

REGULATORY COMPLIANCE TEST REPORT

FCC Part 15 Subpart C 15.247 & ISED RSS-247

Report No.:ALNT91-U2 Rev A

Company: Alien Technology, LLC.

Model: ALR-M702-FCC

TEST REPORT

Test of: Alien Technology, LLC. ALR-M702-FCC

To: FCC Part 15 Subpart C 15.247 & ISED RSS-247

Test Report Serial No.: ALNT91-U2 Rev A

This report supersedes: NONE

Applicant: Alien Technology, LLC.

845 Embedded Way

San Jose, California 95138

USA

Product Function RFID Module

Issue Date: 6th August 2019

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.

575 Boulder Court Pleasanton California 94566 USA

Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 <u>www.micomlabs.com</u>

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	
1.1. TESTING ACCREDITATION	4
1.2. RECOGNITION	
1.3. PRODUCT CERTIFICATION	6
2. DOCUMENT HISTORY	7
3. TEST RESULT CERTIFICATE	8
4. REFERENCES AND MEASUREMENT UNCERTAINTY	9
4.1. Normative References	9
4.2. Test and Uncertainty Procedure	
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	. 11
5.1. Technical Details	
5.2. Scope Of Test Program	
5.3. Equipment Model(s) and Serial Number(s)	
5.4. Antenna Details	
5.5. Cabling and I/O Ports	
5.6. Test Configurations	
5.7. Equipment Modifications	
5.8. Deviations from the Test Standard	
6. TEST SUMMARY	
7. TEST EQUIPMENT CONFIGURATION(S)	16
7.1. Conducted Test Setup	16
7.2. Radiated Emissions - 3m Chamber	18
8. MEASUREMENT AND PRESENTATION OF TEST DATA	
9. TEST RESULTS	
9.1. 20 dB & 99% Bandwidth	
9.2. Frequency Hopping Tests	
9.2.1. Number of Hopping Channels	24
9.2.2. Channel Separation	
9.2.3. Dwell Time & Channel Occupancy	
9.3. Output Power	
9.4. Emissions	
9.4.1. Conducted Emissions	
9.4.1.1. Conducted Unwanted Spurious Emissions	
9.4.1.2. Conducted Band-Edge Emissions	
9.4.2. Radiated Emissions	
9.4.2.3. TX Spurious & Restricted Band Emissions	
9.4.3. Digital Emissions (0.03 - 1 GHz)	
A. APPENDIX - GRAPHICAL IMAGES	
A.1. 20 dB & 99% Bandwidth	
A.2. Frequency Hopping Tests	
A.2.1. Number of Hopping Channels	
A.2.2. Channel Separation	
A.2.3. Dwell Time	
A.2.4. Channel Occupancy	
A.3. Emissions	
A.3.1. Conducted Emissions	
A.3.1.1. Conducted Unwanted Spurious Emissions	
A.3.1.2. Conducted Band-Edge Emissions	
	. 60
A.3.2. Radiated Emissions	. 64

Page:

3 of 70

Serial #: ALNT91-U2 Rev A

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; https://www.a2la.org/scopepdf/2381-01.pdf

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized international Standard ISO/IEC 17025:2005

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 14th day of May 2018.

President and CEO For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2019

4 of 70

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scape of Accreditation.

Issue Date: 6th August 2019 Page:

Serial #: ALNT91-U2 Rev A

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	САВ	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA - European Union Mutual Recognition Agreement.

NB - Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

Issue Date: 6th August 2019 **Page**: 5 of 70

Serial #: ALNT91-U2 Rev A

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; https://www.a2la.org/scopepdf/2381-02.pdf

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized international Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the AZLA R322 – Specific Requirements – Notified Body Accreditation Requirements and AZLA R308 - Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 14th day of May 2018

President and CEO For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2019

For the product certification schemes to which this accreditation applies, please refer to the organization's Poulact Certification Scope of Accreditation.

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

Issue Date: 6th August 2019

Page: 6 of 70

Serial #: ALNT91-U2 Rev A

2. **DOCUMENT HISTORY**

Document History						
Revision	Date	Comments				
Draft	20th May 2019	Draft report for client review.				
Rev A	6 th August 2019	Initial release.				
·						

In the above table the latest report revision will replace all earlier versions.

Issue Date: 6th August 2019 **Page**: 7 of 70

Serial #: ALNT91-U2 Rev A

3. TEST RESULT CERTIFICATE

Manufacturer: Alien Technology, LLC.

845 Embedded Way

San Jose

California 95138 USA

Model: ALR-M702-FCC Telephone: +1 925 462 0304

Type Of Equipment: RFID Module Fax: +1 925 462 0306

S/N's: 77070018

Test Date(s): 12 March - 13 May 2019 Website: www.micomlabs.com

STANDARD(S)

TEST RESULTS

Tested By: MiCOM Labs, Inc.

Pleasanton

575 Boulder Court

California 94566 USA

FCC CFR 47 Part 15 Subpart C 15.247 & ISED ICC RSS-247

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

ACCREDITED
TESTING CERT #2381.01

Graeme Grieve

Quality Manager MiCOM Labs, Inc.

Gordon Hurst

President & CEO MiCOM Labs, Inc.

Issue Date: 6th August 2019

Page: 8 of 70

Serial #: ALNT91-U2 Rev A

4. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
ı	KDB 558074 D01 v05	24th August 2018	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices operating under section 15.247 of the FCC Rules.
II	A2LA	August 2018	R105 - Requirement's When Making Reference to A2LA Accreditation Status
III	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
IV	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
V	CISPR 32	2015	Electromagnetic compatibility of multimedia equipment - Emission requirements
VI	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VII	FCC 47 CFR Part 15, Subpart B	2014	Title 47: Telecommunication PART 15—RADIO FREQUENCY DEVICES, SubPart B; Unintentional Radiators
VIII	FCC 47 CFR Part 15.247	2016	Radio Frequency Devices; Subpart C – Intentional Radiators
IX	FCC Public Notice DA 00-705	March 2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
Х	ICES-003	Issue 6 Jan 2016; Updated April 2017	Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.
XI	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
XII	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XIII	RSS-Gen Issue 5	April 2018	General Requirements for Compliance of Radio Apparatus
XIV	FCC 47 CFR Part 2.1033	2016	FCC requirements and rules regarding photographs and test setup diagrams.

Issue Date: 6th August 2019 Page: 9 of 70

Serial #: ALNT91-U2 Rev A

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Issue Date: 6th August 2019 Page: 10 of 70

Serial #: ALNT91-U2 Rev A

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Alien Technology, LLC. ALR-M702-FCC to FCC CFR
	47 Part 15 Subpart C 15.247 & ISED RSS-247
	Radio Frequency Devices; Subpart C – Intentional Radiators
Applicant:	
	845 Embedded Way
Manufacture	San Jose California 95138 USA
	Alien Technology, LLC.
Laboratory performing the tests:	
	575 Boulder Court
Test report reference number:	Pleasanton California 94566 USA
Date EUT received:	ALN 191-02 Rev A
	FCC CFR 47 Part 15 Subpart C 15.247 & ISED RSS-247
` ,	12 March - 13 May 2019
No of Units Tested:	
Product Family Name:	
	ALR-M702-FCC
Declared Frequency Range(s):	
Type of Modulation:	
EUT Modes of Operation:	DRM
Declared Nominal Output Power:	30 dBm
Transmit/Receive Operation:	Transceiver
Rated Input Voltage and Current:	3.3 – 5.5 VDC; 1.1 - 2.9 A
Operating Temperature Range:	-20 - +55 °C
ITU Emission Designator:	78K0A1D, 78K0K1D
Equipment Dimensions:	37 x 57 x 7.5 mm
	25 grams
Hardware Rev:	7.0.4
Software Rev:	V3.7.16

The Alien Technology, LLC. ALR-M702-FCC is a modular device that was tested in a test support board supplied by the manufacturer. In normal operation dc power for the ALR-M702 is supplied by a host device.

Issue Date: 6th August 2019 Page: 11 of 70

Serial #: ALNT91-U2 Rev A

5.2. Scope Of Test Program

Alien Technology, LLC. ALR-M702-FCC

The scope of the test program was to test the Alien Technology, LLC. ALR-M702-FCC in the frequency ranges 902 - 928 MHz; for compliance against the following specifications;

FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Radio Frequency Devices; Subpart C – Intentional Radiators

ISED RSS-247 (FHSS)

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

Issue Date: 6th August 2019 Page: 12 of 70

Serial #: ALNT91-U2 Rev A

5.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description	Mfr	Model No.	Serial No.
EUT	FHSS	Alien Technology LLC.	M702	77070018
Support (Conducted)	RFID Demo Station	Alien Technology LLC.	RFID_DEMO_V2.0	18001
Support (Radiated)	RFID Demo Station	Alien Technology LLC.	RFID_DEMO_V2.0	19001

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
	Broadradio	BRA-20		0.8	-	120	-	902 - 928

BF Gain - Beamforming Gain

Dir BW - Directional BeamWidth

X-Pol - Cross Polarization

5.5. Cabling and I/O Ports

Port Type	# of Ports	Conn Type	Data Type
USB	1	Ribbon cable	Data
UART	1	Ribbon cable	Data
Antenna	1	MMCX	Analog
Discrete I/O	3	Ribbon cable	Digital

Issue Date: 6th August 2019 **Page:** 13 of 70

Serial #: ALNT91-U2 Rev A

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational	Data Rate with Highest Power	Channel Frequency (MHz)					
Mode(s)	Mode(s) KBit/s Low		Mid	High			
	902 - 928 MHz						
PR_ASK	100	902.75	915.25	927.25			

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

Issue Date: 6th August 2019 Page: 14 of 70

Serial #: ALNT91-U2 Rev A

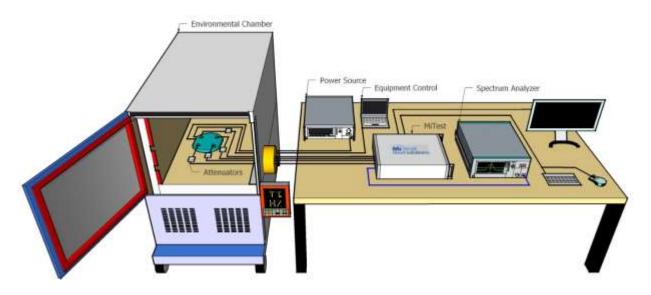
6. TEST SUMMARY

List of Measurements

Test Header	Result	Data Link
20 dB & 99% Bandwidth	Complies	View Data
Frequency Hopping Tests	Complies	-
Number of Hopping Channels	Complies	View Data
Channel Separation	Complies	View Data
Dwell Time	Complies	View Data
Channel Occupancy	Complies	View Data
Output Power	Complies	View Data
Emissions	Complies	-
(1) Conducted Emissions	Complies	-
(i) Conducted Unwanted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
(2) Radiated Emissions	Complies	-
(i) TX Spurious & Restricted Band Emissions	Complies	View Data
(3) Digital Emissions (0.03 - 1 GHz)	Complies	View Data

The Alien Technology, LLC. ALR-M702-FCC is a modular device that was tested in a test support board supplied by the manufacturer. In normal operation dc power for the ALR-M702 is supplied by a host device.

Issue Date: 6th August 2019 **Page:** 15 of 70



Serial #: ALNT91-U2 Rev A

7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Conducted Test Setup

MiTest Automated Test System

A full system calibration was performed on the test station and any resulting system losses (or gains) were considered in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
#3 SA	MiTest Box to SA	Fairview Microwave	SCA1814- 0101-72	#3 SA	20 Sep 2019
#3P1	EUT to MiTest box port	Fairview Microwave	SCA1814- 0101-72	#3P1	20 Sep 2019
#3P2	EUT to MiTest box port 2	Fairview Microwave	SCA1814- 0101-72	#3P2	20 Sep 2019
#3P3	EUT to MiTest box port 3	Fairview Microwave	SCA1814- 0101-72	#3P3	20 Sep 2019
#3P4	EUT to MiTest box port 4	Fairview Microwave	SCA1812- 0101-72	#3P4	20 Sep 2019
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	30 Oct 2019
361	Desktop for RF#1, Labview Software installed	Dell	Vostro 220	WS RF#1	Not Required
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019

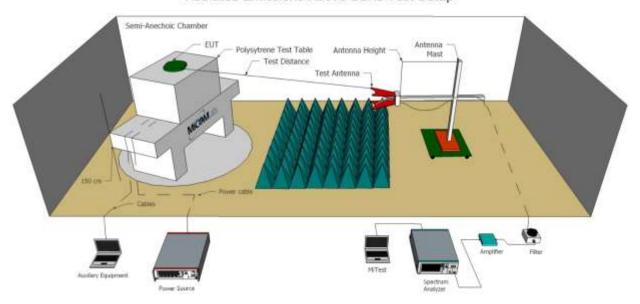
Issue Date: 6th August 2019

Page: 16 of 70

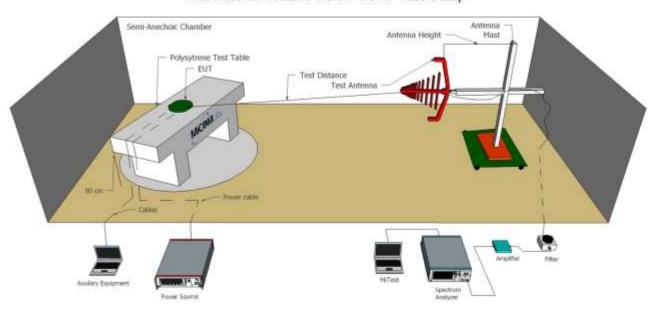
Serial #: ALNT91-U2 Rev A

398	MiTest RF Conducted Test Software	MiCOM	MiTest ATS	Version 4.1	Not Required
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
436	USB Wideband Power Sensor	Boonton	55006	8731	14 Sep 2019
440	USB Wideband Power Sensor	Boonton	55006	9178	22 Sep 2019
441	USB Wideband Power Sensor	Boonton	55006	9179	20 Sep 2019
442	USB Wideband Power Sensor	Boonton	55006	9181	6 Oct 2019
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	20 Sep 2019
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
515	MiTest Cloud Solutions RF Test Box	MiCOM	2nd Gen with DFS	515	20 Sep 2019
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	24 Feb 2020

Issue Date: 6th August 2019 Page: 17 of 70



Serial #: ALNT91-U2 Rev A


7.2. Radiated Emissions - 3m Chamber

The following tests were performed using the radiated test set-up shown in the diagram below. Radiated emissions above and below 1GHz.

Radiated Emissions Above 1GHz Test Setup

Radiated Emissions Below 1GHz Test Setup

Issue Date: 6th August 2019

Page: 18 of 70

ALNT91-U2 Rev A Serial #:

A full system calibration was performed on the test station and any resulting system losses (or gains) were considered in the production of all final measurement data

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	4 Apr 2020
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	12 Apr 2020
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	12 Oct 2019
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	12 Apr 2020
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	9 Oct 2019
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	9 Oct 2019
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	9 Oct 2019
465	Low Pass Filter DC- 1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	9 Oct 2019
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	24 Sep 2019
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	24 Sep 2019
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
518	Cable - Amp to Antenna	SRC Haverhill	157-3051574	518	24 Sep 2019

Serial #: ALNT91-U2 Rev A

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

Issue Date: 6th August 2019 Page: 20 of 70

Title: Alien Technology, LLC. ALR-M702-FCC

FCC Part 15C 15.247 & ISED RSS-247

Serial #: ALNT91-U2 Rev A

9. TEST RESULTS

9.1. 20 dB & 99% Bandwidth

Conducted Test Conditions for 20 dB and 99% Bandwidth				
Standard:	FCC CFR 47:15.247 ISED RSS-247	Ambient Temp. (°C):	24.0 - 27.5	
Test Heading:	20 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45	
Standard Section(s):	15.247 (a)(1)(i)/(ii) RSS-247 5.1(a) Pressure (mBars): 999 - 1001			
Reference Document(s):	See Normative References			

Test Procedure for 20 dB and 99% Bandwidth Measurement

The bandwidth at 20 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 20 dB and 99% Bandwidth

- (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
 - (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
 - (i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.
 - (ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. The maximum 20 dB bandwidth of the hopping channel is 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

Issue Date: 6th August 2019 Page: 21 of 70

Serial #: ALNT91-U2 Rev A

Equipment Configuration for 20 dB 99% Bandwidth

Variant:	PR_ASK	Duty Cycle (%):	99
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Me	asured 20 dB	Bandwidth (M	Hz)	20 dB Bond	lwidth (MHz)	Limit	Lowest
Frequency		Por	rt(s)		20 GB Ballo	iwiatii (WiFiZ)	Lillit	Margin
MHz	а	b	С	d	Highest	Lowest	MHz	MHz
902.8	<u>0.045</u>				0.045	0.045	0.5	-0.46
915.3	0.044				0.044	0.044	0.5	-0.46
927.3	0.046				0.046	0.046	0.5	-0.45

Test	Measured 99% Bandwidth (MHz)			Maximum		
Frequency	Port(s)			99% Bandwidth		
MHz	а	b	С	d	(MHz)	
902.8	<u>0.066</u>				0.066	
915.3	0.073				0.073	
927.3	0.078				0.078	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 6th August 2019 **Page:** 22 of 70

Title: Ali

Alien Technology, LLC. ALR-M702-FCC FCC Part 15C 15.247 & ISED RSS-247

Serial #: ALNT91-U2 Rev A

9.2. Frequency Hopping Tests

Conducted Test Conditions for Frequency Hopping Measurements					
Standard:	FCC CFR 47:15.247 ISED RSS-247	CC CFR 47:15.247 SED RSS-247 Ambient Temp. (°C): 24.0 - 27.5			
Test Heading:	Frequency Hopping Tests	Frequency Hopping Tests Rel. Humidity (%): 32 - 45			
Standard Section(s):	5.247 (a)(1)(i)/(ii) RSS-247 5.1(c)				
Reference Document(s):	See Normative References, FCC Public Notice DA 00-705				

Test Procedure for Frequency Hopping Measurements

These tests cover the following measurements:

- i) channel separation
- ii) channel occupancy
- iii) dwell time
- iv) number of hopping frequencies

Frequency hopping testing was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency or hopping mode.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for Frequency Hopping Measurements

- (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
 - (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
 - (i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.
 - (ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. The maximum 20 dB bandwidth of the hopping channel is 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.
 - (iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Issue Date: 6th August 2019 **Page:** 23 of 70

Serial #: ALNT91-U2 Rev A

9.2.1. Number of Hopping Channels

Equipment Configuration for Number of Hopping Channels

Variant:	PR_ASK	Antenna:	Not Applicable
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	99.0	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Frequency Range (MHz)	Number of Hopping Channels	Limit	Pass / Fail
902.0-910.0	<u>15</u>		
910.0-920.0	<u>20</u>		
920.0-928.0	<u>15</u>		
Total number of Hops	50	50	Pass

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 6th August 2019 **Page:** 24 of 70

Serial #: ALNT91-U2 Rev A

9.2.2. Channel Separation

Equipment Configuration for Channel Separation

Variant:	PR_ASK	Antenna:	Not Applicable
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	99.0	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Center Frequency (MHz)	Chan Separation (MHz)	Limit (MHz)	Pass / Fail
915.3	<u>0.500</u>	0.044	Pass

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 6th August 2019 **Page:** 25 of 70

Serial #: ALNT91-U2 Rev A

9.2.3. <u>Dwell Time & Channel Occupancy</u>

Equipment Configuration for Channel Occupancy

Variant:	PR_ASK	Antenna:	Not Applicable
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	99.0	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency(MHz)	Dwell Time (Single Burst) (S)	Channel Occupancy (mS)	Observation Period (S)	Channel Occupancy Limit (mS)	Pass / Fail
915.30	<u>0.395</u>	<u>394.990</u>	20.00	400.000	Pass

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 6th August 2019 **Page:** 26 of 70

Title:

Alien Technology, LLC. ALR-M702-FCC FCC Part 15C 15.247 & ISED RSS-247

Serial #:

ALNT91-U2 Rev A

9.3. Output Power

Conducted Test Conditions for Fundamental Emission Output Power						
Standard:	FCC CFR 47:15.247 ISED RSS-247	Ambient Temp. (°C):	24.0 - 27.5			
Test Heading:	Output Power	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (a)(1), (b)(1)/(2)/(3)					
Reference Document(s):	See Normative References					

Test Procedure for Fundamental Emission Output Power Measurement

In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions, nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed (Σ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document. Supporting Information

Calculated Power = $A + G + Y + 10 \log (1/x) dBm$

A = Total Power [$10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})$]

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits for Fundamental Emission Output Power

- (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
 - (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for frequency hopping systems:
 - (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
 - (2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.
 - (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and

Issue Date: 6th August 2019

Page: 27 of 70

Serial #: ALNT91-U2 Rev A

antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Issue Date: 6th August 2019 **Page:** 28 of 70

Serial #: ALNT91-U2 Rev A

Equipment Configuration for Output Power Peak

Variant:	PR_ASK	Duty Cycle (%):	99.0
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	0.80
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated	1.114	M	
Frequency	Port(s)				Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
902.8	29.88				29.88	30.00	-0.12	29.00
915.3	29.87				29.87	30.00	-0.13	29.00
927.3	29.89				29.89	30.00	-0.11	29.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Issue Date: 6th August 2019 **Page:** 29 of 70

Serial #: ALNT91-U2 Rev A

9.4. Emissions

9.4.1. Conducted Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions					
Standard:	FCC CFR 47:15.247 ISED RSS-247	Ambient Temp. (°C):	24.0 - 27.5		
Test Heading:	Transmitter Conducted Spurious and Band-Edge Emissions	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.247 (d) RSS-247 5.4(a)	Pressure (mBars):	999 - 1001		
Reference Document(s):	See Normative References				

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Issue Date: 6th August 2019 Page: 30 of 70

Serial #: ALNT91-U2 Rev A

9.4.1.1. Conducted Unwanted Spurious Emissions

Equipment Configuration for Unwanted Emissions Peak

Variant:	PR_ASK	Duty Cycle (%):	99
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FHSS	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Frequency			Unv	Unwanted Emissions Peak (dBm)				
Frequency	Range	Po	rt a	Po	ort b	Po	rt c	Po	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
902.8	30.0 - 10000.0	-33.492	9.29						
915.3	30.0 - 10000.0	-34.218	9.41						
927.3	30.0 - 10000.0	-34.098	8.95						

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 6th August 2019 **Page:** 31 of 70

Serial #: ALNT91-U2 Rev A

9.4.1.2. Conducted Band-Edge Emissions

Equipment Configuration for Conducted Low Band-Edge Emissions (Hopping) Peak

Variant:	PR_ASK	Duty Cycle (%):	99.0
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	1 9UZ 8 IVIHZ					
Band-Edge Frequency:						
Test Frequency Range:	875.0 - 905.0 MHz					
	Band-	Edge Markers and	Limit	Revise	d Limit	Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-28.69</u>	9.35	902.50			-0.500

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 6th August 2019 **Page:** 32 of 70

Serial #: ALNT91-U2 Rev A

Equipment Configuration for Conducted Low Band-Edge Emissions (Static) Peak

Variant:	PR_ASK	Duty Cycle (%):	99.0
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel	902.8 MHz					
Frequency:	002.0 1411 12					
Band-Edge	902.0 MHz					
Frequency:						
Test Frequency Range:	875.0 - 905.0 MHz					
	Band-	-Edge Markers and	Limit	Revise	d Limit	Margin
Port(s)	M1 Amplitude (dBm) Plot Limit (dBm) M2 Frequency (MHz) Amplitude (dBm) M2A Frequency (MHz) (MHz)					
а	<u>-29.49</u>	9.52	902.50			-0.500

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 6th August 2019 **Page:** 33 of 70

Serial #: ALNT91-U2 Rev A

Equipment Configuration for Conducted Upper Band-Edge Emissions (Hopping) Peak

Variant:	PR_ASK	Duty Cycle (%):	99.0
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel	927.3 MHz					
Frequency:	927.3 IVII 12					
Band-Edge	928.0 MHz					
Frequency:						
Test Frequency Range:	925.0 - 950.0 MHz					
	Band	-Edge Markers and	Limit	Revise	d Limit	Margin
Port(s)	M3 Amplitude (dBm) Plot Limit (dBm) M2 Frequency (MHz) Amplitude (dBm) M2A Frequency (MHz) (MHz)					
а	<u>-40.93</u>	9.19	926.90			-1.100

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 6th August 2019 **Page:** 34 of 70

Serial #: ALNT91-U2 Rev A

Equipment Configuration for Conducted Upper Band-Edge Emissions (Static) Peak

Variant:	PR_ASK	Duty Cycle (%):	99.0
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel	927.3 MHz					
Frequency:	327.3 WILL					
Band-Edge	928.0 MHz					
Frequency:						
Test Frequency Range:	925.0 - 950.0 MHz					
	Band	Edge Markers and	Limit	Revise	ed Limit	Margin
Port(s)	M3 Amplitude (dBm) Plot Limit (dBm) M2 Frequency (MHz) Amplitude (dBm) M2A Frequency (MHz) (MHz)					
а	<u>-32.17</u>	8.28	927.40			-0.600

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 6th August 2019 **Page:** 35 of 70

Title:

Alien Technology, LLC. ALR-M702-FCC FCC Part 15C 15.247 & ISED RSS-247

Serial #: /

ALNT91-U2 Rev A

9.4.2. Radiated Emissions

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions (Restricted Bands)			
Standard:	FCC CFR 47:15.247 ISED RSS-247	Ambient Temp. (°C):	20.0 - 24.5
Test Heading:	Radiated Spurious and Band- Edge Emissions	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.205, 15.209 RSS-GEN RSS-247 5.4(a)	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for Radiated Spurious and Band-Edge Emissions (Restricted Bands)

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Limits for Restricted Bands Peak emission: 74 dBuV/m Average emission: 54 dBuV/m

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where:

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Example

Given receiver input reading of 51.5 dBmV; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength (FS) of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows: Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m

48 dBmV/m = 250 mV/m

Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Issue Date: 6th August 2019

Page: 36 of 70

Serial #: ALNT91-U2 Rev A

Frequency Band									
MHz	MHz	MHz	GHz						
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15						
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46						
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75						
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5						
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2						
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5						
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7						
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4						
6.31175-6.31225	123-138	2200-2300	14.47-14.5						
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2						
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4						
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12						
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0						
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8						
2.51975-12.52025	240-285	3345.8-3358	36.43-36.5						
2.57675-12.57725	322-335.4	3600-4400	Above 38.6						
13.36-13.41									

- (b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.
- (c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.
- (d) The following devices are exempt from the requirements of this section:
 - (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.
 - (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.
 - (3) Cable locating equipment operated pursuant to §15.213.
 - (4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.
 - (5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.
 - (6) Transmitters operating under the provisions of subparts D or F of this part.
 - (7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

Issue Date: 6th August 2019 Page: 37 of 70

Serial #: ALNT91-U2 Rev A

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

- (9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).
- (e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

Issue Date: 6th August 2019 **Page:** 38 of 70

Serial #: ALNT91-U2 Rev A

9.4.2.3. TX Spurious & Restricted Band Emissions

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	Broadradio BRA-20	Variant:	PR_ASK
Antenna Gain (dBi):	0.80	Modulation:	FHSS
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	902.75	Data Rate:	100.00 KBit/s
Power Setting:	29	Tested By:	JMH

Test Measurement Results

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1830.42	62.43	-1.52	-14.03	46.88	Peak (NRB)	Horizontal	100	210			Pass
#2	2745.77	63.64	-1.91	-11.96	49.77	Max Peak	Horizontal	98	58	74.0	-24.2	Pass
#3	2745.77	60.53	-1.91	-11.96	46.66	Max Avg	Horizontal	98	58	54.0	-7.3	Pass
#4	3661.04	62.23	-2.15	-11.80	48.28	Max Peak	Vertical	179	291	74.0	-25.7	Pass
#5	3661.04	58.27	-2.15	-11.80	44.32	Max Avg	Vertical	179	291	54.0	-9.7	Pass
#6	7321.98	61.32	-3.00	-7.87	50.45	Max Peak	Vertical	109	345	74.0	-23.6	Pass
#7	7321.98	55.67	-3.00	-7.87	44.80	Max Avg	Vertical	109	345	54.0	-9.2	Pass
Tast No	tes: FLIT now	arad by A	C/DC PS									

Test Notes: EUT powered by AC/DC PS

Issue Date: 6th August 2019 **Page:** 39 of 70

ALNT91-U2 Rev A Serial #:

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	Broadradio BRA-20	Variant:	PR_ASK
Antenna Gain (dBi):	0.80	Modulation:	FHSS
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	915.25	Data Rate:	100.00 KBit/s
Power Setting:	29	Tested By:	JMH

Test Measurement Results

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1830.60	61.23	-1.52	-14.03	45.68	Peak (NRB)	Horizontal	100	0			Pass
#2	2745.72	65.24	-1.91	-11.96	51.37	Max Peak	Horizontal	98	62	74.0	-22.6	Pass
#3	2745.72	62.01	-1.91	-11.96	48.14	Max Avg	Horizontal	98	62	54.0	-5.9	Pass
#4	3660.91	62.39	-2.15	-11.83	48.41	Max Peak	Vertical	166	295	74.0	-25.6	Pass
#5	3660.91	58.34	-2.15	-11.83	44.36	Max Avg	Vertical	166	295	54.0	-9.6	Pass
#6	4576.23	63.01	-2.50	-12.01	48.50	Max Peak	Vertical	186	276	74.0	-25.5	Pass
#7	4576.23	58.07	-2.50	-12.01	43.56	Max Avg	Vertical	186	276	54.0	-10.4	Pass
#8	7322.07	58.47	-3.00	-7.87	47.60	Max Peak	Vertical	101	342	74.0	-26.4	Pass
#9	7322.07	52.98	-3.00	-7.87	42.11	Max Avg	Vertical	101	342	54.0	-11.9	Pass
Test No	tes: EUT pow	ered by A	C/DC PS	;	•					•		

Page:

40 of 70

Serial #: ALNT91-U2 Rev A

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	Broadradio BRA-20	Variant:	PR_ASK
Antenna Gain (dBi):	0.80	Modulation:	FHSS
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	927.25	Data Rate:	100.00 KBit/s
Power Setting:	29	Tested By:	JMH

Test Measurement Results

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1854.52	69.52	-1.56	-13.81	54.15	Peak (NRB)	Horizontal	100	0			Pass
#2	2781.72	64.65	-1.89	-11.91	50.85	Max Peak	Vertical	157	11	74.0	-23.2	Pass
#3	2781.72	62.22	-1.89	-11.91	48.42	Max Avg	Vertical	157	11	54.0	-5.6	Pass
#4	4636.25	66.36	-2.49	-12.27	51.60	Max Peak	Horizontal	173	354	74.0	-22.4	Pass
#5	4636.25	63.29	-2.49	-12.27	48.53	Max Avg	Horizontal	173	354	54.0	-5.5	Pass
#6	6490.79	57.06	-2.95	-8.94	45.17	Peak (NRB)	Horizontal	100	360			Pass
#7	7418.02	60.93	-3.07	-8.00	49.86	Max Peak	Vertical	104	347	74.0	-24.1	Pass
#8	7418.02	56.75	-3.07	-8.00	45.68	Max Avg	Vertical	104	347	54.0	-8.3	Pass
Test No	tes: EUT pow	ered by A	C/DC PS									

Issue Date: 6th August 2019

Page:

41 of 70

Serial #: ALNT91-U2 Rev A

9.4.3. <u>Digital Emissions (0.03 - 1 GHz)</u>

Radiated Test Conditions for Radiated Digital Emissions (0.03 – 1 GHz)										
Standard:	FCC CFR 47:15.247 ISED ICES-003	Ambient Temp. (°C):	20.0 - 24.5							
Test Heading:	Digital Emissions	Rel. Humidity (%):	32 - 45							
Standard Section(s):	15.209 ISED ICES-003	Pressure (mBars):	999 - 1001							
Reference Document(s):	See Normative References									

Test Procedure for Radiated Digital Emissions (0.03 – 1 GHz)

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

For example:

Given a Receiver input reading of 51.5dBmV; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 +1 = 36.3dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are done as:

Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100mV/m

48 dBmV/m = 250mV/m

Limits for Radiated Digital Emissions (0.03 – 1 GHz)

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Issue Date: 6th August 2019

Serial #: ALNT91-U2 Rev A

	Field S	Field Strength					
Frequency (MHz)	μV/m (microvolts/meter)	dBμV/m (dB microvolts/meter)	Measurement Distance (m)				
0.009-0.490	2400/F(kHz)		300				
0.490-1.705	24000/F(kHz)		30				
1.705-30.0	30	29.5	30				
30-88	100**	40	3				
88-216	150**	43.5	3				
216-960	200**	46.0	3				
Above 960	500	54.0	3				

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241. (b) In the emission table above, the tighter limit applies at the band edges. (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency. (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. (e) The provisions in §§15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part. (f) In accordance with §15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in §15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in §15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in §15.109 that are applicable to the incorporated digital device. (g) Perimeter protection systems may operate in the 54-72 MHz and 76-88 MHz bands under the provisions of this section. The use of such perimeter protection systems is limited to industrial, business and commercial applications.

Issue Date: 6th August 2019 Page: 43 of 70

Serial #: ALNT91-U2 Rev A

Equipment Configuration for Radiated Digital Emissions

Antenna:	Broadradio BRA-20	Variant:	PR_ASK
Antenna Gain (dBi):	0.80	Modulation:	FHSS
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	902.75	Data Rate:	100.00 KBit/s
Power Setting:	29	Tested By:	JMH

Test Measurement Results

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	64.30	50.84	3.80	-20.80	33.84	MaxQP	Vertical	133	199	40.0	-6.2	Pass
#2	129.72	50.77	4.14	-14.70	40.21	MaxQP	Horizontal	197	122	43.0	-2.8	Pass
#3	131.01	48.50	4.15	-14.70	37.95	MaxQP	Vertical	98	218	43.0	-5.1	Pass
#4	139.81	46.21	4.19	-15.30	35.10	MaxQP	Horizontal	111	92	43.0	-7.9	Pass
#5	198.23	44.56	4.45	-15.30	33.71	MaxQP	Horizontal	164	96	43.0	-9.3	Pass
#6	282.55	46.26	4.77	-14.60	36.43	MaxQP	Horizontal	115	90	46.0	-9.6	Pass
#7	902.76	56.89	6.65	-5.10	58.44	Fundamental	Vertical	100	0			

Test Notes: EUT connected to laptop outside chamber. Added 2 type 44 ferrites to DC Supply cable of host board PS and type 43 with 3 turns to AC cable of PS, (Support Equipment)

Issue Date: 6th August 2019 Page: 44 of 70

Serial #: ALNT91-U2 Rev A

Equipment Configuration for Radiated Digital Emissions

Antenna:	Broadradio BRA-20	Variant:	PR_ASK
Antenna Gain (dBi):	0.80	Modulation:	FHSS
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	915.25	Data Rate:	100.00 KBit/s
Power Setting:	29	Tested By:	JMH

Test Measurement Results

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	65.16	50.46	3.81	-20.40	33.87	MaxQP	Vertical	110	198	40.0	-6.1	Pass
#2	129.70	49.04	4.14	-14.70	38.48	MaxQP	Horizontal	145	124	43.0	-4.5	Pass
#3	132.29	48.67	4.16	-14.80	38.03	MaxQP	Vertical	98	225	43.0	-5.0	Pass
#4	197.40	44.37	4.45	-15.50	33.32	MaxQP	Horizontal	182	83	43.0	-9.7	Pass
#5	283.54	45.10	4.78	-14.80	35.08	MaxQP	Horizontal	108	112	46.0	-10.9	Pass
#6	915.26	49.83	6.67	-4.70	51.80	Fundamental	Vertical	100	0			

Test Notes: EUT connected to laptop outside chamber. Added 2 type 44 ferrites to DC Supply cable of host board PS and type 43 with 3 turns to AC cable of PS, (Support Equipment)

Issue Date: 6th August 2019 Page: 45 of 70

Serial #: ALNT91-U2 Rev A

Equipment Configuration for Radiated Digital Emissions

Antenna:	Broadradio BRA-20	Variant:	PR_ASK
Antenna Gain (dBi):	0.80	Modulation:	FHSS
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	927.25	Data Rate:	100.00 KBit/s
Power Setting:	29	Tested By:	JMH

Test Measurement Results

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	64.68	51.32	3.80	-20.80	34.32	MaxQP	Vertical	99	217	40.0	-5.7	Pass
#2	130.14	49.56	4.15	-14.60	39.11	MaxQP	Horizontal	127	128	43.0	-3.9	Pass
#3	131.89	49.07	4.15	-14.70	38.52	MaxQP	Vertical	98	210	43.0	-4.5	Pass
#4	197.76	44.65	4.45	-15.50	33.60	MaxQP	Horizontal	190	75	43.0	-9.4	Pass
#5	283.47	46.72	4.78	-14.80	36.70	MaxQP	Horizontal	103	99	46.0	-9.3	Pass
#6	927.27	54.07	6.72	-4.60	56.19	Fundamental	Vertical	100	0			·

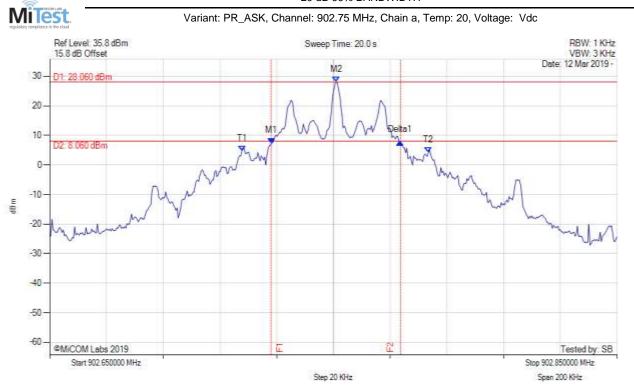
Test Notes: EUT connected to laptop outside chamber. Added 2 type 44 ferrites to DC Supply cable of host board PS and type 43 with 3 turns to AC cable of PS, (Support Equipment)

Issue Date: 6th August 2019 **Page:**

46 of 70

Serial #: ALNT91-U2 Rev A

A. APPENDIX - GRAPHICAL IMAGES


Issue Date: 6th August 2019 Page: 47 of 70

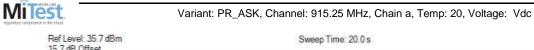
Serial #: ALNT91-U2 Rev A

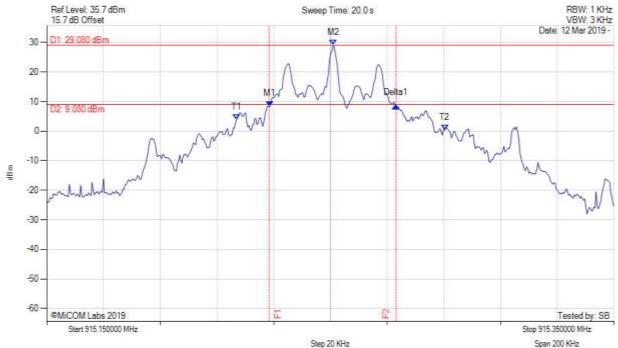
A.1. 20 dB & 99% Bandwidth

20 dB 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1: 902.728 MHz: 7.368 dBm M2: 902.751 MHz: 28.062 dBm Delta1: 45 KHz: 0.342 dB T1: 902.718 MHz: 4.610 dBm T2: 902.783 MHz: 4.224 dBm OBW: 66 KHz	Measured 20 dB Bandwidth: 0.045 MHz Limit: 0.5 kHz Margin: 0.46 MHz

back to matrix


Issue Date: 6th August 2019 Page:


48 of 70

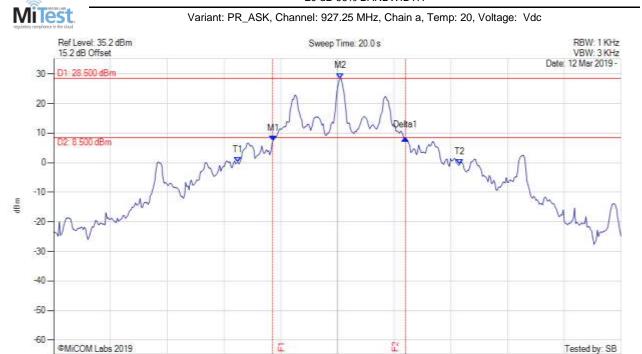
Serial #: ALNT91-U2 Rev A

20 dB 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 30	M1: 915.229 MHz: 8.442 dBm M2: 915.251 MHz: 29.076 dBm Delta1: 44 KHz: 0.228 dB T1: 915.217 MHz: 3.959 dBm T2: 915.290 MHz: 0.358 dBm OBW: 73 KHz	Measured 20 dB Bandwidth: 0.044 MHz Limit: 0.5 kHz Margin: 0.46 MHz

back to matrix

Issue Date: 6th August 2019 Page: 49 of 70


Stop 927.350000 MHz

Span 200 KHz

50 of 70

Serial #: ALNT91-U2 Rev A

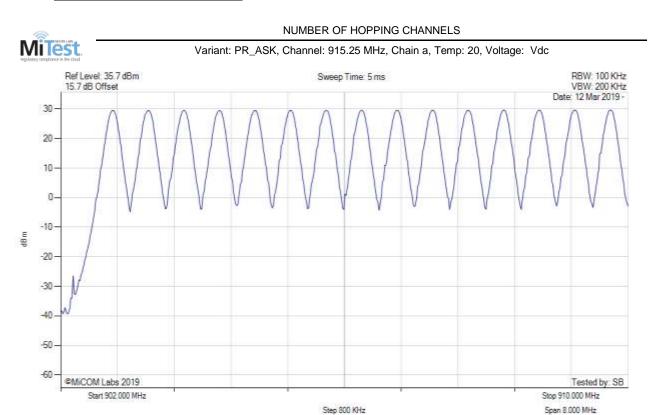
20 dB 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1: 927.227 MHz: 7.425 dBm M2: 927.251 MHz: 28.505 dBm Delta1: 46 KHz: 0.980 dB T1: 927.215 MHz: 0.051 dBm T2: 927.293 MHz: -0.679 dBm OBW: 78 KHz	Measured 20 dB Bandwidth: 0.046 MHz Limit: 0.5 kHz Margin: 0.45 MHz

Step 20 KHz

back to matrix

Start 927.150000 MHz

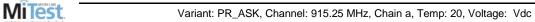

Issue Date: 6th August 2019 Page:

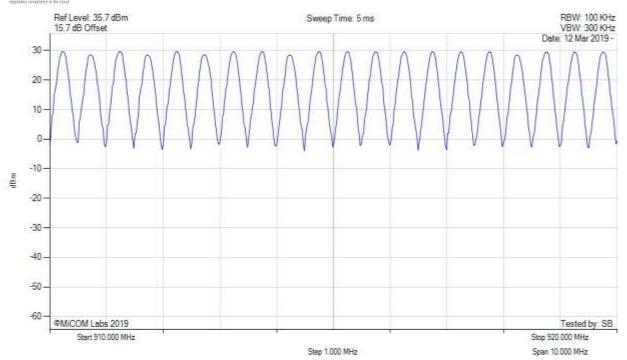
Serial #: ALNT91-U2 Rev A

A.2. Frequency Hopping Tests

A.2.1. Number of Hopping Channels

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		Channel Frequency: 915.25 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = VIEW		

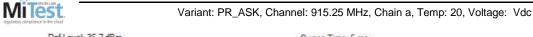

back to matrix

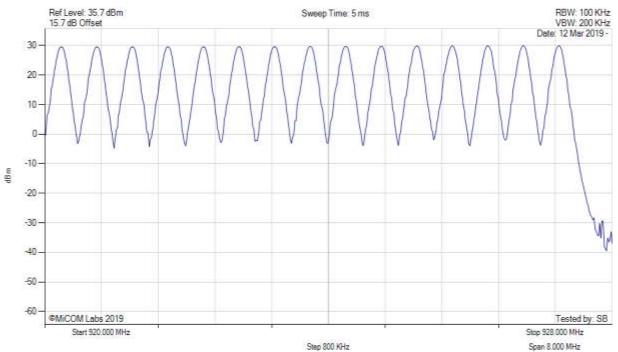

Issue Date: 6th August 2019 Page: 51 of 70

Serial #: ALNT91-U2 Rev A

NUMBER OF HOPPING CHANNELS

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		Channel Frequency: 915.25 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = VIEW		


back to matrix


Issue Date: 6th August 2019 Page: 52 of 70

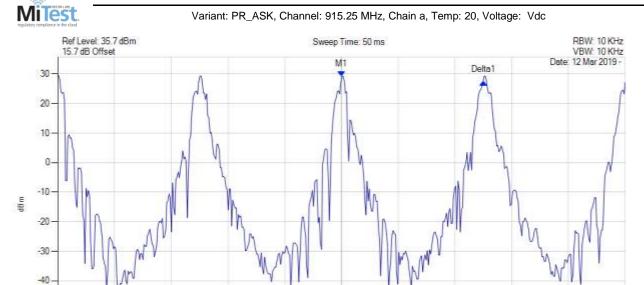
Serial #: ALNT91-U2 Rev A

NUMBER OF HOPPING CHANNELS

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		Channel Frequency: 915.25 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = VIEW		

back to matrix

Issue Date: 6th August 2019 **Page:** 53 of 70


Tested by: SB

Stop 916.250 MHz Span 2.000 MHz

Serial #: ALNT91-U2 Rev A

A.2.2. Channel Separation

CHANNEL SEPARATION

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 915.250 MHz: 29.227 dBm	Channel Frequency: 915.25 MHz
Sweep Count = 0	Delta1: 500 KHz: -1.944 dB	
RF Atten (dB) = 30		
Trace Mode = VIEW		

Step 200 KHz

back to matrix

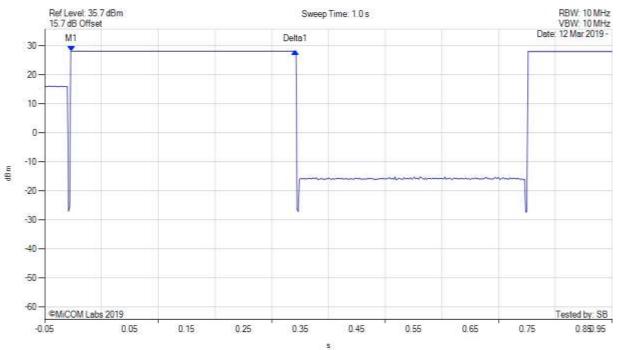
-50

-60-

©MiCOM Labs 2019

Start 914.250 MHz

Issue Date: 6th August 2019 **Page:** 54 of 70


ALNT91-U2 Rev A Serial #:

A.2.3. Dwell Time

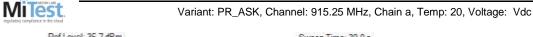
DWELL TIME

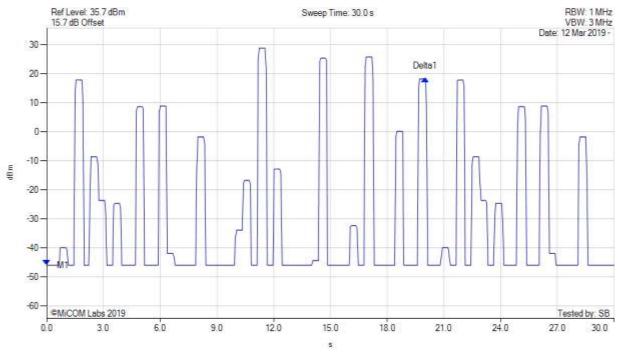
Variant: PR_ASK, Channel: 915.25 MHz, Chain a, Temp: 20, Voltage: Vdc

Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = MAX PEAK	M1(915.25 MHz) : -0.003 s : 28.080 dBm	Channel Frequency: 915.25 MHz
Sweep Count = 0	Delta1(915.25 MHz): 0.395 s: 0.000 dB	
RF Atten (dB) = 30		
Trace Mode = VIEW		

back to matrix

Issue Date: 6th August 2019


55 of 70



Serial #: ALNT91-U2 Rev A

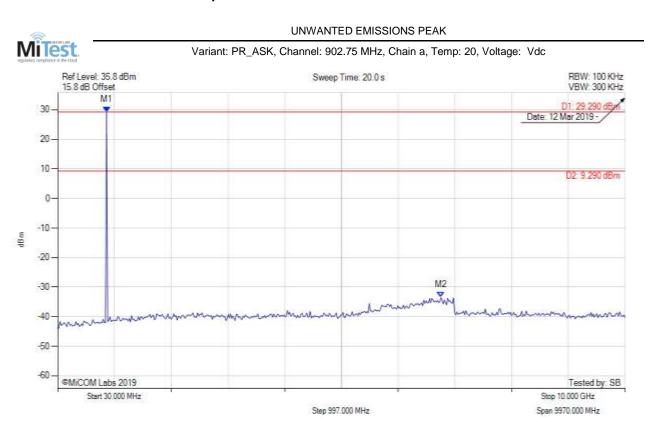
A.2.4. Channel Occupancy

CHANNEL OCCUPANCY

Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = RMS Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1(915.25 MHz) : 0.000 s : -45.886 dBm Delta1(915.25 MHz) : 20.000 s : 64.137 dB	Channel Frequency: 915.25 MHz

back to matrix

Issue Date: 6th August 2019 Page: 56 of 70



Serial #: ALNT91-U2 Rev A

A.3. Emissions

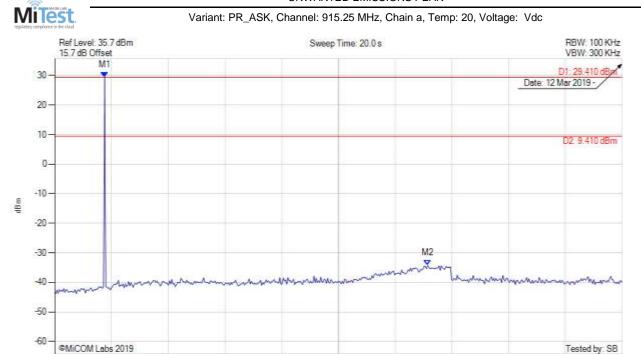
A.3.1. Conducted Emissions

A.3.1.1. Conducted Unwanted Spurious Emissions

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 889.138 MHz: 29.294 dBm	Limit: 9.29 dBm
Sweep Count = 0	M2: 6763.246 MHz: -33.492 dBm	Margin: -42.78 dB
RF Atten (dB) = 30		
Trace Mode = VIEW		

back to matrix

Issue Date: 6th August 2019 **Page:** 57 of 70



Stop 10,000 GHz

Span 9970.000 MHz

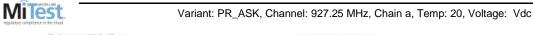
Serial #: ALNT91-U2 Rev A

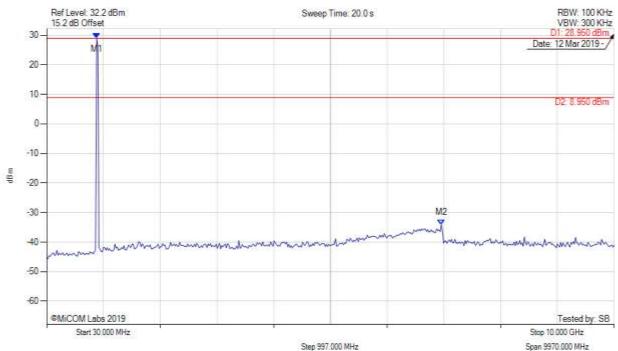
UNWANTED EMISSIONS PEAK

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 909.118 MHz: 29.414 dBm	Limit: 9.41 dBm
Sweep Count = 0	M2: 6583.427 MHz: -34.218 dBm	Margin: -43.63 dB
RF Atten (dB) = 30		
Trace Mode = VIEW		

Step 997.000 MHz

back to matrix


Start 30,000 MHz

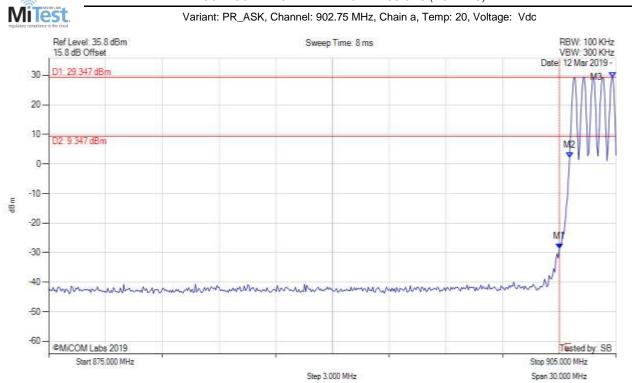

Issue Date: 6th August 2019 **Page:** 58 of 70

Serial #: ALNT91-U2 Rev A

UNWANTED EMISSIONS PEAK

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 909.118 MHz: 28.952 dBm	Limit: 8.95 dBm
Sweep Count = 0	M2: 6963.046 MHz: -34.098 dBm	Margin: -43.05 dB
RF Atten (dB) = 30		
Trace Mode = VIEW		

back to matrix


Issue Date: 6th August 2019 Page: 59 of 70

Serial #: ALNT91-U2 Rev A

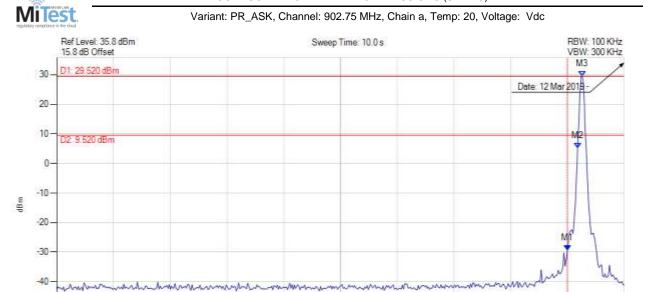
A.3.1.2. Conducted Band-Edge Emissions

CONDUCTED LOW BAND-EDGE EMISSIONS (HOPPING) PEAK

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 902.000 MHz: -28.694 dBm	Channel Frequency: 902.75 MHz
Sweep Count = 0	M2: 902.535 MHz: 2.095 dBm	
RF Atten (dB) = 30	M3: 904.820 MHz: 29.347 dBm	
Trace Mode = VIEW		

back to matrix

Issue Date: 6th August 2019 Page: 60 of 70


Tested by: SB

Stop 905,000 MHz

Span 30.000 MHz

Serial #: ALNT91-U2 Rev A

CONDUCTED LOW BAND-EDGE EMISSIONS (STATIC) PEAK

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1:902.000 MHz:-29.491 dBm	Channel Frequency: 902.75 MHz
Sweep Count = 0	M2: 902.535 MHz: 5.133 dBm	
RF Atten (dB) = 30	M3: 902.776 MHz: 29.522 dBm	
Trace Mode = MAX HOLD		

Step 3.000 MHz

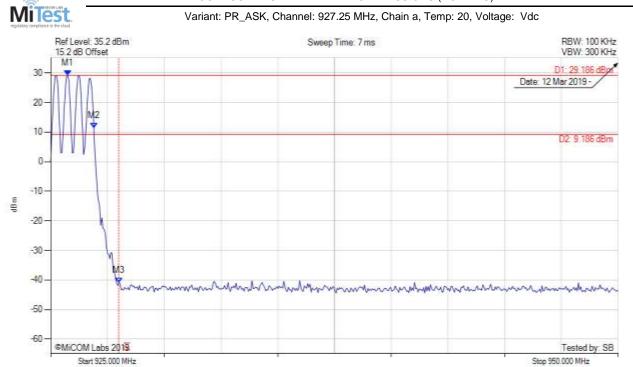
back to matrix

-50

-60

@MiCOM Labs 2019

Start 875,000 MHz


Issue Date: 6th August 2019 **Page:** 61 of 70

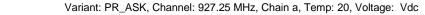
Span 25.000 MHz

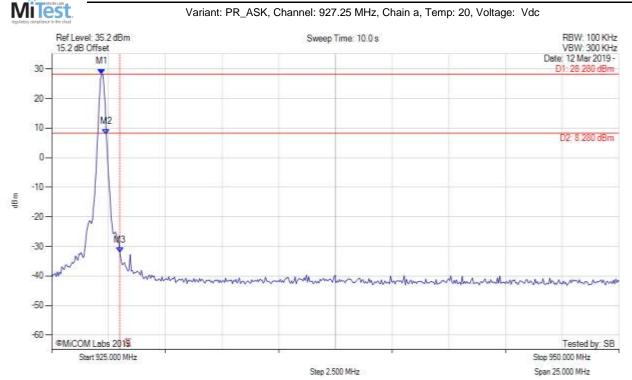
Serial #: ALNT91-U2 Rev A

CONDUCTED UPPER BAND-EDGE EMISSIONS (HOPPING) PEAK

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 925.752 MHz: 29.186 dBm	Channel Frequency: 927.25 MHz
Sweep Count = 0	M2: 926.904 MHz: 11.283 dBm	
RF Atten (dB) = 30	M3: 928.000 MHz: -40.925 dBm	
Trace Mode = VIEW		

Step 2.500 MHz


back to matrix


Issue Date: 6th August 2019 **Page:** 62 of 70

ALNT91-U2 Rev A Serial #:

CONDUCTED UPPER BAND-EDGE EMISSIONS (STATIC) PEAK

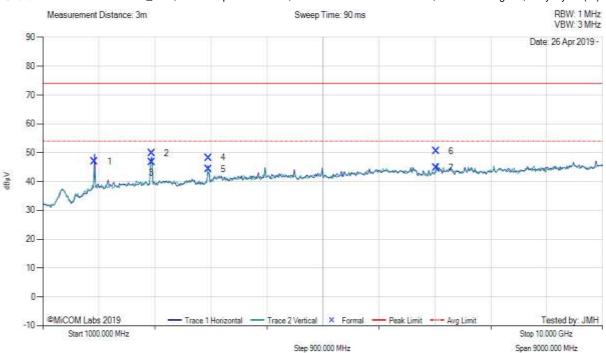
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 927.204 MHz: 28.277 dBm	Channel Frequency: 927.25 MHz
Sweep Count = 0	M2: 927.405 MHz: 7.948 dBm	
RF Atten (dB) = 30	M3: 928.000 MHz: -32.166 dBm	
Trace Mode = MAX HOLD		

back to matrix

Issue Date: 6th August 2019 Page: 63 of 70

Title: Alien

Alien Technology, LLC. ALR-M702-FCC FCC Part 15C 15.247 & ISED RSS-247


Serial #: ALNT91-U2 Rev A

A.3.2. Radiated Emissions

MÎTESt.

TX SPURIOUS & RESTRICTED BAND EMISSIONS

Variant: PR_ASK, Test Freq: 902.75 MHz, Antenna: Broadradio BRA-20, Power Setting: 29, Duty Cycle (%): 99

1000.00 - 10000.00 MHz Cable Measurement ΔF Level Limit **Pass** Frequency Raw Hgt Azt Margin Num Loss Pol MHz dBµV dB/m dBµV/m Type Deg dBµV/m dB /Fail dB 1830.42 62.43 -1.52-14.03 46.88 Peak (NRB) Horizontal 100 210 --**Pass** 1 2745.77 63.64 -1.91 -11.96 49.77 Max Peak Horizontal 98 58 74.0 -24.2 **Pass** 3 2745.77 60.53 -1.91 -11.96 46.66 Max Avg Horizontal 98 58 54.0 -7.3 **Pass** Pass 4 3661.04 62.23 -2.15 -11.80 48.28 Max Peak Vertical 179 291 74.0 -25.7 58.27 -2.15 -11.80 44.32 179 291 54.0 -9.7 5 3661.04 Max Avg Vertical **Pass** -7.87 109 Pass 6 7321.98 61.32 -3.00 50.45 Max Peak Vertical 345 74.0 -23.6

Max Avg

Vertical

109

Test Notes: EUT powered by AC/DC PS

55.67

7321.98

back to matrix

7

Issue Date: 6th August 2019

-3.00

-7.87

44.80

Page: 64 of 70

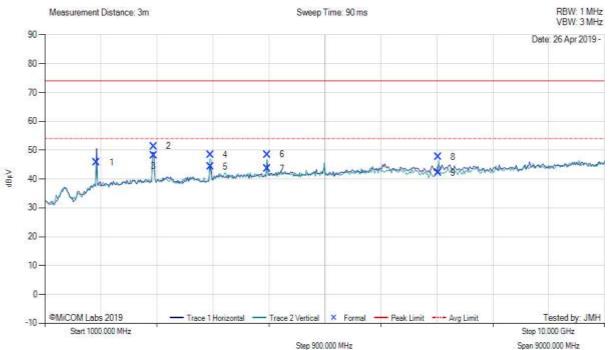
345

54.0

-9.2

Pass

Title:


Alien Technology, LLC. ALR-M702-FCC FCC Part 15C 15.247 & ISED RSS-247

Serial #: ALNT91-U2 Rev A

TX SPURIOUS & RESTRICTED BAND EMISSIONS

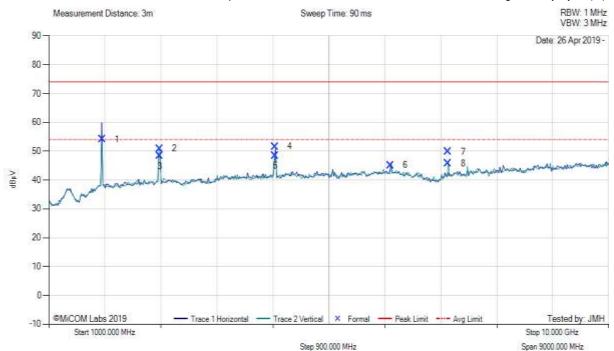
1000.00 - 10000.00 MHz Cable Measurement Frequency Raw ΔF Level Hgt Azt I imit Margin **Pass** Pol Num Loss MHz dBµV dB/m dBµV/m Type Deg dBµV/m dB /Fail cm dB 1830.60 Peak (NRB) 61.23 -1.52-14.03 45.68 Horizontal 100 0 **Pass** 1 2 2745.72 65.24 -1.91 -11.96 51.37 Max Peak Horizontal 98 62 74.0 -22.6 **Pass** 3 2745.72 62.01 -1.91 -11.96 48.14 Max Avg Horizontal 98 54.0 -5.9 **Pass** 62 4 3660.91 62.39 -2.15 -11.83 48.41 Max Peak Vertical 166 295 74.0 -25.6 **Pass** 5 3660.91 58.34 -2.15 -11.83 44.36 Max Avg Vertical 166 295 54.0 -9.6 **Pass** -25.5 6 4576.23 63.01 -2.50-12.01 48.50 Max Peak Vertical 186 276 74.0 **Pass** 7 4576.23 58.07 -2.50-12.01 43.56 Vertical 276 54.0 -10.4 Pass Max Avg 186 58.47 -3.00 -7.87 47.60 74.0 -26.4 8 7322.07 Max Peak Vertical 101 342 **Pass** -7.87 9 7322.07 52.98 -3.00 42.11 Max Avg Vertical 101 342 54.0 -11.9 **Pass**

Test Notes: EUT powered by AC/DC PS

back to matrix

Issue Date: 6th August 2019

Page: 65 of 70


Serial #:

ALNT91-U2 Rev A

TX SPURIOUS & RESTRICTED BAND EMISSIONS

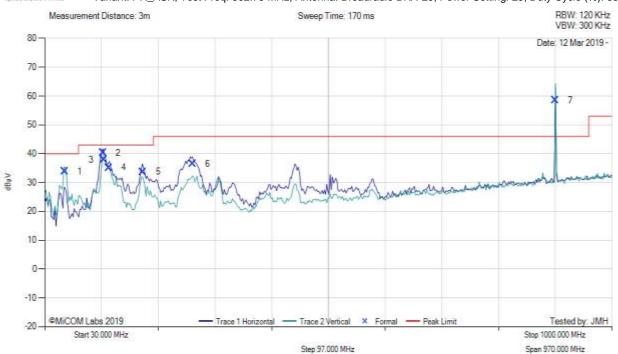
Variant: PR_ASK, Test Freq: 927.25 MHz, Antenna: Broadradio BRA-20, Power Setting: 29, Duty Cycle (%): 99

	1000.00 - 10000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	1854.52	69.52	-1.56	-13.81	54.15	Peak (NRB)	Horizontal	100	0			Pass			
2	2781.72	64.65	-1.89	-11.91	50.85	Max Peak	Vertical	157	11	74.0	-23.2	Pass			
3	2781.72	62.22	-1.89	-11.91	48.42	Max Avg	Vertical	157	11	54.0	-5.6	Pass			
4	4636.25	66.36	-2.49	-12.27	51.60	Max Peak	Horizontal	173	354	74.0	-22.4	Pass			
5	4636.25	63.29	-2.49	-12.27	48.53	Max Avg	Horizontal	173	354	54.0	-5.5	Pass			
6	6490.79	57.06	-2.95	-8.94	45.17	Peak (NRB)	Horizontal	100	360			Pass			
7	7418.02	60.93	-3.07	-8.00	49.86	Max Peak	Vertical	104	347	74.0	-24.1	Pass			
8	7418.02	56.75	-3.07	-8.00	45.68	Max Avg	Vertical	104	347	54.0	-8.3	Pass			

Test Notes: EUT powered by AC/DC PS

back to matrix

Issue Date: 6th August 2019 Page: 66 of 70


ALNT91-U2 Rev A Serial #:

A.3.3. Digital Emissions (0.03 - 1 GHz)

MiTes

RADIATED DIGITAL EMISSIONS

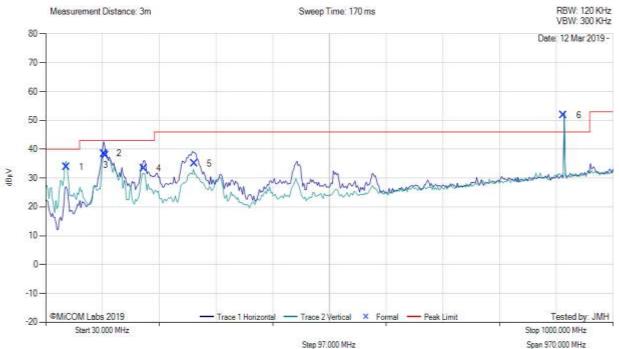
	30.00 - 1000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	64.30	50.84	3.80	-20.80	33.84	MaxQP	Vertical	133	199	40.0	-6.2	Pass			
2	129.72	50.77	4.14	-14.70	40.21	MaxQP	Horizontal	197	122	43.0	-2.8	Pass			
3	131.01	48.50	4.15	-14.70	37.95	MaxQP	Vertical	98	218	43.0	-5.1	Pass			
4	139.81	46.21	4.19	-15.30	35.10	MaxQP	Horizontal	111	92	43.0	-7.9	Pass			
5	198.23	44.56	4.45	-15.30	33.71	MaxQP	Horizontal	164	96	43.0	-9.3	Pass			
6	282.55	46.26	4.77	-14.60	36.43	MaxQP	Horizontal	115	90	46.0	-9.6	Pass			
7	902.76	56.89	6.65	-5.10	58.44	Fundamental	Vertical	100	0						

Test Notes: EUT connected to laptop outside chamber. Added 2 type 44 ferrites to DC Supply cable of host board PS and type 43 with 3 turns to AC cable of PS, (Support Equipment)

back to matrix

Issue Date: 6th August 2019 Page: 67 of 70

Title:


Alien Technology, LLC. ALR-M702-FCC FCC Part 15C 15.247 & ISED RSS-247

Serial #: ALNT91-U2 Rev A

RADIATED [

RADIATED DIGITAL EMISSIONS

	30.00 - 1000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	65.16	50.46	3.81	-20.40	33.87	MaxQP	Vertical	110	198	40.0	-6.1	Pass			
2	129.70	49.04	4.14	-14.70	38.48	MaxQP	Horizontal	145	124	43.0	-4.5	Pass			
3	132.29	48.67	4.16	-14.80	38.03	MaxQP	Vertical	98	225	43.0	-5.0	Pass			
4	197.40	44.37	4.45	-15.50	33.32	MaxQP	Horizontal	182	83	43.0	-9.7	Pass			
5	283.54	45.10	4.78	-14.80	35.08	MaxQP	Horizontal	108	112	46.0	-10.9	Pass			
6	915.26	49.83	6.67	-4.70	51.80	Fundamental	Vertical	100	0						

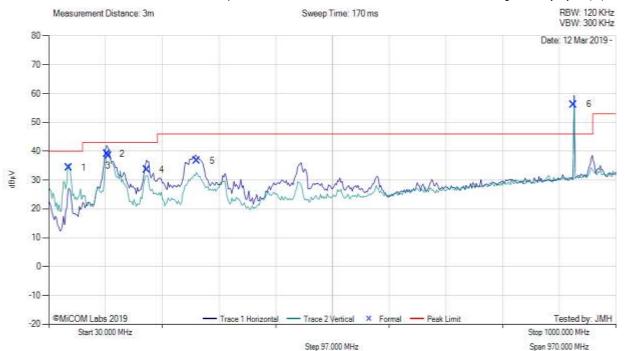
Test Notes: EUT connected to laptop outside chamber. Added 2 type 44 ferrites to DC Supply cable of host board PS and type 43 with 3 turns to AC cable of PS, (Support Equipment)

back to matrix

Issue Date: 6th August 2019

Page: 68 of 70

Alien Technology, LLC. ALR-M702-FCC


FCC Part 15C 15.247 & ISED RSS-247

ALNT91-U2 Rev A Serial #:

RADIATED DIGITAL EMISSIONS

	30.00 - 1000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	64.68	51.32	3.80	-20.80	34.32	MaxQP	Vertical	99	217	40.0	-5.7	Pass			
2	130.14	49.56	4.15	-14.60	39.11	MaxQP	Horizontal	127	128	43.0	-3.9	Pass			
3	131.89	49.07	4.15	-14.70	38.52	MaxQP	Vertical	98	210	43.0	-4.5	Pass			
4	197.76	44.65	4.45	-15.50	33.60	MaxQP	Horizontal	190	75	43.0	-9.4	Pass			
5	283.47	46.72	4.78	-14.80	36.70	MaxQP	Horizontal	103	99	46.0	-9.3	Pass			
6	927.27	54.07	6.72	-4.60	56.19	Fundamental	Vertical	100	0						

Test Notes: EUT connected to laptop outside chamber. Added 2 type 44 ferrites to DC Supply cable of host board PS and type 43 with 3 turns to AC cable of PS, (Support Equipment)

back to matrix

Issue Date: 6th August 2019 Page: 69 of 70

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com