

Date : 2025-01-21 No. : HMD25010001		Page 1 of 42				
Applicant	:	HORI Co., Ltd. 640 Saedo-Cho, Tsuzuki-ku, Yokohama-shi, Kanagawa-ken 224-0054, Japan				
Supplier / Manufacturer	:	HORI Co., Ltd. 640 Saedo-Cho, Tsuzuki-ku, Yokohama-shi, Kanagawa-ken 224-0054, Japan				
Description of Sample(s)	:	Submitted sample(s) said to beProduct:Fighting Commander OCTA Pro for PS5/PS4/PCBrand Name:HORIModel No.:SPF-040FCC ID:RQZSPF-2160				
Date Samples Received	:	2025-01-02				
Date Tested	:	2025-01-07 to 2025-01-16				
Investigation Requested	:	Perform ElectroMagnetic Interference measurement in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15 and ANSI C63.10: 2013 for FCC Certification.				
Conclusions	:	The submitted product <u>COMPLIED</u> with the requirements of Federal Communications Commission [FCC] Rules and Regulations Part 15. The tests were performed in accordance with the standards described above and on Section 2.2 in this Test Report.				
Remarks	:	For additional model(s) details, see page 3				
Test by		Susu				

Dr.CHAN Kwok Hung, Brian Authorized Signatory

Date : 2025-01-21 No. : HMD25010001

Photograph(s) of Product

CONTENT:

Page 2 of 42

Page 1 of 42 Cover Page 2 of 42 Content **1.0 General Details** 1.1 Equipment Under Test [EUT] Page 3 of 42 Description of EUT operation 1.2 Page 3 of 42 **RF** Module Details 1.3 Antenna Details Page 3 of 42 Page 3 of 42 1.4 Date of Order Page 3 of 42 1.5 Submitted Sample(s) Page 3 of 42 1.6 Test Duration 1.7 Country of Origin Page 3 of 42 Page 4 of 42 1.8 Channel List **Technical Details** 2.0 2.1 Page 5 of 42 Investigations Requested Test Standards and Results Summary Page 6 of 42 2.2 <u>3.0</u> **Test Results** 3.1 Emission Page 7-37 of 42 Appendix A Page 38 of 42 List of Measurement Equipment Appendix B Page 39-42 of 42

Date : 2025-01-21

No. : HMD25010001

Page 3 of 42

<u>1.0</u> <u>General Details</u>

1.1 **Equipment Under Test [EUT] Description of Sample(s)** Product: Fighting Commander OCTA Pro for PS5/PS4/PC Manufacturer: HORI Co., Ltd. 640 Saedo-Cho, Tsuzuki-ku, Yokohama-shi, Kanagawa-ken 224-0054, Japan Brand Name: HORI Model Number: SPF-040 SPF-040U, SPF-040E, SPF-040A, SPF-040C Additional Model Number: Rating: 3.7Vd.c.(lithium battery*1) 5.0Vd.c. by USB port

1.1.1 Description of EUT Operation

The Equipment Under Test (EUT) is a Fighting Commander OCTA Pro for PS5/PS4/PC. It is a transceiver operating at 2403Hz~2479MHz and the RF signal was modulated by IC.

1.2 RF Module Details

Module Model Number:	HJM90023B
Module FCC ID:	N/A
Modulation:	GFSK
Frequency Range:	2403-2479MHz

1.3 Antenna Details

Antenna Type:	PCB antenna
Antenna Gain Ant 1:	2.64dBi
Antenna Gain Ant 2:	2.63dBi

1.4 Date of Order

2025-01-02

1.5 Submitted Sample(s):

1 Sample

1.6 Test Duration

2025-01-07 to 2025-01-16

1.7 Country of Origin

China

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

Page 4 of 42

1.8 Channel List

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2403	20	2443
1	2405	21	2445
2	2407	22	2447
3	2409	23	2449
4	2411	24	2451
5	2413	25	2453
6	2415	26	2455
7	2417	27	2457
8	2419	28	2459
9	2421	29	2461
10	2423	30	2463
11	2425	31	2465
12	2427	32	2467
13	2429	33	2469
14	2431	34	2471
15	2433	35	2473
16	2435	36	2475
17	2437	37	2477
18	2439	38	2479
19	2441		

Date : 2025-01-21

Page 5 of 42

No. : HMD25010001

2.0 Technical Details

2.1 Investigations Requested

Perform Electromagnetic Interference measurements in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15 Regulations and ANSI C63.10: 2013 for FCC Certification. The device was realized by test software, the power level selected 2.4dBm.

EMI_TEST_v2.0	_ X
8278.ini - SWIRE	• SWB SP
RF PM	
Setting:	Tx Rx
2403 Set_Channel	PA PAO - PAO - Set_Gpio
	Log_Window:
2.4dbm Set_Power	******************
BLE_2M · Set_RF_Mode	@ Send Hopping Channel Setting ************************************
	TC32 EVK: Swire OK
Carrier:	**************************************
	@ Send Start CamerData Command ************************************
Carrier CarrierData	TC32 EVK: Swire OK ************************************
RX:	Set Parameter ***********************************
	TC32 EVK: Swire OK ************************************
RxTest	@ Send CarrierData Command ************************************
	TC32 EVK: Swire OK ************************************

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Page 6 of 42

Date : 2025-01-21 No. : HMD25010001

2.2 Test Standards and Results Summary Tables

EMISSION Results Summary								
Test Condition	Test Requirement	Test Method	Class /	Т	est Result	-		
			Severity	Pass	Failed	N/A		
Field Strength of	FCC 47CFR 15.249	ANSI C63.10: 2013	N/A	\boxtimes				
Fundamental &								
Harmonics Emissions								
Radiated Emissions	FCC 47CFR 15.209	ANSI C63.10: 2013	N/A	\boxtimes				
	FCC 47CFR 15.205							
AC Mains Conducted	FCC 47CFR 15.207	ANSI C63.10: 2013	N/A	\boxtimes				
Emissions								
Antenna requirement	FCC 47CFR 15.203	N/A	N/A	\boxtimes				
20dB Emission bandwith	FCC 47CFR 15.215(c)	ANSI C63.10: 2013	N/A	\boxtimes				

Note: N/A - Not Applicable

Date : 2025-01-21 No. : HMD25010001

Page 7 of 42

Relative humidity 57%

- 3.0 Test Results
- 3.1 Emission
- 3.1.1 Radiated Emissions

Ambient temperature 25°C

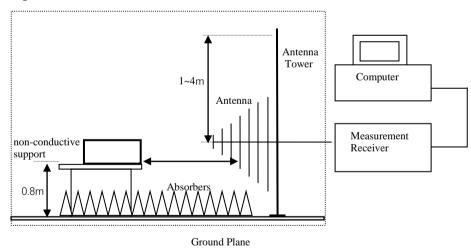
Test Requirement: Test Method: Test Date: Mode of Operation: FCC 47CFR 15.249 & FCC 47CFR 15.209 ANSI C63.10:2013 2025-01-08 to 2025-01-16 Tx mode

Test Method:

For emission measurements at or below 1 GHz, the sample was placed 0.8m above the ground plane of semianechoic Chamber*. For emission measurements above 1 GHz, the sample was placed 1.5m above the ground plane of semi-anechoic Chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

 * Semi-Anechoic chamber located on the G/F of The Hong Kong Standards and Testing Centre Ltd. with Registration Number: HK0001 Test Firm Registration Number: 367672

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Date : 2025-01-21 No. : HMD25010001 Page 8 of 42

Spectrum Analyzer Setting:

9KHz – 30MHz (Pk & Av)	RBW: VBW: Sweep: Span: Trace:	
30MHz – 1GHz (QP)	RBW: VBW: Sweep: Span: Trace:	120kHz 120kHz Auto Fully capture the emissions being measured Max. hold
Above 1GHz (Pk & Av) (Other than Fundamental Emissions)	RBW: VBW: Sweep: Span: Trace:	1MHz 1MHz Auto Fully capture the emissions being measured Max. hold

Test Setup:

- Absorbers placed on top of the ground plane are for measurements above 1000MHz only.

- Measurements between 30MHz to 1000MHz made with Bi-log antennas, above 1000MHz horn antennas are used.

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

Page 9 of 42

Limits for Field Strength of Fundamental & Harmonics Emissions [FCC 47CFR 15.249]:

Frequency Range of Fundamental	Field Strength of Fundamental Emission	Field Strength of Harmonics Emission
[MHz]	[microvolts/meter]	[microvolts/meter]
902-928	50,000 [Quasi-Peak]	500 [Average]
2400-2483.5	50,000 [Average]	500 [Average]

Remarks:

No additional spurious emissions found between lowest internal used/generated frequency and 30 MHz

Calculated measurement uncertainty

(9kHz-30MHz): 2.0dB (30MHz -1GHz): 4.9dB (1GHz -6GHz): 4.02dB (6GHz -26.5GHz): 4.03dB

Emissions in the vertical and horizontal polarizations have been investigated and the worst-case test results are recorded in this report.

Page 10 of 42

Date : 2025-01-21 No. : HMD25010001

Results of Tx mode (Ant 1;Lowest Frequency Channel-2403 MHz): Pass

Field Strength of Fundamental Emissions								
	Peak Value							
Frequency	Frequency Measured Correction Field Field Limit @3m E-Field							
	Level @3m Factor Strength Strength Polarity							
MHz	MHz $dB\mu V/m$ $dB\mu V/m$ $dB\mu V/m$ $\mu V/m$ $\mu V/m$							
2403.00	85.2	-4.8	80.4	10,519.6	500,000	Vertical		
2403.00	92.7	-4.7	88.0	25,003.5	500,000	Horizontal		

Field Strength of Fundamental Emissions								
	Average Value							
Frequency Measured Correction Field Field Limit @3m E-Field								
	Level @3m Factor Strength Strength Polarity							
MHz	MHz $dB\mu V/m$ $dB\mu V/m$ $dB\mu V/m$ $\mu V/m$ $\mu V/m$							
2403.00	80.0	-4.8	75.2	5,761.0	50,000	Vertical		
2403.00	87.0	-4.7	82.3	12,986.7	50,000	Horizontal		

Field Strength of Harmonics Emission								
Peak Value								
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field		
	Level @3m	Factor	Strength	Strength		Polarity		
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m			
4806.0	54.5	0.8	55.3	584.5	5,000	Vertical		
4806.0	55.6	0.5	56.1	640.5	5,000	Horizontal		
7209.0	48.1	7.0	55.1	569.5	5,000	Vertical		
7209.0	49.7	6.5	56.2	644.9	5,000	Horizontal		
9612.0	46.5	8.5	55.0	562.3	5,000	Vertical		
9612.0	47.2	8.3	55.5	595.7	5,000	Horizontal		
12015.0	45.2	10.9	56.1	638.3	5,000	Vertical		
12015.0	45.0	10.8	55.8	616.6	5,000	Horizontal		

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

Page 11 of 42

Field Strength of Harmonics Emission						
		A	Average Valu	e		
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field
	Level @3m	Factor	Strength	Strength		Polarity
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m	
4806.0	40.3	0.8	41.1	113.0	500	Vertical
4806.0	41.1	0.5	41.6	119.5	500	Horizontal
7209.0	34.3	7.0	41.3	116.1	500	Vertical
7209.0	35.2	6.5	41.7	121.6	500	Horizontal
9612.0	33.0	8.5	41.5	118.9	500	Vertical

Results of Tx mode (Middle Frequency Channel- 2441MHz): Pass

Field Strength of Fundamental Emissions							
			Peak Value				
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field	
	Level @3m	Factor	Strength	Strength		Polarity	
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m		
2441.00	85.0	-4.8	80.2	10,185.9	500,000	Vertical	
2441.00	92.3	-4.7	87.6	23,960.7	500,000	Horizontal	

Field Strength of Fundamental Emissions							
		A	Average Valu	e			
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field	
	Level @3m	Factor	Strength	Strength		Polarity	
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m		
2441.00	79.5	-4.8	74.7	5,426.3	50,000	Vertical	
2441.00	86.3	-4.7	81.6	11,995.0	50,000	Horizontal	

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

	Field Strength of Harmonics Emission									
	Peak Value									
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field				
	Level @3m	Factor	Strength	Strength		Polarity				
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m					
4882.0	54.3	0.8	55.1	570.2	5,000	Vertical				
4882.0	56.0	0.5	56.5	668.3	5,000	Horizontal				
7323.0	48.2	7.0	55.2	575.4	5,000	Vertical				
7323.0	49.4	6.5	55.9	623.7	5,000	Horizontal				
9764.0	46.3	8.5	54.8	549.5	5,000	Vertical				
9764.0	47.1	8.3	55.4	588.8	5,000	Horizontal				
12205.0	45.2	10.9	56.1	638.3	5,000	Vertical				
12205.0	44.9	10.8	55.7	609.5	5,000	Horizontal				

	Field Strength of Harmonics Emission Avarage Value								
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field			
1 5	Level @3m	Factor	Strength	Strength		Polarity			
MHz	dBµV/m	dBµV/m	dBµŬ/m	μV/m	μV/m	2			
4882.0	41.0	0.8	41.8	123.3	500	Vertical			
4882.0	41.1	0.5	41.6	120.2	500	Horizontal			
7323.0	34.2	7.0	41.2	114.8	500	Vertical			
7323.0	35.0	6.5	41.5	118.9	500	Horizontal			
9764.0	33.1	8.5	41.6	120.2	500	Vertical			
9764.0	32.9	8.3	41.2	114.8	500	Horizontal			
12205.0	30.6	10.9	41.5	118.9	500	Vertical			
12205.0	29.4	10.8	40.2	102.3	500	Horizontal			

Results of Tx mode (Highest Frequency Channel - 2479MHz): Pass

Field Strength of Fundamental Emissions							
			Peak Value				
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field	
	Level @3m	Factor	Strength	Strength		Polarity	
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m		
2479.00	82.2	-4.8	77.4	7,447.3	500,000	Vertical	
2479.00	89.2	-4.7	84.5	16,865.5	500,000	Horizontal	

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

Page 13 of 42

Field Strength of Fundamental Emissions							
		A	Average Valu	e			
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field	
	Level @3m	Factor	Strength	Strength		Polarity	
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m		
2479.00	76.9	-4.8	72.1	4,027.2	50,000	Vertical	
2479.00	83.0	-4.7	78.3	8,222.4	50,000	Horizontal	

	Field Strength of Harmonics Emission									
	Peak Value									
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field				
	Level @3m	Factor	Strength	Strength		Polarity				
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m					
4958.0	54.6	0.8	55.4	590.2	5,000	Vertical				
4958.0	56.1	0.5	56.6	676.1	5,000	Horizontal				
7437.0	48.2	7.0	55.2	575.4	5,000	Vertical				
7437.0	50.0	6.5	56.5	668.3	5,000	Horizontal				
9916.0	46.7	8.5	55.2	575.4	5,000	Vertical				
9916.0	47.2	8.3	55.5	595.7	5,000	Horizontal				
12395.0	45.1	10.9	56.0	631.0	5,000	Vertical				
12395.0	45.3	10.8	56.1	638.3	5,000	Horizontal				

	Field Strength of Harmonics Emission Avarage Value									
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field				
	Level @3m	Factor	Strength	Strength		Polarity				
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m	-				
4958.0	40.5	0.8	41.3	116.4	500	Vertical				
4958.0	41.1	0.5	41.6	120.2	500	Horizontal				
7437.0	34.0	7.0	41.0	112.2	500	Vertical				
7437.0	35.1	6.5	41.6	120.2	500	Horizontal				
9916.0	33.0	8.5	41.5	118.9	500	Vertical				
9916.0	33.5	8.3	41.8	123.0	500	Horizontal				
12395.0	30.1	10.9	41.0	112.2	500	Vertical				
12395.0	30.3	10.8	41.1	113.5	500	Horizontal				

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Page 14 of 42

Date : 2025-01-21 No. : HMD25010001

Results of Tx mode (Ant2; Lowest Frequency Channel-2403 MHz): Pass

Field Strength of Fundamental Emissions							
			Peak Value				
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field	
	Level @3m	Factor	Strength	Strength		Polarity	
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m		
2403.00	87.1	-4.8	82.3	13,076.8	500,000	Vertical	
2403.00	93.1	-4.7	88.4	26,212.0	500,000	Horizontal	

Field Strength of Fundamental Emissions								
	Average Value							
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field		
	Level @3m	Factor	Strength	Strength		Polarity		
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m			
2403.00	81.3	-4.8	76.5	6,706.6	50,000	Vertical		
2403.00	86.7	-4.7	82.0	12,603.8	50,000	Horizontal		

	Field Strength of Harmonics Emission								
	Peak Value								
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field			
	Level @3m	Factor	Strength	Strength		Polarity			
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m				
4806.0	54.2	0.8	55.0	562.3	5,000	Vertical			
4806.0	55.3	0.5	55.8	616.6	5,000	Horizontal			
7209.0	48.0	7.0	55.0	562.3	5,000	Vertical			
7209.0	49.5	6.5	56.0	631.0	5,000	Horizontal			
9612.0	46.3	8.5	54.8	549.5	5,000	Vertical			
9612.0	47.1	8.3	55.4	588.8	5,000	Horizontal			
12015.0	45.0	10.9	55.9	623.7	5,000	Vertical			
12015.0	45.1	10.8	55.9	623.7	5,000	Horizontal			

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

Page 15 of 42

	Field Strength of Harmonics Emission								
	Average Value								
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field			
	Level @3m	Factor	Strength	Strength		Polarity			
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m				
4806.0	40.4	0.8	41.2	114.8	500	Vertical			
4806.0	41.0	0.5	41.5	118.9	500	Horizontal			
7209.0	34.4	7.0	41.4	117.5	500	Vertical			
7209.0	35.0	6.5	41.5	118.9	500	Horizontal			
9612.0	32.8	8.5	41.3	116.1	500	Vertical			
9612.0	32.8	8.3	41.1	113.5	500	Horizontal			
12015.0	30.6	10.9	41.5	118.9	500	Vertical			
12015.0	30.7	10.8	41.5	118.9	500	Horizontal			

Results of Tx mode (Middle Frequency Channel- 2441MHz): Pass

	Field Strength of Fundamental Emissions								
			Peak Value						
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field			
	Level @3m	Factor	Strength	Strength		Polarity			
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m				
2441.00	83.7	-4.8	78.9	8,770.0	500,000	Vertical			
2441.00	91.1	-4.7	86.4	20,868.9	500,000	Horizontal			

Field Strength of Fundamental Emissions							
		A	Average Valu	e			
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field	
	Level @3m	Factor	Strength	Strength		Polarity	
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m		
2441.00	77.5	-4.8	72.7	4,310.2	50,000	Vertical	
2441.00	85.8	-4.7	81.1	11,350.1	50,000	Horizontal	

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

	Field Strength of Harmonics Emission									
	Peak Value									
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field				
	Level @3m	Factor	Strength	Strength		Polarity				
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m					
4882.0	54.4	0.8	55.2	576.8	5,000	Vertical				
4882.0	55.8	0.5	56.3	653.1	5,000	Horizontal				
7323.0	48.3	7.0	55.3	582.1	5,000	Vertical				
7323.0	50.0	6.5	56.5	668.3	5,000	Horizontal				
9764.0	46.8	8.5	55.3	582.1	5,000	Vertical				
9764.0	47.0	8.3	55.3	582.1	5,000	Horizontal				
12205.0	45.1	10.9	56.0	631.0	5,000	Vertical				
12205.0	45.0	10.8	55.8	616.6	5,000	Horizontal				

	Field Strength of Harmonics Emission Avarage Value									
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field				
1 5	Level @3m	Factor	Strength	Strength		Polarity				
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m					
4882.0	40.7	0.8	41.5	119.1	500	Vertical				
4882.0	40.6	0.5	41.1	113.5	500	Horizontal				
7323.0	34.0	7.0	41.0	112.2	500	Vertical				
7323.0	35.2	6.5	41.7	121.6	500	Horizontal				
9764.0	33.0	8.5	41.5	118.9	500	Vertical				
9764.0	32.1	8.3	40.4	104.7	500	Horizontal				
12205.0	30.8	10.9	41.7	121.6	500	Vertical				
12205.0	29.4	10.8	40.2	102.3	500	Horizontal				

Results of Tx mode (Highest Frequency Channel - 2479MHz): Pass

	Field Strength of Fundamental Emissions								
			Peak Value						
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field			
	Level @3m	Factor	Strength	Strength		Polarity			
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m				
2479.00	81.3	-4.8	76.5	6,683.4	500,000	Vertical			
2479.00	90.2	-4.7	85.5	18,836.5	500,000	Horizontal			

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

Page 17 of 42

	Field Strength of Fundamental Emissions							
		A	Average Valu	e				
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field		
	Level @3m	Factor	Strength	Strength		Polarity		
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m			
2479.00	75.6	-4.8	70.8	3,467.4	50,000	Vertical		
2479.00	84.0	-4.7	79.3	9,225.7	50,000	Horizontal		

	Field Strength of Harmonics Emission									
Peak Value										
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field				
	Level @3m	Factor	Strength	Strength		Polarity				
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m					
4958.0	54.7	0.8	55.5	597.0	5,000	Vertical				
4958.0	55.7	0.5	56.2	645.7	5,000	Horizontal				
7437.0	48.1	7.0	55.1	568.9	5,000	Vertical				
7437.0	49.3	6.5	55.8	616.6	5,000	Horizontal				
9916.0	46.6	8.5	55.1	568.9	5,000	Vertical				
9916.0	47.4	8.3	55.7	609.5	5,000	Horizontal				
12395.0	45	10.9	55.9	623.7	5,000	Vertical				
12395.0	45.3	10.8	56.1	638.3	5,000	Horizontal				

	Field Strength of Harmonics Emission Avarage Value									
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field				
	Level @3m	Factor	Strength	Strength		Polarity				
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m	-				
4958.0	40.3	0.8	41.1	113.8	500	Vertical				
4958.0	41.2	0.5	41.7	121.6	500	Horizontal				
7437.0	34.4	7.0	41.4	117.5	500	Vertical				
7437.0	35.2	6.5	41.7	121.6	500	Horizontal				
9916.0	33.1	8.5	41.6	120.2	500	Vertical				
9916.0	33.2	8.3	41.5	118.9	500	Horizontal				
12395.0	30.3	10.9	41.2	114.8	500	Vertical				
12395.0	30.3	10.8	41.1	113.5	500	Horizontal				

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

Page 18 of 42

Radiated Emissions Measurement:

Limit :

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Result: RF Radiated Emissions (1GHz-26GHz) (Lowest) Ant 1

	Field Strength of Band-edge Compliance							
			Peak Value					
Frequency	Measured	Correction	Field	Limit	Margin	E-Field		
	Level @3m	Factor	Strength	@3m		Polarity		
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dBµV/m			
2400.0	52.9	-4.8	48.1	74.0	25.9	Vertical		
2400.0	52.6	-4.7	47.9	74.0	26.1	Horizontal		

	Field Strength of Band-edge Compliance Average Value							
Frequency	Measured	Correction	Field	Limit	Margin	E-Field		
1 2	Level @3m	Factor	Strength	@3m	U	Polarity		
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dBµV/m			
2400.0	42.4	-4.8	37.6	54.0	16.4	Vertical		
2400.0	42.2	-4.7	37.5	54.0	16.5	Horizontal		

Result: RF Radiated Emissions (1GHz-26GHz) (Highest)

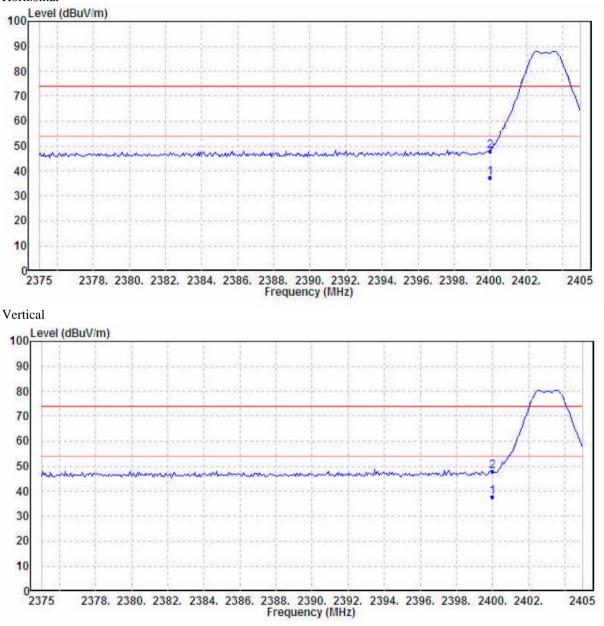
	Field Strength of Band-edge Compliance							
			Peak Value					
Frequency	Measured	Correction	Field	Limit	Margin	E-Field		
	Level @3m	Factor	Strength	@3m		Polarity		
MHz	dBµV	dB/m	dBµV/m	$dB\mu V/m$	dBµV/m			
2483.5	52.8	-4.8	48.0	74.0	26.0	Vertical		
2483.5	50.8	-4.7	46.1	74.0	27.9	Horizontal		

	Field Strength of Band-edge Compliance Average Value							
Frequency	Measured	Correction	Field	Limit	Margin	E-Field		
	Level @3m	Factor	Strength	@3m		Polarity		
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dBµV/m			
2483.5	42.5	-4.8	37.7	54.0	16.3	Vertical		
2483.5	41.2	-4.7	36.5	54.0	17.5	Horizontal		

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group


This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

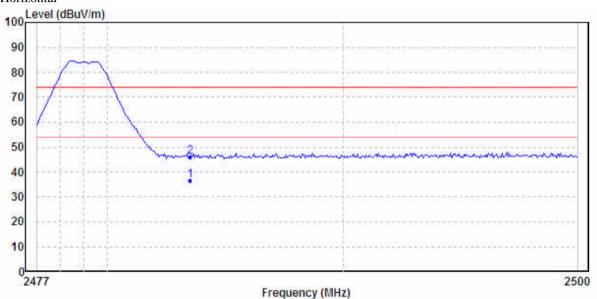
Page 19 of 42

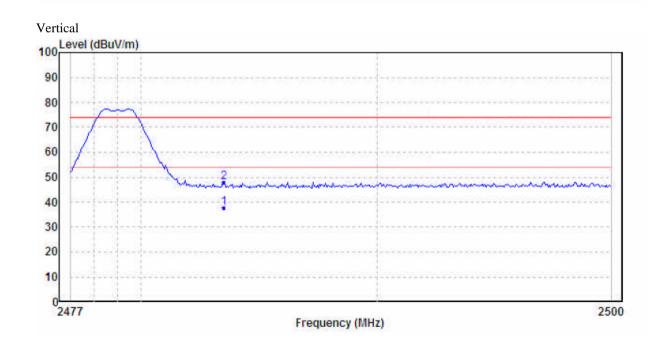
Emissions radiated outside of the specified frequency bands (Lowest) Horizontal

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group


This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Date : 2025-01-21 No. : HMD25010001

Page 20 of 42

Emissions radiated outside of the specified frequency bands (Highest) Horizontal

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

Page 21 of 42

Ant 2

Field Strength of Band-edge Compliance						
Peak Value						
Frequency	Measured	Correction	Field	Limit	Margin	E-Field
	Level @3m	Factor	Strength	@3m		Polarity
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dBµV/m	
2400.0	52.4	-4.8	47.6	74.0	26.4	Vertical
2400.0	52.5	-4.7	47.8	74.0	26.2	Horizontal

Field Strength of Band-edge Compliance							
	Average Value						
Frequency	Measured	Correction	Field	Limit	Margin	E-Field	
	Level @3m	Factor	Strength	@3m		Polarity	
MHz	dBµV	dB/m	$dB\mu V/m$	dBµV/m	dBµV/m		
2400.0	42.0	-4.8	37.2	54.0	16.8	Vertical	
2400.0	42.1	-4.7	37.4	54.0	16.6	Horizontal	

Result: RF Radiated Emissions (1GHz-26GHz) (Highest)

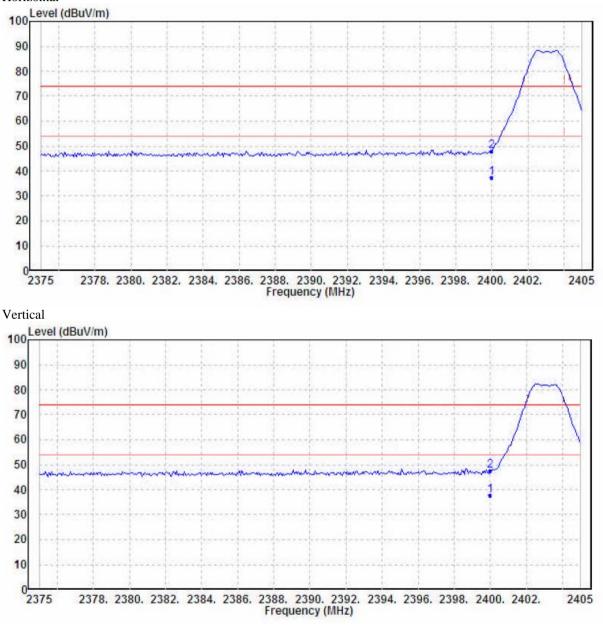
Field Strength of Band-edge Compliance						
Peak Value						
Frequency	Measured	Correction	Field	Limit	Margin	E-Field
	Level @3m	Factor	Strength	@3m		Polarity
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dBµV/m	
2483.5	51.5	-4.8	46.7	74.0	27.3	Vertical
2483.5	50.8	-4.7	46.1	74.0	27.9	Horizontal

Field Strength of Band-edge Compliance Average Value						
Frequency	Measured	Correction	Field	Limit	Margin	E-Field
	Level @3m	Factor	Strength	@3m		Polarity
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dBµV/m	
2483.5	41.4	-4.8	36.6	54.0	17.4	Vertical
2483.5	41.1	-4.7	36.4	54.0	17.6	Horizontal

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group


This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

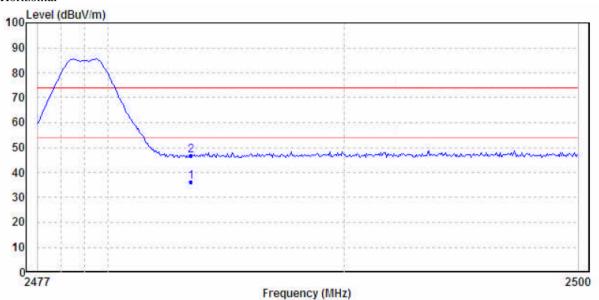
Page 22 of 42

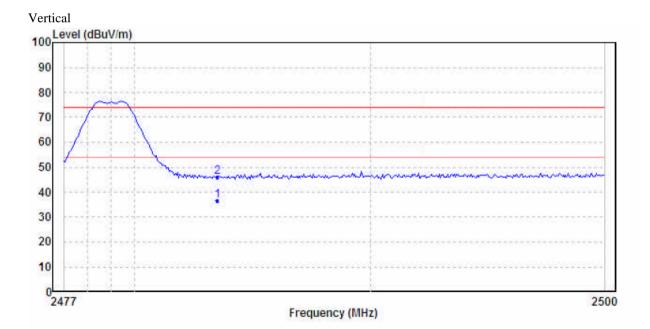
Emissions radiated outside of the specified frequency bands (Lowest) Horizontal

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group


This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Date : 2025-01-21 No. : HMD25010001

Page 23 of 42

Emissions radiated outside of the specified frequency bands (Highest) Horizontal

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

Page 24 of 42

Limits for Radiated Emissions [FCC 47 CFR 15.209 Class B]:

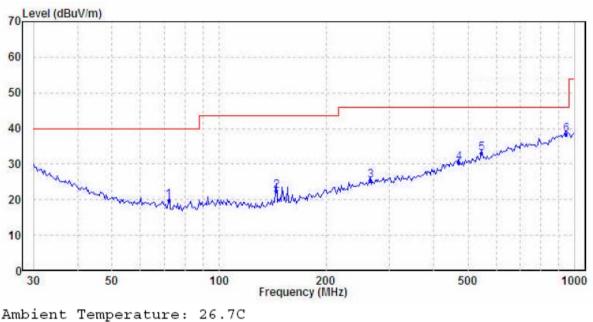
Frequency Range [MHz]	Quasi-Peak Limits [µV/m]
0.009-0.490	2400/F (kHz)
0.490-1.705	24000/F (kHz)
1.705-30	30
30-88	100
88-216	150
216-960	200
Above960	500

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Remarks:

Calculated measurement uncertainty (9kHz-30MHz): 2.0dB /(30MHz - 1GHz): 4.9dB Emissions in the vertical and horizontal polarizations have been investigated and the worst-case test results are recorded in this report.

Results of TX mode (9kHz - 30MHz): PASS


Emissions detected are more than 20 dB below the FCC Limits

Date : 2025-01-21 No. : HMD25010001

Page 25 of 42

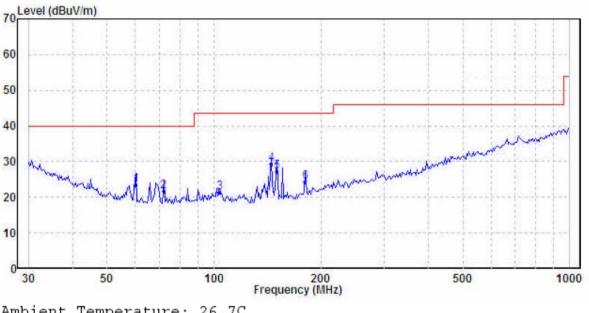
Results of TX mode (30MHz – 1GHz)(2403MHz worst case): PASS Horizontal

Ambient Temperature: 26.7C Relative Humidity : 53.8% Air Pressure : 100.9kPa

	Freq	Level	Limit Line	Over Limit	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB		
1	72.084	19.74	40.00	-20.26	QP	Horizontal
2	144.335	22.58	43.50	-20.92	QP	Horizontal
3	265.676	25.43	46.00	-20.57	QP	Horizontal
4	472.176	30.43	46.00	-15.57	QP	Horizontal
5	547.098	32.94	46.00	-13.06	QP	Horizontal
6	945.440	38.26	46.00	-7.74	QP	Horizontal

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong


Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001 Page 26 of 42

Results of TX mode (30MHz – 1GHz) (2403MHz worst case): PASS Vertical

Ambient Temperature: 26.7C Relative Humidity : 53.8% Air Pressure : 100.9kPa

	Freq	Level	Limit Line	Over Limit	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB		
1	60.069	23.64	40.00	-16.36	QP	Vertical
2	72.084	21.75	40.00	-18.25	QP	Vertical
3	103.806	21.52	43.50	-21.98	QP	Vertical
4	144.335	29.27	43.50	-14.23	QP	Vertical
5	150.538	27.12	43.50	-16.38	QP	Vertical
6	180.649	24.32	43.50	-19.18	QP	Vertical

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

Page 27 of 42

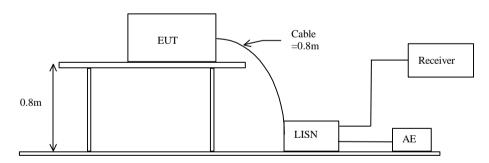
3.1.2 AC Mains Conducted Emissions (0.15MHz to 30MHz)

Test Requirement:	FCC 47CFR 15.207
Test Method:	ANSI C63.10:2013
Test Date:	2025-01-13
Mode of Operation:	TX mode
Test Voltage:	120Va.c. 60Hz

Ambient Temperature: 25°C

Relative Humidity: 51%

Atmospheric Pressure: 101 kPa


Test Method:

The test was performed in accordance with ANSI ANSI C63.10:2013, with the following: an initial measurement was performed in peak and average detection mode on the live line, any emissions recorded within 30dB of the relevant limit line were re-measured using quasi-peak and average detection on the live and neutral lines with the worst case recorded in the table of results.

Receiver Setting:

Bandw. = 9 kHz, Meas. Time= 10.0 ms, Step Width = 5.0kHz Detector = MaxPeak and CISPR AV

Test Setup:

Limits for Conducted Emissions (FCC 47 CFR 15.207):

Frequency Range	Quasi-Peak Limits	Average
[MHz]	[dBµV]	[dBµV]
0.15-0.5	66 to 56*	56 to 46*
0.5-5.0	56	46
5.0-30.0	60	50

* Decreases with the logarithm of the frequency.

Remarks:

Calculated measurement uncertainty (0.15MHz - 30MHz): 3.25dB

-*- Emission(s) that is far below the corresponding limit line.

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Date : 2025-01-21 No. : HMD25010001

Page 28 of 42

Results of TX mode (L): PASS

Please refer to the following diagram for individual results.

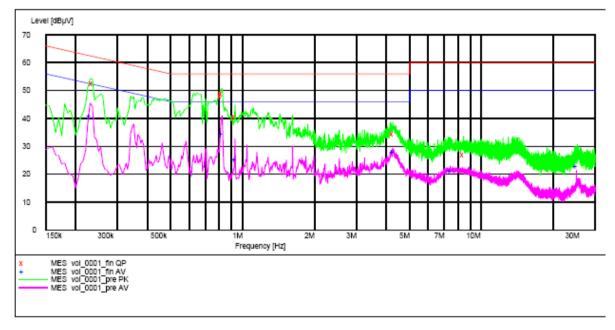
MEASUREMEN	T RESULT	: "vol_0001	_fin QP"			
Frequen	су ге	vel Transo	l Limit	Margin	Line	PE
M	Hz di	BµV di	3 dBµV	dB		
0.2400	00 45	.90 9.6	62.10	16.20	L1	GND
0.8050	00 48	.60 9.6	5 56.00	7.40	L1	GND
0.9200	00 44	.70 9.6	5 56.00	11.30	Ll	GND
4.2050	00 33	.60 9.6	5 56.00	22.40	Ll	GND
9.7150	00 25	.20 9.8	60.00	34.80	Ll	GND
14.1750	00 30	.20 9.8	60.00	29.80	L1	GND
MEASUREMEN	T RESULT	: "vol_000	_fin AV"			
MEASUREMEN Frequen		': "vol_0001 vel Transo	_	Margin	Line	PE
Frequen	су Le	_	l Limit			PE
Frequen	су Le	vel Transo	l Limit			PE
Frequen	cy Le Hz di	vel Transo BµV dł	l Limit	dB		PE GND
Frequen M	cy Le Hz di 00 40	vel Transo BµV dł	l Limit 3 dBµV 5 52.30	dB 11.70	Ll	
Frequen M 0.2350	су Le Hz di 00 40 00 33	vel Transo BµV di .60 9.6	l Limit 3 dBµV 5 52.30 5 46.00	dB 11.70 12.40	L1 L1	GND
Frequen M 0.2350 0.8050	CY Le HZ di 00 40 00 33 00 29	vel Transo BµV di .60 9.6 .60 9.6	l Limit 3 dBμV 5 52.30 5 46.00 5 46.00	dB 11.70 12.40 16.20	L1 L1 L1	GND GND
Frequen M 0.2350 0.8050 0.9250	CY Le HZ di 00 40 00 33 00 29 00 27	vel Transo BµV di .60 9.6 .60 9.6 .80 9.6 .40 9.6	l Limit 3 dBμV 5 52.30 5 46.00 5 46.00	dB 11.70 12.40 16.20 18.60	L1 L1 L1 L1	GND GND GND
Frequen M 0.2350 0.8050 0.9250 4.2800	CY Le HZ di 00 40 00 33 00 29 00 27 00 20	vel Transo BµV di .60 9.6 .60 9.6 .80 9.6 .40 9.6	1 Limit 3 dBμV 5 52.30 5 46.00 5 46.00 5 46.00 7 50.00	dB 11.70 12.40 16.20 18.60	L1 L1 L1 L1 L1	GND GND GND GND

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Date : 2025-01-21 No. : HMD25010001

Page 29 of 42

Results of TX mode (N): PASS

Please refer to the following diagram for individual results.

PE
GND
PE
GND
GND GND
GND
GND GND

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

Page 30 of 42

Relative humidity 57%

3.1.3 Antenna Requirement

Ambient temperature 25°C

Test Requirements: § 15.203

Test Specification:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Test Results:

This is PCB antenna. There is no external antenna, the antenna1 gain =2.64dBi/ antenna 2 gain =2.63dBi. User is unable to remove or changed the Antenna.

Date : 2025-01-21 No. : HMD25010001

3.1.4 20dB Bandwidth of Fundamental Emission

Ambient temperature 25°C

Relative humidity 57%

Page 31 of 42

Test Requirement:	FCC 47 CFR 15.249
Test Method:	ANSI C63.10:2013
Test Date:	2025-01-09
Mode of Operation:	Tx mode

Test Method:

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

The measurement bandwidth settings are	RBW = 30 kHz
The measurement bandwidth settings are	VBW = 100 kHz

Test Setup:

As Test Setup of clause 3.1.1 in this test report.

Date : 2025-01-21 No. : HMD25010001

Page 32 of 42

Limits for 20dB Bandwidth of Fundamental Emission (Low Frequency Channel): Ant 1

Frequency Range	20dB Bandwidth	
[MHz]	[MHz]	
2403.0	2.343	

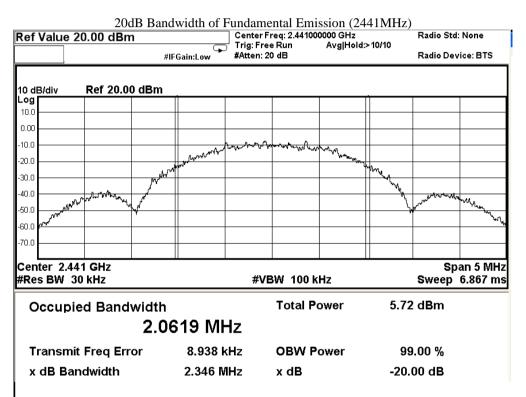
2.00 3.00 18.0		1 Vincon	www.	man production of the	When we want		
28.0 38.0 48.0	www.www.www.	phone and a second seco				A more	And Marrall And
58.0 58.0	103 GHz						ipan 5 MH

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Date : 2025-01-21 No. : HMD25010001

Page 33 of 42

Limits for 20dB Bandwidth of Fundamental Emission (Middle Frequency Channel):

Frequency Range [MHz]	20dB Bandwidth [MHz]	
2441.0	2.346	

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

Page 34 of 42

Limits for 20dB Bandwidth of Fundamental Emission (High Frequency Channel):

Frequency Range [MHz]	20dB Bandwidth [MHz]	
2479.0	2.322	

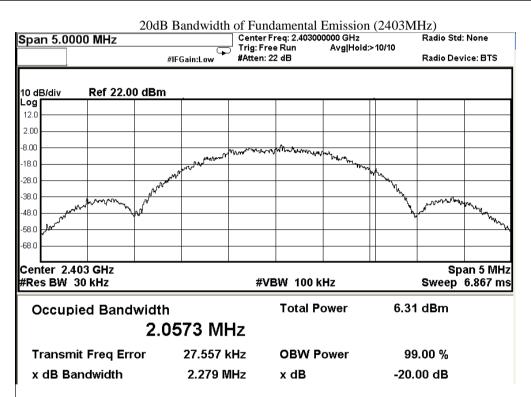
Ref Value	20dB 19.00 dBm	Cen	amental Emission (24 ter Freq: 2.479000000 GHz : Free Run Avg Hold	I	Radio Std: None
			en: 20 dB		Radio Device: BTS
I0 dB/div	Ref 19.00 d	Bm			
- og 9.00					
1.00					
11.0			allow have a hard and a hard and a hard a		
21.0		and the second s	- I BAY HAVE ABLE		
31.0		North Contraction		WWWWW -	
1.0	wwwwwwwanter	p ^{d*}		- Vy-	www.
51.0 Nrana	′ ⊢ → ↓∕				
i1.0 ***					
1.0					
Center 2.4 Res BW			#VBW 100 kHz		Span 5 MH Sweep 6.867 m
Occupi	ied Bandwi	dth	Total Power	5.98 (dBm
		2.0309 MHz			
Transm	it Freq Error	16.586 kHz	OBW Power	99.0	00 %
x dB Ba	ndwidth	2.322 MHz	x dB	-20.0	0 dB

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Date : 2025-01-21 No. : HMD25010001

Page 35 of 42

Limits for 20dB Bandwidth of Fundamental Emission (Low Frequency Channel):

Ant 2	
Frequency Range	20dB Bandwidth
[MHz]	[MHz]
2403.0	2.279

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

Page 36 of 42

Limits for 20dB Bandwidth of Fundamental Emission (Middle Frequency Channel):

Frequency Range	20dB Bandwidth	
[MHz]	[MHz]	
2441.0	2.343	

enter Fre	q 2.44100000	GHz Cente	nental Emission (24 r Freq: 2.441000000 GHz ree Run Avg Hold:		Radio Sto	l: None
			: 20 dB		Radio De	vice: BTS
0 dB/div	Ref 22.00 dBn	ı				
- og 12.0						
2.00						
3.00		- Larmin	- A			
18.0		www.and	Mar And Marken Marken Marken			
8.0		Mundal		Whon we want		
8.0	Montennon de			l ^u	ww	
8.0	Mar				Yww.	- Way-law
8.0						الر
8.0						
enter 2.44 Res BW 3		#	VBW 100 kHz			an 5 MH 6.867 m
Occupi	ed Bandwidt	h	Total Power	7.3	8 dBm	
	2.	0638 MHz				
Transmi	t Freq Error	17.748 kHz	OBW Power	9	9.00 %	
x dB Ba	ndwidth	2.343 MHz	x dB	-20	.00 dB	

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

Page 37 of 42

Limits for 20dB Bandwidth of Fundamental Emission (High Frequency Channel):

Frequency Range [MHz]	20dB Bandwidth [MHz]	
2479.0	2.350	

ef Value 17.00	dBm	Center Trig: F	nental Emission (24 r Freq: 2.479000000 GHz ree Run Avg Hold		Radio Std	None
		#IFGain:Low 🔭 #Atten	: 20 dB		Radio Dev	ice: BTS
	17.00 18					
0 dB/div Ref	17.00 dBm	i I		1		
7.00						
8.00						
3.0		a marghanged	When where a start a s			
		water water and the second				
3.0		NW M		and the second s		
3.0	للمعرير			[.] ''''''''''''''''''''''''''''''''''''		
3.0	when the second			`\ _\	where we wanted	Marrie Marrie
3.0	Y				<i>x</i>	- www
3.0						· · · · ·
3.0						
enter 2.479 GH	z				Sp	an 5 MH
Res BW 30 kHz		#	VBW 100 kHz		Sweep	6.867 m
Occupied B	andwidth	ı	Total Power	5.82	dBm	
	2.0	0471 MHz				
Transmit Free	q Error	15.537 kHz	OBW Power	99	.00 %	
x dB Bandwid	lth	2.350 MHz	x dB	-20	00 dB	

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001

Page 38 of 42

Appendix A

List of Measurement Equipment

		Radiated I	Emission			
EQP NO.	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CAL	DUE CAL
EM215	MULTIDEVICE CONTROLLER	EMCO	2090	00024676	N/A	N/A
EM217	ELECTRIC POWERED TURNTABLE	EMCO	2088	00029144	N/A	N/A
EM218	ANECHOIC CHAMBER	ETS-LINDGREN	FACT-3		2024-04-18	2029-04-18
EM356	ANTENNA POSITIONING TOWER	ETS-LINDGREN	2171B	00150346	N/A	N/A
EM293	SPECTRUM ANALYZER	AGILENT TECHNOLOGIES	N9020A	MY50510152	2023-03-21	2025-03-21
EM363	SIGNAL ANALYZER(10HZ- 40GHZ)	R & S	FSV40	101231	2024-01-17	2026-01-17
EM299	BROADBAND HORN ANTENNA	ETS-LINDGREN	3115	00114120	2023-01-25	2025-01-25
EM300	PYRAMIDAL STANDARD GAIN HORN ANTENNA	ETS-LINDGREN	3160-09	00130130	2023-01-16	2025-01-16
EM301	PYRAMIDAL STANDARD GAIN HORN ANTENNA	ETS-LINDGREN	3160-10	00130988	2023-02-15	2025-02-15
EM353	LOOP ANTENNA	ETS_LINDGREN	6502	00206533	2022-09-26	2025-09-26
EM355	BICONILOG ANTENNA	ETS-LINDGREN	3143B	00094856	2022-08-26	2025-08-26
EM200	DUAL CHANNEL POWER METER	R & S	NRVD	100592	2023-08-02	2025-08-02

Line Conducted

EQP NO.	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CAL	DUE CAL
EM232	LISN	SCHAFFNER	NNB41	04/100082	2023-05-30	2025-05-30
EM181	EMI TEST RECEIVER	R & S	ESIB7	100072	2024-04-18	2025-04-18
EM179	IMPULSE LIMITER	R & S	ESH3-Z2	357.8810.52/54	2023-03-17	2025-03-17
EM154	SHIELDING ROOM	SIEMENS MATSUSHITA COMPONENTS	N/A	803-740-057- 99A	2022-02-06	2027-02-06
N/A	MEASUREMENT AND EVALUATION SOFTWARE	ROHDE & SCHWARZ	BSIB-K1	V1.20	N/A	N/A

Remarks:-

N/A Not Applicable or Not Available

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2025-01-21 No. : HMD25010001 Page 39 of 42

Appendix B

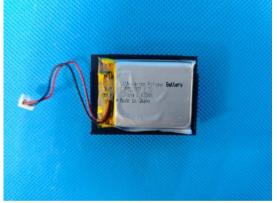
Photographs of EUT

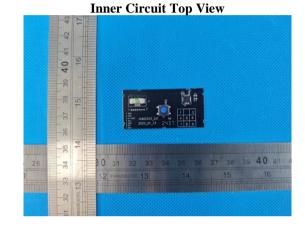
View of the product

Inside View of the product

View of the product

Inner Circuit Top View

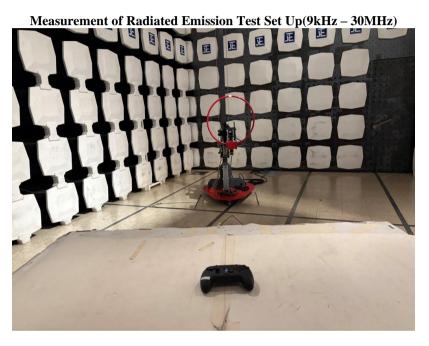



Date : 2025-01-21 No. : HMD25010001 Page 40 of 42

Photographs of EUT

Inner Circuit Bottom View

Battery View



Date : 2025-01-21 No. : HMD25010001 Page 41 of 42

Photographs of EUT

Measurement of Radiated Emission Test Set Up(30MHz to 1000MHz)

Date : 2025-01-21 No. : HMD25010001 Page 42 of 42

Photographs of EUT

Measurement of Conducted Emission Test Set Up

***** End of Test Report *****

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by The Hong Kong Standards & Testing Centre Limited (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The Company provides its services on the basis that such terms and conditions constitute express agreement between the Company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by the Company as a result of this application for testing service (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to his customer, supplier or other persons directly concerned. Subject to clause 3, the Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall be at liberty to disclose the testing-related documents and/or files anytime to any third-party accreditation and/or recognition bodies for audit or other related purposes. No liabilities whatsoever shall attach to the Company's act of disclosure.
- 4. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 5. The results in Report apply only to the sample as received and do not apply to the bulk, unless the sampling has been carried out by the Company and is stated as such in the Report.
- 6. When a statement of conformity to a specification or standard is provided, the ILAC-G8 Guidance document (and/or IEC Guide 115 in the electrotechnical sector) will be adopted as a decision rule for the determination of conformity unless it is inherent in the requested specification or standard, or otherwise specified in the Report.
- 7. In the event of the improper use the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 8. Sample submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 9. The Company will not be liable for or accept responsibility for any loss or damage howsoever arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 10. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 11. Subject to the variable length of retention time for test data and report stored hereinto as to otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of this test report for a period of three years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after the retention period. Under no circumstances shall we be liable for damages of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.
- 12. Issuance records of the Report are available on the internet at www.stc.group. Further enquiry of validity or verification of the Reports should be addressed to the Company.