

Global United Technology Services Co., Ltd.

Report No.: GTS202103000020-01

TEST REPORT

PowerFleet Inc. **FCC Applicant:**

123 Tice Boulevard Suite 101, Woodcliff Lake, NJ New Jersey **Address of Applicant:**

07677. United States

PowerFleet, Inc. **IC Applicant:**

123 Tice Blvd., Suite 101 Woodcliff Lake NJ 07677 United **Address of Applicant:**

PowerFleet, Inc. Manufacturer/ Factory:

123 Tice Blvd., Suite 101 Woodcliff Lake NJ 07677 United Address of

States Manufacturer/ Factory:

Equipment Under Test (EUT)

CR400 Product Name:

CR 400 Model No.:

76 HVIN:

2AG69CR400 FCC ID:

9975A-CR400 IC:

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

> RSS-247 Issue 2 RSS-Gen Issue 5

March 02, 2021 Date of sample receipt:

March 03-22, 2021 Date of Test:

March 23, 2021 Date of report issued:

PASS * Test Result:

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 41

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	March 23, 2021	Original

Prepared By:	Date:	March 23, 2021
	Project Engineer	
Check By:	Reviewer Date:	March 23, 2021

GTS

Report No.: GTS202103000020-01

3 Contents

			Page
1	COV	ER PAGE	1
2	VER:	SION	2
3	CON	ITENTS	3
4	TEST	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6	TEST FACILITY	
	5.7	TEST LOCATION	
	5.8	ADDITIONAL INSTRUCTIONS	7
6	TEST	T INSTRUMENTS LIST	8
7	TEST	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH & 99% OCCUPY BANDWIDTH	
	7.5	Power Spectral Density	
	7.6	BAND EDGES	
	7.6.1		
	7.6.2		
	7.7	SPURIOUS EMISSION	
	7.7.1		-
	7.7.2		
	7.8	FREQUENCY STABILITY	39
8	TEST	T SETUP PHOTO	41
a	FIIT	CONSTRUCTIONAL DETAILS	/11

4 Test Summary

Test Item	Section in CFR 47	Result
Antonno roquiroment	15.203/15.247 (c)	Door
Antenna requirement	RSS-Gen Section 6.8	Pass
AC Power Line Conducted Emission	15.207	Door
AC Power Line Conducted Emission	RSS-Gen Section 8.8	Pass
Conducted Output Bower	15.247 (b)(3)	Pass
Conducted Output Power	RSS-247 Section 5.4(d)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Charinei Baridwidtri	RSS-247 Section 5.2(a)	Pass
99% Occupy Bandwidth	RSS-Gen Section 6.7	
Dower Spectral Density	15.247 (e)	Pass
Power Spectral Density	RSS-247 Section 5.2(b)	Pa55
Rand Edge	15.247(d)	Pass
Band Edge	RSS-247 Section 5.5	F d 5 5
Spurious Emission	15.205/15.209	Pass
Spurious Emission	RSS-247 Section 5.5	F455
Frequency stability	RSS-Gen Section 6.11& Section 8.11	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013 and RSS-Gen.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	30MHz-200MHz	3.8039dB	(1)			
Radiated Emission	200MHz-1GHz	3.9679dB	(1)			
Radiated Emission	1GHz-18GHz	4.29dB	(1)			
Radiated Emission	18GHz-40GHz	3.30dB	(1)			
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)			
Note (1): The measurement unce	Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

5 General Information

5.1 General Description of EUT

Product Name:	CR400
Model No.:	CR 400
Test sample(s) ID:	GTS202103000020-1
Sample(s) Status:	Engineer sample
Serial No.:	1812899
Hardware Version:	В
Software Version:	54
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	Integral Antenna
Antenna Gain:	1.72dBi(declare by applicant)
Power Supply:	DC 9-32V or DC 3.7V Lithium Ion Polymer Battery Pack

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
MEILI	DC POWER SUPPLY	MCH-305A	011121168

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional instructions

Test Software	Test command provide by manufacturer.
Power level setup	Default

6 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021	
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021	
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021	
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021	
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021	
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021	

Cond	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021	
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021	
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021	
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021	

RF C	RF Conducted Test:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021	

Gene	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021			
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021			

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

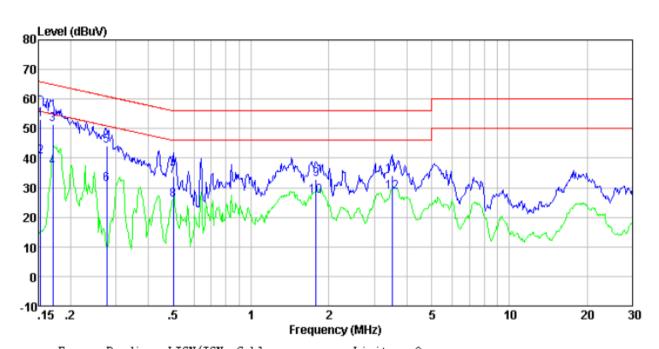
Standard requirement: RSS-Gen Section 6.8

A transmitter can only be sold or operated with antennas with which it was approved.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. For transmitters of RF output power of 10 milliwatts or less, only the portion of the antenna gain that is in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power to demonstrate compliance with the radiated power limits specified in the applicable standard. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be added to the measured RF output power to demonstrate compliance to the specified radiated power

E.U.T Antenna:

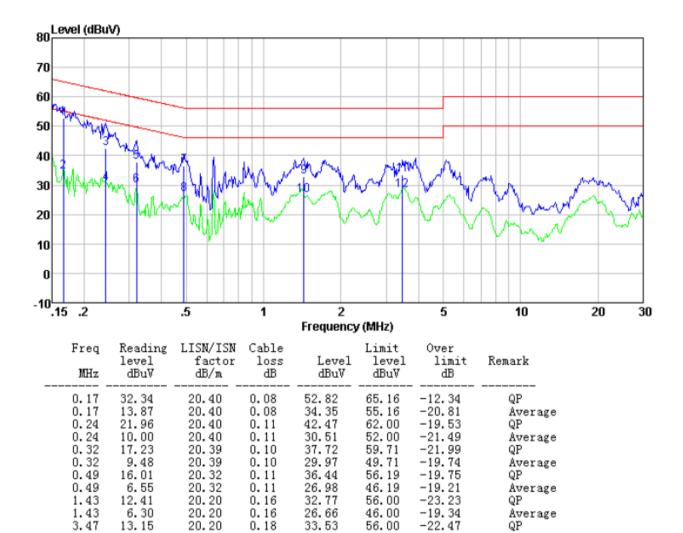
The antenna is Integral antenna, the best case gain of the is 0dBi, reference to the appendix II for details


7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
	RSS-Gen S	Section 8.8					
Test Method:	ANSI C63.10:2013 and RSS-Gen						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz	z, VBW=30K	Hz, Sweep	ime=auto			
Limit:	Fraguenay range (MILIT) Limit (dBuV)						
	Frequency range (MHz) Quasi-peak Average						
		0.15-0.5		66 to 56*		o 46*	
		0.5-5		56		16	
		5-30	141 641	60		50	
	* Decrease:	s with the log		e frequency.			
Test setup:		Reference	Plane				
Tost procedure:	AUX Filter AC power Equipment E.U.T Remark EU.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative 						
	positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2009 on conducted measurement.						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test results:	Pass						

Measurement data Line:

Report No.: GTS202103000020-01



rreq MHz	Reading level dBuV	factor dB/m	loss dB	Level dBuV	level dBuV	limit dB	Remark
0. 15 0. 15 0. 17 0. 17 0. 28 0. 28 0. 50 0. 50 1. 78 1. 78 3. 51	32.50 19.90 30.96 16.30 23.47 10.55 13.48 5.47 12.46 6.91 13.67	20. 40 20. 40 20. 40 20. 40 20. 40 20. 32 20. 32 20. 32 20. 20 20. 20	0.07 0.07 0.09 0.09 0.10 0.11 0.11 0.17 0.17	52.97 40.37 51.45 36.79 43.97 31.05 33.91 25.90 32.83 27.28 34.05	65. 82 55. 82 64. 94 54. 94 60. 94 50. 94 56. 01 46. 01 56. 00 46. 00 56. 00	-12.85 -15.45 -13.49 -18.15 -16.97 -19.89 -22.10 -20.11 -23.17 -18.72 -21.95	QP Average QP Average QP Average QP Average QP Average QP Average
3.51	7.99	20.20	0.18	28.37	46.00	-17.63	Average

Neutral:

Report No.: GTS202103000020-01

Notes

3.47

7.80

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

0.18

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission

28.18

3. Final Level = Receiver Read level + LISN Factor + Cable Loss

20.20

4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

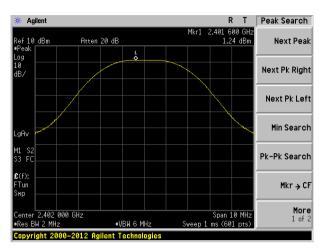
-17.82

Average

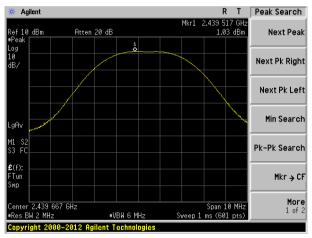
46.00

7.3 Conducted Output Power

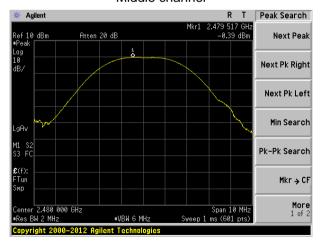
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)			
	RSS-247 Section 5.4(d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 and RSS-Gen			
Limit:	30dBm			
	36dBm(4W for e.i.r.p)			
Test setup:	Spectrum Analyzer Non-Conducted Table			
Test Instruments:	Refer to section 6.0 for details Refer to section 5.2 for details			
Test mode:				
Test results:	Pass			


Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	1.24		
Middle	1.03	30.00	Pass
Highest	-0.39		


Test channel	e.i.r.p. (dBm)	Limit(dBm)	Result
Lowest	2.96		
Middle	2.75	36.00	Pass
Highest	1.33		

Test plot as follows:


Report No.: GTS202103000020-01

Lowest channel

Middle channel

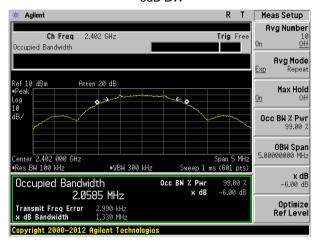
Highest channel

7.4 Channel Bandwidth & 99% Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2) & RSS-247 Section 5.2(a)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 and RSS-Gen			
Limit:	>500KHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

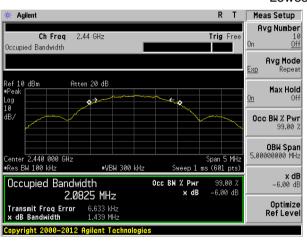
Measurement Data

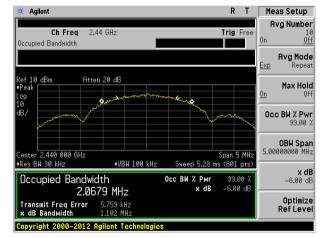
Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	1.330		
Middle	1.439	>500	Pass
Highest	1.339		


Test channel	99% Bandwidth (MHz)	Result
Lowest	2.0702	
Middle	2.0679	Pass
Highest	2.0678	

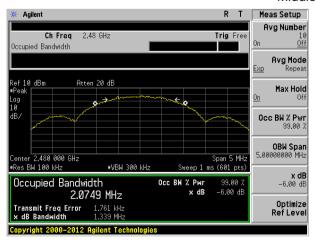
Test plot as follows:

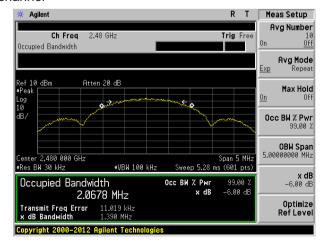
Report No.: GTS202103000020-01


-6dB BW



99% BW

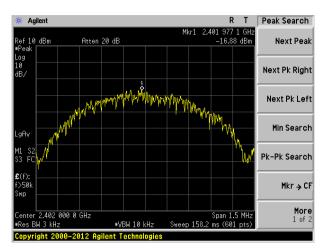



Lowest channel

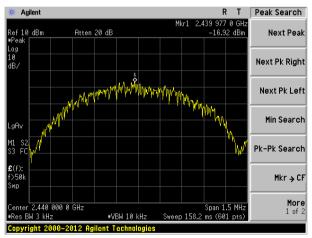
Middle channel

Highest channel

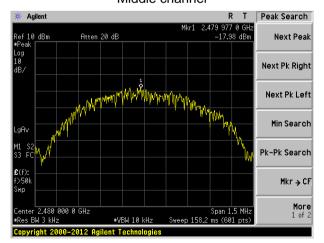
7.5 Power Spectral Density


	-			
Test Requirement:	FCC Part15 C Section 15.247 (e)			
	RSS-247 Section 5.2(b)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 and RSS-Gen			
Limit:	8dBm/3kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data


Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-16.88		
Middle	-16.92	8.00	Pass
Highest	-17.98		

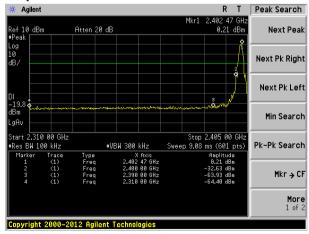
Test plot as follows:


Report No.: GTS202103000020-01

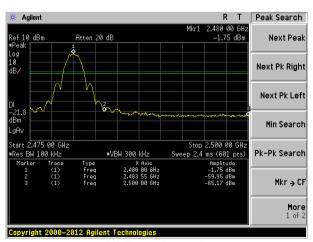
Lowest channel

Middle channel

Highest channel



7.6 Band edges


7.6.1 Conducted Emission Method

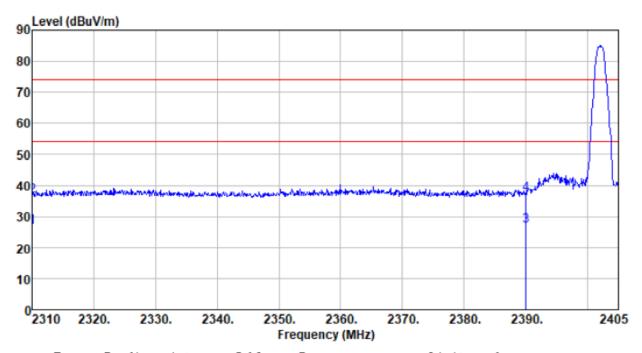
Test Requirement:	FCC Part15 C Section 15.247 (d)					
	RSS-247 Section 5.5					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02					
	& RSS-Gen					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Test plot as follows:

Highest channel

7.6.2 Radiated Emission Method

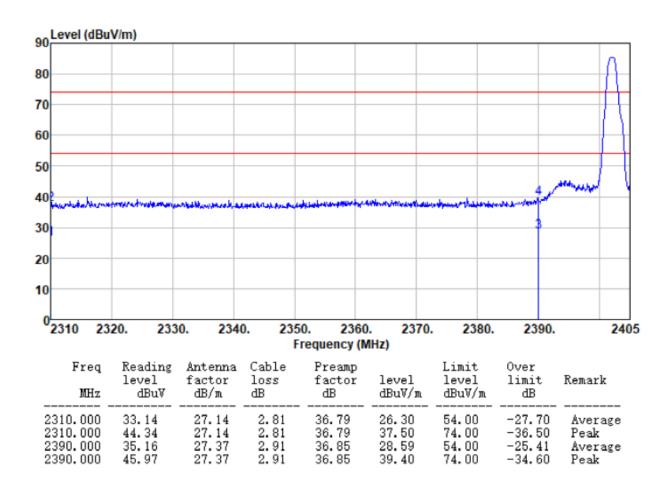
Test Requirement:	FCC Part15 C Section 15.209 and 15.205 RSS-247 Section 3.3 & RSS-Gen Section 8.10									
Test Method:	ANSI C63.10:20			0.10						
Test Frequency Range:				the worst h	and's (2310MHz to					
rest requerity realige.	2500MHz) data		colou, offiny	uic worst b	and 3 (20 folvil iz to					
Test site:	Measurement D									
Receiver setup:										
		Peak	1MHz	3MHz	Value Peak					
	Above 1GHz	RMS	1MHz	3MHz	Average					
Limit:	Freque		Limit (dBuV/	m @3m)	Value					
	Above 1		54.0	0	Average					
	Above	GHZ	74.0	0	Peak					
Test setup:	Tum Table	Test Antenna < 1m 4m >	?							
	-									
Test Procedure:	the ground a determine th 2. The EUT wa antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota the maximun 5. The test-rece Specified Ba 6. If the emission the limit specified ba 6. If the emission of the EUT whave 10dB meak or averaged. 7. The radiation	r meters above the d strength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find								
Test Instruments:	Refer to section									
Test mode:	Refer to section	5.2 for details								
Test results:	Pass									



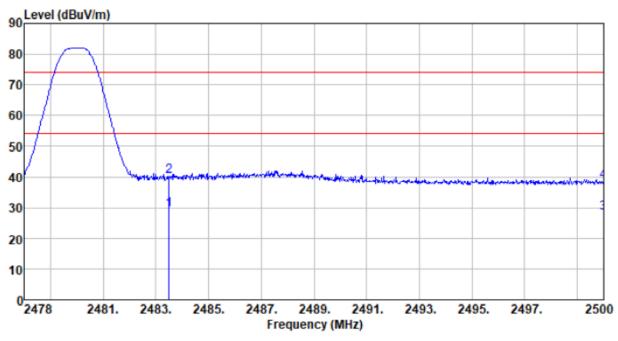
Measurement Data

Report No.: GTS202103000020-01

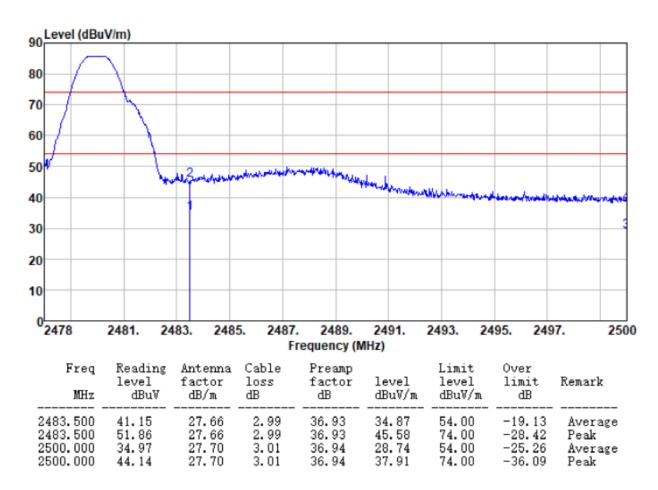
	Test channel:	Lowest
ш		


Horizontal:

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
2310.000	33.52	27.14	2.81	36.79	26.68	54.00	-27.32	Average
2310.000	43.41	27.14	2.81	36.79	36.57	74.00	-37.43	Peak
2390.000	33.51	27.37	2.91	36.85	26.94	54.00	-27.06	Average
2390.000	43.66	27.37	2.91	36.85	37.09	74.00	-36.91	Peak


Vertical:

Test channel:	Highest


Horizontal:

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
2483.500	35.57	27.66	2.99	36.93	29.29	54.00	-24.71	Average
2483.500	46.54	27.66	2.99	36.93	40.26	74.00	-33.74	Peak
2500.000	34.32	27.70	3.01	36.94	28.09	54.00	-25.91	Average
2500,000	44.77	27, 70	3.01	36.94	38.54	74.00	-35.46	Peak

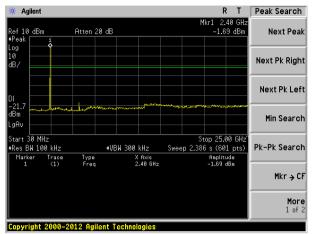
Vertical::

Remarks:

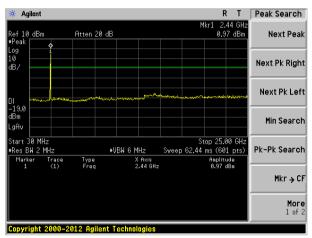
- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

7.7 Spurious Emission

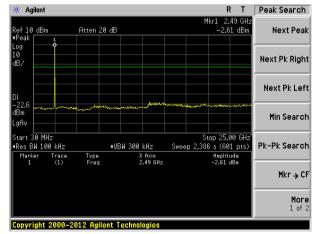
7.7.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)					
	RSS-247 Section 5.5					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02					
	& RSS-Gen					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dE below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Test plot as follows:


Lowest channel

Report No.: GTS202103000020-01


30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz

30MHz~25GHz

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C	FCC Part15 C Section 15.209							
	RSS-247 Sect	RSS-247 Section 3.3 & RSS-Gen Section 8.9							
Test Method:	ANSI C63.10:2013 & RSS-Gen								
Test Frequency Range:	9kHz to 25GH	Z							
Test site:	Measurement	Distance	: 3m						
Receiver setup:	Frequenc	;y	Detector	RBW	VBW	Value			
	9KHz-150K	Hz C	Quasi-peak	200Hz	600Hz	Quasi-peak			
	150KHz-30N	ИHz	Quasi-peak	9KHz	30KHz	Quasi-peak			
	30MHz-1G	Hz C	Quasi-peak	120KHz	300KHz	Quasi-peak			
	Above 401		Peak	1MHz	3MHz	Peak			
	Above 1GI	TZ	Peak	1MHz	10Hz	Average			
FCC Limit:		· · · · · ·			•				
	Frequency (MHz)		gth (microvolts/n	neter) M	easurement dist				
	0.009-0.490 0.490-1.705	2400/F(kHz 24000/F(kH	•			3			
	1.705-30.0	30							
	30-88	100**							
	88-216	150**							
	216-960 Above 960 The emission measuremen the frequency	200** 500 Ilmits sluts employ bands	oying a CISF 9-90 kHz, 1	PR quasi-p 10-490 kH	eak detected	tor except fove 1000 MHz			
	216-960 Above 960 The emission measuremen	200** 500 Ilimits sluts employ bands ission lin	oying a CISF 9-90 kHz, 1 nits in these	PR quasi-p 10-490 kH three ban	beak detec Iz and abo Ids are bas	tor except for ve 1000 MHz			
IC Limit:	The emission measuremen the frequency Radiated emi measuremen	n limits sl ts emplo y bands ission lin ts emplo	oying a CISF 9-90 kHz, 1 nits in these	PR quasi-p 10-490 kH three ban erage dete	peak detect z and abords are basector.	tor except for ve 1000 MHz sed on			
IC Limit:	The emission measuremen the frequency Radiated emi measuremen	200** 500 n limits slats employ bands ission linuts employ- General f	oying a CISF 9-90 kHz, 1 nits in these oying an ave	PR quasi-p 10-490 kH three ban erage dete nits at freque Field stre	peak detect z and abounds are basector. Incies above 30	tor except for ve 1000 MHz sed on			
IC Limit:	The emission measuremen the frequency Radiated emi measuremen	200** 500 n limits sluts employ bands ission linuts employ. General for the component of t	bying a CISF 9-90 kHz, 1 nits in these bying an ave ield strength lin	PR quasi-p 10-490 kH three ban erage dete nits at freque	peak detect z and abounds are basector. Incies above 30	tor except for ve 1000 MHz sed on			
IC Limit:	The emission measuremen the frequency Radiated emi measuremen	200** 500 n limits sluts employ bands ission linuts employ General f	bying a CISF 9-90 kHz, 1 nits in these bying an ave ield strength lin	PR quasi-p 10-490 kH three ban erage dete nits at freque Field stre (µV/m at	peak detect z and abounds are basector. Incies above 30	tor except for ve 1000 MHz sed on			
IC Limit:	The emission measuremen the frequency Radiated emi measuremen	200** 500 1 1 1 1 1 1 1 2 1 1 3 1 4 1 5 1 5 1 6 1 7 1 7 1 8 1 7 1 8 1 8 1 9 1 1 1 1 1 1 1 1 1	pying a CISF 9-90 kHz, 1 nits in these pying an ave ield strength lin uency Hz) - 88 - 216 - 960	PR quasi-p 10-490 kH three ban erage dete nits at freque Field stre (µV/m at 100 150 200	peak detect z and abounds are basector. Incies above 30	tor except for ve 1000 MHz sed on			
IC Limit:	The emission measuremen the frequency Radiated emi measuremen	200** 500 1 1 1 1 1 1 1 2 1 1 3 1 4 1 5 1 5 1 6 1 7 1 7 1 8 1 7 1 8 1 8 1 9 1 1 1 1 1 1 1 1 1	oying a CISF 9-90 kHz, 1 nits in these oying an ave ield strength lin uency Hz) -88	PR quasi-p 10-490 kH three ban erage dete nits at freque Field stre (µV/m at 100	peak detect z and abounds are basector. Incies above 30	tor except for ve 1000 MHz sed on			
IC Limit:	The emission measuremen the frequency Radiated emi measuremen	200** 500 1 1 1 1 1 1 1 2 1 1 3 1 4 1 5 1 5 1 6 1 7 1 7 1 8 1 7 1 8 1 8 1 9 1 1 1 1 1 1 1 1 1	pying a CISF 9-90 kHz, 1 nits in these pying an ave ield strength lin uency Hz) - 88 - 216 - 960	PR quasi-p 10-490 kH three ban erage dete nits at freque Field stre (µV/m at 100 150 200	peak detect z and abounds are basector. Incies above 30	tor except for ve 1000 MHz sed on			
IC Limit:	The emission measuremen the frequency Radiated emi measuremen Table 5	200** 500 1 1 1 1 1 1 1 1 1	pying a CISF 9-90 kHz, 1 nits in these pying an ave ield strength lin uency Hz) - 88 - 216 - 960	PR quasi-p 10-490 kH three ban erage dete mits at freque Field stre (µV/m at 100 150 200 500	peak detected and about the second about the second action. Incies above 36 Ingth 3 m)	tor except for ve 1000 MHz sed on 0 MHz			
IC Limit:	Table 6 -	200** 500 1 1 1 1 1 1 1 2 1 1 3 1 4 4 5 7 5 7 6 7 7 7 7 7 7 7 8 7 8 7 9 7 1	bying a CISF 9-90 kHz, 1 nits in these bying an ave ield strength lin uency Hz) - 88 - 216 - 960 re 960	PR quasi-p 10-490 kH three ban erage dete mits at freque Field stre (µV/m at 100 150 200 500	peak detective and about a sare base ctor. Incies above 30 Ingth 3 m) Incies below 30 Incies b	tor except for ve 1000 MHz sed on 0 MHz			
IC Limit:	Table 6 -	200** 500 1 1 1 1 1 1 1 1 1	oying a CISF 9-90 kHz, 1 nits in these oying an ave ield strength lin uency Hz) - 88 - 216 - 960 re 960 ield strength lin Magnetic fie	PR quasi-p 10-490 kH e three ban erage dete mits at freque Field stre (µV/m at 100 150 200 500 mits at freque	peak detected and about the second about the second are based at the second are based at the second are below 30 mgth at the second are below 30 mgth at the second are below 30 mgth at the second are second ar	tor except for ve 1000 MHz sed on 0 MHz 0 MHz ement nce			
IC Limit:	Table 6 -	200** 500 1 1 1 1 1 1 1 2 1 1 3 1 4 4 5 7 5 7 5 7 6 7 7 7 7 7 7 7 7 7	Dying a CISF 9-90 kHz, 1 nits in these pying an ave ield strength lin uency Hz) - 88 - 216 - 960 re 960 Magnetic fie F	PR quasi-p 10-490 kH e three ban erage dete nits at freque Field stre (µV/m at 100 150 200 500 mits at freque eld strength (l'ield) (A/m)	peak detected and about a same base ctor. Incies above 30 angth 3 m) Incies below 30 distant (m)	tor except for ve 1000 MHz sed on 0 MHz			
IC Limit:	Table 6 -	200** 500 1 1 1 1 1 1 1 2 1 1 3 1 4 4 5 7 5 7 6 7 7 7 7 7 7 7 8 7 8 7 9 7 1	bying a CISF 9-90 kHz, 1 nits in these bying an ave ield strength lin uency Hz) - 88 - 216 - 960 re 960 Magnetic fie F (µ 6.37/F	PR quasi-p 10-490 kH e three ban erage dete mits at freque Field stre (µV/m at 100 150 200 500 mits at freque	peak detected and about the second about the second are based at the second are based at the second are below 30 mgth at the second are below 30 mgth at the second are below 30 mgth at the second are second ar	tor except for ve 1000 MHz sed on 0 MHz 0 MHz			

Report No.: GTS202103000020-01 Test setup: For radiated emissions from 9kHz to 30MHz < 3m > Test Antenna EUT. Turn Table 1m< 80cm > Receiver-For radiated emissions from 30MHz to1GHz Test Antenna < 1m ... 4m > EUT Turn Table. Turn Table↔ < 80cm Receiver Preamplifier. For radiated emissions above 1GHz Test Antenna+ < 1m ... 4m > FUT. Turn Table <150cm> Receiver-Preamplifier+ Test Procedure: The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the

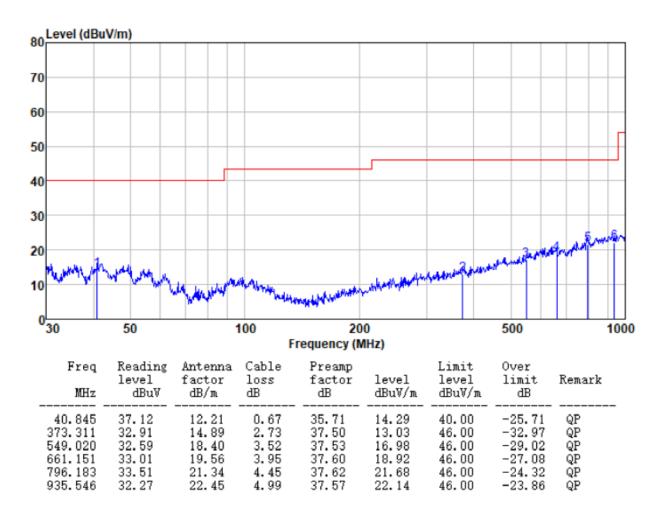
	Report No.: GTS202103000020-01							
	measure	ment.						
	and then and the	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.						
	 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 							
Test Instruments:	Refer to see	ction 6.0 for	details					
Test mode:	Test mode: Refer to section 5.2 for details Test environment: Temp.: 25 °C Humid.: 52% Press.: 1012mbar							
Test environment:								
Test results:	Pass							

Measurement data:

Remark:

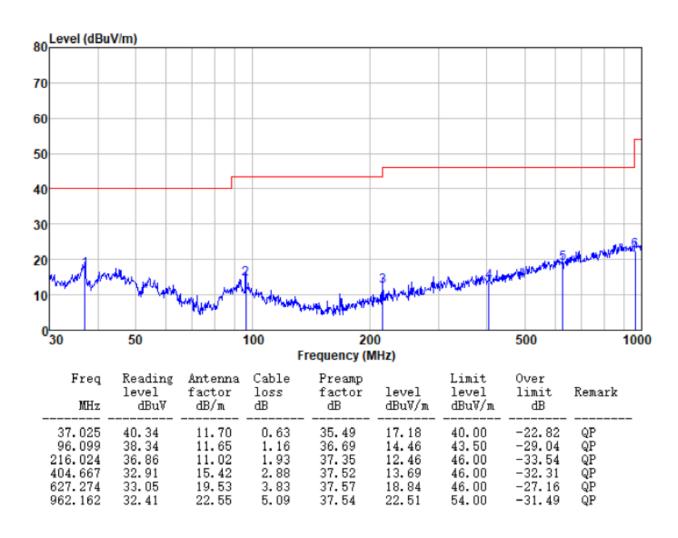
Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

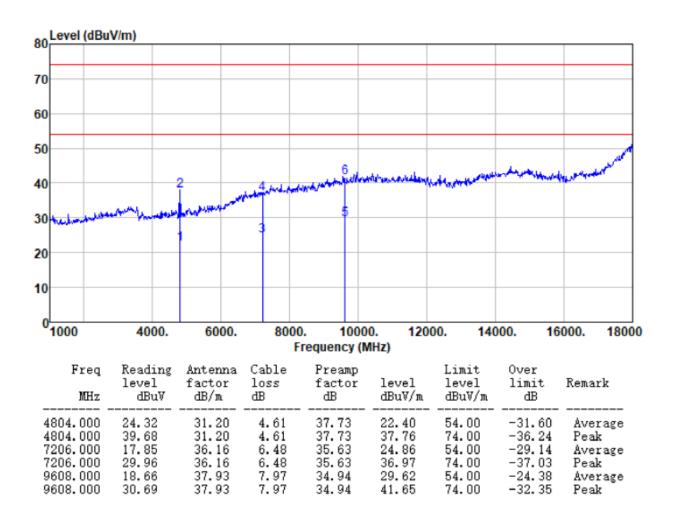
■ Below 1GHz

Pre-scan all test modes, found worst case at 2480MHz, and so only show the test result of 2480MHz


Horizontal:

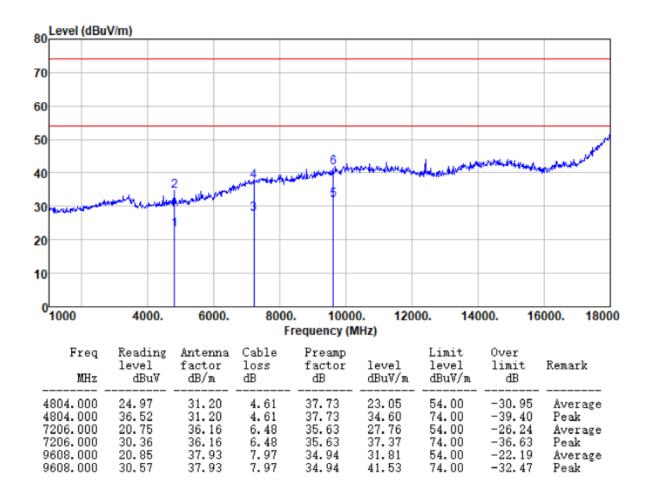
Vertical:

Report No.: GTS202103000020-01

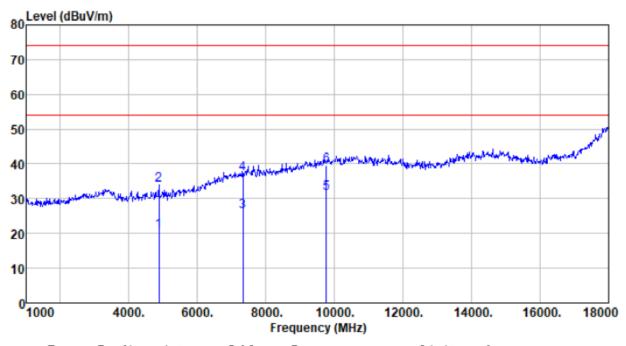


■ Above 1GHz

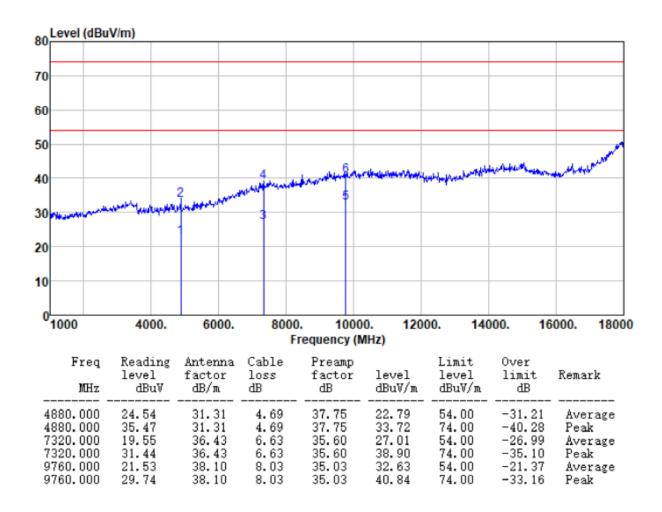
Report No.: GTS202103000020-01


Test channel:	Lowest

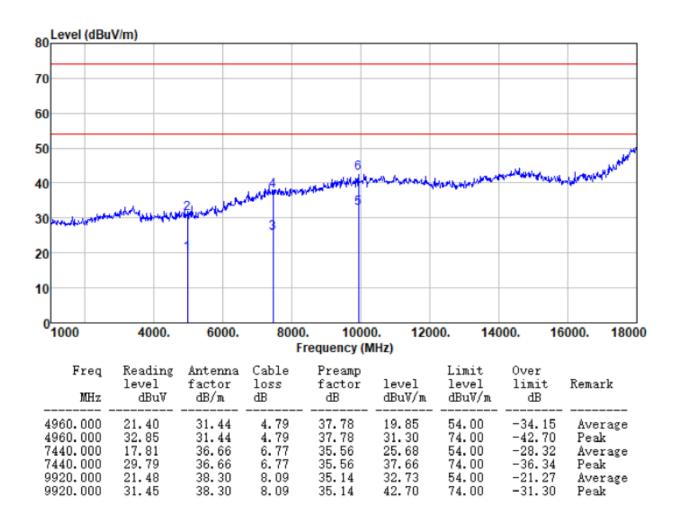
Horizontal:

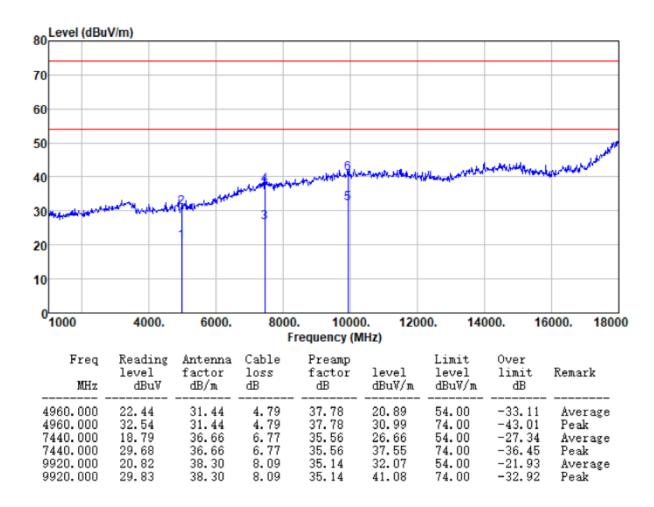

Vertical:

Test channel:	Middle	


Horizontal:

Freq	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
4880.000	22.54	31.31	4.69	37.75	20.79	54.00	-33.21	Average
4880.000	35.55	31.31	4.69	37.75	33.80	74.00	-40.20	Peak
7320.000	18.84	36.43	6.63	35.60	26.30	54.00	-27.70	Average
7320,000	29.83	36. 43	6.63	35.60	37.29	74.00	-36.71	Peak
9760,000	20.44	38. 10	8.03	35.03	31.54	54.00	-22.46	Average
9760,000	28.46	38. 10	8.03	35.03	39.56	74.00	-34.44	Peak


Vertical:


Test channel:	Highest
---------------	---------

Horizontal:

Vertical::

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.8 Frequency Stability

Test Requirement:	RSS-Gen Section 6.11& Section 8.11				
Test Method:	ANSI C63.10: 2013 & RSS-Gen				
Limit:	Manufactures of devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified				
Test Procedure:	The EUT was setup to ANSI C63.10, 2013; tested to 2.1055 for compliance to RSS-Gen requirements.				
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Remark: Set the EUT transmits at un-modulation mode to test frequency stability.

Measurement data:

Report No.: GTS202103000020-01

weasuremen		Frequenc	y stability vers	us Temp.		
			ver Supply: DC	· · · · · · · · · · · · · · · · · · ·		
		0 minute	2 minute	5 minute	10 minute	
Temp.	Operating	Measured	Measured	Measured	Measured	Pass
(°C)	Frequency	Frequency	Frequency	Frequency	Frequency	/Fail
(-)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	2402	2402.99	2402.38	2402.55	2402.5	Pass
-30	2440	2440.38	2440.98	2440.15	2440.15	Pass
	2480	2480.63	2480.65	2480.57	2480.02	Pass
	2402	2402.52	2402.44	2402.86	2402.44	Pass
-20	2440	2440.57	2440.83	2440.39	2440.89	Pass
	2480	2480	2480.9	2480.44	2480.1	Pass
	2402	2402.94	2402.44	2402.46	2402.23	Pass
-10	2440	2440.78	2440.95	2440.1	2440.18	Pass
	2480	2480.57	2480.25	2480.94	2480.49	Pass
	2402	2402.06	2402.6	2402.68	2402.86	Pass
0	2440	2440.32	2440.92	2440.45	2440.7	Pass
	2480	2480.76	2480.94	2480.97	2480.65	Pass
	2402	2402.38	2402.83	2402.52	2402.99	Pass
10	2440	2440.8	2440.36	2440.23	2440.98	Pass
	2480	2480.87	2480.1	2480.05	2480.16	Pass
	2402	2402.86	2402.31	2402.59	2402.85	Pass
20	2440	2440.95	2440.89	2440.77	2440.98	Pass
	2480	2480.03	2480.72	2480.53	2480.76	Pass
	2402	2402.87	2402.92	2402.3	2402.67	Pass
30	2440	2440.49	2440.25	2440.73	2440.49	Pass
	2480	2480.63	2480.78	2480.81	2480.51	Pass
	2402	2402.09	2402.58	2402.69	2402.15	Pass
40	2440	2440.74	2440.84	2440.62	2440.7	Pass
	2480	2480.72	2480.31	2480.22	2480.75	Pass
	2402	2402.48	2402.47	2402.09	2402.01	Pass
50	2440	2440.29	2440.54	2440.22	2440.64	Pass
	2480	2480.58	2480.82	2480.53	2480.55	Pass
		Frequency	y stability versi	us Voltage		
		Te	emperature: 25	°C		
Power	Operating	0 minute	2 minute	5 minute	10 minute	
Supply	Frequency	Measured	Measured	Measured	Measured	Pass
(VDC)	(MHz)	Frequency	Frequency	Frequency	Frequency	/Fail
(*50)	(1411 12)	(MHz)	(MHz)	(MHz)	(MHz)	
	2402	2402.94	2402.06	2402.42	2402.6	Pass
9	2440	2440.6	2440.52	2440.76	2440.8	Pass
	2480	2480.85	2480.04	2480.35	2480.08	Pass
	2402	2402.03	2402.24	2402.86	2402.24	Pass
32	2440	2440.36	2440.83	2440.22	2440.1	Pass
	2480	2480.88	2480.85	2480.98	2480.46	Pass

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----