ELEMENT WASHINGTON DC LLC 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.381.1520 http://www.element.com # MEASUREMENT REPORT FCC PART 15.247 802.11b/g/n/ax (OFDM) **Applicant Name:** Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea **Date of Testing:** 11/6/2023 - 1/2/2024 **Test Report Issue Date:** 1/3/2024 Test Site/Location: Element lab., Columbia, MD, USA Test Report Serial No.: 1M2310260110-11.A3L FCC ID: A3LSMA356E APPLICANT: Samsung Electronics Co., Ltd. Application Type:CertificationModel:SM-A356E/DSAdditional Model(s):SM-A356E EUT Type:Portable HandsetFrequency Range:2412 – 2472MHzModulation Type:CCK, DSSS, OFDM FCC Classification: Digital Transmission System (DTS) FCC Rule Part(s): Part 15 Subpart C (15.247) Test Procedure(s): ANSI C63.10-2013 This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested. I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. RJ Ortanez Executive Vice President | FCC ID: A3LSMA356E | | Approved by:
Technical Manager | | |---------------------|----------------------|-----------------------------------|--------------| | Test Report S/N: | Test Dates: | EUT Type: | Dogg 1 of 00 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Page 1 of 89 | # TABLE OF CONTENTS | 1.0 | INTE | RODUCTION | 4 | |-----|------|---|----| | | 1.1 | Scope | 4 | | | 1.2 | Element Test Location | 4 | | | 1.3 | Test Facility / Accreditations | 4 | | 2.0 | PRO | DUCT INFORMATION | 5 | | | 2.1 | Equipment Description | 5 | | | 2.2 | Device Capabilities | 5 | | | 2.3 | Test Configuration | 6 | | | 2.4 | Antenna Description | 7 | | | 2.5 | Software and Firmware | 7 | | | 2.6 | EMI Suppression Device(s) / Modifications | 7 | | 3.0 | DES | CRIPTION OF TESTS | 8 | | | 3.1 | Evaluation Procedure | 8 | | | 3.2 | AC Line Conducted Emissions | 8 | | | 3.3 | Radiated Emissions | g | | | 3.4 | Environmental Conditions | g | | 4.0 | ANT | ENNA REQUIREMENTS | 10 | | 5.0 | MEA | SUREMENT UNCERTAINTY | 11 | | 6.0 | TES | T EQUIPMENT CALIBRATION DATA | 12 | | 7.0 | TES | T RESULTS | 13 | | | 7.1 | Summary | 13 | | | 7.2 | 6dB Bandwidth Measurement | 14 | | | 7.3 | Output Power Measurement | 28 | | | 7.4 | Power Spectral Density | 31 | | | 7.5 | Conducted Band Edge Emissions | 46 | | | 7.6 | Conducted Spurious Emissions | 66 | | | 7.7 | Radiated Emission Measurements | 74 | | | | 7.7.1 MIMO Radiated Spurious Emission Measurements | 78 | | | | 7.7.2 MIMO Radiated Restricted Band Edge Measurements | 83 | | | 7.8 | Line-Conducted Test Data | 86 | | 8.0 | CON | ICLUSION | 89 | | FCC ID: A3LSMA356E | | Approved by: Technical Manager | | | |---------------------|----------------------|--------------------------------|--------------|--| | Test Report S/N: | Test Dates: | EUT Type: | Page 2 of 89 | | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 2 01 09 | | # **MEASUREMENT REPORT** | | | | | MII | мо | | |--------------------|-----------|--------------|-----------------|---------------------|--------------------|---------------------| | Channel | IEEE Mode | Tx Frequency | Avg. Co | nducted | | | | Bandwidth
[MHz] | | [MHz] | Max. Power [mW] | Max. Power
[dBm] | Max. Power
[mW] | Max. Power
[dBm] | | | 802.11b | 2412 - 2472 | 157.40 | 21.97 | 391.80 | 25.93 | | 20 | 802.11g | 2412 - 2472 | 96.83 | 19.86 | 514.07 | 27.11 | | 20 | 802.11n | 2412 - 2472 | 99.08 | 19.96 | 590.65 | 27.71 | | | 802.11ax | 2412 - 2472 | 97.27 | 19.88 | 599.29 | 27.78 | **EUT Overview** | FCC ID: A3LSMA356E | | Approved by:
Technical Manager | | | |---------------------|----------------------|-----------------------------------|--------------|--| | Test Report S/N: | Test Dates: | EUT Type: | Page 3 of 89 | | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | | | ### 1.0 INTRODUCTION ## 1.1 Scope Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and\or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada. ### 1.2 Element Test Location These measurement tests were conducted at the Element laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014. ## 1.3 Test Facility / Accreditations Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A. - Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules. - Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO\\IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS). - Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED. - Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreements (MRAs). | FCC ID: A3LSMA356E | | Approved by: Technical Manager | | | |---------------------|----------------------|--------------------------------|--------------|--| | Test Report S/N: | Test Dates: | EUT Type: | Page 4 of 89 | | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | | | ## PRODUCT INFORMATION #### 2.1 **Equipment Description** The Equipment Under Test (EUT) is the Samsung Portable Handset FCC ID: A3LSMA356E. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter. Test Device Serial No.: 1194M, 0654M, 1199M, 0645M #### 2.2 **Device Capabilities** This device contains the following capabilities: 850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, Multi-band 5G NR (FR1), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII (5GHz), Bluetooth (1x, EDR, LE), NFC | Ch. | Frequency (MHz) | Ch. | Frequency (MHz) | |-----|-----------------|-----|-----------------| | 1 | 2412 | 8 | 2447 | | 2 | 2417 | 9 | 2452 | | 3 | 2422 | 10 | 2457 | | 4 | 2427 | 11 | 2462 | | 5 | 2432 | 12 | 2467 | | 6 | 2437 | 13 | 2472 | | 7 | 2442 | | | Table 2-1. Frequency \ Channel Operations ### Notes: 1. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of ANSI C63.10-2013 and KDB 558074 D01 v05r02. The RBW and VBW were both greater than 50\T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows: | | | MIMO (1+2) | |----------|-------------------|------------| | 802.11 N | Duty Cycle
[%] | | | | b | 98.75 | | 2.4GHz | g | 96.67 | | 2.4GHZ | n (HT20) | 97.78 | | | ax (HE20) | 95.57 | **Table 2-2. Measured Duty Cycles** | FCC ID: A3LSMA356E | | Approved by:
Technical Manager | | | |---------------------|----------------------|-----------------------------------|--------------|--| | Test Report S/N: | Test Dates: | EUT Type: | Page 5 of 89 | | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | | | 2. The device employs MIMO technology. Below are the possible configurations. | WiFi Configurations | | SISO | | SDM | | CDD | | |---------------------|-------------|------|------|------|------|------|------| | VVIFICOII | ligurations | ANT1 | ANT2 | ANT1 | ANT2 | ANT1 | ANT2 | | | 11b | ✓ | ✓ | × | × | ✓ | ✓ | | 0.4011- | 11g | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | 2.4GHz | 11n | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | 11ax | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | Table 2-3. Antenna / Technology Configuration ✓= Support; × = NOT Support SISO = Single Input Single Output **SDM** = Spatial Diversity Multiplexing – MIMO function **CDD** = Cyclic Delay Diversity - 2Tx Function 3. The device supports the following data rates (shown in Mbps): | 802.11b | 802.11a/g | MCS Index | | Spatial | OFDM (| 802.11n) | OF | DM (802.11 | lax) | |---------|-----------|-----------|----|---------|----------|----------|----------|------------|----------| | 20MHz | 20MHz | | | Stream | 201 | ЛHz | 20MHz | | | | ZUIVIHZ | ZUIVIHZ | HT | HE | | 0.8μs Gl | 0.4μs GI | 0.8μs Gl | 1.6μs GI | 3.2μs GI | | 1 | 6 | 0 | 0 | 1 | 6.5 | 7.2 | 8.6 | 8.1 | 7.3 | | 2 | 9 | 1 | 1 | 1 | 13 | 14.4 | 17.2 | 16.3 | 14.6 | | 5.5 | 12 | 2 | 2 | 1 | 19.5 | 21.7 | 25.8 | 24.4 | 21.9 | | 11 | 18 | 3 | 3 | 1 | 26 | 28.9 | 34.4 | 32.5 | 29.3 | | | 24 | 4 | 4 | 1 | 39 | 43.3 | 51.6 | 48.8 | 43.9 | | | 36 | 5 | 5 | 1 | 52 | 57.8 | 68.8 | 65 | 58.5 | | | 48 | 6 | 6 | 1 | 58.5 | 65 | 77.4 | 73.1 | 65.8 | | | 54 | 7 | 7 | 1 | 65 | 72.2 | 86 | 81.3 | 73.1 | | | | | 8 | 1 | | ` | 103.2 | 97.5 | 87.8 | | | | | 9 | 1 | | | 114.7 | 108.3 | 97.5 | | | | | 10 | 1 | | | 129 | 121.9 | 109.7 | | | | | 11 | 1 | ` | | 143.4 | 135.4 | 121.9 | | 1 | 6 | 8 | 0 | 2 | 13 | 14.4 | 17.2 | 16.3 | 14.6 | | 2 | 9 | 9 | 1 | 2 | 26 | 28.9 | 34.4 | 32.5 | 29.3 | | 5.5 | 12 | 10 | 2 | 2 | 39 | 43.3 | 51.6 | 48.8 | 43.9 |
 11 | 18 | 11 | 3 | 2 | 52 | 57.8 | 68.8 | 65 | 58.5 | | | 24 | 12 | 4 | 2 | 78 | 86.7 | 103.2 | 97.5 | 87.8 | | | 36 | 13 | 5 | 2 | 104 | 115.6 | 137.6 | 130 | 117 | | | 48 | 14 | 6 | 2 | 117 | 130 | 154.9 | 146.3 | 131.6 | | | 54 | 15 | 7 | 2 | 130 | 144.4 | 172.1 | 162.5 | 146.3 | | | | | 8 | 2 | 156 | 173.3 | 206.5 | 195 | 175.5 | | | | | 9 | 2 | N/A | N/A | 229.4 | 216.7 | 195 | | | | | 10 | 2 | | | 258.1 | 243.8 | 219.4 | | | | | 11 | 2 | | | 286.8 | 270.8 | 243.8 | **Table 2-4. Supported Data Rates** ## 2.3 Test Configuration ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 7.7.2 for AC line conducted emissions test setups, 7.7 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups. | FCC ID: A3LSMA356E | | Approved by:
Technical Manager | | | |---------------------|----------------------|-----------------------------------|--------------|--| | Test Report S/N: | Test Dates: | EUT Type: | Page 6 of 89 | | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | | | ### 2.4 Antenna Description The following antenna gains were used for the testing. | Frequency [GHz] | Antenna-1 Gain [dBi] | Antenna-2 Gain [dBi] | Directional Gain [dBi] | |-----------------|----------------------|----------------------|------------------------| | 2.4 | -6.55 | -6.74 | -3.63 | Table 2-5. Antenna Peak Gain ### 2.5 Software and Firmware The test was conducted with software\firmware version A356BXXU0AWJ3 installed on the EUT. ## 2.6 EMI Suppression Device(s) / Modifications No EMI suppression device(s) were added and\or no modifications were made during testing. | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Dogo 7 of 90 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Page 7 of 89 | ### 3.0 DESCRIPTION OF TESTS #### 3.1 Evaluation Procedure The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement of the EUT. Deviation from measurement procedure......None ### 3.2 AC Line Conducted Emissions The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF EnclosuresThe line-conducted facility is located inside a 7m x 3.66m x 2.7m shielded enclosure. The shielded enclosure is manufactured by AP Americas. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega\$ \\50\text{H} Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI\\RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure. The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration\\arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements. Line conducted emissions test results are shown in Section 7.8. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing. | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 8 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage o oi os | #### 3.3 Radiated Emissions The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found. Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01. #### 3.4 Environmental Conditions The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar). | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | | |---------------------|----------------------|------------------|-----------------------------------|--| | Test Report S/N: | Test Dates: | EUT Type: | Dage 0 of 90 | | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Page 9 of 89 | | #### **ANTENNA REQUIREMENTS** 4.0 ### Excerpt from §15.203 of the FCC Rules\Regulations: "An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section." - The antennas of the EUT are permanently attached. - There are no provisions for connections to an external antenna. ### **Conclusion:** The EUT unit complies with the requirement of §15.203. | FCC ID:
A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 10 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 10 01 09 | #### **MEASUREMENT UNCERTAINTY** 5.0 The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance. | Contribution | Expanded Uncertainty (±dB) | |----------------------------------|----------------------------| | Conducted Bench Top Measurements | 1.13 | | Line Conducted Disturbance | 3.09 | | Radiated Disturbance (<1GHz) | 4.98 | | Radiated Disturbance (>1GHz) | 5.07 | | Radiated Disturbance (>18GHz) | 5.09 | | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Dogo 11 of 90 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Page 11 of 89 | # 6.0 TEST EQUIPMENT CALIBRATION DATA Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017. | Manufacturer | Model | De scription | Call Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-------------|--------------------------------------|-----------|--------------|-----------|---------------| | - | AP2-001 | EMC Cable and Switch System | 1/11/2023 | Annual | 1/11/2024 | AP2-001 | | - | ETS-001 | EMC Cable and Switch System | 1/11/2023 | Annual | 1/11/2024 | ETS-001 | | - | ETS-002 | EMC Cable and Switch System | 1/11/2023 | Annual | 1/11/2024 | ETS-002 | | - | MD 1M 18-40 | EMC Cable and Switch System | 1/11/2023 | Annual | 1/11/2024 | MD1M18-40 | | - | WL40-1 | Conducted Cable Set (40GHz) | 1/12/2023 | Annual | 1/12/2024 | WL40-1 | | - | WL25-1 | Conducted Cable Set (25GHz) | 1/12/2023 | Annual | 1/12/2024 | WL25-1 | | Anritsu | MA24406A | Microwave Peak Power Sensor | 9/7/2023 | Annual | 9/7/2024 | 11240 | | Emco | 3115 | Horn Antenna (1-18GHz) | 8/8/2022 | Biennial | 8/8/2024 | 9704-5182 | | Emco | 3116 | Horn Antenna (18 - 40GHz) | 7/5/2022 | Biennial | 7/5/2024 | 9203-2178 | | Pastermack | MNLC-2 | Line Conducted Emission Cable (NM) | 1/11/2023 | Annual | 1/11/2024 | NMLC-2 | | ETS-Lindgren | 3816/2NM | Line Impedance Stabilization Network | 8/11/2022 | Biennial | 8/11/2024 | 114451 | | ETS Lindgren | 3116C | 1-18 GHz DRG Horn Antenna | 2/27/2023 | Biennial | 2/27/2024 | 00218893 | | ETS Lindgren | 3115 | Double Ridged Guide Hom | 4/12/2022 | Biennial | 4/12/2024 | 82333 | | Com-Power | AL-130 | 9kHz - 30MHz Loop Antenna | 4/13/2022 | Biennial | 4/13/2025 | 121034 | | Keysight Technologies | N9020A | MXA Signal Analyzer | 3/15/2023 | Annual | 3/15/2024 | MY54500644 | | Keysight Technologies | N9030A | PXA Signal Analyzer (44GHz) | 3/15/2023 | Annual | 3/15/2024 | MY52350166 | | Keysight Technologies | N9030A | PXA Signal Analyzer | 1/31/2023 | Annual | 1/31/2024 | MY55410501 | | Keysight Technologies | N9030B | PXA Signal Analyzer, Multi-touch | 9/7/2023 | Annual | 9/7/2024 | MY57141001 | | Rohde & Schwarz | ESU26 | EMI Test Receiver (26.5GHz) | 9/25/2023 | Annual | 9/25/2024 | 100342 | | Rohde & Schwarz | ESU40 | EMI Test Receiver (40GHz) | 9/11/2023 | Annual | 9/11/2024 | 100348 | | Rohde & Schwarz | ESW44 | EMI Test Receiver 2Hz to 44 GHz | 3/1/2023 | Annual | 3/1/2024 | 101716 | | Rohde & Schwarz | FSW67 | Signal / Spectrum Analyzer | 1/13/2023 | Annual | 1/13/2024 | 103200 | | Sunol | JB5 | Bi-Log Antenna (30M - 5GHz) | 2/21/2023 | Biennial | 2/21/2025 | A051107 | | Sunol | JB6 | LB6 Antenna | 3/2/2023 | Biennial | 3/2/2025 | A082816 | Table 6-1. Annual Test Equipment Calibration Schedule ### Note: For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date. | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by: Technical Manager | |---------------------|----------------------|------------------|--------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Dogo 12 of 90 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Page 12 of 89 | © 2024 ELEMENT Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without ### 7.0 TEST RESULTS ### 7.1 Summary Company Name: <u>Samsung Electronics Co., Ltd.</u> FCC ID: <u>A3LSMA356E</u> FCC Classification: Digital Transmission System (DTS) | FCC Part
Section(s) | Test Description | Test Limit | Test
Condition | Test
Result | Reference | |------------------------|--|---|-------------------|----------------|----------------------| | 15.247(a)(2) | 6dB Bandwidth | The minimum 6 dB bandwidth shall be at least 500 kHz. | | PASS | Section 7.2 | | 15.247(b)(3) | Transmitter Output Power | shall not exceed 1 W | | PASS | Section 7.3 | | N\A | e.i.r.p. | shall not exceed 4 W | CONDUCTED | PASS | Section 7.3 | | 15.247(e) | Transmitter Power
Spectral Density | shall not be greater than
8 dBm in any 3 kHz band | | PASS | Section 7.4 | | 15.247(d) | Band Edge \\
Out-of-Band Emissions | ≥ 20dBc | | PASS | Sections 7.5,
7.6 | | 15.205
15.209 | General Field Strength
Limits (Restricted Bands
and Radiated Emission
Limits) | Emissions in restricted
bands must meet the
radiated limits detailed in
15.209 (RSS-Gen [8.9]) | RADIATED | PASS | Section 7.7 | | 15.207 | AC Conducted Emissions
150kHz – 30MHz | < FCC 15.207 limits
(RSS-Gen [8.8]) | LINE
CONDUCTED | PASS | Section 7.8 | Table 7-1. Summary of Test Results #### Notes: - 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst-case emissions. - 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest. - All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators. - 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "WLAN Automation," Version 3.5. - 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "Chamber Automation." Version 1.3.1. | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 13 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 13 01 09 | #### 6dB Bandwidth Measurement ### **Test Overview and Limit** The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section. The minimum 6 dB bandwidth shall be at least 500 kHz. #### **Test Procedure Used** ANSI C63.10-2013 - Section 11.8.2 Option 2 ### **Test Settings** - 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission. - 2. RBW = 100kHz - 3. VBW \geq 3 x RBW - 4. Detector = Peak - 5. Trace mode = max hold - 6. Sweep = auto couple - 7. The trace was allowed to stabilize ### **Test Setup** The EUT and measurement equipment were set up as shown in the diagram below. Figure 7-1. Test Instrument & Measurement Setup #### **Test Notes** None. | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 14 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 14 01 09 | | Frequency
[MHz] | Channel
No. | 802.11
Mode | Antenna-1 6dB
Bandwidth
[MHz] | Antenna-2 6dB
Bandwidth
[MHz] | Minimum
Bandwidth
[MHz] | |--------------------|----------------|----------------|-------------------------------------|-------------------------------------|-------------------------------| | 2412 | 1 | b | 8.11 | 8.08 | 0.500 | | 2437 | 6 | р | 8.11 | 8.13 | 0.500 | | 2462 | 11 | b | 8.12 | 8.05 | 0.500 | | 2412 | 1 | g | 16.41 | 16.37 | 0.500 | | 2437 | 6 | g | 16.38 |
16.42 | 0.500 | | 2462 | 11 | g | 16.42 | 15.78 | 0.500 | | 2412 | 1 | n | 17.26 | 17.62 | 0.500 | | 2437 | 6 | n | 17.65 | 17.63 | 0.500 | | 2462 | 11 | n | 17.75 | 16.98 | 0.500 | | 2412 | 1 | ax | 19.05 | 18.91 | 0.500 | | 2437 | 6 | ax | 19.12 | 19.23 | 0.500 | | 2462 | 11 | ах | 19.15 | 18.91 | 0.500 | Table 7-2. Conducted 6dB Bandwidth Measurements MIMO | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 15 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 15 01 69 | Plot 7-1. 6dB Bandwidth Plot (802.11b - Ch. 1) - MIMO ANT1 Plot 7-2. 6dB Bandwidth Plot (802.11b - Ch. 6) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 16 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 10 01 09 | Plot 7-3. 6dB Bandwidth Plot (802.11b - Ch. 11) - MIMO ANT1 Plot 7-4. 6dB Bandwidth Plot (802.11g - Ch. 1) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 17 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 17 01 09 | Plot 7-5. 6dB Bandwidth Plot (802.11g - Ch. 6) - MIMO ANT1 Plot 7-6. 6dB Bandwidth Plot (802.11g - Ch. 11) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 18 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 10 01 09 | Plot 7-7. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 1) - MIMO ANT1 Plot 7-8. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 6) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 19 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 19 01 09 | Plot 7-9. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 11) - MIMO ANT1 Plot 7-10. 6dB Bandwidth Plot (802.11ax (2.4GHz) - Ch. 1) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 20 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 20 01 09 | Plot 7-11. 6dB Bandwidth Plot (802.11ax (2.4GHz) - Ch. 6) - MIMO ANT1 Plot 7-12. 6dB Bandwidth Plot (802.11ax (2.4GHz) - Ch. 11) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 21 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Page 21 01 09 | Plot 7-13. 6dB Bandwidth Plot (802.11b - Ch. 1) - MIMO ANT2 Plot 7-14. 6dB Bandwidth Plot (802.11b - Ch. 6) - MIMO ANT2 | FCC ID: A3LSMA356E | | MEASUREMENT REPORT | | |---------------------|----------------------|--------------------|------------------| | Test Report S/N: | Test Dates: | EUT Type: | D 00 -f 00 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Page 22 of 89 | | © 2024 ELEMENT | • | | V11.1 08/28/2023 | Plot 7-15. 6dB Bandwidth Plot (802.11b - Ch. 11) - MIMO ANT2 Plot 7-16. 6dB Bandwidth Plot (802.11g - Ch. 1) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 23 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Fage 23 01 09 | © 2024 ELEMENT Plot 7-17. 6dB Bandwidth Plot (802.11g - Ch. 6) - MIMO ANT2 Plot 7-18. 6dB Bandwidth Plot (802.11g - Ch. 11) - MIMO ANT2 | FCC ID: A3LSMA356E | | MEASUREMENT REPORT | | |---------------------|----------------------|--------------------|------------------| | Test Report S/N: | Test Dates: | EUT Type: | Daga 24 of 00 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Page 24 of 89 | | © 2024 ELEMENT | • | | V11.1 08/28/2023 | Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact Plot 7-19. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 1) - MIMO ANT2 Plot 7-20. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 6) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 25 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Page 25 01 09 | Plot 7-21. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 11) - MIMO ANT2 Plot 7-22. 6dB Bandwidth Plot (802.11ax (2.4GHz) - Ch. 1) - MIMO ANT2 | FCC ID: A3LSMA356E | | MEASUREMENT REPORT | | | | |---------------------|----------------------|--------------------|---------------|--|--| | Test Report S/N: | Test Dates: | EUT Type: | Dogo 26 of 90 | | | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Page 26 of 89 | | | Plot 7-23. 6dB Bandwidth Plot (802.11ax (2.4GHz) - Ch. 6) - MIMO ANT2 Plot 7-24. 6dB Bandwidth Plot (802.11ax (2.4GHz) - Ch. 11) - MIMO ANT2 | FCC ID: A3LSMA356E | | MEASUREMENT REPORT | | | | |---------------------|----------------------|--------------------|---------------|--|--| | Test Report S/N: | Test Dates: | EUT Type: | Page 27 of 89 | | | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 27 01 09 | | | ### 7.3 Output Power Measurement ### **Test Overview and Limits** A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. The maximum permissible conducted output power is 1 Watt per 15.247. ### **Test Procedure Used** ANSI C63.10-2013 - Section 11.9.1.3 PKPM1 Peak Power Method ANSI C63.10-2013 - Section 11.9.2.3.2 Method AVGPM-G ANSI C63.10-2013 - Section 14.2 Measure-and-Sum Technique ### **Test Settings** ### **Method PKPM1 (Peak Power Measurement)** Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz. ### **Method AVGPM-G (Average Power Measurement)** Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power. ### **Test Setup** The EUT and measurement equipment were set up as shown in the diagrams below. Figure 7-2. Test Instrument & Measurement Setup for Power Meter Measurements #### **Test Notes** None. | FCC ID: A3LSMA356E | | Approved by: Technical Manager | | | |---------------------|----------------------|--------------------------------|---------------|--| | Test Report S/N: | Test Dates: | EUT Type: | Dogo 29 of 90 | | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Page 28 of 89 | | | | | 2 | .4GHz WIFI | (20MHz 802.1 | 1b MIMO) | | Conducted | Conducted | Directional | | | | |--|---------------|------------------|--------------------|--------------|-------------|--------------|-----------|----------------------|------------------------|------------------------|-------|--------| | 1b | Freq
[MHz] | Channel Detector | Channel Detector | | Power Limit | Power Margin | Ant. Gain | Max e.i.r.p
[dBm] | e.i.r.p Limit
[dBm] | e.i.r.p Margin
[dB] | | | | <u>. </u> | [IVIFIZ] | | | ANT1 | ANT2 | MIMO | [dBm] | [dB] | [dBi] | | | | | • | 2412 | 1 | | 18.92 | 18.99 | 21.97 | 30.00 | -8.03 | -3.63 | 18.34 | 36.02 | -17.68 | | 2 | 2437 | 6 | | 18.92 | 18.45 | 21.70 | 30.00 | -8.30 | -3.63 | 18.07 | 36.02 | -17.95 | | 0 | 2462 | 11 | Average | 18.51 | 18.99 | 21.77 | 30.00 | -8.23 | -3.63 | 18.14 | 36.02 | -17.88 | | ∞ | 2467 | 12 | | 7.20 | 7.94 | 10.60 | 30.00 | -19.40 | -3.63 | 6.97 | 36.02 | -29.05 | | ш | 2472 | 13 | | 0.99 | 0.87 | 3.94 | 30.00 | -26.06 | -3.63 | 0.31 | 36.02 | -35.71 | | | 2412 | 1 | | 22.92 | 22.88 | 25.91 | 30.00 | -4.09 | -3.63 | 22.28 | 36.02 | -13.74 | | Щ | 2437 | 6 | | 23.27 | 22.54 | 25.93 | 30.00 | -4.07 | -3.63 | 22.30 | 36.02 | -13.72 | | Ш | 2462 | 11 | Peak | 22.53 | 23.05 | 25.81 | 30.00 | -4.19 | -3.63 | 22.17 | 36.02 | -13.85 | | | 2467 | 12 | | 10.03 | 10.74 | 13.41 | 30.00 | -16.59 | -3.63 | 9.78 | 36.02 | -26.24 | | | 2472 | 13 | | 3.99 | 3.71 | 6.86 | 30.00 | -23.14 | -3.63 | 3.23 | 36.02 | -32.79
 Table 7-3. Conducted Output Power Measurements MIMO (802.11b) | | | 2 | .4GHz WIFI | (20MHz 802.1 | 1g MIMO) | | Conducted | Conducted | Directional | | | | |--------------|-------|---------------|------------|-----------------------|----------|-------------|--------------|-----------|----------------------|------------------------|------------------------|--------| | g | Freq | ' I Channel I | Detector | Conducted Power [dBm] | | Power Limit | Power Margin | Ant. Gain | Max e.i.r.p
[dBm] | e.i.r.p Limit
[dBm] | e.i.r.p Margin
[dB] | | | <u> </u> | [MHz] | | | ANT1 | ANT2 | MIMO | [dBm] | [dB] | [dBi] | | | | | - | 2412 | 1 | | 15.98 | 15.66 | 18.83 | 30.00 | -11.17 | -3.63 | 15.20 | 36.02 | -20.82 | | 2 | 2417 | 2 | 1 | 16.27 | 16.46 | 19.38 | 30.00 | -10.62 | -3.63 | 15.75 | 36.02 | -20.27 | | 0 | 2437 | 6 | Average | 17.38 | 16.25 | 19.86 | 30.00 | -10.14 | -3.63 | 16.23 | 36.02 | -19.79 | | 38 | 2462 | 11 | Average | 16.02 | 16.52 | 19.29 | 30.00 | -10.71 | -3.63 | 15.66 | 36.02 | -20.36 | | ω | 2467 | 12 | 1 | 6.89 | 7.66 | 10.31 | 30.00 | -19.69 | -3.63 | 6.68 | 36.02 | -29.34 | | Ш | 2472 | 13 | | 0.38 | 0.79 | 3.60 | 30.00 | -26.40 | -3.63 | -0.03 | 36.02 | -36.05 | | Ш | 2412 | 1 | | 24.23 | 23.97 | 27.11 | 30.00 | -2.89 | -3.63 | 23.48 | 36.02 | -12.54 | | Ш | 2437 | 6 | 1 | 24.67 | 22.81 | 26.85 | 30.00 | -3.15 | -3.63 | 23.21 | 36.02 | -12.81 | | = | 2462 | 11 | Peak | 23.68 | 24.27 | 27.00 | 30.00 | -3.00 | -3.63 | 23.36 | 36.02 | -12.66 | | | 2467 | 12 | | 16.11 | 17.05 | 19.62 | 30.00 | -10.38 | -3.63 | 15.98 | 36.02 | -20.04 | | | 2472 | 13 | | 9.16 | 9.92 | 12.56 | 30.00 | -17.44 | -3.63 | 8.93 | 36.02 | -27.09 | Table 7-4. Conducted Output Power Measurements MIMO (802.11g) | | | 2 | .4GHz WIFI | (20MHz 802.1 | 1n MIMO) | | Conducted | Conducted | Directional | | | | |-------------|-------|----|------------|-----------------------|----------|-------|-------------|--------------|-------------|----------------------|------------------------|------------------------| | ⊑ | Freq | | Detector | Conducted Power [dBm] | | | Power Limit | Power Margin | Ant. Gain | Max e.i.r.p
[dBm] | e.i.r.p Limit
[dBm] | e.i.r.p Margin
[dB] | | <u> </u> | [MHz] | | | ANT1 | ANT2 | MIMO | [dBm] | [dB] | [dBi] | | | | | | 2412 | 1 | | 15.04 | 15.01 | 18.04 | 30.00 | -11.96 | -3.63 | 14.41 | 36.02 | -21.61 | | 2. | 2417 | 2 | | 16.37 | 16.47 | 19.43 | 30.00 | -10.57 | -3.63 | 15.80 | 36.02 | -20.22 | | 0 | 2437 | 6 | Average | 17.34 | 16.52 | 19.96 | 30.00 | -10.04 | -3.63 | 16.33 | 36.02 | -19.69 | | 8(| 2462 | 11 | Average | 16.13 | 16.40 | 19.28 | 30.00 | -10.72 | -3.63 | 15.65 | 36.02 | -20.37 | | ω | 2467 | 12 | | 6.59 | 7.74 | 10.22 | 30.00 | -19.78 | -3.63 | 6.59 | 36.02 | -29.43 | | Ш | 2472 | 13 | | 0.38 | 0.90 | 3.66 | 30.00 | -26.34 | -3.63 | 0.03 | 36.02 | -35.99 | | Ш | 2412 | 1 | | 25.18 | 24.17 | 27.71 | 30.00 | -2.29 | -3.63 | 24.08 | 36.02 | -11.94 | | Ш | 2437 | 6 | Peak | 24.86 | 23.62 | 27.29 | 30.00 | -2.71 | -3.63 | 23.66 | 36.02 | -12.36 | | = | 2462 | 11 | | 24.26 | 24.24 | 27.26 | 30.00 | -2.74 | -3.63 | 23.63 | 36.02 | -12.39 | | | 2467 | 12 | | 16.23 | 17.18 | 19.74 | 30.00 | -10.26 | -3.63 | 16.11 | 36.02 | -19.91 | | | 2472 | 13 | | 11.03 | 11.23 | 14.14 | 30.00 | -15.86 | -3.63 | 10.51 | 36.02 | -25.51 | Table 7-5. Conducted Output Power Measurements MIMO (802.11n) | | | 2. | 4GHz WIFI | (20MHz 802.11 | ax MIMO) | | Conducted | Conducted | Directional | | | | |--------------|-------|---------|-----------|-----------------------|----------|-------|-------------|--------------|-------------|----------------------|------------------------|------------------------| | ax | | Channel | Detector | Conducted Power [dBm] | | | Power Limit | Power Margin | Ant. Gain | Max e.i.r.p
[dBm] | e.i.r.p Limit
[dBm] | e.i.r.p Margin
[dB] | | - | [MHz] | | | ANT1 | ANT2 | MIMO | [dBm] | [dB] | [dBi] | | | | | <u> </u> | 2412 | 1 | | 15.34 | 14.99 | 18.18 | 30.00 | -11.82 | -3.63 | 14.55 | 36.02 | -21.47 | | ` : | 2417 | 2 | | 16.53 | 16.87 | 19.71 | 30.00 | -10.29 | -3.63 | 16.08 | 36.02 | -19.94 | | 7 | 2437 | 6 | Average | 17.23 | 16.48 | 19.88 | 30.00 | -10.12 | -3.63 | 16.25 | 36.02 | -19.77 | | SI
Si | 2462 | 11 | Average | 16.07 | 16.35 | 19.22 | 30.00 | -10.78 | -3.63 | 15.59 | 36.02 | -20.43 | | ∞ | 2467 | 12 | | 6.58 | 7.78 | 10.23 | 30.00 | -19.77 | -3.63 | 6.60 | 36.02 | -29.42 | | ш | 2472 | 13 | | -0.16 | 0.42 | 3.15 | 30.00 | -26.85 | -3.63 | -0.48 | 36.02 | -36.50 | | iii | 2412 | 1 | | 24.61 | 24.39 | 27.51 | 30.00 | -2.49 | -3.63 | 23.88 | 36.02 | -12.14 | | | 2437 | 6 | | 24.93 | 23.53 | 27.30 | 30.00 | -2.70 | -3.63 | 23.66 | 36.02 | -12.36 | | ш | 2462 | 11 | Peak | 24.86 | 24.67 | 27.78 | 30.00 | -2.22 | -3.63 | 24.14 | 36.02 | -11.88 | | _ | 2467 | 12 | | 16.24 | 18.12 | 20.29 | 30.00 | -9.71 | -3.63 | 16.66 | 36.02 | -19.36 | | | 2472 | 13 | | 10.65 | 10.67 | 13.67 | 30.00 | -16.33 | -3.63 | 10.03 | 36.02 | -25.99 | Table 7-6. Conducted Output Power Measurements MIMO (802.11ax) | FCC ID: A3LSMA356E | | MEASUREMENT REPORT | Approved by:
Technical Manager | | | |---------------------|----------------------|--------------------|-----------------------------------|--|--| | Test Report S/N: | Test Dates: | EUT Type: | Dogo 20 of 90 | | | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Page 29 of 89 | | | #### Note: Per ANSI C63.10-2013 Section 14.2, the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm. ### Sample MIMO Calculation: At 2412MHz the average conducted output power was measured to be 18.92 dBm for Antenna 1 and 18.99 dBm for Antenna 2. (18.92 dBm + 18.99 dBm) = (77.98 mW + 79.25 mW) = 157.23 mW = 21.97 dBm | FCC ID: A3LSMA356E | | Approved by: Technical Manager | | | |---------------------|----------------------|--------------------------------|---------------|--| | Test Report S/N: | Test Dates: | EUT Type: | Dogo 20 of 90 | | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Page 30 of 89 | | ### 7.4 Power Spectral Density #### **Test Overview and Limit** The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates are investigated and the worst-case configuration results are reported in this section. The maximum permissible power spectral density shall not be greater than 8 dBm in any 3 kHz band. #### **Test Procedure Used** ANSI C63.10-2013 – Section 11.10.2 Method PKPSD ANSI C63.10-2013 – Section 14.3.1 Measure-and-Sum Technique ### **Test Settings** - 1. Analyzer was set to the center frequency of the DTS channel under investigation - 2. Span = 1.5 times the DTS channel bandwidth - 3. RBW = 10kHz - 4. VBW = 1MHz - 5. Detector = peak - 6. Sweep time = auto couple - 7. Trace mode = max hold - 8. Trace was allowed to stabilize ### **Test Setup** The EUT and measurement equipment were set up as shown in the diagram below. Figure 7-3. Test Instrument & Measurement Setup ### **Test Notes** None. | FCC ID: A3LSMA356E | | MEASUREMENT REPORT | Approved by:
Technical Manager | | |---------------------|----------------------|--------------------|-----------------------------------|--| | Test Report S/N: | Test Dates: | EUT Type: | Dogo 21 of 90 | | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Page 31 of 89 | | | Frequency
[MHz] | Channel
No. | 802.11
Mode | ANT 1 Power
Spectral Density
[dBm] | ANT 2 Power
Spectral Density
[dBm] | Summed MIMO
Power Spectral
Density [dBm] | Maximum
Permissible
Power Density
[dBm / 3kHz] | Margin
[dB] | Pass / Fail | |--------------------|----------------|----------------|--|--|--|---|----------------|-------------| | 2412 | 1 | b | 1.98 | 1.29 | 4.66 | 8.00 | -3.34 | Pass | | 2437 | 6 | b | 0.59 | 0.10 | 3.36 | 8.00 | -4.64 | Pass | | 2462 | 11 | b | 1.36 | 1.64 | 4.52 | 8.00 | -3.48 | Pass | | 2412 | 1 | g | -3.38 | -5.45 | -1.28 | 8.00 | -9.28 | Pass | | 2437 | 6 | g | -5.23 | -2.92 | -0.91 | 8.00 | -8.91 | Pass | | 2462 | 11 | g | -3.78 | -4.06 | -0.91 | 8.00 | -8.91 | Pass | | 2412 | 1 | n | -4.10 | -5.19 | -1.60 | 8.00 | -9.60 | Pass | | 2437 | 6 | n | -4.96 | -2.77 | -0.72 | 8.00 | -8.72 | Pass | | 2462 | 11 | n | -4.17 | -3.32 | -0.71 | 8.00 | -8.71 | Pass | | 2412 | 1 | ax | -4.15 | -5.83 | -1.90 | 8.00 | -9.90 | Pass | | 2437 | 6 | ax | -5.09 | -3.09 | -0.97 | 8.00 | -8.97 | Pass | | 2462 | 11 | ax | -4.33 | -4.02 | -1.16 | 8.00 | -9.16 | Pass | Table 7-7. MIMO Conducted Power Spectral Density Results | FCC ID: A3LSMA356E | | MEASUREMENT REPORT | | | | |---------------------|----------------------|--------------------|---------------|--|--| | Test Report S/N: | Test Dates: | EUT Type: | Page 32 of 89 | | | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 32 01 09 | | | Plot 7-25. Power Spectral Density Plot (802.11b - Ch. 1) - MIMO ANT1 Plot 7-26. Power Spectral Density Plot (802.11b - Ch. 6) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 33 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | | Plot 7-27. Power Spectral Density Plot (802.11b - Ch. 11) - MIMO ANT1 Plot 7-28. Power Spectral Density Plot (802.11g - Ch. 1) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager |
---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Dags 24 of 00 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Page 34 of 89 | | © 2024 ELEMENT | • | | V11.1 08/28/2023 | Plot 7-29. Power Spectral Density Plot (802.11g - Ch. 6) - MIMO ANT1 Plot 7-30. Power Spectral Density Plot (802.11g - Ch. 11) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 35 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Fage 33 01 69 | Plot 7-31. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 1) - MIMO ANT1 Plot 7-32. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 6) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 36 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | | Plot 7-33. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 11) - MIMO ANT1 Plot 7-34. Power Spectral Density Plot (802.11ax (2.4GHz) - Ch. 1) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 37 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 37 01 09 | Plot 7-35. Power Spectral Density Plot (802.11ax (2.4GHz) - Ch. 6) - MIMO ANT1 Plot 7-36. Power Spectral Density Plot (802.11ax (2.4GHz) - Ch. 11) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 38 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 30 01 09 | Plot 7-37. Power Spectral Density Plot (802.11b - Ch. 1) - MIMO ANT2 Plot 7-38. Power Spectral Density Plot (802.11b - Ch. 6) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by: Technical Manager | |---------------------|----------------------|------------------|--------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 39 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 39 01 09 | Plot 7-39. Power Spectral Density Plot (802.11b - Ch. 11) - MIMO ANT2 Plot 7-40. Power Spectral Density Plot (802.11g - Ch. 1) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 40 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 40 01 69 | Plot 7-41. Power Spectral Density Plot (802.11g - Ch. 6) - MIMO ANT2 Plot 7-42. Power Spectral Density Plot (802.11g - Ch. 11) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 41 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Fage 41 01 09 | Plot 7-43. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 1) - MIMO ANT2 Plot 7-44. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 6) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 42 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Fage 42 01 09 | Plot 7-45. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 11) - MIMO ANT2 Plot 7-46. Power Spectral Density Plot (802.11ax (2.4GHz) - Ch. 1) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 43 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 43 01 09 | Plot 7-47. Power Spectral Density Plot (802.11ax (2.4GHz) - Ch. 6) - MIMO ANT2 Plot 7-48. Power Spectral Density Plot (802.11ax (2.4GHz) - Ch. 11) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 44 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 44 01 09 | #### Note: Per ANSI C63.10-2013 Section 14.3.1, the power spectral density at Antenna 1 and Antenna 2 were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm. ## **Sample MIMO Calculation:** At 2412MHz the average conducted power spectral density was measured to be 1.98 dBm for Antenna 1 and 1.29 dBm for Antenna 2. (1.98 dBm + 1.29 dBm) = (1.58 mW + 1.35 mW) = 2.93 mW = 4.66 dBm | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Dogo 45 of 90 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Page 45 of 89 | # 7.5 Conducted Band Edge Emissions ### **Test Overview and Limit** All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. For the following out of band conducted spurious emissions plots at the band edge, the EUT was set at a data rate of 1Mbps for "b" mode, 6 Mbps for "g" mode, 6.5\\7.2Mbps for "n" mode, and 8.6Mbps for "ax" mode as these settings produced the worst-case emissions. The limit for out-of-band spurious emissions at the band edge is -20 dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 7.4). #### **Test Procedure Used** ANSI C63.10-2013 - Section 11.11.3 #### **Test Settings** - 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot - 2. Span was set large enough so as to capture all out of band emissions near the band edge - 3. RBW = 100kHz - 4. VBW = 1MHz - 5. Detector = Peak - Number of sweep points ≥ 2 x Span\\RBW - 7. Trace mode = max hold - 8. Sweep time = auto couple - 9. The trace was allowed to stabilize #### **Test Setup** The EUT and measurement equipment were set up as shown in the diagram below. Figure 7-4. Test Instrument & Measurement Setup #### **Test Notes** None. | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 46 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 40 of 69 | Plot 7-49. Band Edge Plot (802.11b - Ch. 1) - MIMO ANT1 Plot 7-50. Band Edge Plot (802.11b - Ch. 11) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by: Technical Manager | |---------------------|----------------------|------------------|--------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 47 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 47 01 09 | Plot 7-51. Band Edge Plot (802.11b - Ch. 12) - MIMO ANT1 Plot 7-52. Band Edge Plot (802.11b - Ch. 13) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by: Technical Manager | |---------------------|----------------------|------------------|--------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 48 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Fage 40 01 09 | Plot 7-53. Band Edge Plot (802.11g- Ch. 1) - MIMO ANT1 Plot 7-54. Band Edge Plot (802.11g- Ch. 2) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 49 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Fage 49 01 09 | Plot 7-55. Band Edge Plot (802.11g - Ch. 11) - MIMO ANT1 Plot 7-56. Band Edge Plot (802.11g - Ch. 12) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 50 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 50 of 69 | Plot 7-57. Band Edge Plot (802.11g - Ch. 13) - MIMO ANT1 Plot 7-58. Band Edge Plot (802.11n (2.4GHz) - Ch. 1) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 51 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 31 01 09 | Plot 7-59. Band Edge Plot (802.11n (2.4GHz) - Ch. 2) - MIMO ANT1 Plot 7-60.
Band Edge Plot (802.11n (2.4GHz) - Ch. 11) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 52 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 32 01 09 | Plot 7-61. Band Edge Plot (802.11n (2.4GHz) - Ch. 12) - MIMO ANT1 Plot 7-62. Band Edge Plot (802.11n (2.4GHz) - Ch. 13) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by: Technical Manager | |---------------------|----------------------|------------------|--------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 53 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 55 of 69 | Plot 7-63. Band Edge Plot (802.11ax (2.4GHz) - Ch. 1) - MIMO ANT1 Plot 7-64. Band Edge Plot (802.11ax (2.4GHz) - Ch. 2) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 54 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 34 of 69 | Plot 7-65. Band Edge Plot (802.11ax (2.4GHz) - Ch. 11) - MIMO ANT1 Plot 7-66. Band Edge Plot (802.11ax (2.4GHz) - Ch. 12) - MIMO ANT1 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by: Technical Manager | |---------------------|----------------------|------------------|--------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 55 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 55 of 69 | Plot 7-67. Band Edge Plot (802.11ax (2.4GHz) - Ch. 13) - MIMO ANT1 Plot 7-68. Band Edge Plot (802.11b - Ch. 1) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 56 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 50 of 69 | Plot 7-69. Band Edge Plot (802.11b - Ch. 11) - MIMO ANT2 Plot 7-70. Band Edge Plot (802.11b - Ch. 12) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 57 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 37 of 69 | Plot 7-71. Band Edge Plot (802.11b - Ch. 13) - MIMO ANT2 Plot 7-72. Band Edge Plot (802.11g- Ch. 1) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 58 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | raye 30 01 09 | © 2024 ELEMENT V11.1 08/28/2023 Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact Plot 7-73. Band Edge Plot (802.11g- Ch. 2) - MIMO ANT2 Plot 7-74. Band Edge Plot (802.11g - Ch. 11) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 59 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage 39 01 69 | Plot 7-75. Band Edge Plot (802.11g - Ch. 12) - MIMO ANT2 Plot 7-76. Band Edge Plot (802.11g - Ch. 13) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 60 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | rage ou oi os | Plot 7-77. Band Edge Plot (802.11n (2.4GHz) - Ch. 1) - MIMO ANT2 Plot 7-78. Band Edge Plot (802.11n (2.4GHz) - Ch. 2) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by: Technical Manager | |---------------------|----------------------|------------------|--------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 61 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Fage 01 01 69 | Plot 7-79. Band Edge Plot (802.11n (2.4GHz) – Ch. 11) – MIMO ANT2 Plot 7-80. Band Edge Plot (802.11n (2.4GHz) - Ch. 12) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by: Technical Manager | |---------------------|----------------------|------------------|--------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 62 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Fage 62 01 69 | Plot 7-81. Band Edge Plot (802.11n (2.4GHz) - Ch. 13) - MIMO ANT2 Plot 7-82. Band Edge Plot (802.11ax (2.4GHz) - Ch. 1) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by: Technical Manager | |---------------------|----------------------|------------------|--------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 63 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Fage 63 of 69 | Plot 7-83. Band Edge Plot (802.11ax (2.4GHz) - Ch. 2) - MIMO ANT2 Plot 7-84. Band Edge Plot (802.11ax (2.4GHz) - Ch. 11) - MIMO ANT2 | FCC ID: A3LSMA356E | MEASUREMENT REPORT | | Approved by:
Technical Manager | |---------------------|----------------------|------------------|-----------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 64 of 89 | | 1M2310260110-11.A3L | 11/6/2023 - 1/2/2024 | Portable Handset | Fage 64 01 69 |