

TEST REPORT

APPLICANT	: Waysion Technology (Xiamen) Co., Ltd
PRODUCT NAME	: Mobile Data Terminal
MODEL NAME	: S8
BRAND NAME	: Waysion
FCC ID	: 2ACHTWSP02
STANDARD(S)	: 47 CFR Part 15 Subpart C
TEST DATE	: 2018-03-23 to 2018-04-17
ISSUE DATE	: 2018-04-17

Tested by:

Tu Ya'nan

Tu Ya'nan (Test Engineer)

Approved by:

Andy Yeh (Technical Director)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

DIRECTORY

1. Technical Information 4
1.1. Manufacturer and Factory Information 4
1.2. Equipment Under Test (EUT) Description 4
1.3. Test Standards and Results 5
1.4. Environmental Conditions 5
2. 47 CFR Part 15C Requirements 6
2.1. Antenna requirement 6
2.2. Number of Hopping Frequency 6
2.3. Peak Output Power ······10
2.4. 20dB Bandwidth ······17
2.5. Carried Frequency Separation24
2.6. Time of Occupancy (Dwell time)27
2.7. Conducted Spurious Emissions
2.8. Restricted Frequency Bands 47
2.9. Conducted Emission56
2.10. Radiated Emission60
Annex A Test Uncertainty73
Annex B Testing Laboratory Information74

Change History						
Issue	Issue Date Reason for change					
1.0	2018-04-17	First edition				

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Waysion Technology (Xiamen) Co., Ltd			
Applicant Address:	Rm1101, 11th Floor, 359 Chengyi St., Jimei Dist., Xiamen			
	Software Park III, Xiamen, China 361021			
Manufacturer:	Shenzhen Saintway Technology Co.,Ltd			
Manufacturer Address:	7F, Block 1, Yinjin Building, Liuxian 2nd Road, Bao'an 71 District,			
	Shenzhen, Guangdong, China			

1.2. Equipment Under Test (EUT) Description

Product Name:	Mobile Data Terminal		
Serial No:	(N/A, marked #1 by test site)		
Hardware Version: STW-S8-MB-VER3.0			
Software Version:	s8-rk3288-20171206		
Modulation Type:	Bluetooth: FHSS (GFSK(1Mbps), π/4-DQPSK(EDR 2Mbps),		
Modulation Type:	8-DPSK(EDR 3Mbps))		
	The frequency range used is 2402MHz – 2480MHz		
Operating Frequency Range:	(79 channels, at intervals of 1MHz);		
	The frequency block is 2400MHz to 2483.5MHz.		
Bluetooth Version:	Bluetooth 4.0(BR/EDR)		
Antenna Type:	PCB Antenna		
Antenna Gain:	1.0 dBi		

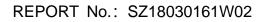
Note 1: The EUT contains Bluetooth Module operating at 2.4GHz ISM band; the frequencies is F(MHz)=2402+1*n (0<=n<=78). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 39 (2441MHz) and 78 (2480MHz).

Note 2: The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT into the test mode, and then use MT8852B base station to control the EUT continuous transmission.

Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:


No	Identity			ment Title			
1	1 47 CFR Part 15 (10-1-15 Edition)		Radio	Radio Frequency Devices			
Test d		/section required by FCC rul	es and	d results are as b	elow:	[
No.	Section in CFR 47	Description		Test Date	Test Engineer	Result	
1	15.203	Antenna Requirement		N/A	N/A	PASS	
2	15.247(a)	Number of Hopping Freque	ency	Mar 23, 2018	Tu Ya'nan	PASS	
3	15.247(b)	Peak Output Power		Apr 17, 2018	Tu Ya'nan	PASS	
4	15.247(a)	20dB Bandwidth		Mar 23, 2018	Tu Ya'nan	PASS	
5	15.247(a)	Carrier Frequency Separation		Mar 23, 2018	Tu Ya'nan	PASS	
6	15.247(a)	Time of Occupancy (Dwell	time)	Mar 23, 2018	Tu Ya'nan	PASS	
7	15.247(d)	Conducted Spurious Emiss	sion	Mar 23, 2018	Tu Ya'nan	PASS	
8	15.247(d)	Restricted Frequency Banc	ls	Apr 03&11, 2018	Zheng Fengjian	PASS	
9	15.209, 15.247(d)	Radiated Emission		Apr 03, 2018	Zheng Fengjian	PASS	
10							
Note	1: The tests	were performed according t	o the r	nethod of measu	rements prescribed	in ANSI	
C63.	10-2013.						

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

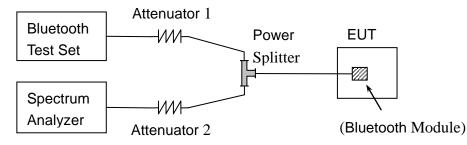
2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.


2.2. Number of Hopping Frequency

2.2.1. Requirement

According to FCC §15.247(a)(1)(iii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 15 hopping frequencies.

2.2.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.2.3. Test Procedure

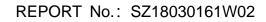
The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW \geq 1% of the span VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize

2.2.4. Test Result

The Bluetooth Module operates at hopping-on test mode; the frequencies number employed is counted to verify the Module's using the number of hopping frequency.

Test Mode	Frequency Block (MHz)	Measured Channel Numbers	Min. Limit	Verdict
GFSK	2400 - 2483.5	79	15	PASS
π/4-DQPSK	2400 - 2483.5	79	15	PASS
8-DPSK	2400 - 2483.5	79	15	PASS

A. Test Verdict:



B. Test Plots:

er - Swept SA 11:36:07 AM Mar 26, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N SENSE:INT Trace/Detector Avg Type: Log-Pwr Avg|Hold:>100/100 Sweep Time 10.0 ms PNO: Fast Trig: Free Run IFGain:Low Atten: 20 dB Select Trace Ref Offset 2 dB Ref 12.00 dBm 10 dB/div ^{Log} r **Clear Write** ×××××××× Trace Average Max Hold Min Hold View Blank Trace On More 1 of 3 Stop 2.48350 GHz #Sweep 10.00 ms (1001 pts) Start 2.40000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz STATUS

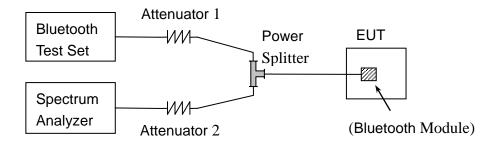
(GFSK)



$(\pi/4-DQPSK)$

(8- DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn


2.3. Peak Output Power

2.3.1. Requirement

According to FCC §15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

2.3.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please refer ANNEX A(1.5).

2.3.3. Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the module. The lowest, middle and highest channel were tested by USB Wideband Power Sensor.

2.3.3.1 GFSK Mode

A. Test Verdict:

Channel	Frequency	Measured Output Peak Power Limit		Measured Output Peak Power Limit		Verdict	
Channel	(MHz)	dBm	W	dBm	W	verdici	
0	2402	-3.77	0.00042			PASS	
39	2441	-3.60	0.00044	20.97	0.125	PASS	
78	2480	-4.07	0.00039			PASS	

B. Test Plots:

(GFSK, Channel 0, 2402MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(GFSK, Channel 39, 2441MHz)

(GFSK, Channel 78, 2480MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

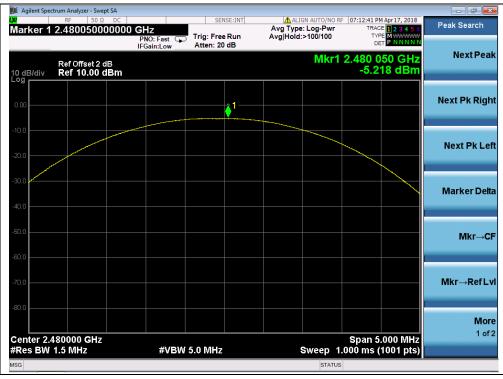
2.3.3.2 π/4-DQPSK Mode

A. Test Verdict:

Channel	Frequency	Measured Output Peak Power Limit		Measured Output Peak Power		Verdict	
Channel	(MHz)	dBm	W	dBm	W	verdict	
0	2402	-4.69	0.00034			PASS	
39	2441	-5.02	0.00031	20.97	0.125	PASS	
78	2480	-5.22	0.00030			PASS	

B. Test Plots:

(π/4-DQPSK, Channel 0, 2402MHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(π/4-DQPSK, Channel 39, 2441MHz)

(π/4-DQPSK, Channel 78, 2480MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.3.3.3 8-DPSK Mode

A. Test Verdict:

Channel	Frequency	Measured Output Peak Power Limit		Measured Output Peak Power		Verdict	
Channel	(MHz)	dBm	W	dBm	W	verdici	
0	2402	-4.61	0.00035			PASS	
39	2441	-5.00	0.00032	20.97	0.125	PASS	
78	2480	-5.70	0.00027			PASS	

B. Test Plots:

(8-DPSK, Channel 0, 2402MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

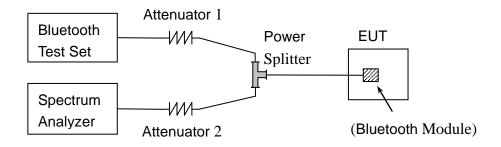
(8-DPSK, Channel 39, 2441MHz)

(8-DPSK, Channel 78, 2480MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn



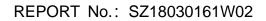
2.4.1. Definition

According to FCC 15.247(a)(1), the 20dB bandwidth is known as the 99% emission bandwidth, or 20dB bandwidth (10*log1% = 20dB) taking the total RF output power.

2.4.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.


B. Equipments List:

Please refer ANNEX A(1.5).

2.4.3. Test Procedure

Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

2.4.4. Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to record the 20dB bandwidth of the Module.

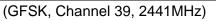
2.4.4.1 GFSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
0	2402	1.014	PASS
39	2441	1.009	PASS
78	2480	1.014	PASS

B. Test Plots:

(GFSK, Channel 0, 2402MHz)

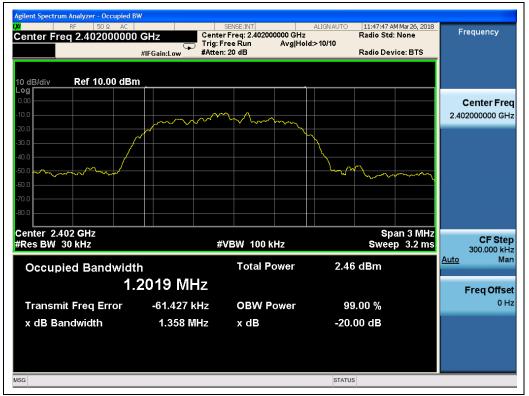


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(GFSK, Channel 78, 2480MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn



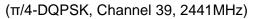
2.4.4.2 π/4-DQPSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
0	2402	1.358	PASS
39	2441	1.357	PASS
78	2480	1.356	PASS

B. Test Plots:

(π/4-DQPSK, Channel 0, 2402MHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(π/4-DQPSK, Channel 78, 2480MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

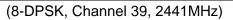
2.4.4.3 8-DPSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
0	2402	1.318	PASS
39	2441	1.318	PASS
78	2480	1.317	PASS

B. Test Plots:

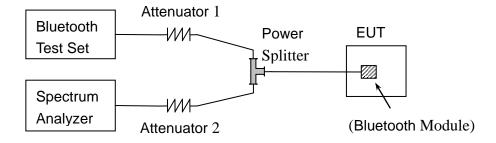
(8-DPSK, Channel 0, 2402MHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(8-DPSK, Channel 78, 2480MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn


2.5. Carried Frequency Separation

2.5.1. Definition

According to FCC §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

2.5.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please refer ANNEX A(1.5).

2.5.3. Test Procedure

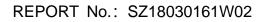
The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) \geq 1% of the span

Video (or Average) Bandwidth (VBW) \geq RBW

Sweep = auto


Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5.4. Test Result

The Bluetooth Module operates at hopping-on test mode. For any adjacent channels (e.g. the channel 39 and 40 as showed below), the Module does have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel (refer to section 2.4.4), whichever is greater. So, the verdict is PASSING


	Measured	Carried Frequency	20dB			
Test Mode	Channel		bandwidth	Min. Limit	Verdict	
	Numbers	Separation	(MHz)			
GFSK	39 and 40	1.002	1.009	two thirds of the	PASS	
π/4-DQPSK	39 and 40	1.002	1.356	two-thirds of the	PASS	
8-DPSK	39 and 40	1.005	1.317	20dB bandwidth	PASS	

(GFSK)

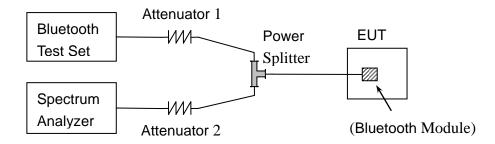
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

RF 50.Ω AC Iarker 1 1.002000000 MH	PNO: Fast 😱 Trig: Free Run	ALIGNAUTO Avg Type: Log-Pwr Avg Hold:>100/100	11:28:32 AM Mar 26, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Peak Search
Ref Offset 2 dB 0 dB/div Ref 12.00 dBm	IFGain:Low Atten: 20 dB	ΔN	lkr1 1.002 MHz 0.004 dB	Next Pea
.00			Δ2	Next Pk Rig
.00	X2		Δ2 	
8.0				Next Pk Le
8.0				Marker De
3.0				
3.0				Mkr→C
3.0				Mkr→RefL
3.0				
enter 2.441000 GHz Res BW 300 kHz	#VBW 1.0 MHz		Span 3.000 MHz .000 ms (1001 pts)	Mo 1 of

(π/4-DQPSK)

(8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.6. Time of Occupancy (Dwell time)

2.6.1. Requirement

According to FCC §15.247(a) (1) (iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.6.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

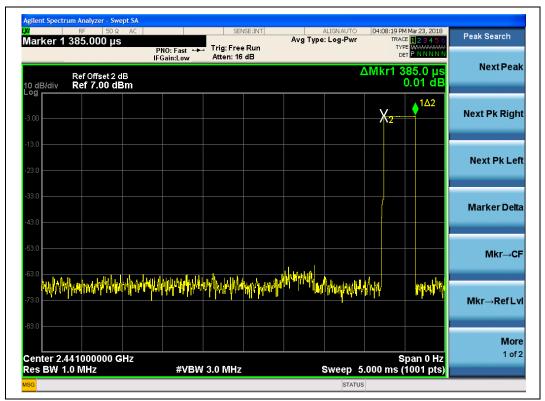
B. Equipments List:

Please refer ANNEX A(1.5).

2.6.3. Test Procedure

Option 1:

DH1: Dwell time equal to Pulse time (ms) *(1600 / 2 /79)*31.6 Millisecond DH3: Dwell time equal to Pulse time (ms) * (1600 /4 /79) *31.6 Millisecond DH5: Dwell time equal to Pulse Time (ms)* (1600 / 6 /79) *31.6 Millisecond


2.6.4. Test Result

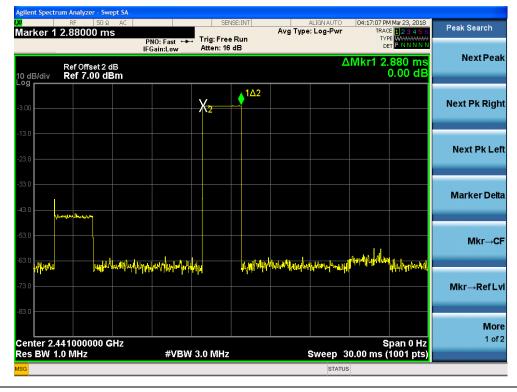
2.6.4.1 GFSK Mode

A. Test Verdict:

DH Packet	Pulse Width (ms)	Dwell Time (ms)	Limit (sec)	Verdict
DH1	0.39	124.80		PASS
DH3	1.64	262.40	0.4	PASS
DH5	2.88	307.20		PASS

B. Test Plots:

(DH1, GFSK)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

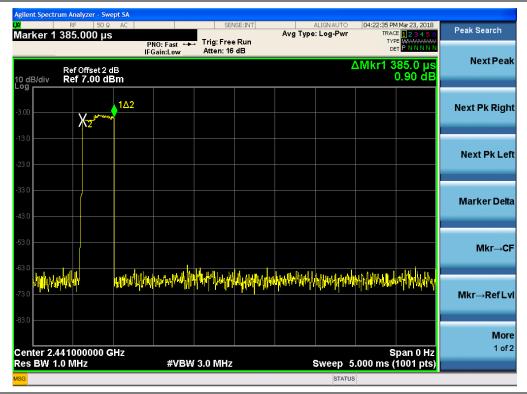
lorkor 1	RF 50 Ω 1.64000 ms			SEN	ISE:INT		LIGN AUTO		M Mar 23, 2018	Peak Search
VIAIKEI	1.04000 ms	•	PNO: Fast 🔸 IFGain:Low	. Trig: Free Atten: 16				TYI Di	CE 123456 PE WWWWWW ET P N N N N N	
10 dB/div	Ref Offset 2 d Ref 7.00 dB						Ĺ	\Mkr1 1.	.640 ms 0.02 dB	Next Pea
-3.00			•1∆2							Next Pk Righ
-13.0										Next Pk Le
-23.0										
-43.0										Marker Del
-53.0	h									Mkr→C
-63.0 ////////		4m	higherward	10 10 10 10 10	hallandhallad	and <mark>y Operspectros (</mark> M	hundhodday	un water and	whweller where the	Mkr→RefL
-83.0										
Center 2	441000000 G	Hz						8	pan 0 Hz	Mor 1 of
Res BW 1			#VBW	3.0 MHz			Sween	- 20.00 ms (1001 pts)	

(DH3, GFSK)

(DH5, GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

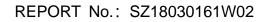
E-mail: service@morlab.cn

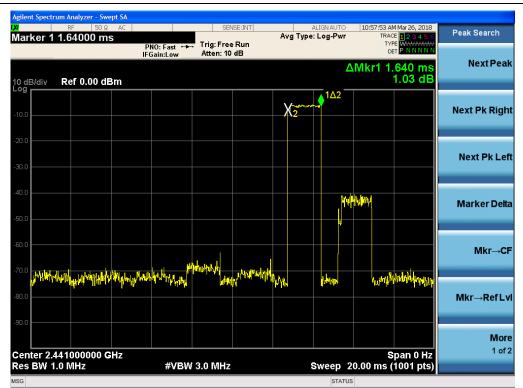


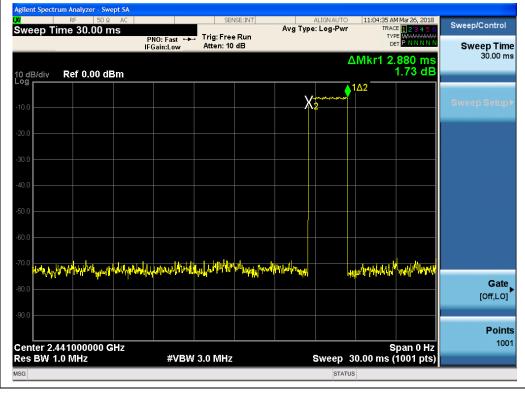
2.6.4.2 π/4-DQPSK Mode

A. Test Verdict:

DH Packet	Pulse Width (ms)	Dwell Time (ms)		Verdict
DH1	0.39	124.80		PASS
DH3	1.64	262.40	0.4	PASS
DH5	2.88	307.20		PASS


B. Test Plots:

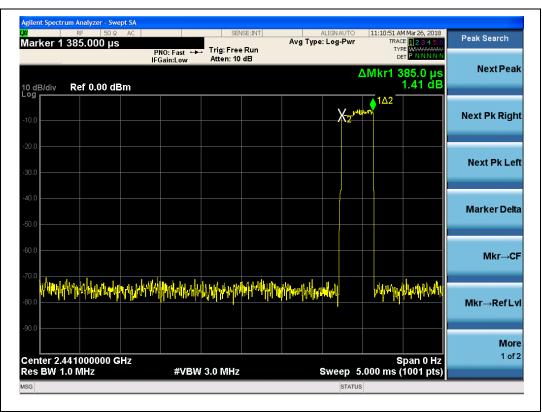

(DH1, $\pi/4$ -DQPSK)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(DH3, $\pi/4$ -DQPSK)

(DH5, $\pi/4$ -DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn



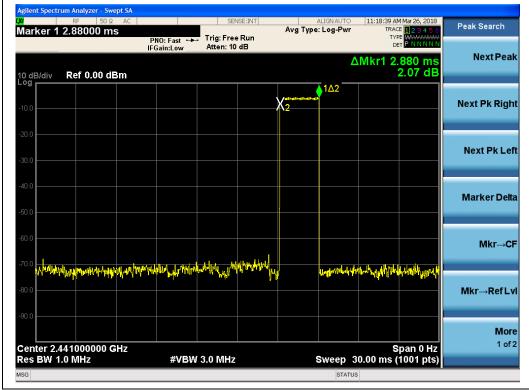
2.6.4.3 8-DPSK mode

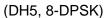
A. Test Verdict:

DH Packet	Pulse Width (ms)	Dwell Time (ms)	Limit (sec)	Verdict
DH1	0.39	124.80		PASS
DH3	1.64	262.40	0.4	PASS
DH5	2.88	307.20		PASS


B. Test Plots:

(DH1, 8-DPSK)

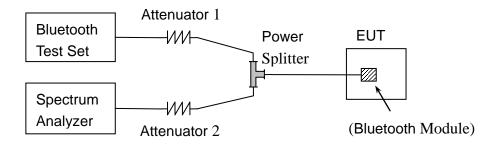

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



	ter 2.4 BW 1.			Hz	#VBW	3.0 MHz			Sweep 2	0.00 ms	Span 0 Hz 5 (1001 pts)	1 of
												Mor
												Mkr→RefLv
	机小小	n an	Manaphilk	why hy have	the weight and	rtva/No _{llo} logi	ay ya y		Verypriterialia	h , h	hhai le	
							States L. K.					Mkr→C
50.0												
40.0												Marker Delt
												Next Pk Le
								X ¹¹⁰¹¹⁶⁰⁹¹⁶⁷¹⁸				Next Pk Rigi
0 dl .og	B/div	Ref	0.00 dE	3m					1Δ2		1.77 dB	
				IF	Gain:Low	Atten: 10	dB		Δ		1.640 ms	Next Pea
lar	ker 1	1.64	50 Ω 000 m	s	NO: Fast 🔸		NSE:INT	Avg Typ	ALIGN AUTO e: Log-Pwr	TR	AM Mar 26, 2018 RACE 1 2 3 4 5 6 TYPE WANNALAN	Peak Search

(DH3, 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.7. Conducted Spurious Emissions

2.7.1. Requirement

According to FCC §15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

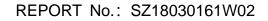
2.7.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please refer ANNEX A(1.5).


2.7.3. Test Procedure

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz ∨BW ≥ RBW Sweep = auto Detector function = peak

Trace = max hold Allow the trace to stabilize.

2.7.4. Test Result

The Bluetooth Module operates at hopping-off test mode. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

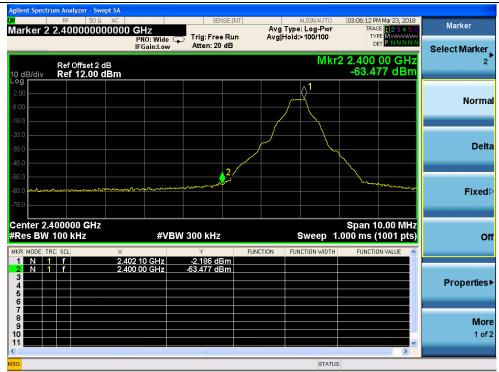
2.7.4.1 GFSK Mode

A. Test Verdict:

Channel	Frequency	Measured Max. Out of Band	Limit		
	Frequency (MHz)	Emission (dBm)	Carrier Level	Calculated	Verdict
			Camer Lever	-20dBc Limit	
0	2402	-50.76	-2.85	-22.85	PASS
39	2441	-52.92	-2.60	-22.60	PASS
78	2480	-51.94	-3.28	-23.28	PASS

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.


(Channel = 0, 30MHz to 25GHz, GFSK Mode)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

(Channel = 0, Band edge,GFSK Mode)

(Channel = 0, Band edge with hopping on, GFSK Mode)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Agilent Spectrum Analyzer - Swept SA				
Marker 2 24.038655000000 GHz	SENSE:IN	Avg Type: Log-	-Pwr TRACE 1 2 3 4 5 6	Peak Search
	ast 😱 Trig: Free Rur	n Avg Hold: 11/10	DO TYPE M WWWWW DET P N N N N N	
			Mkr2 24.039 GHz	Next Peak
Ref Offset 2 dB 10 dB/div Ref 12.00 dBm			-52.919 dBm	
2.00 1				
-8.00				Next Pk Right
-18.0				
-28.0				
-38.0				Next Pk Left
-48.0			<u>^</u> 2	
-58.0			man man man	
-68.0	ويقادونه ومستعل المصريات والمراجع والمتقادي			Marker Delta
-78.0				
Start 30 MHz			Oton 05.00 CU-	
	#VBW 300 kHz	Sw	Stop 25.00 GHz (eep 2.386 s (2001 pts)	Mkr→CF
MKR MODELTRC SCL X	Y	FUNCTION FUNCTION		
1 N 1 f 2.440 G	-2.601 dBm			
2 N 1 f 24.039 G	lz -52.919 dBm			Min Defind
				Mkr→RefLvl
6				
7 8 				More
9				1 of 2
11 			~ ×	
IIS II MSG			STATUS	

		,		,	
gilent Spectrum Analyzer - Swo RF 50 Ω	AC	SENSE:INT	ALIGN AUTO	03:14:30 PM Mar 23, 2018	
larker 2 24.076110		🕞 Trig: Free Run	Avg Type: Log-Pwr Avg Hold: 13/100	TRACE 12 3 4 5 6 TYPE M WWWWWW DET P N N N N N	Peak Search
Ref Offset 2 of 0 dB/div Ref 12.00 of 0 dB/div			Μ	kr2 24.076 GHz -51.943 dBm	NextPea
• g 2.00 1 8.00					Next Pk Rigl
8.0 88.0 88.0				¢²	Next Pk Le
58.0 58.0 78.0	مان المان المان مان المان	A second and	the state of the s	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Marker Del
tart 30 MHz Res BW 100 kHz	#V	BW 300 kHz	Sweep	Stop 25.00 GHz 2.386 s (2001 pts)	Mkr→C
MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 - - 4 - - 5 - -	× 2.477 GHz 24.076 GHz	∀ -3.282 dBm -51.943 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Mkr→RefL
7 8 9 1010					Mo i 1 of
				× .	

(Channel = 39, 30MHz to 25GHz, GFSK Mode)

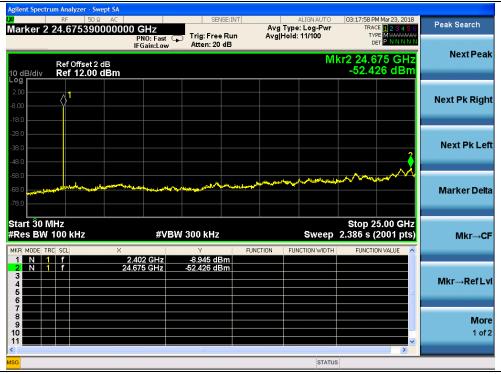
(Channel = 78, 30MHz to 25GHz, GFSK Mode)

Agilent Spectrum Analyzer - Swept SA				
Marker 2 2.483500000000 GHz	SENSE:INT	Avg Type: Log-Pwr	03:04:18 PM Mar 23, 2018 TRACE 1 2 3 4 5 6	Marker
PNO: Wide IFGain:Low	Trig: Free Run Atten: 20 dB	Avg Hold:>100/100	TYPE MWWWWW DET P N N N N N	
		Mkr	2 2.483 50 GHz	Select Marker
Ref Offset 2 dB 10 dB/div Ref 12.00 dBm			-67.248 dBm	_
2.00				
-8.00				Normal
-18.0				
-28.0				
-38.0				Delta
-48.0				
-58.0	2_			
-68.0	man man	www.m.	annon hard and and	Fixed⊳
-78.0				
Center 2.483500 GHz			Span 10.00 MHz	
	BW 300 kHz	Sweep 1	.000 ms (1001 pts)	Off
MKR MODE TRC SCL X	Y	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
1 N 1 f 2.480 09 GHz 2 N 1 f 2.483 50 GHz	-2.582 dBm -67.248 dBm			
3	-07.246 dBill			Properties►
			Ξ.	riopenies
6				
8				More
10				1 of 2
	Ш		>	
MSG		STATUS		

(Channel = 78, Band edge,GFSK Mode)

(Channel = 78, Band edge with hopping on, GFSK Mode)

MORLAB

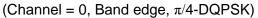

2.7.4.2 π /4-DQPSK Mode

A. Test Verdict:

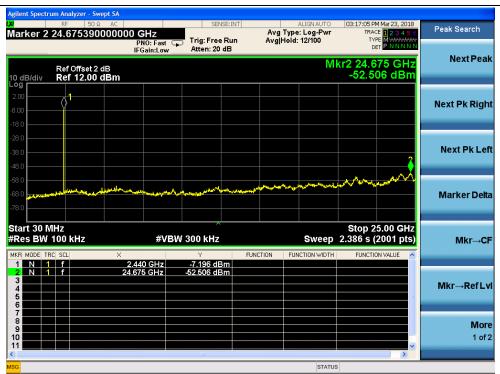
	Fraguanay	Measured Max. Out of Band	Limit		
Channel	Channel Frequency Mea (MHz)	Emission (dBm)	Carrier	Calculated	Verdict
			Level	-20dBc Limit	
0	2402	-52.43	-8.95	-28.95	PASS
39	2441	-52.51	-7.20	-27.20	PASS
78	2480	-51.97	-9.17	-29.17	PASS

B. Test Plots:

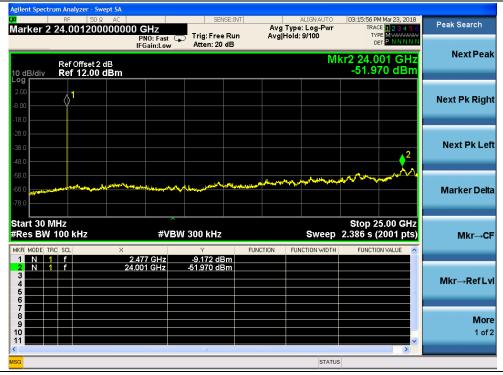
Note: the power of the Module transmitting frequency should be ignored.


(Channel = 0, 30MHz to 25GHz, $\pi/4$ -DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


(Channel = 0, Band edge with hopping on, $\pi/4$ -DQPSK)

MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 39, 30MHz to 25GHz, $\pi/4$ -DQPSK)

(Channel = 78, 30MHz to 25GHz, $\pi/4$ -DQPSK)

MORLAB

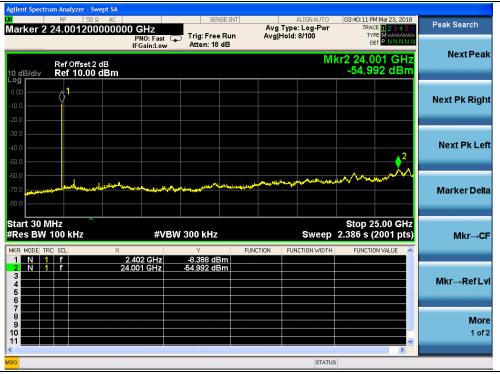
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 78, Band edge, $\pi/4$ -DQPSK)

(Channel = 78, Band edge with hopping on, $\pi/4$ -DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.7.4.3 8-DPSK Mode

A. Test Verdict:

	Frequency	Measured Max. Out of Band	Limi		
Channel	Channel Frequency M (MHz)	Emission (dBm)	Carrier	Calculated	Verdict
			Level	-20dBc Limit	
0	2402	-54.99	-8.39	-28.39	PASS
39	2441	-53.97	-7.86	-27.86	PASS
78	2480	-54.13	-8.88	-28.88	PASS

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Channel = 0, 30MHz to 25GH, 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

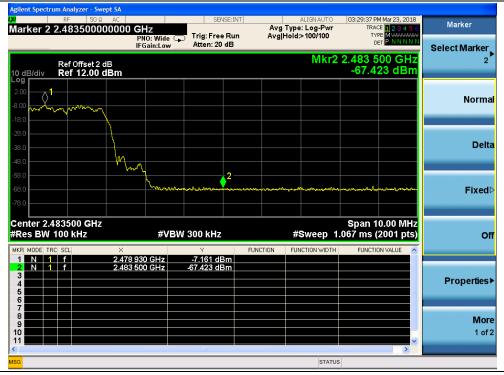
(Channel = 0, Band edge, 8-DPSK)

(Channel = 0, Band edge with hopping on, 8-DPSK)

MORLAB

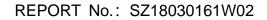
(Channel = 39, 30MHz to 25GHz, 8-DPSK)

(Channel = 78, 30MHz to 25GH, 8-DPSK)



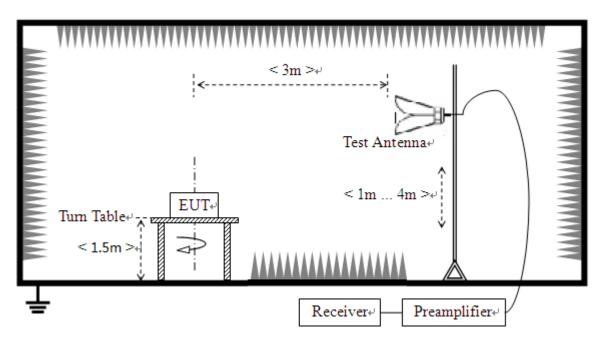
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Agilent Spectrum Analyzer - Swept SA				
Marker 2 2.483500000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	03:33:42 PM Mar 23, 2018 TRACE 1 2 3 4 5 6	Marker
PNO: Wide IFGain:Lov		Avg Hold>100/100	TYPE MWWWWWW DET PNNNNN	Select Marker
Ref Offset 2 dB 10 dB/div Ref 12.00 dBm		Mkr2	2.483 500 GHz -68.052 dBm	2
2.00 -18.00				Normal
-28.0				Delta
-58.0 -68.0 -78.0	2 	**************************************	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	Fixed⊳
Center 2.483500 GHz #Res BW 100 kHz #V	/BW 300 kHz Y	#Sweep 1	Span 10.00 MHz .067 ms (2001 pts)	Off
1 N 1 f 2.480 085 GHz 2 N 1 f 2.483 500 GHz 3 4 5 6 6 6 6 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	-6.833 dBm -68.052 dBm			Properties►
7 8 9 10 11			~	More 1 of 2
MSG		STATUS		


(Channel = 78, Band edge, 8-DPSK)

(Channel = 78, Band edge with hopping on, 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.8. Restricted Frequency Bands

2.8.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.8.2. Test Description

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under non hopping-on test mode transmitting 339 bytes DH5, 679 bytes 2DH5 and 1021 bytes 3DH5 packages at maximum power. For the Test Antenna:

Horn Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Equipments List:

Please refer ANNEX A(1.5).

2.8.3. Test Procedure

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 KHz for f < 1GHz VBW = 3 MHz for peak and 10Hz for average Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize.

2.8.4. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; AT = L_{Cable loss} [dB] - G_{preamp} [dB]$

AT: Total correction Factor except Antenna

UR: Receiver Reading

Gpreamp: Preamplifier Gain

AFactor: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

2.8.4.1 GFSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading U _R (dBuV)	A _T (dB)	A _{Factor} (dB@3m)	Max. Emission E (dBµV/m)	Limit (dBµV/m)	Verdict
0	2357.91	PK	49.61	-33.63	32.56	48.54	74	Pass
0	2363.41	AV	36.57	-33.63	32.56	35.50	54	Pass
78	2483.69	РК	49.74	-33.18	32.50	49.06	74	Pass
78	2487.28	AV	36.55	-33.18	32.50	35.87	54	Pass

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn

B. Test Plots:

Keysight Spectrum Analyzer - Swept SA 02:54:39 AM Apr 03, 2018 TRACE 123456 TYPE MWWWW DET P P N N N N ALIGN OFF Avg Type: Voltage Avg|Hold:>100/100 D Trace/Detector Marker 1 2.357912000000 GHz Trig: Free Run #Atten: 6 dB PNO: Fast IFGain:Low Select Trace Mkr1 2.357 912 GHz 49.615 dBµV 10 dB/div Log Ref 100.00 dBµV Detector Peak► <u>Auto</u> Man V Preset \Diamond^2 Detectors **Clear Trace** Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.40400 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz **Clear All Traces** FUNCTION 2.357 912 GHz 2.390 000 GHz 49.615 dBµV 47.397 dBµV N 1 f N 1 f Preset **All Traces** More 2 of 3

(Channel = 0, PEAK, GFSK)

(Channel = 0, AVERAGE, GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

RL RF PRESEL 50 Ω DC		SENSE:IN		ALIGN OFF Type: Voltage	03:50:32 AM Apr 03, 2018 TRACE 1 2 3 4 5	
rker 2 2.483686000000	PNO: Fast G	Trig: Free Run #Atten: 6 dB		Hold:>100/100	TYPE MWWWW DET P A N N N	*
dB/div Ref 100.00 dBµV	II Gam.LOW			Mkr2	2.483 686 GHz 49.737 dBµV	Select Mark
						Nor
	2	an a	เกละยุโหร่ะสุรัสส์จะปราช ะ เข	14.3 Alite_ref.14Alienteedervoorto	and the second of the second second	D
						Fix
rt 2.47800 GHz s BW (CISPR) 1 MHz	#VB\	N 3.0 MHz		Sweep 1	Stop 2.50000 GHz .000 ms (1001 pts)	
MODE TRC SCL X	500 GHz	Y 47.400 dBµV	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
	686 GHz	49.737 dBµV			E	Properti
						N 1

(Channel = 78, PEAK, GFSK)

(Channel = 78, AVERAGE, GFSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

2.8.4.2 π/4-DQPSK Mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict	
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)		
0	2322.55	PK	49.21	-33.63	32.56	48.14	74	Pass	
0	2374.81	AV	36.49	-33.63	32.56	35.42	54	Pass	
78	2487.84	PK	49.07	-33.18	32.50	48.39	74	Pass	
78	2485.39	AV	36.62	-33.18	32.50	35.94	54	Pass	

B. Test Plots:

(Channel = 0, PEAK, π /4-DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

	or 11, 2018 2 3 4 5 6 4 M W W W W	TYPE	ALIGN OFF De: Voltage d: 100/100				GHZ PNO: Fast ⊂ IEGain:Low		nalyzer - Sw 50 Ω 48106	RF		RL
Select Marker	l GHz dBµV	1 2.374 8 36.488	Mkr		ub	#Atten: 0	IFGain:Low	dBµV	100.00	Ref	/div	0 dE og 1
Norm	Λ											0.0 0.0
Del			<u> </u>									0.0 0.0 0.0
Fixe			?									0.0 0.0 0.0
	00 GHz	Stop 2.404 11.93 s (30	Guyaan			10 Hz					2.300	
		FUNCTION	Sweep	UNCTION	2	Y 36.488 dE	#VB	х	PR) 1 ₪			RN
Propertie					βμV	36.562 dB	00 GHz	2.39			N 1	
M C 1 c												
	-					III						

(Channel = 0, AVERAGE, $\pi/4$ -DQPSK)

(Channel = 78, PEAK, $\pi/4$ -DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

ট <mark>₽</mark> <mark>●</mark> ■ Marker		AM Apr 11, 20		ALIGN OFF		ISE:INT	SE		DC		R	RL
Select Marker	www.	ACE 1234 YPE MMWW DET PPNN	TY	e: Voltage : 100/100	Avg Ty Avg Hol		Trig: Fre #Atten: 6	Z 10: Fast G Sain:Low	Р	8538733	r 2 2.4	larker
2		387 GI 19 dBµ	2.485 3 36.61	Mkr2					dBµV	f 100.00	iv Re	I0 dB/di
Norma												90.0
Delta												70.0 60.0 50.0
Fixed								<mark>}</mark> 2			[40.0 30.0 20.0
LIYER	<u>-</u>	50000 ĈI	Stop 2.5							CH2	.47800	10.0
Of	pts)	(3001 pt	2.523 s (Sweep	CTION F	FUI	10 Hz	#VBV	Hz	PR) 1 M		¢Res B
Properties			TONCH			μV	36.613 dE 36.619 dE		2.483 50 2.485 38		1 f 1 f	1 N 2 N 3 4 5
More 1 of 2												6 7 8 9 10
	۳ ۲	Þ					III					11

(Channel = 78, AVERAGE, $\pi/4$ -DQPSK)

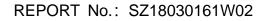
2.8.4.3 8-DPSK Mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Chamler	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	Voraiot
0	2379.23	PK	49.61	-33.63	32.56	48.54	74	Pass
0	2368.29	AV	36.56	-33.63	32.56	35.49	54	Pass
78	2496.09	PK	49.67	-33.18	32.50	48.99	74	Pass
78	2489.32	AV	36.61	-33.18	32.50	35.93	54	Pass

B. Test Plots:

Keysight Spectrum Analyzer - Swept SA 03:18:10 AM Apr 03, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P A N N N DI Avg Type: Voltage Avg|Hold:>100/100 Marker 1 2.379232000000 GHz Marker Trig: Free Run #Atten: 6 dB PNO: Fast IFGain:Low Select Marker Mkr1 2.379 232 GH 49.614 dBµ\ Ref 100.00 dBµV 10 dB/div _og Normal 1 _____**2** Delta **Fixed** Stop 2.40400 GHz Sweep 1.000 ms (1001 pts) Start 2.30000 GHz #VBW 3.0 MHz Res BW (CISPR) 1 MHz Off 2.379 232 GHz 2.390 000 GHz 49.614 dBµV 47.902 dBµV N 1 f N 1 f **Properties** More 1 of 2


(Channel = 0, PEAK, 8-DPSK)

(Channel = 0, AVERAGE, 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Keysight Spectrum Analyzer - Swept	424						
RL RF PRESEL 50 Ω rker 2 2.496094000	DC	SENSE:	Avg	ALIGN OFF Type: Voltage Hold:>100/100	TRAC	M Apr 03, 2018 CE 123456 PE MWWWWW ET PANNN	Marker
dB/div Ref 100.00 c		#Attent 0 dB		Mkr2		94 GHz 2 dBµV	Select Marke
							Norn
	Marking Langer	. automatica and a state of the	har for the second second	الاستواروب الاوروقان ورزوم وال	2	€.1,_s1,1,-1,+1,-15)61/%	De
0							Fixe
art 2.47800 GHz s BW (CISPR) 1 MHz	2 #VE	3W 3.0 MHz		Sweep 1	Stop 2.50 .000 ms (0000 GHz 1001 pts)	
MODE TRC SCL N 1 f N 1 f	× 2.483 500 GHz 2.496 094 GHz	Y 48.209 dBµV 49.672 dBµV	FUNCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	
						E	Propertie
							M d 1 d
		III					

(Channel = 78, PEAK, 8-DPSK)

(Channel = 78, AVERAGE, 8-DPSK)

MORLAB

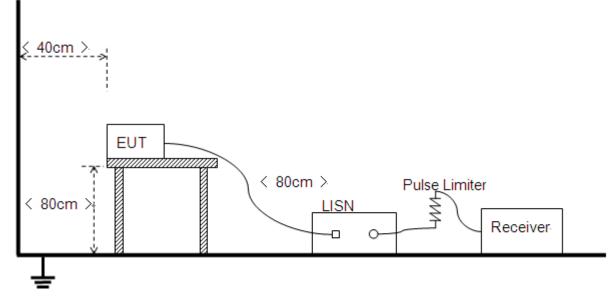
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

2.9. Conducted Emission

2.9.1. Requirement

According to RSS-GEN section 8.8, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency rang	e Conducted Limit (dBµV)	Conducted Limit (dBµV)		
(MHz)	Quai-peak	Average		
0.15 - 0.50	66 to 56	56 to 46		
0.50 - 5	56	46		
5- 30	60	50		


NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.9.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

The factors of the site are calibrated to correct the reading. During the measurement, the Bluetooth

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

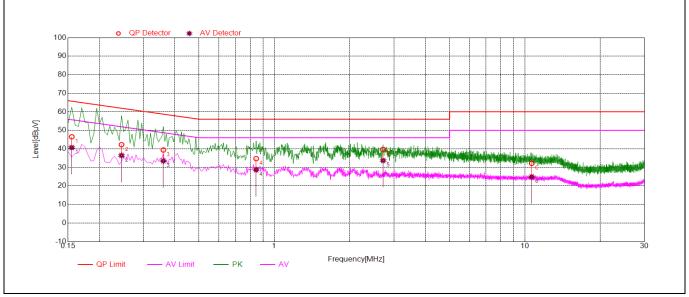
EUT is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

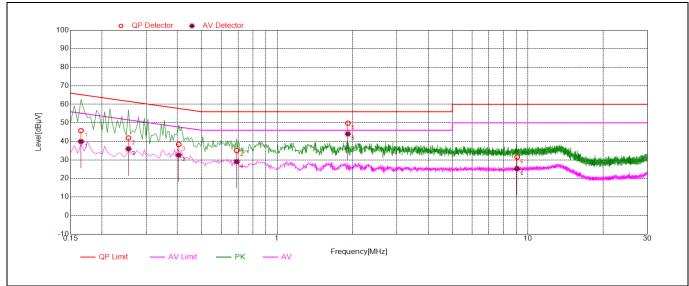
2.9.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.


A. Test setup:

The EUT configuration of the emission tests is $\underline{\text{EUT} + \text{Link.}}$ **Note:** The test voltage is AC 120V/60Hz.

B. Test Plots:



(Plot A:	L Phase)
----------	----------

NO. Fre.	Emission Level (dBµV)		Limit (dBµV)		Power-line	Verdict	
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.15	46.52	40.70	65.73	55.73		PASS
2	0.25	42.26	36.46	61.92	51.92		PASS
3	0.36	39.42	33.51	58.73	48.73	Line	PASS
4	0.85	34.75	28.68	56.00	46.00	Line	PASS
5	2.72	39.75	33.72	56.00	46.00		PASS
6	10.64	32.21	24.92	60.00	50.00	1	PASS

(Plot B: N Phase)

NO. Fre.	Emission Level (dBµV)		Limit (Limit (dBµV)		Verdict	
	(MHz)	Quai-peak	Average	Quai-peak	Average	Power-line	
1	0.16	45.78	39.92	65.22	55.22		PASS
2	0.26	41.83	35.99	61.59	51.59		PASS
3	0.41	38.39	32.58	57.75	47.75	Noutrol	PASS
4	0.69	35.02	29.08	56.00	46.00	Neutral	PASS
5	1.92	49.83	44.05	56.00	46.00		PASS
6	9.06	31.50	25.29	60.00	50.00		PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.10. Radiated Emission

2.10.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

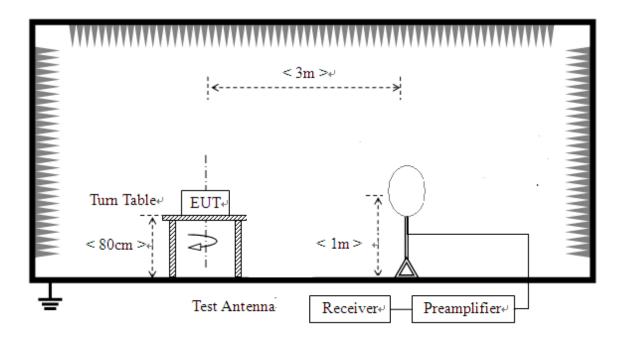
According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

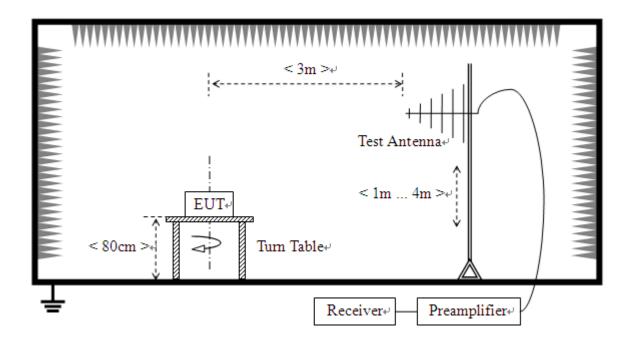
Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- 1. For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

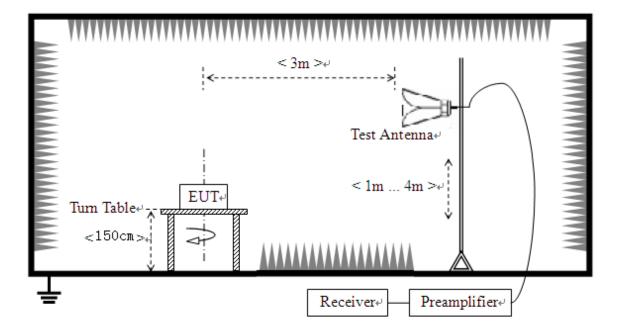
In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)




2.10.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz


2) For radiated emissions from 30MHz to1GHz

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, the EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The test antenna may have to be

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Please reference ANNEX A(1.5).

2.10.3. Test Procedure

Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold

2.10.4. Test Result

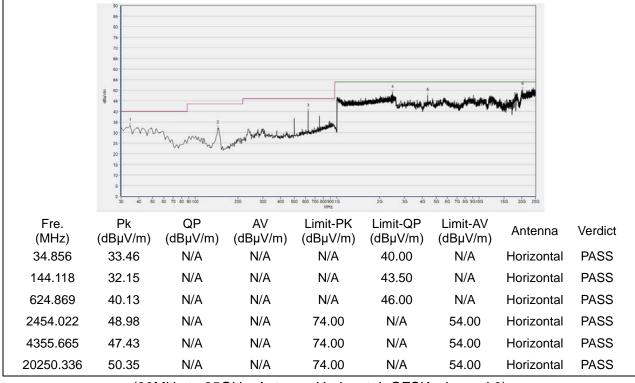
According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

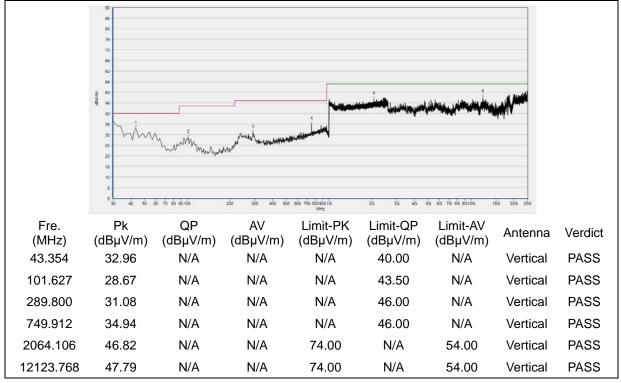
The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB] \\ A_T: Total correction Factor except Antenna \\ U_R: Receiver Reading \\ G_{preamp}: Preamplifier Gain \\ A_{Factor}: Antenna Factor at 3m$

During the test, the total correction Factor AT and A_{Factor} were built in test software.

Note: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.


The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

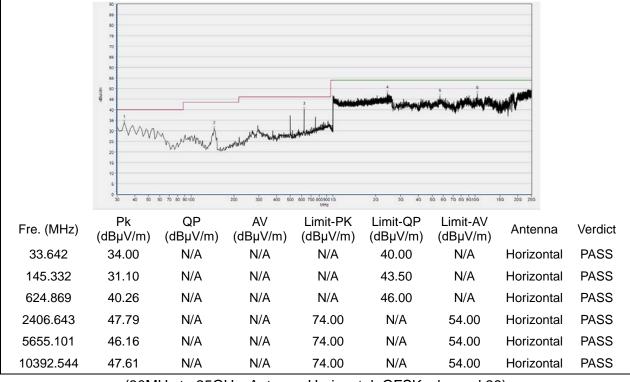


2.10.4.1 GFSK Mode:

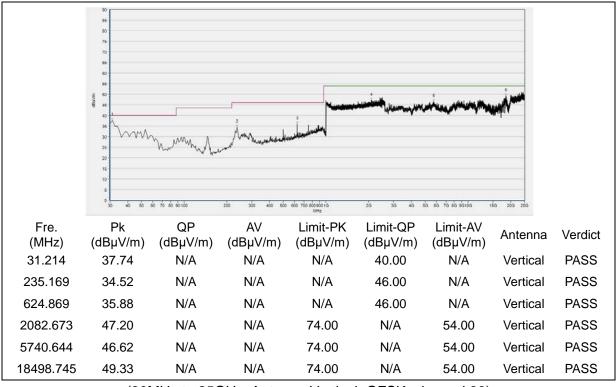
Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal, GFSK, channel 0)

(30MHz to 25GHz, Antenna Vertical, GFSK, channel 0)



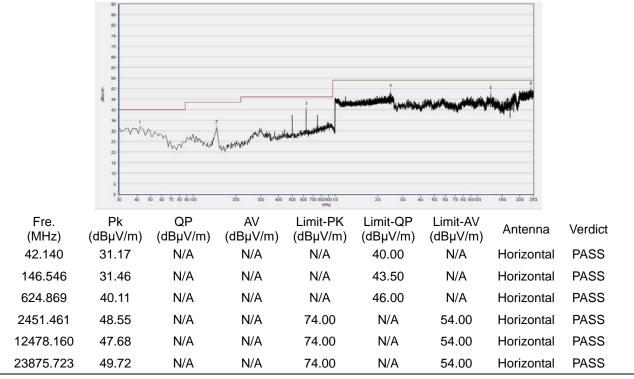
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn


_

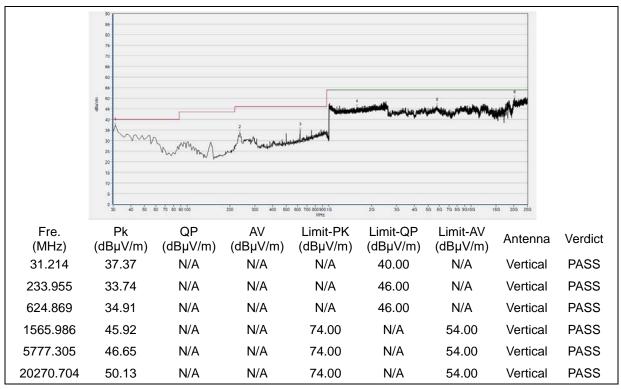
Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal, GFSK, channel 39)

(30MHz to 25GHz, Antenna Vertical, GFSK, channel 39)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

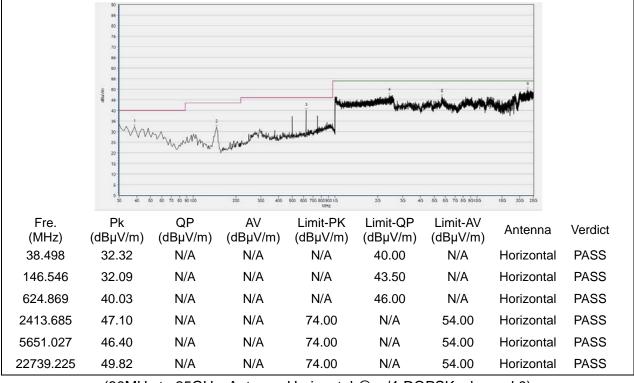

Fax: 86-755-36698525

Plot for Channel = 78

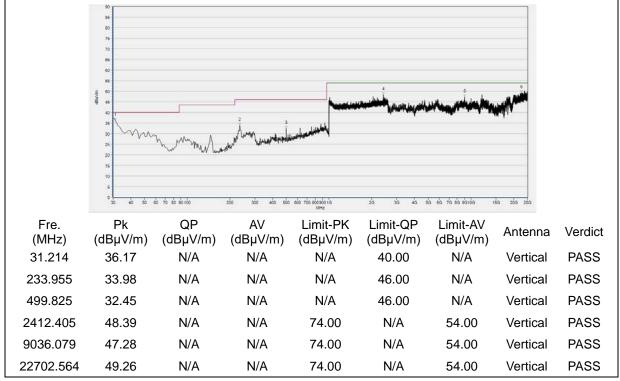
(30MHz to 25GHz, Antenna Horizontal, GFSK, channel 78)

(30MHz to 25GHz, Antenna Vertical, GFSK, channel 78)

MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

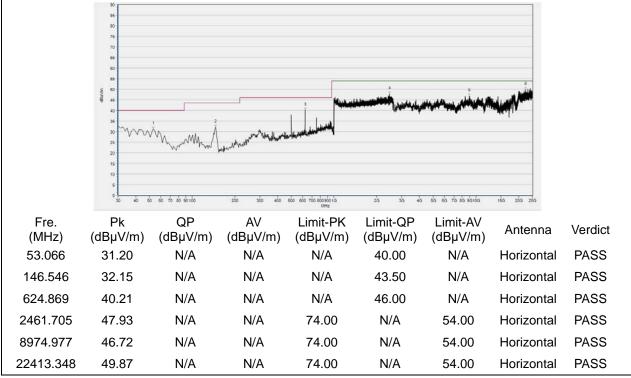
Tel: 86-755-36698555 Http://www.morlab.cn

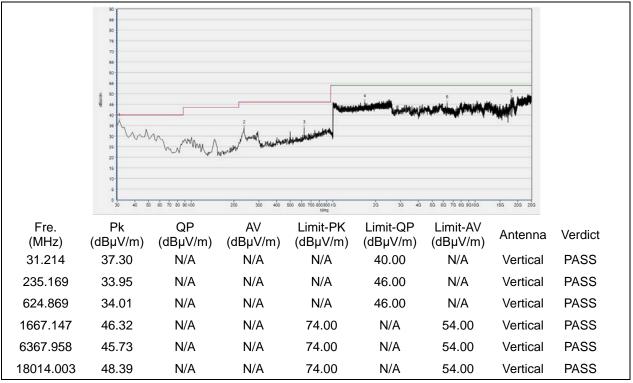


2.10.4.2 π/4-DQPSK Mode:

Plots for Channel = 0

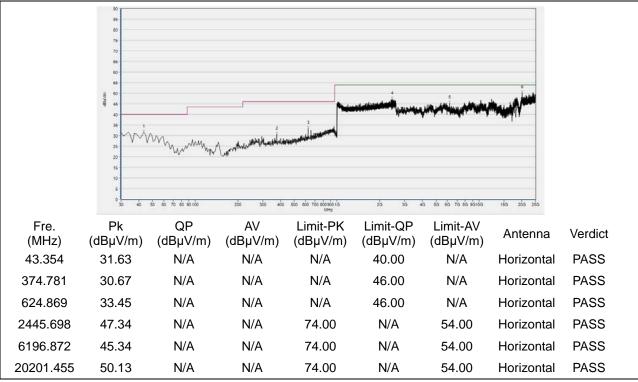
(30MHz to 25GHz, Antenna Horizontal @ π/4-DQPSK, channel 0)

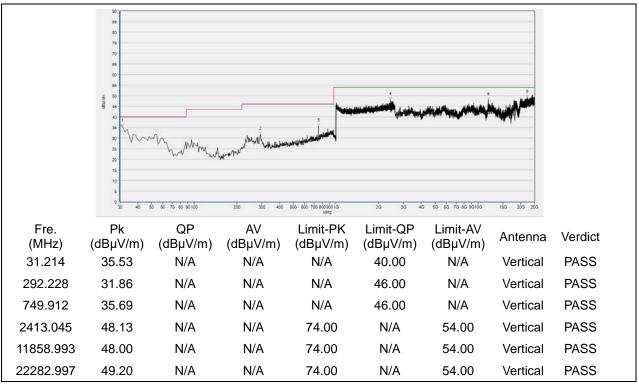

(30MHz to 25GHz, Antenna Vertical @ π/4-DQPSK, channel 0)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal @ π /4-DQPSK, channel 39)

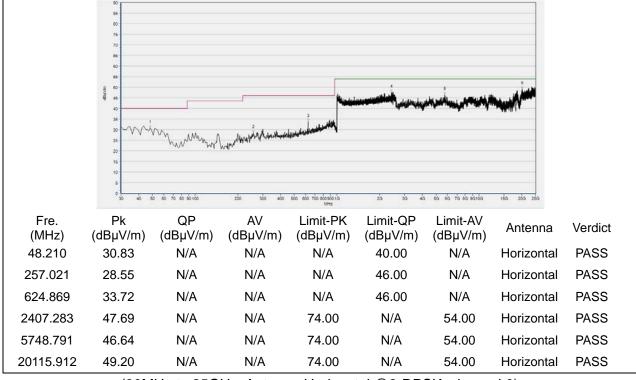

(30MHz to 25GHz, Antenna Vertical @ π/4-DQPSK, channel 39)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

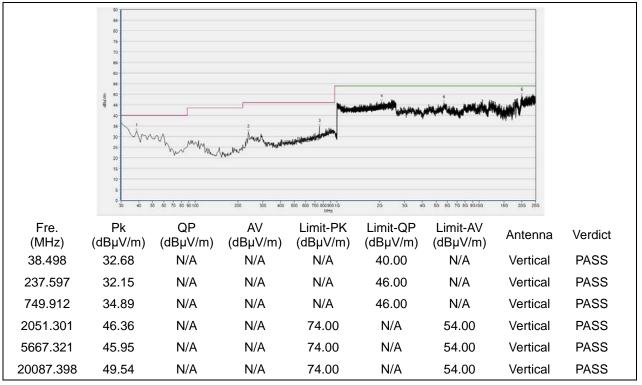
Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @ π /4-DQPSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @ π/4-DQPSK, channel 78)



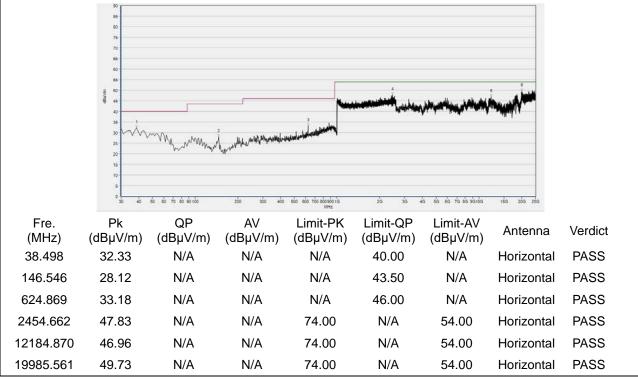
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa Http://www.morlab.cn E-



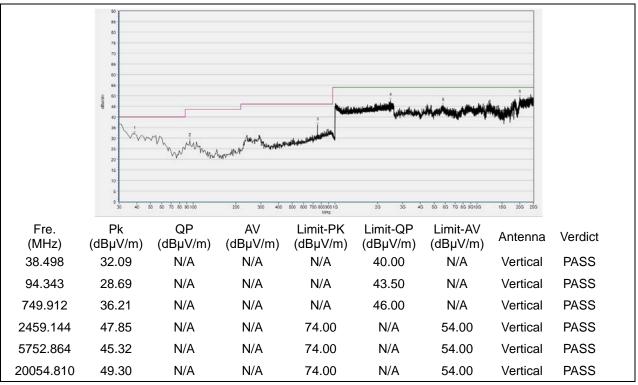
2.10.4.3 8-DPSK Mode:

Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 0)

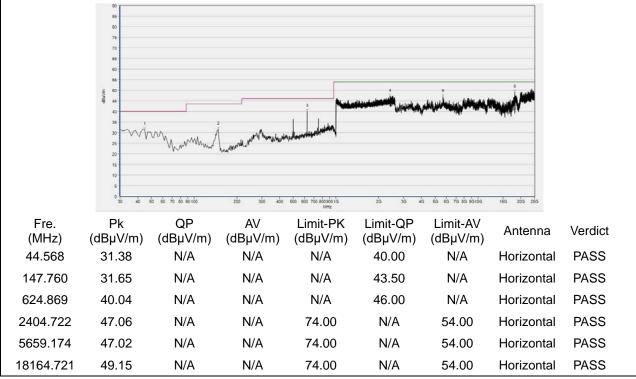

(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 0)

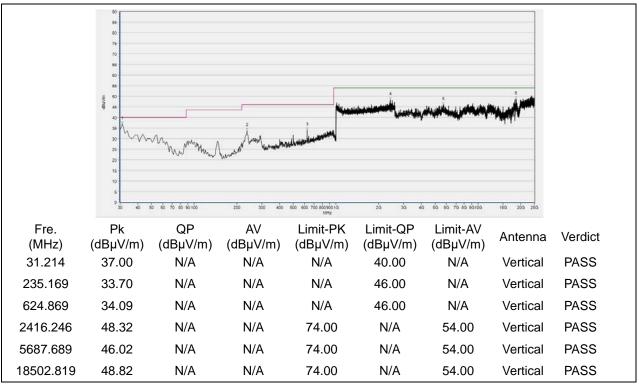
MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 39)


(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 39)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86 Http://www.morlab.cn E-mail:

Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 78)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn Http://www.morlab.cn

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Uncertainty
±5%
±2.22dB
±5%
±5%
±5%
±2.77 dB
±5%
±2.95dB
±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.					
Department:	Morlab Laboratory					
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang					
	Road, Block 67, BaoAn District, ShenZhen, GuangDong					
	Province, P. R. China					
Responsible Test Lab	Mr. Su Feng					
Manager:						
Telephone:	+86 755 36698555					
Facsimile:	+86 755 36698525					

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Hamor	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Bluetooth Base Station	6K00006210	MT8852B	Anritsu	2017.05.24	2018.05.23
Power Splitter	NW521	1506A	Weinschel	2017.05.24	2018.05.23
Attenuator 1	(N/A.)	10dB	Resnet	2017.05.24	2018.05.23
Attenuator 2	(N/A.)	3dB	Resnet	2017.05.24	2018.05.23
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2017.12.03	2018.12.02
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY56400093	N9038A	KEYSIGHT	2017.07.13	2018.07.12
LISN	812744	NSLK 8127	Schwarzbeck	2017.05.17	2018.05.16
Pulse Limiter	9391	VTSD	Schwarzbeck	2017.05.17	2018.05.16
(20dB)		9561-D			
Coaxial cable(BNC) (30MHz-26GHz)	CB01	EMC01	Morlab	N/A	N/A

4.3Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal. Due
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.4 List of Software Used

Description	Manufacturer	Software Version
Test system	Tonscend	V2.6
Power Panel	Agilent	V3.8
MORLAB EMCR V1.2	MORLAB	V 1.0

4.4 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY54130016	N9038A	Agilent	2017.05.17	2018.05.16
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2017.05.14	2018.05.13
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2017.09.13	2018.09.12
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2018.03.03	2019.03.02
Test Antenna - Horn	01774	BBHA 9120D	Schwarzbeck	2017.09.13	2018.09.12
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
Anechoic Chamber	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18

_____ END OF REPORT

_

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China