	1.09	2.00
IEEE802.11g(36Mbps)	0.02	0.26	92.3%	0.24	4.17	5.00
IEEE802.11n HT20(MCS3)	0.02	0.37	94.6%	0.35	2.86	3.00
Bluetooth LE	0.23	0.62	62.9%	0.39	2.56	3.00

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 59 of 92

- Side View -

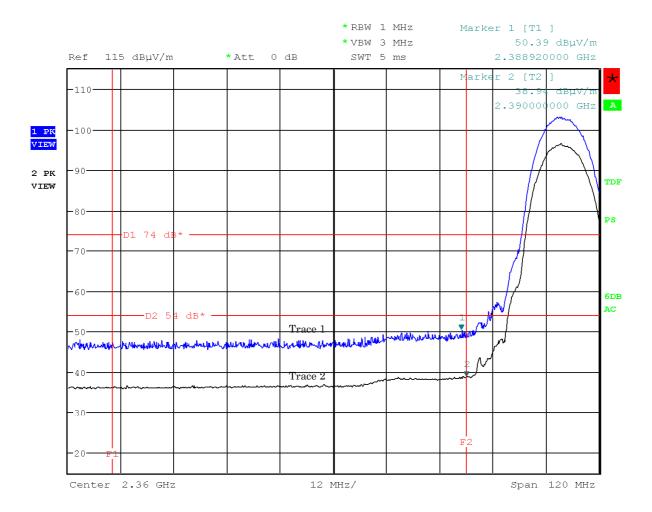
NOTE

When the EUT is manipulated through three different orientations, the scan height upper range for the measurement antenna is limited to 2.5 m or 0.5 m above the top of the EUT.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 60 of 92

7.9.4 Test Data

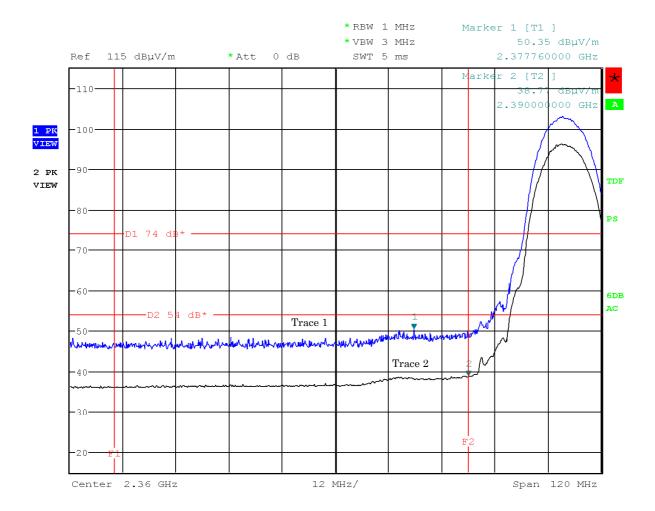

7.9.4.1 Band-edge Compliance

Test Date : August 25, 2016

Temp.:26°C, Humi:70%

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11b)

Antenna Polarization: Horizontal

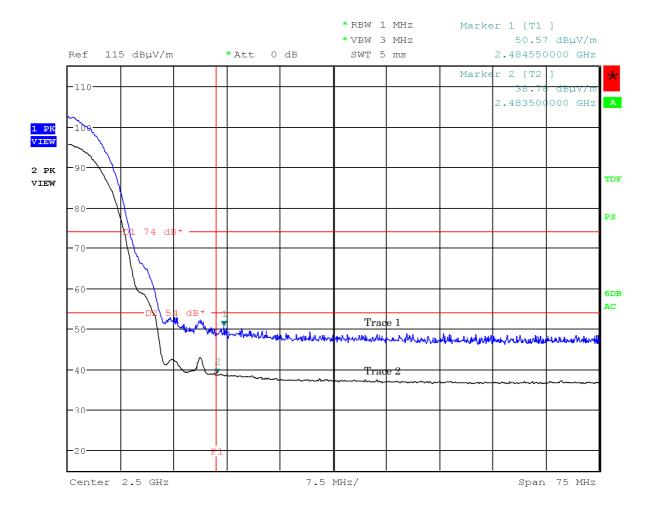


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 61 of 92

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11b)

Antenna Polarization: Vertical

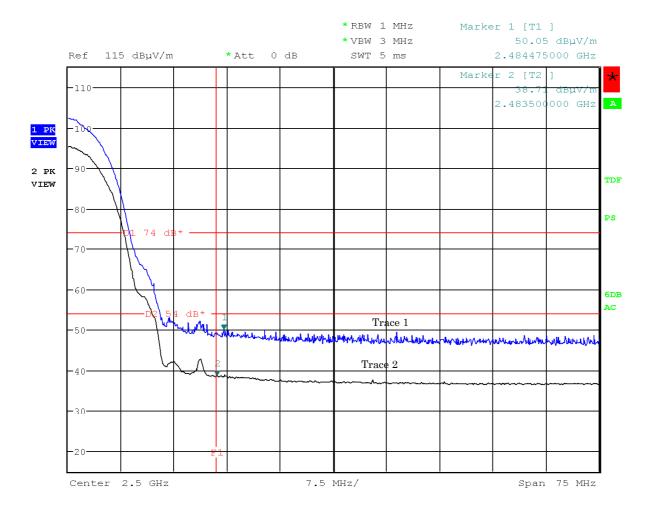


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 62 of 92

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11b)

Antenna Polarization: Horizontal

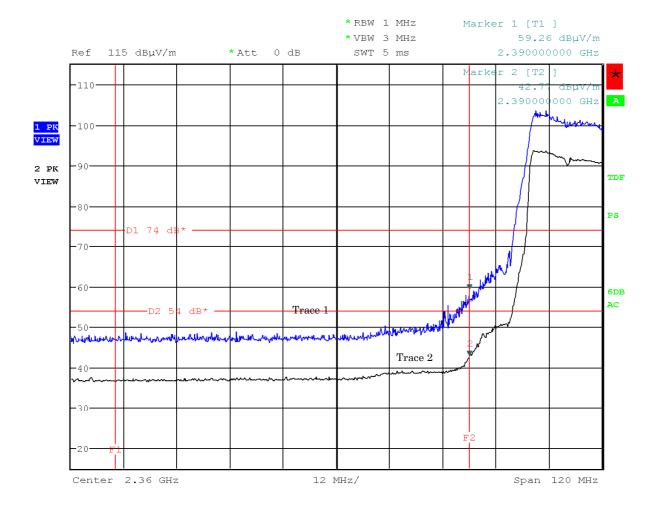


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 63 of 92

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11b)

Antenna Polarization: Vertical

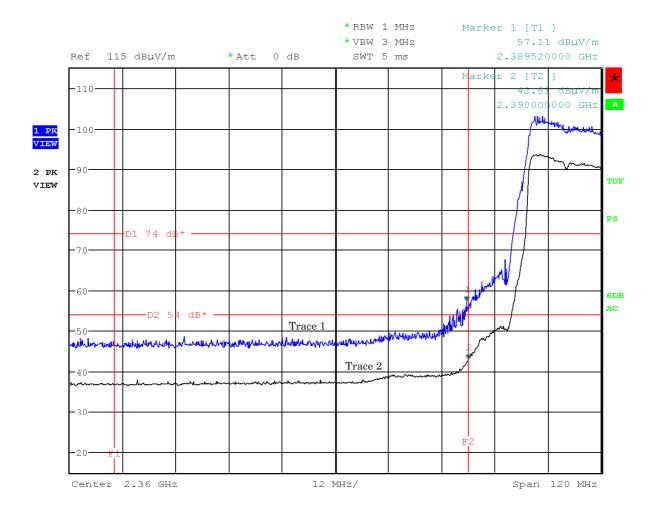


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 64 of 92

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11g)

Antenna Polarization: Horizontal

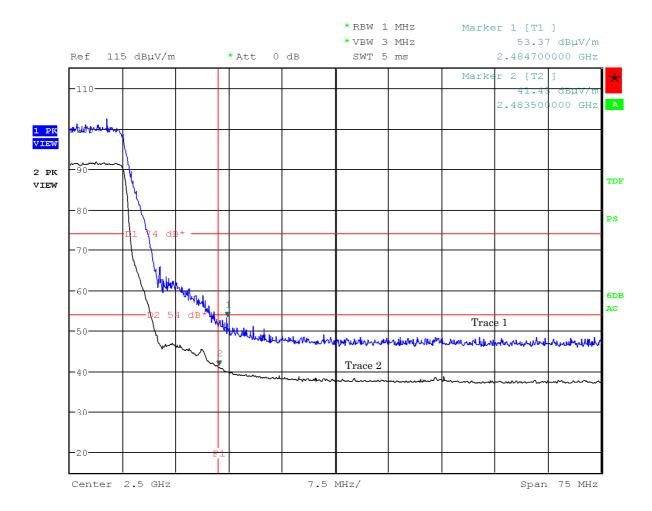


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 65 of 92

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11g)

Antenna Polarization: Vertical

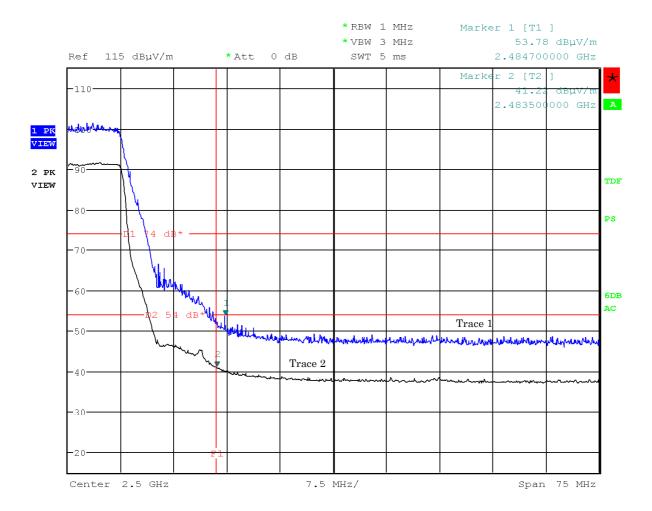


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 66 of 92

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11g)

Antenna Polarization: Horizontal

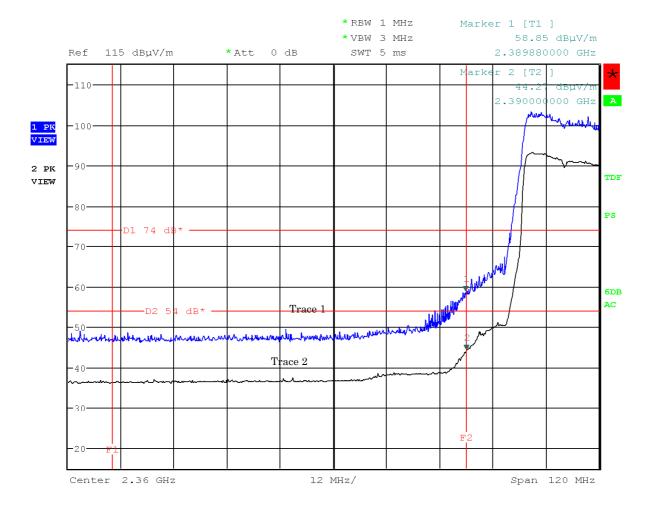


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 67 of 92

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11g)

Antenna Polarization: Vertical

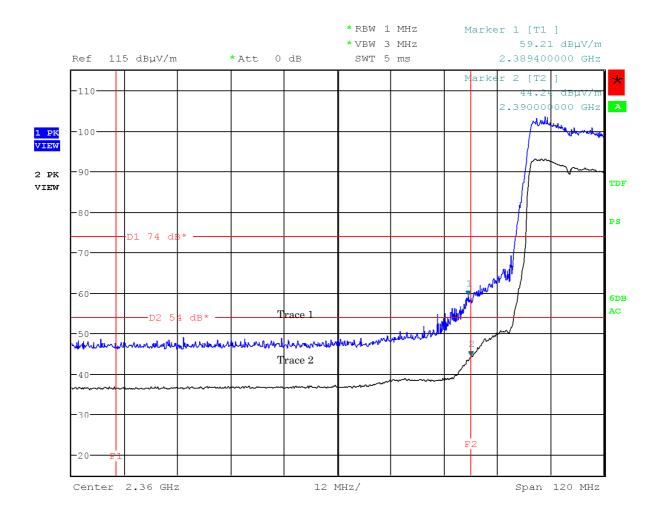


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 68 of 92

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11n)

Antenna Polarization: Horizontal

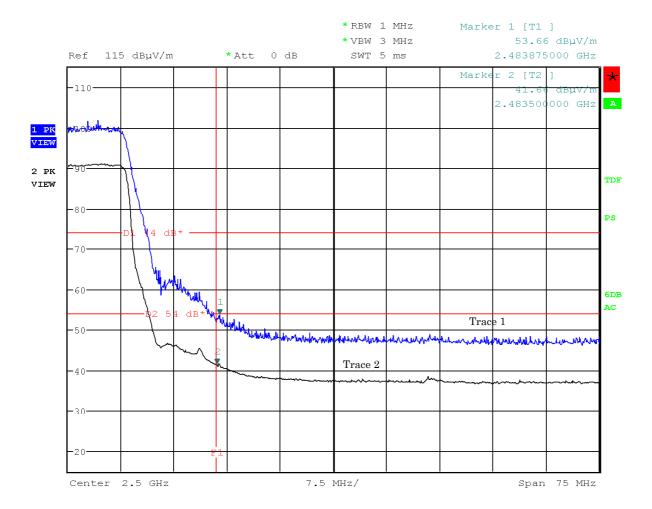


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 69 of 92

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11n)

Antenna Polarization: Vertical

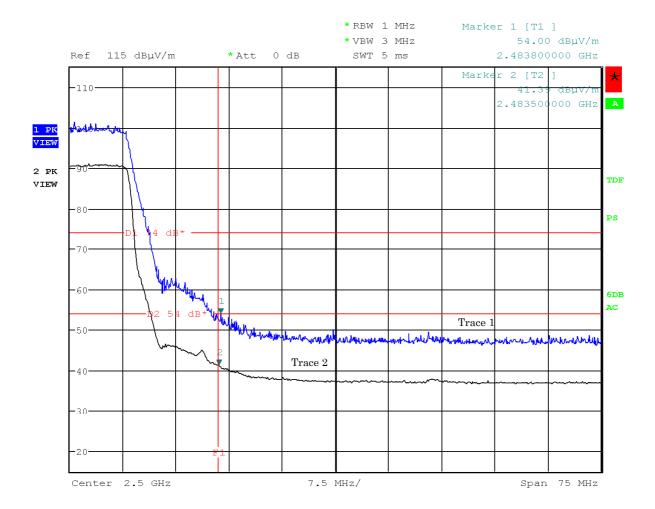


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 70 of 92

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11n)

Antenna Polarization: Horizontal

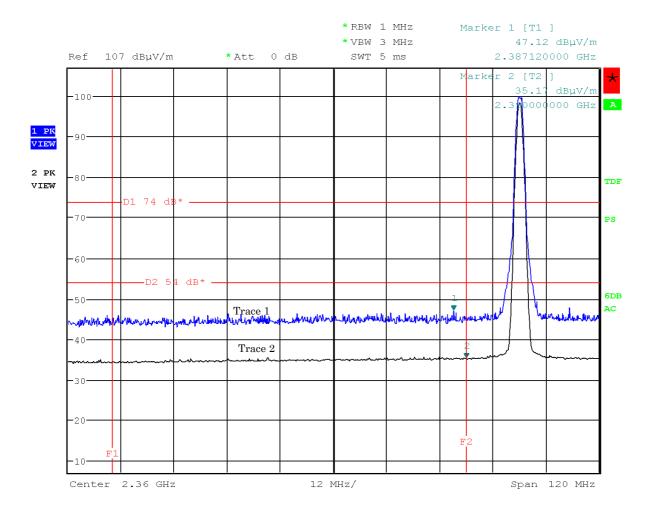


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 71 of 92

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11n)

Antenna Polarization: Vertical

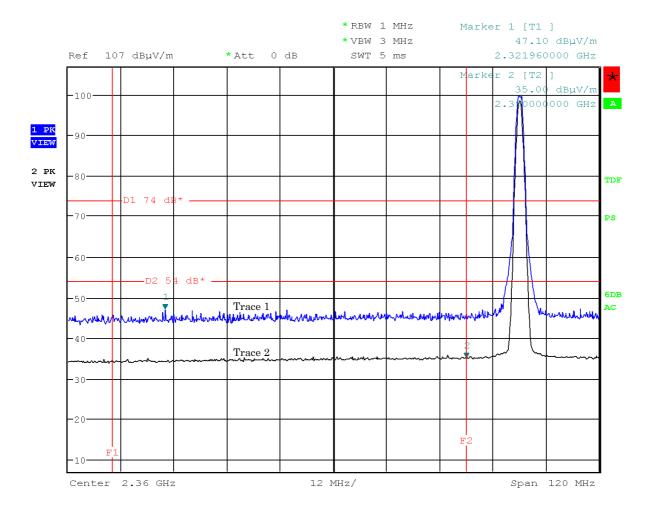

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 72 of 92

Test Date :August 24, 2016 Temp.:26°C, Humi:70%

Mode of EUT: Bluetooth Low Energy, Hopping off (0ch: 2402 MHz)

Antenna Polarization: Horizontal



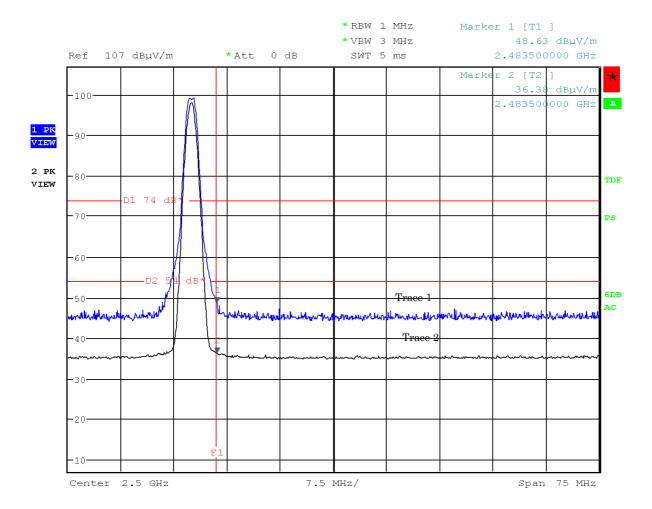
Standard : CFR 47 FCC Rules and Regulations Part 15

Page 73 of 92

Mode of EUT : Bluetooth Low Energy, Hopping off (0ch: 2402 MHz)

Antenna Polarization: Vertical

Note: The trace 1 is Peak . The trace 2 is Average.



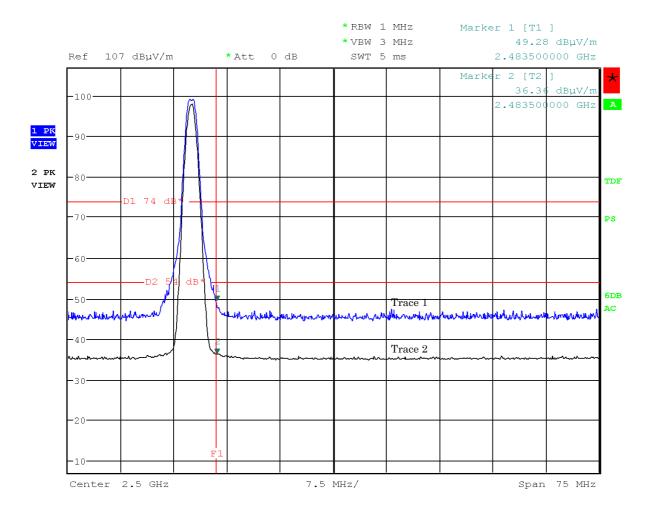
Standard : CFR 47 FCC Rules and Regulations Part 15

Page 74 of 92

Mode of EUT: Bluetooth Low Energy, Hopping off (39ch: 2480 MHz)

Antenna Polarization: Horizontal

Note: The trace 1 is Peak. The trace 2 is Average.



Standard : CFR 47 FCC Rules and Regulations Part 15

Page 75 of 92

Mode of EUT : Bluetooth Low Energy, Hopping off (39ch: 2480 MHz)

Antenna Polarization: Vertical

Note: The trace 1 is Peak. The trace 2 is Average.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 76 of 92

7.9.4.2 Other Spurious Emission (9kHz – 30MHz)

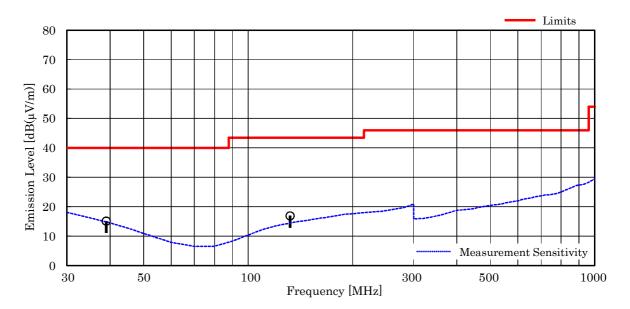
Test Date : August 26, 2016

Temp.:26°C, Humi:72%

Mode of EUT: WLAN/Bluetooth LE

Results: No spurious emissions in the range 20dB below the limit.

7.9.4.3 Other Spurious Emission (30MHz – 1000MHz)


Mode of EUT: (WLAN) All modes have been investigated and the worst case mode for channel (06ch: 2437MHz/IEEE802.11b, IEEE802.11g and IEEE802.11n) has been listed.

 Test voltage : 120VAC 60Hz
 Test Date: August 26, 2016

 Temp.: 26 °C, Humi: 72 %

Antenna pole : Horizontal

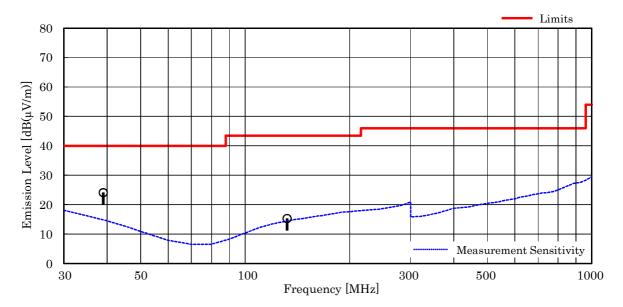
	Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings $[dB(\mu V)]$	Limits [dB(µV/m)]	$Results \\ [dB(\mu V/m)]$	Margin [dB]	Remarks
	38.97	15.4	-27.5	27.2	40.0	15.1	+24.9	_
_	132.08	13.9	-26.4	29.4	43.5	16.9	+26.6	_

NOTES

- 1. Test Distance: 3 m
- 2. The spectrum was checked from 30 MHz to 1000 MHz.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Calculated result at 38.97 MHz, as the worst point shown on underline: Antenna Factor + Correction Factor + Meter Reading = $15.4 + (-27.5) + 27.2 = 15.1 \text{ dB}(\mu\text{V/m})$ Antenna Height : 400 cm, Turntable Angle : 293 °
- 7. Test receiver setting(s) : CISPR QP 120 kHz [QP : Quasi-Peak]

JQA File No. : KL80160359 Issue Date: September 9, 2016 Model No. : SH-02J FCC ID : APYHRO00242

Standard : CFR 47 FCC Rules and Regulations Part 15


Page 77 of 92

Test voltage: 120VAC 60Hz

Test Date: August 26, 2016 Temp.: 26 °C, Humi: 72 %

Antenna pole: Vertical

Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings $[dB(\mu V)]$	$Limits \\ [dB(\mu V/m)]$	Results $[dB(\mu V/m)]$	Margin [dB]	Remarks
38.97	15.4	-27.5	36.2	40.0	24.1	+15.9	-
132.08	13.9	-26.4	27.8	43.5	15.3	+28.2	

NOTES

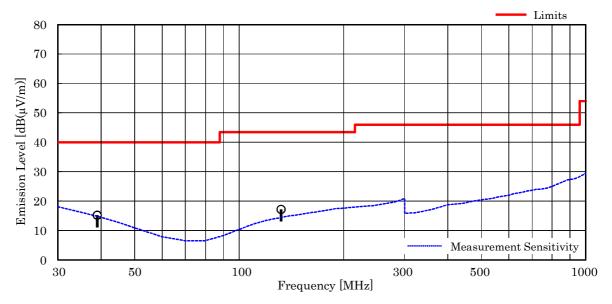
- 1. Test Distance: 3 m
- 2. The spectrum was checked from 30 MHz to 1000 MHz.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".5. The symbol of ">" means "more than".
- 6. Calculated result at 38.97 MHz, as the worst point shown on underline: Antenna Factor + Correction Factor + Meter Reading = $15.4 + (-27.5) + 36.2 = 24.1 \text{ dB}(\mu\text{V/m})$

Antenna Height : 100 cm, Turntable Angle : 191 °

7. Test receiver setting(s): CISPR QP 120 kHz [QP: Quasi-Peak]

JQA File No. : KL80160359 Issue Date: September 9, 2016 Model No. : SH-02J FCC ID : APYHRO00242

Standard : CFR 47 FCC Rules and Regulations Part 15


Page 78 of 92

Mode of EUT: Bluetooth Low Energy

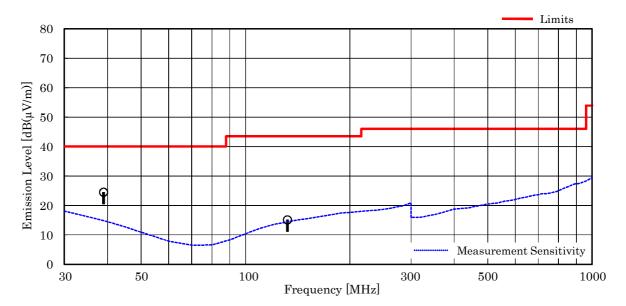
Test Date: August 26, 2016 Temp.: 26 °C, Humi: 72 %

Antenna pole : Horizontal

Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings $[dB(\mu V)]$	$Limits \\ [dB(\mu V/m)]$	Results [dB(µV/m)]	Margin [dB]	Remarks
38.96	15.4	-27.5	27.3	40.0	15.2	+24.8	_
132.08	13.9	-26.4	29.7	43.5	17.2	+26.3	

NOTES

- 1. Test Distance: 3 m
- 2. The spectrum was checked from 30 MHz to 1000 MHz.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".5. The symbol of ">" means "more than".
- 6. Calculated result at 38.96 MHz, as the worst point shown on underline: Antenna Factor + Correction Factor + Meter Reading = $15.4 + (-27.5) + 27.3 = 15.2 \text{ dB}(\mu\text{V/m})$ Antenna Height: 400 cm, Turntable Angle: 294°
- 7. Test receiver setting(s): CISPR QP 120 kHz [QP: Quasi-Peak]


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 79 of 92

<u>Test Date: August 26, 2016</u> <u>Temp.: 26 °C, Humi: 72 %</u>

Antenna pole : Vertical

	Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Factor Meter Readings		$Results \\ [dB(\mu V/m)]$	Margin [dB]	Remarks
	38.96	15.4	-27.5	36.6	40.0	24.5	+15.5	_
_	132.08	13.9	-26.4	27.6	43.5	15.1	+28.4	_

NOTES

- 1. Test Distance : 3 m
- 2. The spectrum was checked from 30 MHz to 1000 MHz.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Calculated result at 38.96 MHz, as the worst point shown on underline: Antenna Factor + Correction Factor + Meter Reading = 15.4 + (-27.5) + 36.6 = 24.5 dB(μ V/m) Antenna Height : 100 cm, Turntable Angle : 190 °
- 7. Test receiver setting(s): CISPR QP 120 kHz [QP: Quasi-Peak]

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 80 of 92

7.9.4.4 Other Spurious Emission (Above 1000MHz)

Mode of EUT: IEEE802.11b

Test Date: August 25, 2016 Temp.: 26 °C, Humi: 70 %

Frequency	Antenna	Corr.		Meter Read	dings [dB(µ\	V)]	Lir	nits	Re	sults	Margin	Remarks
	Factor	Factor	Hor	izontal	Ve	rtical	[dB(µ	ıV/m)]	[dB((μV/m)]	[dB]	
[MHz]	[dB(1/m)]	[dB]	PK	AVE	PK	AVE	PK	AVE	PK	AVE		
Test condition	. T., I Ch											
			< 20 0	< 0.0 O	< 20 0	< 20 0	740	E4 0	- 10 0	< 20 0	> 114 0	
4824.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
12060.0	33.4	-25.5	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.9	< 35.9	> +18.1	
14472.0	37.0	-26.2	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 48.8	< 38.8	> +15.2	
19296.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
Test condition	est condition: TX Middle Ch 4874.0 27.0 -15.8 < 38.0 < 28.0 < 38.0 < 28.0 54.0 54.0 < 49.2 < 39.2 > +14.8											
4874.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
7311.0	29.9	-16.1	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.8	< 41.8	> +12.2	
12185.0	33.3	-25.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.6	< 35.6	> +18.4	
19496.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
Test condition	: TX High C	h										
4924.0	27.0	-15.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.3	< 39.3	> +14.7	
7386.0	29.8	-16.2	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.6	< 41.6	> +12.4	
12310.0	33.3	-26.0	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.3	< 35.3	> +18.7	
19696.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
22158.0	40.6	-43.3	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0			> +16.7	
22130.0	- U • U	-10.0	. 50.0	· 40.0	. 50.0	· -0.0	7-1.0	54.0	` 11.5	. 51.5	/ 110.7	

Calculated result at 7311.0 MHz, as the worst point shown on underline:

Minimum Margin: 54.0 - 41.8 = 12.2 (dB)

NOTES

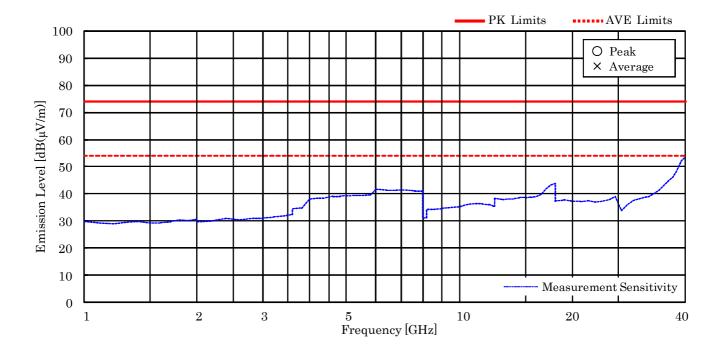
- 1. Test Distance : 3 m $\,$
- 2. The spectrum was checked from $1~\mathrm{GHz}$ to $25~\mathrm{GHz}$ ($10\mathrm{th}$ harmonic of the highest fundamental frequency).
- 3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 20dB Pad Att. - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. - Pre-Amp. Gain [dB] (7.6 - 18.0GHz)

Corr. Factor [dB] = Cable Loss · Pre-Amp. Gain [dB] (over 18 GHz)

- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK: Peak / AVE: Average



Standard : CFR 47 FCC Rules and Regulations Part 15

Page 81 of 92

Mode of EUT : IEEE802.11b

TX Low/Middle/High ch (Horizontal/Vertical)

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 82 of 92

Mode of EUT: IEEE802.11g

Test Date: August 25, 2016 Temp.: 26 °C, Humi: 70 %

Frequency	Antenna	Corr.		Meter Rea	dings [dB(µ\	V)]	Lir	nits	Re	sults	Margin	Remarks
	Factor	Factor	Hor	izontal	Ve	rtical	[dB(µ	ıV/m)]	[dB(μV/m)]	[dB]	
[MHz]	[dB(1/m)]	[dB]	PK	AVE	PK	AVE	PK	AVE	PK	AVE		
Test condition	: Tx Low Ch											
4824.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
12060.0	33.4	-25.5	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.9	< 35.9	> +18.1	
14472.0	37.0	-26.2	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 48.8	< 38.8	> +15.2	
19296.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
Test condition	: TX Middle	Ch										
4874.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
7311.0	29.9	-16.1	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.8	< 41.8	> +12.2	
12185.0	33.3	-25.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.6	< 35.6	> +18.4	
19496.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
Test condition	: TX High Cl	n										
4924.0	27.0	-15.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.3	< 39.3	> +14.7	
7386.0	29.8	-16.2	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.6	< 41.6	> +12.4	
12310.0	33.3	-26.0	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.3	< 35.3	> +18.7	
19696.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
22158.0	40.6	-43.3	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.3	< 37.3	> +16.7	

Calculated result at $7311.0\,\mathrm{MHz}$, as the worst point shown on underline:

 $\begin{array}{ccccc} Antenna Factor & = & 29.9 \ dB(1/m) \\ Corr. Factor & = & -16.1 \ dB \\ +) \underbrace{Meter Reading}_{Result} & = & <28.0 \ dB(\mu V) \\ \hline & = & <41.8 \ dB(\mu V/m) \end{array}$

Minimum Margin: 54.0 - <41.8 = >12.2 (dB)

NOTES

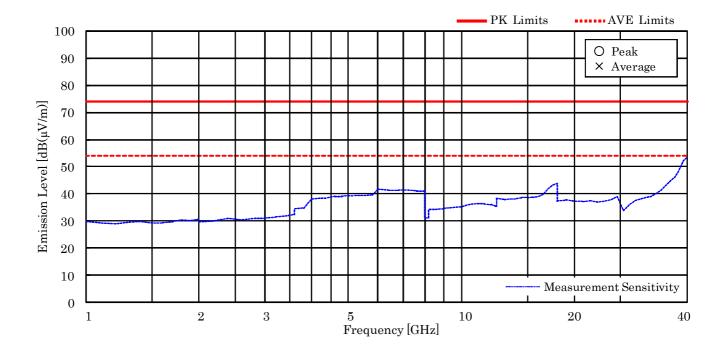
- 1. Test Distance: 3 m
- 2. The spectrum was checked from $1~\mathrm{GHz}$ to $25~\mathrm{GHz}$ ($10\mathrm{th}$ harmonic of the highest fundamental frequency).
- $3. \ \mbox{The correction factor}$ is shown as follows:

Corr. Factor [dB] = Cable Loss + 20dB Pad Att. - Pre-Amp. Gain [dB] $(1.0 - 7.6 \mathrm{GHz})$

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. - Pre-Amp. Gain [dB] (7.6 - 18.0GHz)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over 18 GHz)

- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK : Peak $\,/\,\mathrm{AVE}$: Average



Standard : CFR 47 FCC Rules and Regulations Part 15

Page 83 of 92

Mode of EUT: IEEE802.11g

TX Low/Middle/High ch (Horizontal/Vertical)

JQA File No. : KL80160359 Issue Date : September 9, 2016 Model No. : SH-02J FCC ID : APYHRO00242

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 84 of 92

Mode of EUT: IEEE802.11n

Test Date: August 25, 2016 Temp.: 26 °C, Humi: 70 %

Frequency	Antenna	Corr.		$Meter\ Readings\ [dB(\mu V)]$		V)]	Limits		Re	sults	Margin	Remarks
	Factor	Factor	Hor	izontal	Ve	rtical	[dB(µ	↓V/m)]	$[dB(\mu V/m)]$		[dB]	
[MHz]	[dB(1/m)]	[dB]	PK	AVE	PK	AVE	PK	AVE	PK	AVE		
Test condition	: Tx Low Ch											
4824.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
12060.0	33.4	-25.5	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.9	< 35.9	> +18.1	
14472.0	37.0	-26.2	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 48.8	< 38.8	> +15.2	
19296.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
Test condition	: TX Middle	Ch										
4874.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
7311.0	29.9	-16.1	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.8	< 41.8	> +12.2	
12185.0	33.3	-25.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.6	< 35.6	> +18.4	
19496.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
Test condition	: TX High C	h										
4924.0	27.0	-15.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.3	< 39.3	> +14.7	
7386.0	29.8	-16.2	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.6	< 41.6	> +12.4	
12310.0	33.3	-26.0	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.3	< 35.3	> +18.7	
19696.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
22158.0	40.6	-43.3	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.3	< 37.3	> +16.7	

Calculated result at 7311.0 MHz, as the worst point shown on underline:

 $\begin{array}{lll} \mbox{Antenna Factor} & = & 29.9 \ dB(1/m) \\ \mbox{Corr. Factor} & = & -16.1 \ dB \\ +) \mbox{Meter Reading} & = & <28.0 \ dB(\mu\mbox{V}) \\ \mbox{Result} & = & <41.8 \ dB(\mu\mbox{V/m}) \end{array}$

Minimum Margin: 54.0 - 41.8 = 12.2 (dB)

NOTES

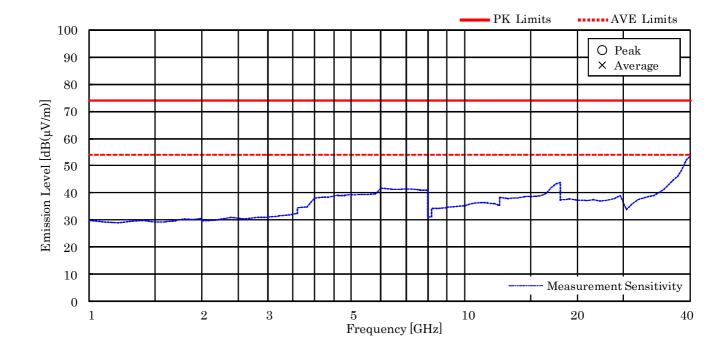
- 1. Test Distance: 3 m
- $2.\ The\ spectrum\ was\ checked\ from\ 1\ GHz\ to\ 25\ GHz\ (10th\ harmonic\ of\ the\ highest\ fundamental\ frequency).$
- $3. \ \mbox{The correction factor}$ is shown as follows:

Corr. Factor [dB] = Cable Loss + 20dB Pad Att. - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. - Pre-Amp. Gain [dB] (7.6 - 18.0GHz)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over 18 GHz)

- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK: Peak / AVE: Average



Standard : CFR 47 FCC Rules and Regulations Part 15

Page 85 of 92

Mode of EUT: IEEE802.11n

TX Low/Middle/High ch (Horizontal/Vertical)

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 86 of 92

Mode of EUT: Bluetooth Low Energy

Test Date: August 25, 2016 Temp.: 26 °C, Humi: 70 %

Frequency				· =			sults	Margin	Remarks			
	Factor	Factor		rizontal		ertical	[dB(µ	1V/m)]	_	(μV/m)]	[dB]	
[MHz]	[dB(1/m)]	[dB]	PK	AVE	PK	AVE	PK	AVE	PK	AVE		
Test condition	on: Tx Low	Ch										
4804.0	27.1	-15.9	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
12010.0	33.5	-25.4	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 46.1	< 36.1	> +17.9	
19216.0	40.5	-43.0	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.5	< 37.5	> +16.5	
Test condition	on : TX Midd	lle Ch										
4880.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
7320.0	29.9	-16.2	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.7	< 41.7	> +12.3	
12200.0	33.3	-25.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.6	< 35.6	> +18.4	
19520.0	40.4	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.5	< 37.5	> +16.5	
Test condition	on : TX High	Ch										
4960.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
7440.0	29.8	-16.3	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.5	< 41.5	> +12.5	
12400.0	33.3	-26.2	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.1	< 35.1	> +18.9	
19840.0	40.4	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.5	< 37.5	> +16.5	
22320.0	40.6	-43.4	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.2	< 37.2	> +16.8	

Calculated result at 7320.0 MHz, as the worst point shown on underline:

Antenna Factor = 29.9 dB(1/m) Corr. Factor = -16.2 dB +) Meter Reading = <28.0 dB(μ V) Result = <41.7 dB(μ V/m)

Minimum Margin: 54.0 - <41.7 = >12.3 (dB)

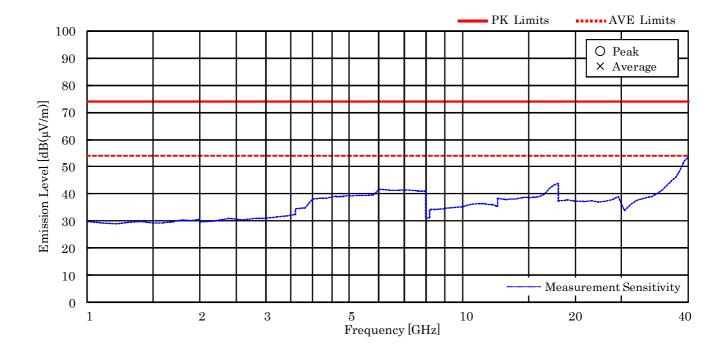
NOTES

- 1. Test Distance: 3 m
- $2. \ The \ spectrum \ was \ checked \ from \ 1 \ GHz \ to \ 25 \ GHz \ (10th \ harmonic \ of \ the \ highest \ fundamental \ frequency).$
- 3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 20dB Pad Att. - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. · Pre·Amp. Gain [dB] (7.6 · 18.0GHz)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over 18 GHz)


- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK: Peak / AVE: Average

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 87 of 92

Mode of EUT: Bluetooth Low Energy TX Low/Middle/High ch (Horizontal/Vertical)

