

FCC ID: Y4O-JP14 Report No.: T191125N08-RP1 Page: 1 / 124 Rev.: 00

FCC 47 CFR PART 15 SUBPART C AND ANSI C63.10: 2013

TEST REPORT

For

Professional DJ Media Player

Model: SC6000M PRIME

Data Applies to: N/A

Issued for

inMusic Brands, Inc.

200 Scenic View Drive, Cumberland, RI 02864, U.S.A.

Issued by Compliance Certification Services Inc. Tainan Lab. No.8,Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.) TEL: 886-6-580-2201 FAX: 886-6-580-2202 Date of Issue: May 07, 2020

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com.tw/Terms-and-Conditions</u> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com.tw/Terms-and-Conditions</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Compliance Certification Service Inc. 程智科技股份有限公司 No.8, Jiucengling, Xinhua District, Tainan City, Taiwan / 台南市新化區礁坑里九層嶺8號 t:(886-6) 5802-201 f:(886-6) 5802-202 www.sgs.tw www.ccsrf.com

Page: 2 / 124 Rev.: 00

REVISION HISTORY

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	May 07, 2020	Initial Issue	ALL	Polly Wang

TABLE OF CONTENTS

1. TEST REPORT CERTIFICATION	4
2. EUT DESCRIPTION	5
3. DESCRIPTION OF TEST MODES	6
4. TEST METHODOLOGY	7
5. FACILITIES AND ACCREDITATIONS	7
5.1 FACILITIES	7
5.2 EQUIPMENT	
5.3 LABORATORY ACCREDITATIONS LISTINGS	
5.4 TABLE OF ACCREDITATIONS AND LISTINGS	
6. CALIBRATION AND UNCERTAINTY	
6.1 MEASURING INSTRUMENT CALIBRATION	
6.2 MEASUREMENT UNCERTAINTY	
7. SETUP OF EQUIPMENT UNDER TEST	
7.1 SETUP CONFIGURATION OF EUT	
7.2 SUPPORT EQUIPMENT	
8. APPLICABLE LIMITS AND TEST RESULTS	
8.1 6dB BANDWIDTH 8.2 MAXIMUM PEAK OUTPUT POWER	
8.3 DUTY CYCLE	
8.4 POWER SPECTRAL DENSITY	
8.5 CONDUCTED SPURIOUS EMISSION	62
8.6 RADIATED EMISSIONS	
8.6.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS	
8.6.2 WORST-CASE RADIATED EMISSION BELOW 1 GHZ	-
8.6.4 RESTRICTED BAND EDGES	
8.7 POWERLINE CONDUCTED EMISSIONS	114
9. ANTENNA REQUIREMENT	
9.1 STANDARD APPLICABLE	
9.2 ANTENNA CONNECTED CONSTRUCTION	
APPENDIX I SETUP PHOTOS	119

1. TEST REPORT CERTIFICATION

Applicant	:	inMusic Brands, Inc. 200 Scenic View Drive, Cumberland, RI 02864, U.S.A.
Manufacturer	:	inMusic Brands, Inc. 200 Scenic View Drive, Cumberland, RI 02864, U.S.A.
Equipment Under Test	:	Professional DJ Media Player
Model	:	SC6000M PRIME
Data Applies To	:	N/A
Brand	:	DENON DJ
Date of Test	:	January 16, 2020 ~ April 01, 2020

APPLICABLE STANDARD		
STANDARD	TEST RESULT	
FCC Part 15 Subpart C AND ANSI C63.10: 2013	No non-compliance noted	
Statements of Conformity		
Determining compliance shall be based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.		

Approved by	
~	· elerty
lotor Wu	1000000g

Reviewed by:

Page: 4 / 124

00

Rev.:

Eric Huang Section Manager

Page: 5 / 124 Rev.: 00

2. EUT DESCRIPTION

Product Name	Professional DJ Media Player
Model	SC6000M PRIME
Data Applies To	N/A
Brand	DENON DJ
Received Date	November 25, 2019
Frequency Range	IEEE 802.11b/g, 802.11n HT20: 2412MHz~2462MHz Bluetooth 4.0: 2402MHz~2480MHz
Transmit Power	IEEE 802.11b Mode: 19.89dBm (97.50mW) IEEE 802.11g Mode: 19.68dBm (92.90mW) IEEE 802.11n HT20 Mode: 19.74dBm (94.19mW) Bluetooth 4.0 Mode: 5.64dBm (3.66mW)
Channel Spacing	IEEE 802.11b/g, 802.11n HT20: 5MHz Bluetooth 4.0: 2MHz
Channel Number	IEEE 802.11b/g, 802.11n HT20: 11 Channels Bluetooth 4.0 : 40 Channels
Transmit Data Rate	IEEE 802.11b : 11, 5.5, 2, 1 Mbps IEEE 802.11g : 54, 48 ,36, 24, 18, 12, 9, 6 Mbps IEEE 802.11n HT20 : 130, 117 ,104, 78, 65, 58.5, 52, 39, 26, 19.5,13, 6.5 Mbps Bluetooth 4.0: 1 Mbps
Type of Modulation	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) Bluetooth 4.0: GFSK
Antenna Type	Type: WLAN EMBEDDEN ANTENNA Model: WLA-EM-1707-0064-B Manufacturer: BRITO Gain: 4.6 dBi
Power Rating	AC 100V-240V, 50/60Hz
Hardware Version	GA-RCA1C REV:1.0
Software Version	N/A
Firmware Version	az01-productiontest-mp-JP14-0.9.0-2019-07-26-full.tbz
Temperature Range	0°C ~ +40°C
Reported Date	April 09, 2020

REMARK:

The sample (SC6000M PRIME) selected for test was engineering sample that approximated to production product 1. and was provided by manufacturer. This submittal(s) (test report) is intended for FCC ID: <u>Y40-JP14</u> filing to comply with Section 15.207, 15.209 and

2. 15.247 of the FCC Part 15, Subpart C Rules.

3. For more details, please refer to the User's manual of the EUT.

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

3. DESCRIPTION OF TEST MODES

The EUT is a Professional DJ Media Player. It has one transmitter chains and one receive chains (1x1 configurations) and BT4.0. The 1x1 configuration is implemented with one outside chains (Chain 0).

The RF chipset is manufactured by Broadcom.

The antenna peak gain 4.6dBi (highest gain) were chosen for full testing.

IEEE 802.11 b ,802.11g ,802.11n HT20 mode (DTS Band)

The EUT had been tested under operating condition. There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2412
Middle	2437
High	2462

IEEE 802.11b mode: 1Mbps long data rate (worst case) were chosen for full testing.

IEEE 802.11g mode: 6Mbps data rate (worst case) were chosen for full testing. IEEE 802.11n HT20 mode: 6.5Mbps data rate (worst case) were chosen for full testing.

GFSK mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2402
Middle	2442
High	2480

Bluetooth 4.0 (GFSK) mode: 1Mbps data rate (worst case) were chosen for full testing.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10 and FCC CFR 47 15.207, 15.209 and 15.247.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.) The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 1109 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by TAF or any agency of the Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: TW1109).

Page: 8 / 124 Rev.: 00

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

Taiwan TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada	Industry Canada
Germany	TUV NORD
Taiwan	BSMI
USA	FCC
Japan	VCCI

Copies of granted accreditation certificates are available for downloading from our web site, <u>http://www.ccsrf.com</u>

6. CALIBRATION AND UNCERTAINTY

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report

has been calibrated in accordance with the manufacturer's recommendations,

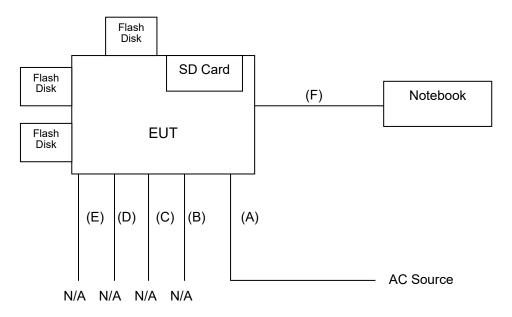
and is traceable to recognized national standards.

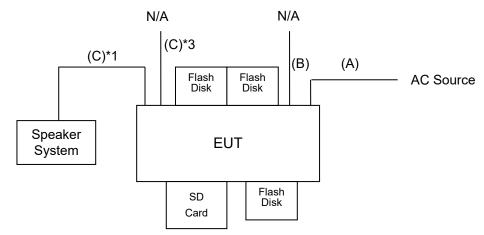
6.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz Test Site : CB966	±3.1dB
Radiated Emission, 200 to 1000 MHz Test Site : CB966	±2.7dB
Radiated Emission, 1 to 6 GHz	± 2.7dB
Radiated Emission, 6 to 18 GHz	± 2.7dB
Radiated Emission, 18 to 26.5 GHz	± 2.7dB
Radiated Emission, 26 to 40 GHz	± 3.7dB
Power Line Conducted Emission	± 2.0dB

Uncertainty figures are valid to a confidence level of 95%, K=2




Page: 10 / 124 Rev.: 00

7. SETUP OF EQUIPMENT UNDER TEST

7.1 SETUP CONFIGURATION OF EUT

FOR RF TEST

FOR EMI TEST

7.2 SUPPORT EQUIPMENT

RF test

No.	Product	Manufacturer	Model No.	Certify No.	Signal cable
1	Notebook	Acer	AS 3830TG	DOC	Power cable, unshd, 1.6m
2	SD CARD	TOSHIBA	2GB	DOC	N/A
3	Flash Disk	Transcend	Jet Flash700	DOC	N/A

No.	Signal cable description		
А	Power	Unshielded, 1.8m, 1pcs	
В	Audio	Unshielded, 1.0m, 3pcs.	
С	Audio	Unshielded, 0.15m, 1pcs.	
D	LAN	Unshielded, 0.5m, 1pcs.	
Е	USB	Shielded, 1.8m, 1pcs. with one core	
F	Command	Unshielded, 1.7m, 1pcs.	

EMI test

No.	Product	Manufacturer	Model No.	Certify No.	Signal cable
1	SD CARD	TOSHIBA	2GB	DOC	N/A
2	Speaker System	T.C.SATR	TCS2285	DOC	Audio cable, unshd, 1.4m
3	Flash Disk	Transcend	Jet Flash700	DOC	N/A

No.	Signal cable description		
А	AC Cable	Unshielded, 1.6m, 1pcs	
В	RJ45	Unshielded, 1.0m, 1pcs.	
С	Audio	Shielded, 1.0m, 4pcs.	

REMARK:

- 1. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7.3 EUT OPERATING CONDITION

RF Setup

WIFI:

- 1. Set up a whole system as the setup diagram.
- 2. The "Tera Term" software was used for testing
- 3. Key in "root", "connmanctl enable wifi".

TX Mode Key in:

```
B Mode :

wl down

wl mpc 0

wl country ALL

wl band b

wl up

wl 2g_rate -r 01 -b 20

wl channel 01 (01,06,11)

wl phy_watchdog 0

wl scansuppress 1

wl phy_forcecal 1

wl phy_txpwrctrl 1

wl phy_txpwrctrl 1

wl txpwr1 -1

wl pkteng_start 00:90:4c:14:43:19 tx 100 1000 0
```

G Mode :

wl down wl mpc 0 wl country ALL wl band b wl up wl 2g_rate -r 06 -b 20 wl channel 01 (01,06,11) wl phy_watchdog 0 wl scansuppress 1 wl phy_forcecal 1 wl phy_txpwrctrl 1 Page: 13 / 124 Rev.: 00

Page: 14 / 124 Rev.: 00

wl pkteng_start 00:90:4c:14:43:19 tx 100 1000 0

HT20 Mode : wl down wl mpc 0 wl country ALL wl band b wl up wl 2g_rate -h 0 -b 20 wl channel 01 (01,06,11) wl phy_watchdog 0 wl scansuppress 1 wl phy_forcecal 1 wl phy_txpwrctrl 1 wl phy_txpwrctrl 1 wl txpwr1 -o -d 11 wl pkteng_start 00:90:4c:14:43:19 tx 100 1000 0

RX Mode Key in:

```
wl down
wl band auto
wl mpc 0
wl country ALL
wl channel 01 (01,06,11)
wl bi 65535
wl up
wl phy_watchdog 0
wl scansuppress 1
wl phy_forcecal 1
```

4. All of the function are under run.

5. Start test.

Bluetooth:

- 1. Set up a whole system as the setup diagram.
- 2. The "Tera Term" software was used for testing.
- 3. Key in :

root cd /sys/class/bluetooth/hci0 ls -al cd rfkill2/ echo 1 >state echo 0 > /sys/class/rfkill/rfkill1/soft bluetoothctl power on

4. Press "Ctrl + z"

TX Mode Key in:

hciconfig hci0 up hcitool cmd 0x03 0x0003 hcitool cmd 0x08 0X0001e 00(00,14,27) 25 00

RX Mode Key in:

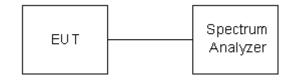
hciconfig hci0 up hcitool cmd 0x03 0x0003 hcitool cmd 0x3f 0x0052 EE FF C0 88 00 00 E8 03 00(00,27,4E) 04 00 01 FF FF

- 5. All of the function are under run.
- 6. Start test.

Page: 15 / 124 Rev.: 00

8. APPLICABLE LIMITS AND TEST RESULTS

8.1 6dB BANDWIDTH


<u>LIMIT</u>

§ 15.247(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY54430216	07/18/2019	07/17/2020
Power Meter	Anritsu	ML2487A	6K00003888	11/20/2019	05/19/2021
Power Sensor	Anritsu	MA2491A	033265	11/20/2019	05/19/2021
SMA Cable + 10dB Attenuator	CCS	SMA+10dB ATT	SMA/10dB	01/30/2020	01/29/2021
Software	Excel(ccs-o6-2020 v1.1)				

TEST SETUP

TEST PROCEDURE

- 1. Set resolution bandwidth (RBW) = 1-5 % of the emission bandwidth (EBW).
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is 1-5 %.

TEST RESULTS

No non-compliance noted.

Model Name	SC6000M PRIME	Test By	Ted Huang
Temp & Humidity	25.4 , 56%	Test Date	2020/03/31

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	7.58	500	PASS
Middle	2437	8.08	500	PASS
High	2462	8.08	500	PASS

NOTE : 1. At finial test to get the worst-case emission at 1Mbps long.
 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	15.38	500	PASS
Middle	2437	15.45	500	PASS
High	2462	15.21	500	PASS

NOTE :

1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

Page:	18 / 124
Rev.:	00

IEEE 802.11n HT20 mode

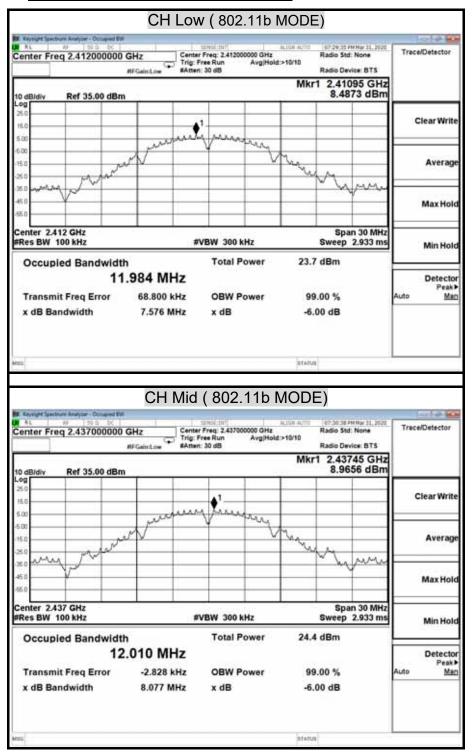
Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	15.38	500	PASS
Middle	2437	16.00	500	PASS
High	2462	15.21	500	PASS

NOTE : 1. At finial test to get the worst-case emission at 6.5Mbps.
 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for

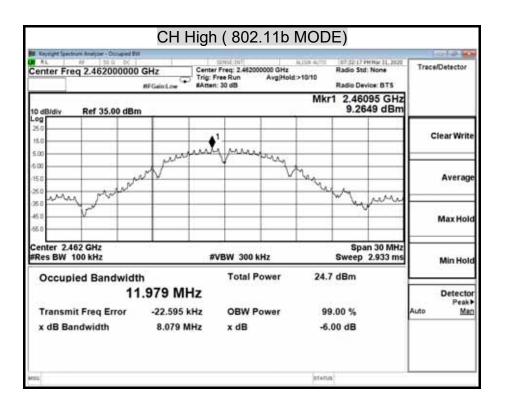
Model Name	SC6000M PRIME	Test By	Ted Huang
Temp & Humidity	26.2 , 52%	Test Date	2020/04/01

Bluetooth 4.0 (GFSK) mode

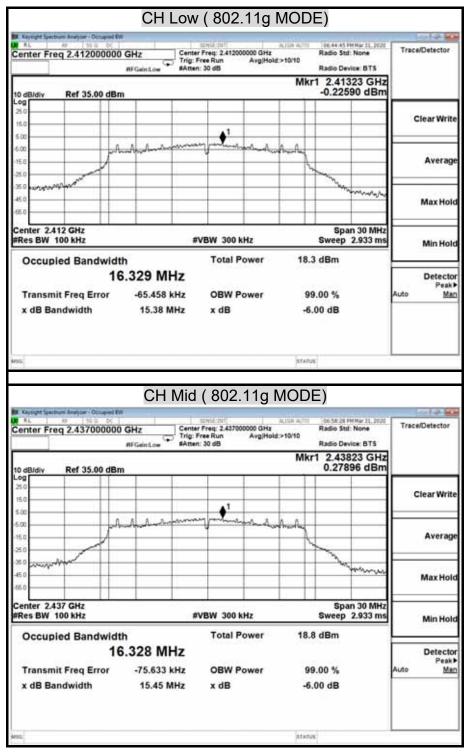
direct reading of power.

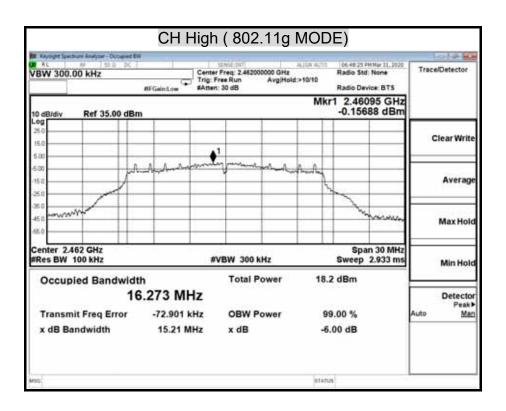

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2402	711	500	PASS
Middle	2442	714	500	PASS
High	2480	718	500	PASS

NOTE: 1. At finial test to get the worst-case emission at 1Mbps.
 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

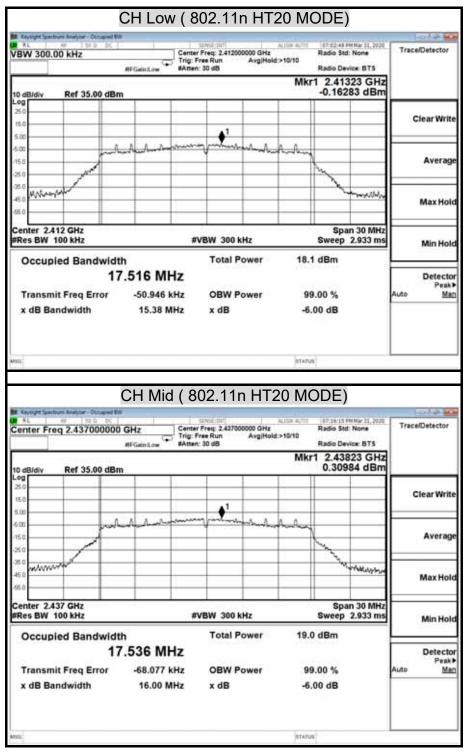

Page: 19 / 124 Rev.: 00

6dB BANDWIDTH (802.11b MODE)

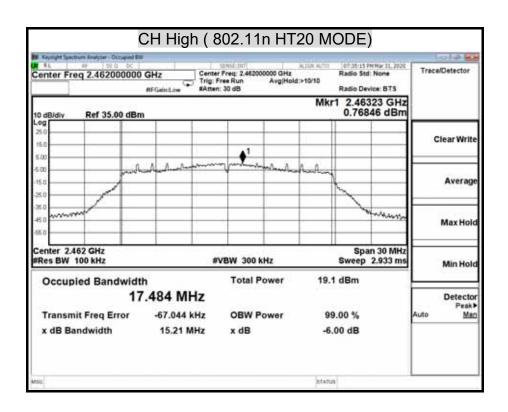

Page: 20 / 124 Rev.: 00


Page: 21 / 124 Rev.: 00

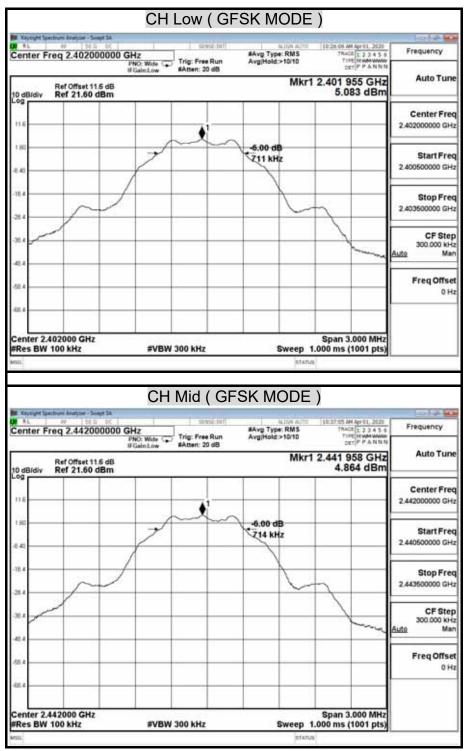
6dB BANDWIDTH (802.11g MODE)


Page: 22 / 124 Rev.: 00

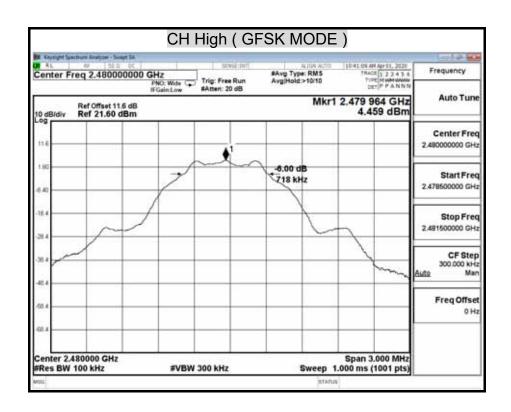
Page: 23 / 124 Rev.: 00


6dB BANDWIDTH (802.11n HT20 MODE)

Page: 24 / 124 Rev.: 00


Report No.: T191125N08-RP1

Page: 25 / 124 Rev.: 00


6dB BANDWIDTH (GFSK MODE)

Page: 26 / 124 Rev.: 00

Report No.: T191125N08-RP1

8.2 MAXIMUM PEAK OUTPUT POWER

<u>LIMIT</u>

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following :

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section , if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section , as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY54430216	07/18/2019	07/17/2020
Power Meter	Anritsu	ML2487A	6K00003888	11/20/2019	05/19/2021
Power Sensor	Anritsu	MA2491A	033265	11/20/2019	05/19/2021
SMA Cable + 10dB Attenuator	CCS	SMA+10dB ATT	SMA/10dB	01/30/2020	01/29/2021
Software	Excel(ccs-o6-2020 v1.1)				

TEST SETUP

Page: 28 / 124 Rev.: 00

TEST PROCEDURE

The tests were performed in accordance with KDB 558074 5.2.1.2 and 5.2.2.1.

5.2.1.2 Measurement Procedure PK2:

- 1. Set the RBW = 1 MHz.
- 2. Set the VBW \geq 3 RBW
- 3. Set the span \geq 1.5 x DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select peak detector). If the instrument does not have a band power function,
- 9. Sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS bandwidth.

TEST RESULTS

No non-compliance noted

Model Name	SC6000M PRIME	Test By	Ted Huang
Temp & Humidity	25.4 , 56%	Test Date	2020/03/31

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	19.16	30.00	PASS
Middle	2437	19.56	30.00	PASS
High	2462	19.89	30.00	PASS

NOTE : 1. At finial test to get the worst-case emission at 1Mbps long.
 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	19.18	30.00	PASS
Middle	2437	19.68	30.00	PASS
High	2462	19.07	30.00	PASS

NOTE: 1.At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT20	mode
-------------------	------

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	18.77	30.00	PASS
Middle	2437	19.31	30.00	PASS
High	2462	19.74	30.00	PASS

NOTE : 1. At finial test to get the worst-case emission at 6.5Mbps.
 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

Model Name	SC6000M PRIME	Test By	Ted Huang
Temp & Humidity	26.2 , 52%	Test Date	2020/04/01

Bluetooth 4.0 (GFSK) mode

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2402	5.64	30.00	PASS
Middle	2442	5.44	30.00	PASS
High	2480	5.06	30.00	PASS

NOTE: 1. At finial test to get the worst-case emission at 1Mbps.

2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

Average Power Data

IEEE 802.11b mode

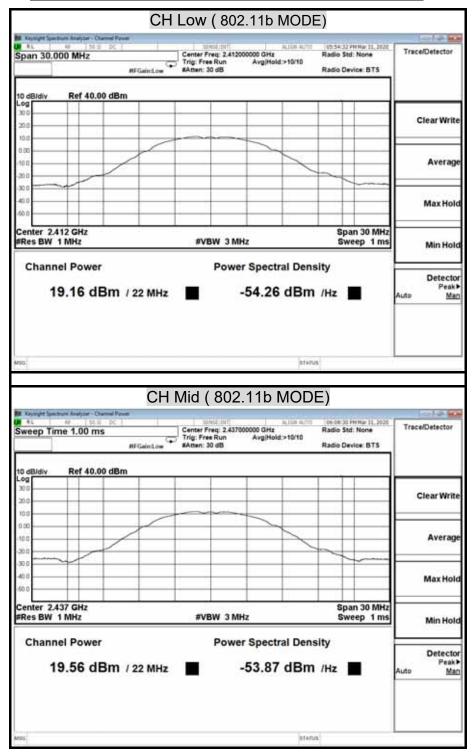
Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2412	16.29
Middle	2437	16.66
High	2462	16.99

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2412	10.91
Middle	2437	11.44
High	2462	10.89

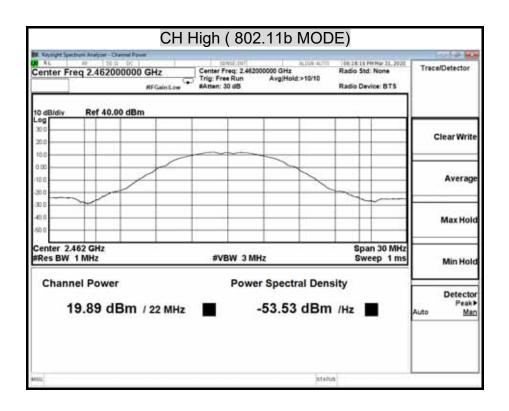
IEEE 802.11n HT20 mode

Channel	Channel Frequency	Average Power (dBm)	
Gliaimei	(MHz)	Chain 0	
Low	2412	10.42	
Middle	2437	10.98	
High	2462	11.37	

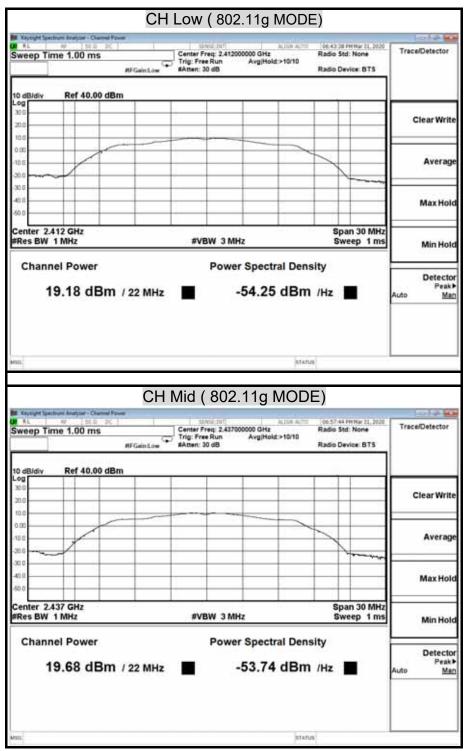

Bluetooth 4.0 (GFSK) mode

Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2402	5.26
Middle	2442	5.04
High	2480	4.60

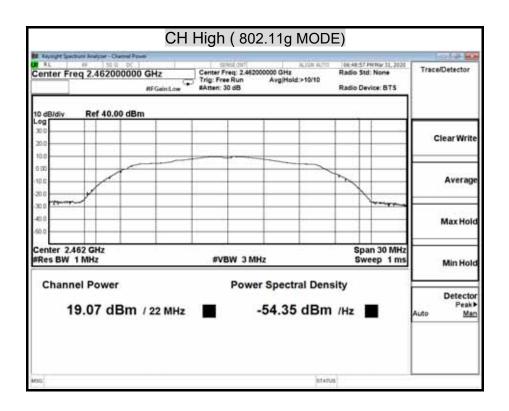
Page: 31 / 124 Rev.: 00



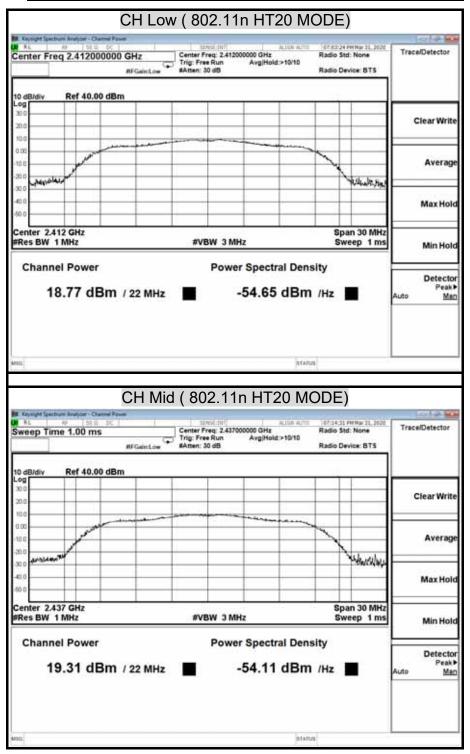
MAXIMUM PEAK OUTPUT POWER (802.11b MODE)


Page: 33 / 124 Rev.: 00

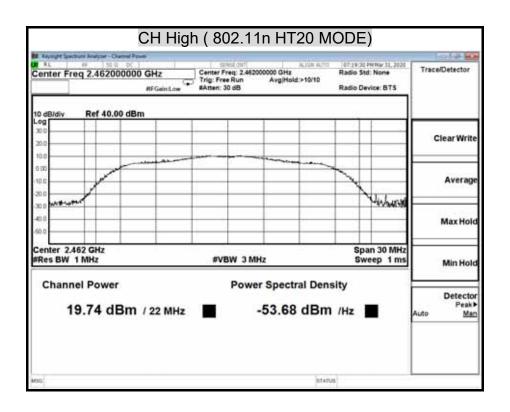
This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。



MAXIMUM PEAK OUTPUT POWER (802.11g MODE)



Page: 35 / 124 Rev.: 00



MAXIMUM PEAK OUTPUT POWER (802.11n HT20 MODE)

Page: 37 / 124 Rev.: 00

Page: 38 / 124 Rev.: 00

MAXIMUM PEAK OUTPUT POWER (GFSK MODE)

	CH Low(G	FSK MODE)	
KL B S S S S Center Freq 2.40200000	PNO: Fast (Trig: Free Run	ALIA A/ID SAvg Type: RMS Avg(Hold:>10/10	1828-11 AH April, 2028 78408 1 2 3 4 5 6 7795 N 444 Webb DET P P A N 11 N	Frequency
Ref Offset 11.6 dB 0 dB/div Ref 21.60 dBm	IFGainLow #Atten: 20 dB	Mkr1	2.401 715 GHz 5.638 dBm	Auto Tune
116	•1			Center Freq 2.402000000 GHz
840				Start Freq 2.399600000 GHz
18.4				Stop Freq 2.404500000 GHz
30 e				CF Step 500.000 kHz Auto Man
40.4 40.4				Freq Offset 0 Hz
#Res BW 1.5 MHz	#VBW 5.0 MHz	Sweep 1	Span 5.000 MHz .000 ms (1001 pts)	
SSS Kopped Sectors Analyse - Sweet SA KL 69 (51 g. CC)	CH Mid (G	FSK MODE	.000 ms (1001 pts)	Frequency
Ref Offset 11.6 dB	CH Mid (G	FSK MODE RAVIE AVE RAVIE TOPE RMS Ave Hold > 10/10	.000 ms (1001 pts)	
Ref Offset 11.6 dB Ref 2.442000000	CH Mid (G	FSK MODE RAVIE AVE RAVIE TOPE RMS Ave Hold > 10/10	000 ms (1001 pts)	Frequency
Ref Offset 11.6 dBm	CH Mid (G	FSK MODE RAVIE AVE RAVIE TOPE RMS Ave Hold > 10/10	000 ms (1001 pts)	Frequency Auto Tune Center Freq
Conter Freq 2.442000000 Ref Offset 11.6 dB 10 dB/div 10 10 10 10 10 10 10 10 10 10	CH Mid (G	FSK MODE RAVIE AVE RAVIE TOPE RMS Ave Hold > 10/10	000 ms (1001 pts)	Frequency Auto Tune Center Freq 2.44200000 GHz Start Freq
Consequence Sectors Source 1 a KL 00 100 B/div 100 B/div Ref Offset 11.6 dB 116 dB 116 dB 116 dB 116 dB 116 dB 116 dB 116 dB 118 dB 118 dB 118 dB 118 dB	CH Mid (G	FSK MODE RAVIE AVE RAVIE TOPE RMS Ave Hold > 10/10	.000 ms (1001 pts)	Frequency Auto Tune Center Freq 2.44200000 GHz Start Freq 2.43960000 GHz Stop Freq
Kostatt Sectors Reform - Sect IA K.L. Science - Sect IA K.L. Science - Sect IA Science - Sector - Secto	CH Mid (G	FSK MODE RAVIE AVE RAVIE TOPE RMS Ave Hold > 10/10	.000 ms (1001 pts)	Frequency Auto Tune Center Freq 2.44200000 GHz Start Freq 2.439600000 GHz Stop Freq 2.444500000 GHz CF Step 500.000 kHz

Page: 39 / 124 Rev.: 00

Report No.: T191125N08-RP1

Kayoget Sectors Andres - Sectors 14 AL 19 55 1 00 Center Freq 2.480000000 G	WC East (Trig: Free Run	#Avg Type: RMS Avg/Hold:>10/10	10141.48 AM April1, 2020 3RACE 1 2 3 4 5 6 71/PE N WM WWW	Frequency
Ref Offset 11.6 dB 10 dB/div Ref 21.60 dBm	GainLow #Atten: 20 dB	Mkr1	2.480 205 GHz 5.062 dBm	Auto Tuni
11E	•'			Center Free 2.48000000 GH
190				Start Fre 2.477500000 GH
18.4			\nearrow	Stop Fre 2.482500000 GH
30.4				CF Stej 500.000 kH Auto Ma
40.4 				Freq Offse
68.4 Center 2.480000 GHz			Span 5.000 MHz	

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

8.3 DUTY CYCLE

<u>LIMIT</u>

Nil (No dedicated limit specified in the Rules) **TEST EQUIPMENTS**

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY54430216	07/18/2019	07/17/2020		
Power Meter	Anritsu	ML2487A	6K00003888	11/20/2019	05/19/2021		
Power Sensor	Anritsu	MA2491A	033265	11/20/2019	05/19/2021		
SMA Cable + 10dB Attenuator	CCS	SMA+10dB ATT	SMA/10dB	01/30/2020	01/29/2021		
Software		Excel(ccs-o6-2020 v1.1)					

TEST SETUP

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value. Set VBW ≥ RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T ≤ 16.7 microseconds.)

TEST RESULTS

No non-compliance noted.

TEST DATA

<u>WIFI</u>

Model Name	SC6000M PRIME	Test By	Ted Huang
Temp & Humidity	25.4 , 56%	Test Date	2020/03/31

	us	Times	Ton	Total Ton time(ms)
Ton1	100000.000	1	100000	
Ton2		0	0	
Ton3			0	100
Тр				100

Ton	100		
Tp(Ton+Toff)	100		
Duty Cycle	1		
10 * log (1/x) =	0		

TEST PLOT

<u>Plot</u>

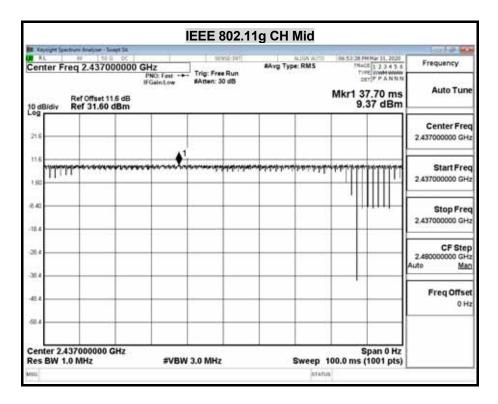
III Keyoght Spectrum Analyzer - Swept SA	IEEE 802.1	1b CH Low		
Center Freq 2.41200000	0 GHz	ALIDA AUTI RAvg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
Ref Offset 11.6 dB 10 dB/div Ref 31.60 dBm	IFGain:Low #Atten: 30 dB		Mkr1 60.90 ms 11.22 dBm	Auto Tune
21.6		41		Center Freq 2.412000000 GHz
116		•		Start Freq 2.412000000 GHz
8.40				Stop Freq 2.412000000 GHz
38.4				CF Step 2.480000000 GHz Auto Man
45.4				Freq Offset 0 Hz
@4 Center 2.412000000 GHz	#VBW 3.0 MHz		Span 0 Hz	
Res BW 1.0 MHz	#VBW 3.0 MHZ	Sweep	100.0 ms (1001 pts)	

IEEE 802.11b CH Mid						
AL I	eq 2.437000000	GHz	Strid: Strid: Strid	AUXA AUXA	TRACE 1 2 3 4 5 4	Frequency
10 dBidiv	Ref Offset 11.6 dB Ref 31.60 dBm	PNO: Fast -+ IFGainLow	#Atten: 30 dB		Mkr1 16.30 ms 11.67 dBm	Auto Tun
21.6						Center Fre 2.437000000 GH
116	*					Start Fre 2.437000000 GH
-8.40						Stop Fre 2.437000000 GH
38.4						CF Ste 2.48000000 GF Auto Mi
48.4						Freq Offs 0 F
Center 2.4 Res BW 1	37000000 GHz	EVB/	V 3.0 MHz	Swaan	Span 0 Hz 100.0 ms (1001 pts)	
Res BW 1. ms	.0 MHZ	#VBV	V 3.0 MHZ	Sweep		L

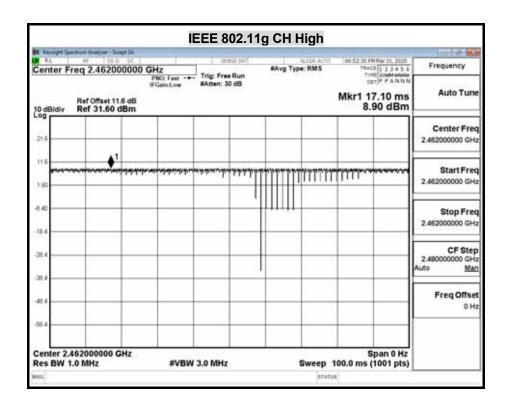
Page: 43 / 124 Rev.: 00

Report No.: T191125N08-RP1

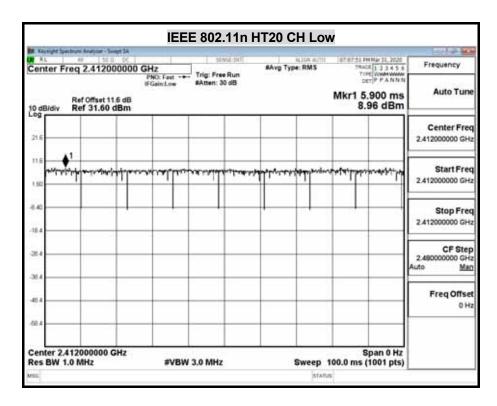
	ectrure Analyzer - Swept SA		The second second	transferration		
	reg 2.4620000		SENSE (2017)	#Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
		PNO: Fast -	#Atten: 30 dB		DET P P A N N N	SIG110 000000
10 dB/div	Ref Offset 11.6 di Ref 31.60 dBn				Mkr1 15.20 ms 11.91 dBm	Auto Tun
log						Center Fre
21.6	▲1					2.462000000 GH
11.6						Start Fre
1.90						2.462000000 GH
-8.40			-			Stop Fre
-18.4	_					2.452000000 GH
28.4						CF Ste 2.48000000 GH
36.4						Auto <u>Ma</u>
45.4						Freq Offse
						0H
-58.4						
Center 2. Res BW 1	62000000 GHz	#V/B)	N 3.0 MHz	Swaan	Span 0 Hz 100.0 ms (1001 pts)	


This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

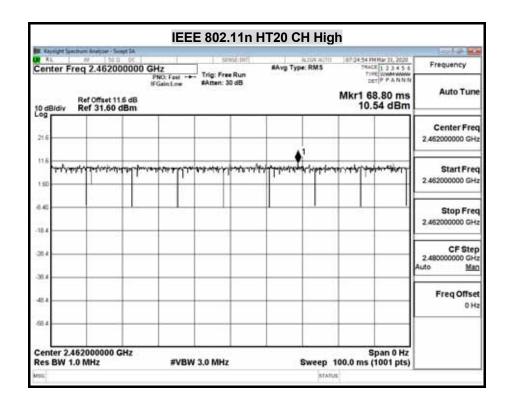
Page: 44 / 124 Rev.: 00


Report No.: T191125N08-RP1

IEEE 802.11g CH Low R. Ka our - Swept BA 08-18-12 PH Ray 11, 2020 TRACE 1 2 3 4 5 6 TVPE WWW WWW DET P A N N N #Avg Type: RMS Frequency Mkr1 32.00 ms 8.82 dBm Auto Tune Ref Offset 11.6 dB Ref 31.60 dBm 10 dBidiv Center Freq 21 2.412000000 GHz 1 11 **** Start Freq 7 2.412000000 GHz 84 Stop Freq 2.412000000 GHz 18. CF Step 2.48000000 GHz 38 Man uto 38 Freq Offset 45 0 Hz 68. Span 0 Hz Sweep 100.0 ms (1001 pts) Center 2.412000000 GHz #VBW 3.0 MHz Res BW 1.0 MHz STATUS



Page: 45 / 124 Rev.: 00


Page: 46 / 124 Rev.: 00

enter Freq 2.4	37000000 G	Hz	Trig: Free Run	#Avg Type: RM	5 TRACE 1 2 3 4 5 6	Frequency
		PNO: Fast 🕶 FGain:Low	#Atten: 30 dB		Mkr1 30.10 ms 10.04 dBm	Auto Tune
n.e						Center Free 2.437000000 GH
	ĸ Ŧ ₩₩ <mark>₽</mark> ₩Ŧ	anter frishin	nt vak bission	under freisingen Langer	wa _t atin <mark>a</mark> har a karartak	Start Free 2.437000000 GH
40						Stop Fre 2.437000000 GH
0.4						CF Stej 2.480000000 GH Auto <u>Ma</u>
8.4						Freq Offse 0 H
enter 2,4370000					Span 0 Hz	

Page: 47 / 124 Rev.: 00

Bluetooth 4.0:

Model Name	SC6000M PRIME	Test By	Ted Huang
Temp & Humidity	26.2 , 52%	Test Date	2020/04/01

	us	Times	Ton	Total Ton time(ms)
Ton1	400.000	1	400	
Ton2		0	0	
Ton3			0	0.4
Тр				0.625

Ton	0.4
Tp(Ton+Toff)	0.625
Duty Cycle	0.64
10 * log (1/x) =	1.938

Page: 49 / 124 Rev.: 00

<u>Plot</u>

				C	H Low					
	ectrure Analyter -				-	CISING TO A VI	1000000000			
Center F	and the second se	000000 G	Hz	Trig: Free Ru	RAvg	Type: RMS	18:09:44 AN TRACE TYPE	Aprill, 2020 1 2 3 4 5 6 WWM WWW P P A N N N	Frequency	
-	Ref Offset		GainLow	#Atten: 20 di			ΔMkr1 40	-	Auto Tuni	
10 dB/div	Ref 21.6						28	.08 dB		
11.6	-	-		A142					Center Free	
1.60	7/1-						-		2,402000000 GH	
8.40								_		
10.4			W	3/	54				Start Free	
20.4			110			-++-			2.402000000 GH	
30.4			++++				++++			
48.4	Norce	440-54	1991	8/ab	MAN	my	1041	1940	Stop Free	
48.4		2003				100.000	100	1.50	2.40200000 GH	
	40200000	GHz						oan 0 Hz	CF Step	
Res BW	alai ata		#VBW	3.0 MHz			5.000 ms (1		1.000000 MH Auto Mar	
	t (Δ)	×	(A) su 0.00	28.08 dB	PUNCTION	FUNCTION MOTH	FUNCTION	A WALLER		
2 F 3 Δ4	t t (Δ)	1.	870 ms 25.0 μs (Δ)	-23.86 dBm 0.64 dB			-		Freq Offse	
4 F	t		870 ms	-23.86 dBm					0 H	
6 7			_							
8										
9										
11						-	-	-		
esis.						STATU	15			

					CH M	lid			
		re Analyzer - Swept		11.520	1.2 miles	04 205	acture that		
Cent		2.442000	000 GHz	122020	Rus	RAvg Type: I		11:38 AM Apr 81, 2128 TRACE 1 2 3 4 5 6 TUTE VILLAN MARK	Frequency
			PNO: Fast IFGain:Low					DET P P A N N N	90303288
10 dE		ef Offset 11.6 ef 21.60 dB					ΔMk	r1 400.0 µs 27.68 dB	Auto Tun
Log				1	A102				Contra Fra
1.60	5 F			ning param					Center Fre 2 44200000 GH
5.40									E.HEDOVOV OF
10.4					30	4			307.70253
20.4		1		X.	Y				Start Fre
39.4									2.442000000 GH
41.4									
48.4	10.90	1-10	WMI	484	WANY	VING	it a	1495	Stop Fre
48.4	ann.						The state of the second		2.44200000 GH
		1							-
	ter 2.442 BW 1.0	2000000 GH		BW 3.0 MHz			man 5 000	Span 0 Hz ms (1001 pts)	CF Ste 1.000000 MH
10 COLON	an and a second second	1000		DW 3.0 MILZ	-	the second s	No. of Concession, Name		Auto Ma
	Δ2	t (Δ)	400.0 µs	(Δ) 27.68	dB	TION FUNCTI	CNNDLH	UNCTION VALUE	
		t (Δ)	2.185 mis 625.0 µs	-23.59 dE (Δ) -0.06 d		_			Freq Offse
4		t	2.185 ms	-23.59 dE	lm				0 H
5					-			1	
7		-			-				
9					_				
11									
•							102223	100	
page -							STATUS		

Page: 50 / 124 Rev.: 00

			C	CH High				
Runget Sectors And RL 19 Center Freq 2.4	80000000 C	PNO: Fast -+	Trig: Free F	Run	g Type: RMS	3RAC 728	R Apr 81, 2020 201 2 3 4 5 6 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Frequency
	set 11.5 dB	IFGainLow	#Atten: 20	<i>3</i> 8		ΔMkr1 4		Auto Tun
116		hr	∮ ^{1∆2}	7		h (**	7-6	Center Free 2.480000000 GH
5.40 10.4 20.4		X.	(³	54				Start Free 2.48000000 GH
	V are	vila	inter .	way	NAME	w	with	Stop Free 2.48000000 GH
Center 2.4800000 Res BW 1.0 MHz	000 GHz	#VBW	/ 3.0 MHz	EN-TON	Sweep	5.000 ms (CF Step 1.000000 MH Auto Ma
Δ2 t (Δ) 2 F t 3 Δ4 t (Δ) 4 F t 5 6 7 8 8		400.0 μs (Δ) 1.810 ms 625.0 μs (Δ) 1.810 ms	27.69 d -23.78 dBr 0.09 d -23.78 dBr	B				Freq Offse 0 H
9 10 11			3				-	

8.4 POWER SPECTRAL DENSITY

<u>LIMIT</u>

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY54430216	07/18/2019	07/17/2020
Power Meter	Anritsu	ML2487A	6K00003888	11/20/2019	05/19/2021
Power Sensor	Anritsu	MA2491A	033265	11/20/2019	05/19/2021
SMA Cable + 10dB Attenuator	CCS	SMA+10dB ATT	SMA/10dB	01/30/2020	01/29/2021
Software	Excel(ccs-o6-2020 v1.1)				

TEST SETUP

TEST PROCEDURE

The tests were performed in accordance with KDB 558074 5.3.1.

5.3.1 Measurement Procedure PKPSD:

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST RESULTS

Model Name	SC6000M PRIME	Test By	Ted Huang
Temp & Humidity	25.4 , 56%	Test Date	2020/03/31

IEEE 802.11b mode

Channel	Frequency (MHz)	PPSD/3kHz (dBm)	Limit (dBm)	Margin (dB)	Pass / Fail
Low	2412	-4.62	8.00	-12.62	PASS
Middle	2437	-4.32	8.00	-12.32	PASS
High	2462	-5.01	8.00	-13.01	PASS

NOTE: 1. At finial test to get the worst-case emission at 1long Mbps long.

2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode

Channel	Frequency (MHz)	PPSD/3kHz (dBm)	Limit (dBm)	Margin (dB)	Pass / Fail
Low	2412	-11.49	8.00	-19.49	PASS
Middle	2437	-11.03	8.00	-19.03	PASS
High	2462	-11.29	8.00	-19.29	PASS

NOTE: 1. At finial test to get the worst-case emission at 6long Mbps long.

2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

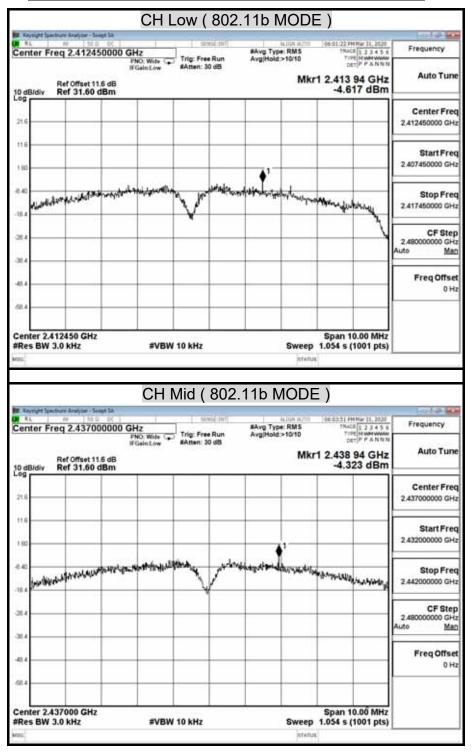
PPSD/3kHz Frequency Limit Margin Channel Pass / Fail (dBm) (dB) (MHz) (dBm) Low 2412 -11.80 8.00 -19.80 PASS Middle 2437 -10.08 8.00 -18.08 PASS High 2462 -10.32 8.00 -18.32 PASS

IEEE 802.11n HT20 mode

NOTE : 1. At finial test to get the worst-case emission at 6.5long Mbps long.
 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

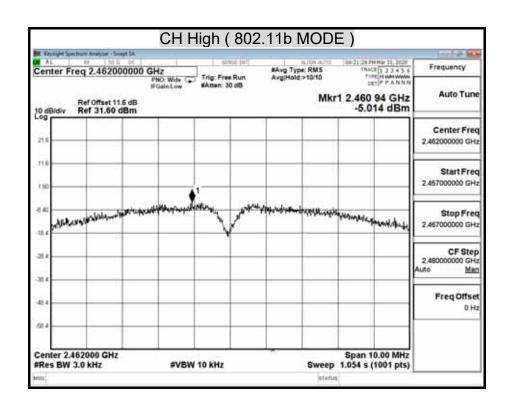
Model Name	SC6000M PRIME	Test By	Ted Huang
Temp & Humidity	26.2 , 52%	Test Date	2020/04/01

Bluetooth 4.0 (GFSK) mode

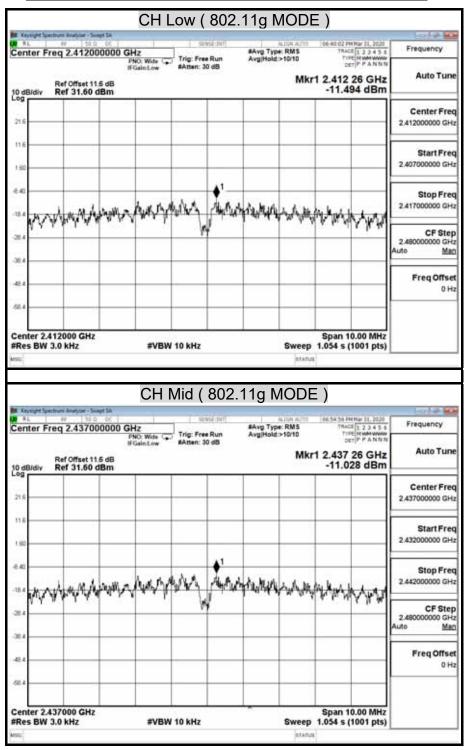

Channel	Frequency (MHz)	PPSD/3kHz (dBm)	Limit (dBm)	Margin (dB)	Pass / Fail
Low	2402	-8.53	8.00	-16.53	PASS
Middle	2442	-8.81	8.00	-16.81	PASS
High	2480	-9.31	8.00	-17.31	PASS

NOTE: 1. At finial test to get the worst-case emission at 1long Mbps long.

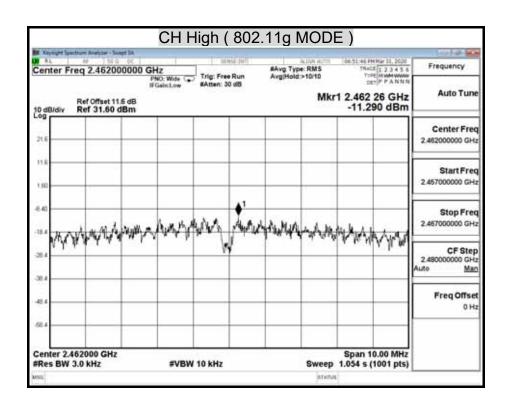
2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.



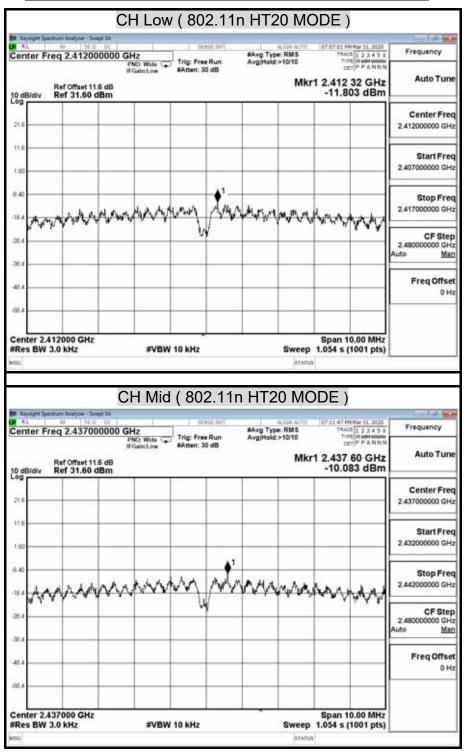
POWER SPECTRAL DENSITY (IEEE 802.11b MODE)



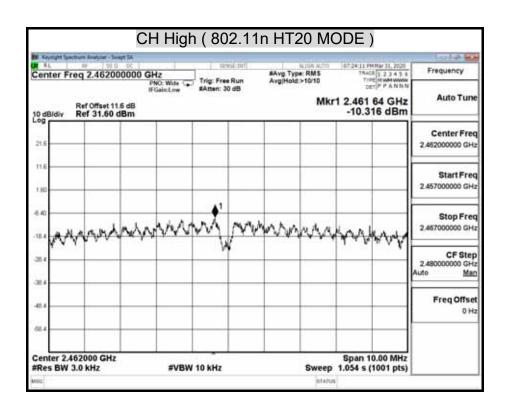
Page: 55 / 124 Rev.: 00



POWER SPECTRAL DENSITY (IEEE 802.11g MODE)

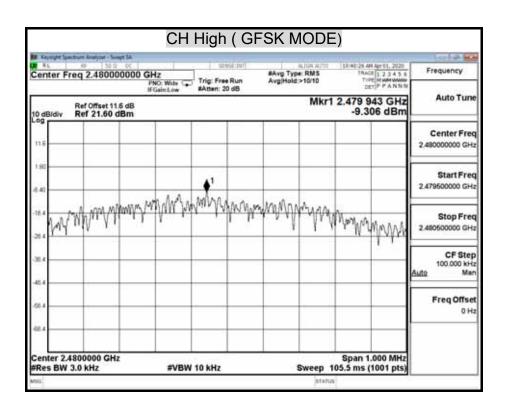


Page: 57 / 124 Rev.: 00



POWER SPECTRAL DENSITY (802.11n HT20 MODE)

Page: 59 / 124 Rev.: 00



CH Low (GFSK MODE) or hand the 58 AM Apr 81, 2020 TRACE 1 2 3 4 5 6 TUPE M MM MMM DET P P A N N N #Avg Type: RMS Avg Hold:>10/10 Frequency Auto Tune Mkr1 2.401 936 GHz -8.530 dBm Ref Offset 11.6 dB Ref 21.60 dBm 10 dB/div Center Freq 2,402000000 GHz 1.6 Start Freq 2,401500000 GHz www.mannanthy.html. My many many my MAN WN Stop Freq 2.402500000 GHz CF Step 100.000 kHz Man Auto 19 Freq Offset 0 Hz Center 2.4020000 GHz #Res BW 3.0 kHz Span 1.000 MHz Sweep 105.5 ms (1001 pts #VBW 10 kHz CH Mid (GFSK MODE) R. Keying ht Spectrure Analyzer - Swept SA Contract International Center Freq 2.442000000 GHz PNO: Wide Trig: Free Run If GainLow Trig: Free Run 18:27:47 AM Apr 81, 2020 TRACE 1 2 3 4 5 6 TUPE M MM WWW DET P P A N N N Frequency #Avg Type: RM5 Avg(Hold:>10/10 Auto Tun Mkr1 2.441 940 GHz Ref Offset 11.6 dB Ref 21.60 dBm -8.812 dBm 10 dB/div Center Freq 11. 2.442000000 GHz Start Freq Mary Mary Mary Mary Mary 2.441500000 GHz Stop Freq 2.442500000 GHz CF Step 100.000 kHz Man Lito m. Freq Offset 0 Hz Center 2.4420000 GHz Span 1.000 MHz Sweep 105.5 ms (1001 pts) #VBW 10 kHz Res BW 3.0 kHz

POWER SPECTRAL DENSITY (Bluetooth 4.0 (GFSK) MODE)

Page: 61 / 124 Rev.: 00

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

8.5 CONDUCTED SPURIOUS EMISSION

<u>LIMITS</u>

§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY54430216	07/18/2019	07/17/2020	
Power Meter	Anritsu	ML2487A	6K00003888	11/20/2019	05/19/2021	
Power Sensor	Anritsu	MA2491A	033265	11/20/2019	05/19/2021	
SMA Cable + 10dB Attenuator	CCS	SMA+10dB ATT	SMA/10dB	01/30/2020	01/29/2021	
Software		Excel(ccs-o6-2020 v1.1)				

TEST SETUP

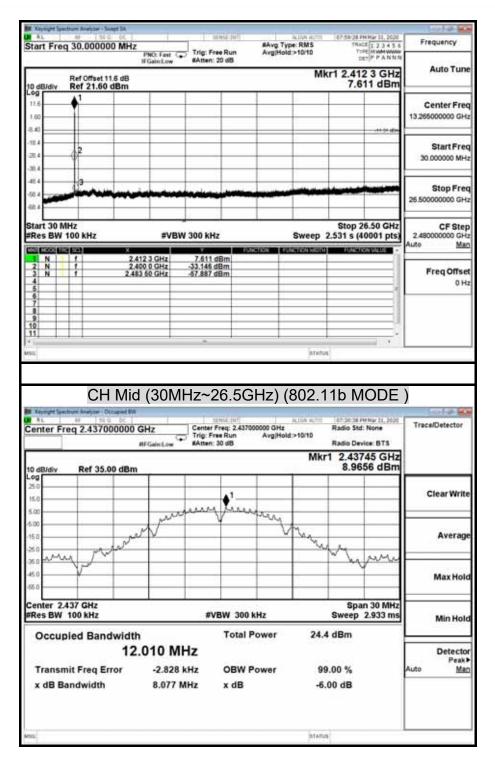
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

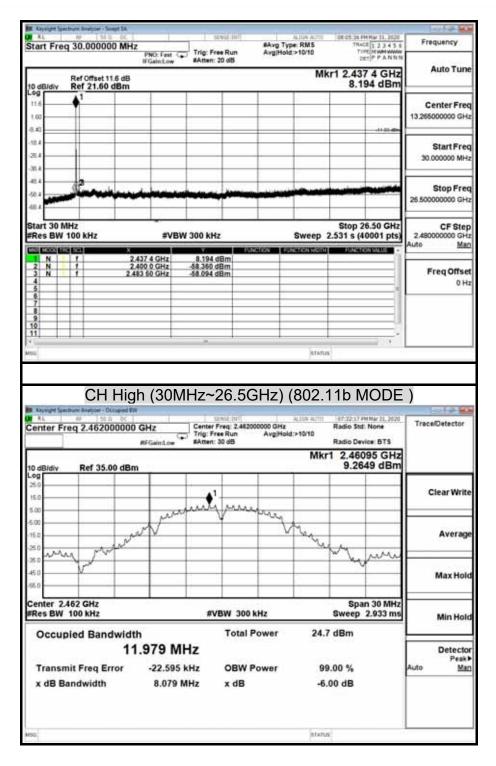
TEST RESULTS

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT


Model Name	Model Name SC6000M PRIME		Ted Huang
Temp & Humidity	25.4 , 56%	Test Date	2020/03/31

CH Low (30MHz~26.5GHz) (802.11b MODE) Radio Std: None Center Freq: 2.412000000 GHz Trig: Free Run Avg|Hold:>10/10 #Atten: 30 dB - ALISN 44/717 Center Freq 2.412000000 GHz **Trace/Detector** Radio Device: BTS #FGaint.ow Mkr1 2.41095 GHz 8.4873 dBm Ref 35.00 dBm 10 dB/div 0g Clear Write 15 6.0 sine Averag 15 25 MM ×. Max Hold œ. Span 30 MHz Center 2,412 GHz Res BW 100 kHz #VBW 300 kHz Sweep 2.933 ms Min Hold **Occupied Bandwidth Total Power** 23.7 dBm 11.984 MHz Detecto Peak > 68.800 kHz **OBW Power Transmit Freg Error** 99.00 % Auto Man x dB Bandwidth 7.576 MHz x dB -6.00 dB STATUS I LA At Spectrum Analyzer - Swept SA 10.00 CP 58:19 PM Rar 11, 2020 TRACE 1 2 3 4 5 6 TVPE R MMMMM DET P P A N N N ж #Avg Type: RMS Avg/Hold:>10/10 Frequency Start Freq 2.310000000 GHz PNO: Fast C Trig: Free Run #Atten: 20 dB Auto Tun Mkr1 2.410 952 50 GHz Ref Offset 11.5 dB Ref 21.60 dBm 8.602 dBm 1 11) Center Freq 1.8 2,365000000 GHz 日本 10. Start Freq 28.4 2.31000000 GHz 'n, 48 Stop Freq 68.5 2.42000000 GHz 180 Stop 2.42000 GHz Start 2.31000 GHz CF Step 2.48000000 GHz uto Man #VBW 300 kHz Res BW 100 kHz Sweep 10.67 ms (40001 pts) LOSS HERES 100 2,410 952 50 GHz 2,400 0 GHz 2,483 50 GHz NNN 8.602 dBr 46.559 dBr Freq Offset 0 Hz STATUS

(IEEE 802.11b MODE)



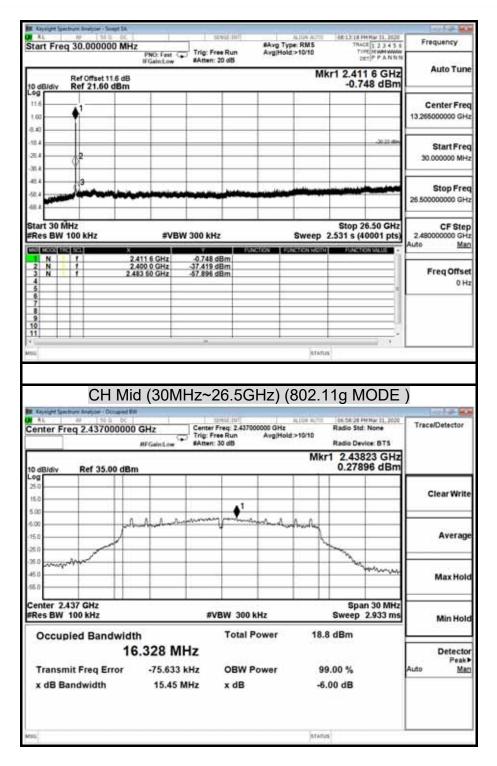
Page: 64 / 124 Rev.: 00

Page: 65 / 124 Rev.: 00

Keysight Spectrum Analyzer -	Swept 14	The second second	CHARGE CONTRACTOR	The other states and the states	100 C 100 C 100 C
tart Freq 2.45000		Trig: Free Run	#Avg Type: RMS Avg/Hold:>10/10	08-07-15 PH Mar 11, 2020 TRACE 1, 2, 3, 4, 5, 6 TUPE M WH WHAN DET P P A N N N	Frequency
Ref Offset 0 dB/div Ref 21.6	11.6 dB		Mkr1 2.46	2 448 75 GHz 9.199 dBm	Auto Tun
09 11.6 1.60	wer hunner				Center Fre 2.47500000 GH
5. 40 10. 4 20. 4 Market	- W	My way	3	10.71.484	Start Free 2.45000000 GH
40 4 2 40 4 2 50 4			Whown	*******	Stop Fre 2.50000000 GH
tart 2.45000 GHz Res BW 100 kHz	#VB	W 300 kHz	Sweep 5.33	top 2.50000 GHz 13 ms (40001 pts)	CF Ste 2.48000000 GH Auto Ma
N 1 2 N 1 3 N 1 5 6 7	2,462 448 75 GHz 2,400 0 GHz 2,483 50 GHz	9.199 dBm — dBm -44.704 dBm		20120-001-0010 2	Freq Offse 0 H
8 9 10 11					
1	1		STADUS		
(1) NS	Swept 1A		STATUS		
<u></u>	DOD MHZ	Trig: Free Run	Auga with Avg Type: RMS Avg/Hold:>1010	00:00:23 PH Mar 31, 2020 TRACE 1, 2, 3, 4, 5, 6 TOPE M MANAGE DEF P P A 19, 19	Frequency
kart Freq 30.0000 Ref Offset 0 dB/div Ref 21.6	DOO MHz PNC: Fast (IFGain:Low		Alipa Artto #Avg Type: RMS Avg(Hold:>1010	TRACE 1 2 3 4 5 6	Frequency
AL IN STORE	DOO MHz PNC: Fast (IFGain:Low	Trig: Free Run	Alipa Artto #Avg Type: RMS Avg(Hold:>1010	TRACE 1 2 3 4 5 6 TIPE MINH WHAN DET P P A N N N	Frequency Auto Tun Center Fre
tart Freq 30.0000 clart Freq 30.0000 Ref Offset 0 dBidiv Ref 21.6 og	DOO MHz PNC: Fast (IFGain:Low	Trig: Free Run	Alipa Artto #Avg Type: RMS Avg(Hold:>1010	Trace (1 2 2 4 3 6 Trace (1 2 2 4 3 6 Tore (1 2 7 4 5 6) Tore (1 2	Frequency Auto Tun Center Fre 13.26500000 GH Start Fre
E Report Section Reduce AL 0 Start Freq 30.0000 0 dB/div Ref Offset 0 dB/div Ref 21.6 1 1 5 40 1 10 4 1	DOO MHz PNC: Fast (IFGain:Low	Trig: Free Run	Alipa Artto #Avg Type: RMS Avg(Hold:>1010	Trace (1 2 2 4 3 6 Trace (1 2 2 4 3 6 Tore (1 2 7 4 5 6) Tore (1 2	Frequency Auto Tun Center Fre 13.26500000 GH Start Fre 30.00000 MH Stop Fre
E Report Section Realize AL 00 15 itart Freq 30.0000 0 dB/div Ref 21.6 0 dB/div Ref	10. OC IPGentLow PNC: Feat (IFGentLow II.6 dB 0 dBm	Trig: Free Run #Atten: 20 dB	Avg Type: RMS Avg/Hold:>1010 Mkr	1 2.462 6 GHz 6.244 dBm 10.11 cm 10.11	Frequency Auto Tun Center Fre 13.265000000 GH 30.000000 MH 25.50000000 GH 25.50000000 GH 2.49000000 GH
Ref Offset 0 dB/div Ref Offset 0 dB/div Ref Offset 0 dB/div Ref Offset 1 db/div Ref Offset 0 dB/div Ref Offset 0 dB/div Ref Offset 1 db/	10. OC IPGentLow PNC: Feat (IFGentLow II.6 dB 0 dBm	Trig: Free Run #Atten: 20 dB	Avg Type: RMS Avg/Hold:>1010 Mkr	1 2.462 6 GHz 6.244 dBm	Frequency Auto Tun Center Fre 13.265000000 GH Start Fre 20.000000 GH Stop Fre 26.50000000 GH Auto Ma
Image: Start Street Section Readow AL Image: Start Street Section Readow AL Image: Start Street Section Readow AL Image: Start Street Section Readow Image: Start Street Section Readow Ref Offset Image: Start Street Section Readow Image: Start Section Readow Image: Start So MHz Image: Start So MHz Res BW 100 kHz Image: Start So MHz Image: Start So MHz Image: Start So MHz Image: Start So MHz Image: So MHz Image: Start So MHz Image: So MHz Image: So M Image: So MI Ima	#0. oc proc. Fast (in Galan Low) in 1.6 dB 0 dBm #VB	W 300 kHz	Avg Type: RMS Avg/Hold:>1010 Mkr	1 2.462 6 GHz 6.244 dBm 10.11 cm 10.11	Аиto Tun Center Fre 13.26500000 GH Start Fre 30.00000 MH 25.50000000 GH 25.50000000 GH

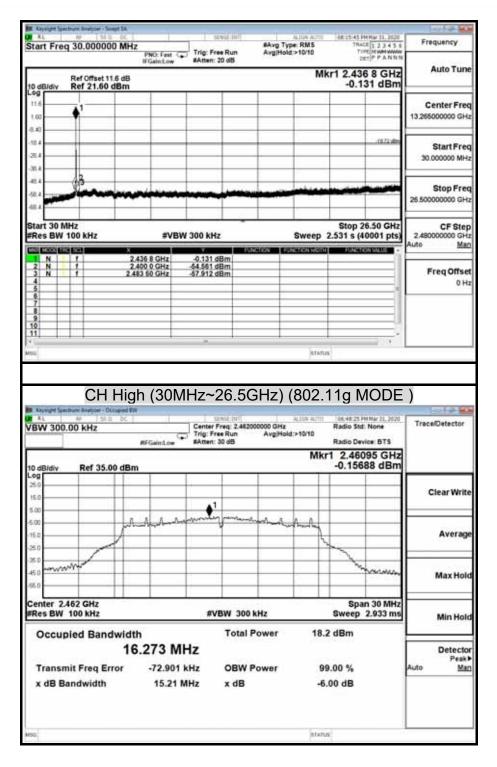
Page: 67 / 124 Rev.: 00

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED


MEASUREMENT

	ectrure Analyzer - Occ	sepred BW			tra statestica			and the second	
enter F	req 2.41200	0000 GHz #FGa	Center Trig: Fi	Freq: 2.4120000 ree Run 30 dB	ALISA 401 00 GHz Avg(Hold:>10/10	Radio Std	1920 June -	Trace/Detector	
0 dB/div	Ref 35.0	0 dBm			M	-0.225	90 dBm		
25.0 15.0				•1				Clear Write	
5.00 5.00 15.0 25.0		hin	Anann	Jonnes	n-hahaday			Average	
350 000000 450 550	un and a start and a start a st							Max Hole	
Center 2.412 GHz Spar					n 30 MHz 2.933 ms	Min Hold			
		16.32	9 MHz					Detecto	
	mit Freq Err landwidth		5.458 kHz 15.38 MHz	OBW Pov x dB		99.00 % 6.00 dB	(199)	Peak	
x dB B						6.00 dB		Peakl Auto Mat	
x dB B	landwidth	er ta bc D00 GHz PN0	15.38 MHz	x dB		6.00 dB	HH <u>ar 11, 2020</u> CE [1 2 3 4 5 6 FE] M AMMANNA FF P A N N H	Peak	
x dB B	andwidth store force 50 g 2.3100000 Ref Offset 11	1 IX IX IX IX IX IX IX IX IX IX	15.38 MHz	x dB	Auguston and RAvg Hold > 1010	6.00 dB	ET P ANNA	Peaki Auto <u>Ma</u>	
x dB B	landwidth stans Sugar Su q 2.3100000	1 IX IX IX IX IX IX IX IX IX IX	15.38 MHz	x dB	Auguston and RAvg Hold > 1010	6.00 dB	75 GHz	Peak Auto Ma	
x dB B	andwidth store force 50 g 2.3100000 Ref Offset 11	1 IX IX IX IX IX IX IX IX IX IX	15.38 MHz	x dB	Auguston and RAvg Hold > 1010	6.00 dB	75 GHz	Auto Peak Maile Frequency Auto Tun Center Fre 2.36500000 GH	
x dB B % AL % AL	andwidth store force 50 g 2.3100000 Ref Offset 11	1 IX IX IX IX IX IX IX IX IX IX	15.38 MHz	x dB	Auguston and RAvg Hold > 1010	6.00 dB	75 GHz	Auto Peak Ma Frequency Auto Tun Center Fre	
x dB B	Ref Offset 11. Ref 21.60 c	et IA DOO GHZ IFGat BBm	Fast Trig: F RAtten:	x dB	Avg Type: RMS AvgHold>1010 Mkr1 2	6.00 dB	75 GHz 21 dBm 1 3 2000 GHz 2000 GHz	Auto Peak Maile Frequency Auto Tun Center Fre 2.36500000 GH Start Fre 2.31000000 GH	
x dB B so x dB S so x dB S	Ref Offset 11. Ref 21.60 c	st IA DOO GHz PNO IFGal 5 dB IBm	15.38 MHz	x dB	Avg Type: RMS Avg Hold > 1010 Mkr1 2 Mkr1 2 Sweep	6.00 dB	75 GHz 21 dBm 1 3 2000 GHz 2000 GHz	Peak Auto Ma	

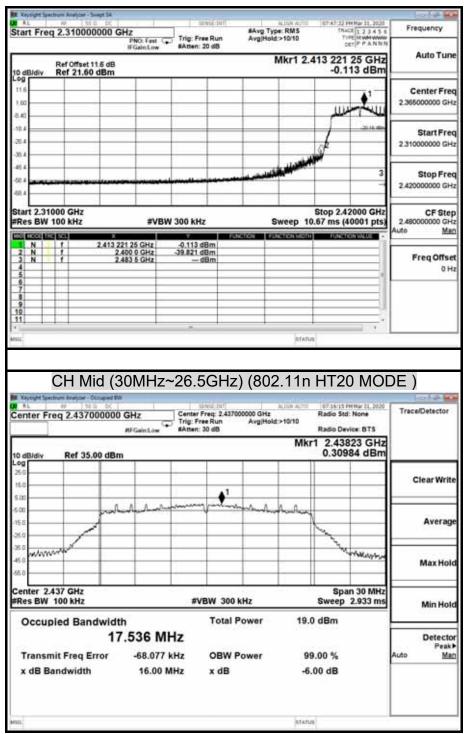
(802.11g MODE)



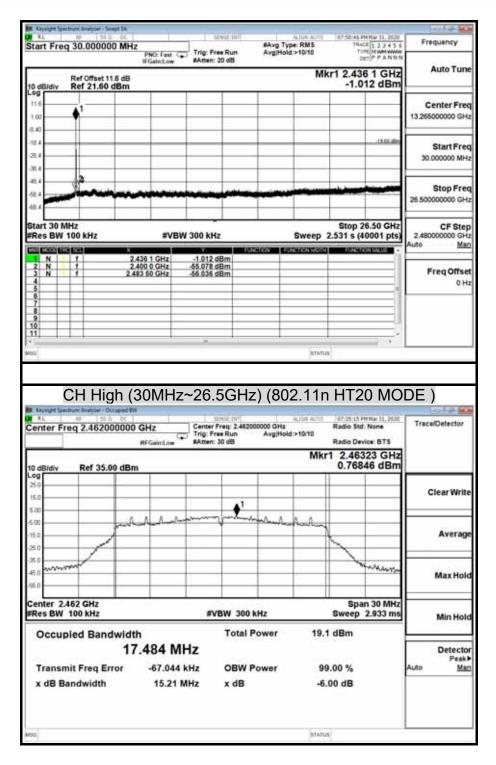
Page: 68 / 124 Rev.: 00

Page: 69 / 124 Rev.: 00

Page: 70 / 124 Rev.: 00

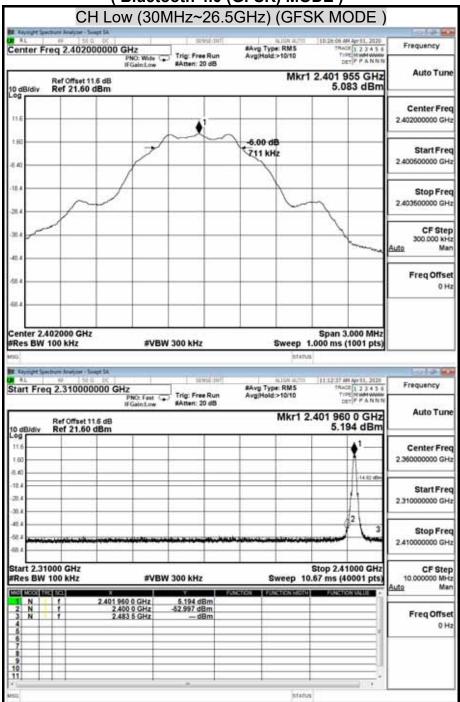

AL M	1 58 Q DC	SENSE:2N7	222 A 100 A 100 A 100	08:18:33 PH Mar 31, 2020	and the second sec
tart Freq 2.450	PNO: Fast	Trig: Free Run	#Avg Type: RMS Avg/Hold:>10/10	THE PANNA	Frequency
dB/div Ref 21	IFGainLow set 11.6 dB 1.60 dBm	#Atten: 20 dB	Mkr1 2.4	460 941 25 GHz -0.187 dBm	Auto Tur
0g 11.6 1.60	♦ ¹	1			Center Fre 2.475000000 GH
				-2018.0Ex	Start Fre 2.45000000 GP
84 2			Marine Carlos		Stop Fre 2.50000000 G
tart 2.45000 GH Res BW 100 kH		W 300 kHz		Stop 2.50000 GHz 333 ms (40001 pts)	CF Ste 2.48000000 GH Auto Ma
	2,460 941 25 GHz 2,400 0 GHz 2,483 60 GHz	-0.187 dBm dBm -61.979 dBm	JACIAN FUNCTION MORE		Freq Offs 01
8 9 10]	
1			STATU		
0 Kayoget Spectrum Analy	ter - Swept SA	-	a contraction of the second	31	
1 Image: Spectrum Routy RL 10	58.0. OC	= Straid deff Trig: Free Run #Atten: 20 dB	ALIA ALTA ALIA ALTA AVgType: RMS AvgHold:>1010	5 10119-23 FM Har 11, 2021 17400 (1, 2, 2, 4, 5, 6 1776) (1, 2, 2, 4, 5, 6 1760) (1, 2, 2, 4, 5, 6) 1760) (1, 2, 3, 4, 5, 6) 1760) (1, 3, 6) 1760	Frequency
11	00000 MHz PNC Fast 4	Street Series	Aug Type: RMS Avg Hold:>1010	100-19-20 PM Ray 11, 2020	Frequency
1 xport feet too Ref kL 0 too Bldiv Ref 21 0 GBJdiv 1 50 1 11.6	1510 0C 00000 MHz PNC: Fest 4 IFGain:Low set 11.5 dB	Trig: Free Run #Atten: 20 dB	Aug Type: RMS Avg Hold:>1010	1923 PHILU 21, 2020 TRACE [2 3 4 5 6 THE N MANNE 2017 P A NUM ct 2.462 6 GHz	Frequency Auto Tur Center Fre
1 Second Sectors Red AL Freq 30.000 Ref Off 0 dBJdiv Ref 21 0 dBJdiv Ref 21 0 dBJdiv Ref 21	1510 0C 00000 MHz PNC: Fest 4 IFGain:Low set 11.5 dB	Trig: Free Run #Atten: 20 dB	Aug Type: RMS Avg Hold:>1010	1923 PHILU 21, 2020 TRACE [2 3 4 5 6 THE N MANNE 2017 P A NUM ct 2.462 6 GHz	Frequency Auto Tur Center Fre 13.26500000 Gi Start Fre
1	1510 0C 00000 MHz PNC: Fest 4 IFGain:Low set 11.5 dB	Trig: Free Run #Atten: 20 dB	Aug Type: RMS Avg Hold:>1010	1923 PHILU 21, 2020 TRACE [2 3 4 5 6 THE N MANNE 2017 P A NUM ct 2.462 6 GHz	Frequency Auto Tur Center Fre 13.26500000 Gi Start Fre 20.00000 Mi
1 1 1 1 1 1 1 1 1 1 1 1 1 1	z #VB	W 300 kHz	ALIGN AUTO AAvg Type: RMS Avg Hold:>1040 Mi	Control 11, 2021	Frequency Auto Tur Center Fri 13.265000000 G Start Fri 30.000000 M Stop Fri 26.50000000 G
1 xer off ker off odBidiv Ref 21 0 0 0 0 0 0 0 0 0 0 0 0 0	ISBO. OC. PNO: Fast 1 IFGain:Low Set 11.5 dB 1.60 dBm	#Atten: 20 dB	AAvg Type: RMS Avg Hold:>1040 Mi	Control 11, 2021	Frequency Auto Tur Center Fre 13.265000000 Gi Start Fre 20.000000 Gi Stop Fre 26.50000000 Gi 2.480000000 Gi Auto
AL SECONDUCTION AND A SECONDUCTUCTUAL AND A SECONDUCTUCTUCTUAL AND A SECONDUCTUCTUCTUCTUCTUCTUCTUCTUCTUCTUCT	z #VB	#Amer: 20 dB	AAvg Type: RMS Avg Hold:>1040 Mi	Control 11, 2021	Auto Tur Center Fre 13.26500000 GF Start Fre 30.000000 MF Stop Fre 25.50000000 GF

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT


	HT20 MOI	2.11n H	GHz) (802	z~26.5		the last sector of a last of hims of the last of the l	
Trace/Detector	Radio Std: None Radio Device: BTS	Radi >10/10	req: 2.412000000 GHz e Run Avg Hold			N Starter N. Starter 0.00 kHz	RL
	2.41323 GHz -0.16283 dBm					Ref 35.00 dBr	0 dB/div
Clear Writ			▲ ¹				50 50 50
Averag	ž	Andrey my	mhundrahada		A	السم معرور	00 5.0 5.0
Max Hol	A market			-		www.	50 50 50
Min Hol	Span 30 MHz Sweep 2.933 ms		3W 300 kHz	#VI		A12 GHz 100 kHz	
Peak Auto <u>Ma</u>	14600 1	99.00 %	OBW Power	kHz	-50,946	nit From From	Transi
	0 dB	-6.00 d	x dB	MHz	15.38	mit Freq Error Bandwidth	
	0 dB	-6.00 dl	x dB	MHz		landwidth	x dB E
Frequency	(67-48-41 PHI Mar 11, 2020) TMACE (2-2-3-4-5-4	STARUS NUOR AUTO (82-4	sid turt SAvg Typ	1.1.9	15.38 GHz	위 이 것은 것 못 없어야 한다.	x dB E
Frequency	127-48-43 PH Mar 31, 2020 THACE [2 3 4 5 6 THACE [P P A N N N DET P P A N N N 1 2.408 3 GHz	STATUS NUISE AUTO #: RNS :>10/10 Mkr1 2	sid huri BAvg Typ e Run AvgHol	1.1.9	15.38	andwidth store batter Sout IA 9 510 520 q 26.500000000 Ref Offset 11.6 dB	x dB E
Frequency Auto Tur Center Fre	67-48-40 PM PM 11, 2020 TRACE 1, 2, 3, 4, 5, 6 Trace Made and 5, 6 DET (P. P. A. N. N.	STATUS NUISE AUTO #: RNS :>10/10 Mkr1 2	sid huri BAvg Typ e Run AvgHol	Trig: Fre	15.38 GHz PNC Feet	andwidth sturn Reform - Sweet 35. W St D. Sc. Q 26.500000000	x dB E
Frequency Auto Tur Center Fre 13.26500000 GH Start Fre	127-48-43 PH Mar 31, 2020 THACE [2 3 4 5 6 THACE [P P A N N N DET P P A N N N 1 2.408 3 GHz	STATUS NUISE AUTO #: RNS :>10/10 Mkr1 2	sid huri BAvg Typ e Run AvgHol	Trig: Fre	15.38 GHz PNC Feet	andwidth store batter Sout IA 9 510 520 q 26.500000000 Ref Offset 11.6 dB	x dB E
Frequency Auto Tur Center Fre 13.26500000 GH Start Fre 20.00000 MH Stop Fre	127-48-43 PH Mar 31, 2020 THACE [2 3 4 5 6 THACE [P P A N N N DET P P A N N N 1 2.408 3 GHz	STATUS NUISE AUTO #: RNS :>10/10 Mkr1 2	sid huri BAvg Typ e Run AvgHol	Trig: Fre	15.38 GHz PNC Feet	andwidth store Reform Sweet 14 M St 3 SC q 25.500000000 Ref Offset 11.6 dB Ref 21.60 dBm	x dB E
Frequency Auto Tur Center Fre 13.265000000 Gi Start Fre 30.000000 Mi Stop Fre 25.50000000 Gi CF Ste 2.49000000 Gi	CP-45 41 PH Par 11, 2020 Trace (1 2 3 4 3 5 Trace (1 2 3 4 3 5 Trace (1 P P A N N N 1 2.408 3 GHz -1.561 dBm -2016	Status	Avg Typ Run Avg Hold 0 d5	Trig: Fre	15.38 GHz IFGainLow	Ref Offset 11.6 dB Ref 21.60 dBm	x dB E
Frequency Auto Tur Center Fre 13.265000000 GF Start Fre 30.000000 MF 25.50000000 GF 26.50000000 GF 2.480000000 GF Auto Mil	CP-48-42 PH Par 11, 2020 THACE [2 2 3 4 5 6 THE P F A N PAR 1 2.408 3 GHz -1.561 dBm -20-18-66 -20-18-66 Stop 26.50 GHz	Status	Bin	*) Trig: Fri #Atten: 2	15.38 GHz IFGainLow	Ref Offset 11.6 dB Ref 21.60 dBm	x dB E
Auto Tun Center Fre 13.265000000 GH Start Fre 30.000000 MH Stop Fre 25.50000000 GH	CP-45 41 PH Par 11, 2020 Trace (1 2 3 4 3 5 Trace (1 2 3 4 3 5 Trace (1 P P A N N N 1 2.408 3 GHz -1.561 dBm -2016	Status	Bin	→ Trig: Fr #Atten: : #Atten: : W 300 kHz -1.561 d -1.561 d	15.38 GHz PNC: Fast C IFGain:Low #VB 408.3 GHz 400.0 GHz	Ref Offset 11.6 dB Ref 21.60 dBm	x dB E

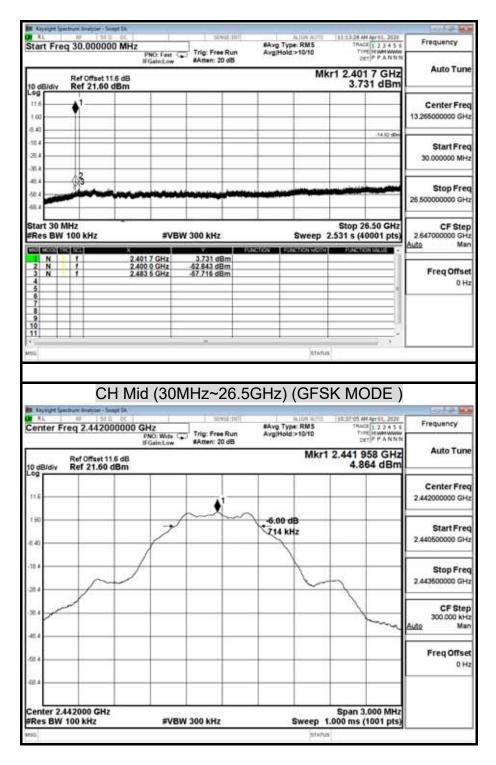
Page: 73 / 124 Rev.: 00

Freq 2.4500	000000 GHz PNC: Fast	Trig: Free Run	#Avg Type: RMS Avg(Hold:>1010	1075257 PH Rar 11, 2020 TRACE 1 2 3 4 5 TYPE R WH WWW DET P P A N N	Frequency
	IFGainLow et 11.6 dB 60 dBm		1920/02/2012	463 210 00 GHz 0.677 dBn	Auto Tun
	and	uL.			Center Fre 2.475000000 GH
\square		\mathbf{X}		-49.22.00	Start Fre 2.45000000 GH
2		Variantinas	der hans all in the second		Stop Fre 2.50000000 GH
2.45000 GHz BW 100 kHz		BW 300 kHz	Sweep 5.	Stop 2.50000 GH2 333 ms (40001 pts	
N I N I N I	2,463 210 00 GHz 2,400 0 GHz 2,483 50 GHz	0.677 dBm — dBm -62.209 dBm			Freq Offse
			STAR	s	
Freq 30.000	58.0 DC	- 5856(197)	ALISA AUTO BAvg Type: RMS	107-53-44 PM Ray 11, 202	
Freq 30.000	510 CC 1000 MHz PNC: Fast IFGain:Low et 11.6 dB	strig pri strig: Free Run sAtten: 20 dB	Allon Arm SAvg Type: RMS Avg/Hold:>10/10	12753-44 PH PM 21, 303 THACE [12345 TOPE N MANAGE DET P P A N H	Auto Tun
Freq 30.000	51.0 DC DOOD MHz PNO: Fast IFGain.Low		Allon Arm SAvg Type: RMS Avg/Hold:>10/10	127-53-44 PH PM 21, 202 TRACE [1 2 3 4 5 TIPE N MANNA DET P P A N N	Auto Tun
Freq 30.000	510 CC 1000 MHz PNC: Fast IFGain:Low et 11.6 dB		Allon Arm SAvg Type: RMS Avg/Hold:>10/10	12753-44 PH PM 21, 303 THACE [12345 TOPE N MANAGE DET P P A N H	Frequency
Ref Offse	510 CC 1000 MHz PNC: Fast IFGain:Low et 11.6 dB		Allon Arm SAvg Type: RMS Avg/Hold:>10/10	12753-44 PH PM 21, 303 THACE [12345 TOPE N MANAGE DET P P A N H	Auto Tun Center Fre 13.26500000 GH
Ref Offs	510 CC 1000 MHz PNC: Fast IFGain:Low et 11.6 dB		Allon Arm Avg Type: RMS Avg/Hold:>10/10	1.096 dBm	Auto Tun Center Fre 13.26500000 GH Start Fre 30.00000 MH
Ref Offs	550 DC 1000 MHz PNC: Fast IFGainLow et 11.6 dB 60 dBm	BW 300 kHz	Avg Type: RMS Avg/Hold>1010 M	Control of the second s	Frequency Auto Tur Auto Tur Center Fre 13.26500000 Gi Start Fre 30.00000 Mi Stop Fre 26.50000000 Gi CF Ste 2.48000000 Gi
Freq 30.000 Ref Offs: Ndiv Ref 21.	550 DC 1000 MHz PNC: Fast IFGainLow et 11.6 dB 60 dBm	BW 300 kHz	ALIANAUTO AvgiHold>1010 M	Control of the second s	Frequency Auto Tun Center Fre 13.26500000 GH Start Fre 30.00000 MH Stop Fre 26.5000000 GH Auto Ma Freq Offse
Freq 30.000 Ref Offs- Udiv Ref 21.	350 00 MHz 10000 MHz PNC: Fast IFGainLow at 11.5 dB 60 dBm #V 24613 GHz 2.460 0 GHz	#Atten: 20 dB	Avg Type: RMS Avg/Hold>1010 M	Control of the second s	Frequency Auto Tun Auto Tun Center Fre 13.26500000 GH Start Fre 30.00000 GH Stop Fre 26.50000000 GH CF Ste 2.48000000 GH

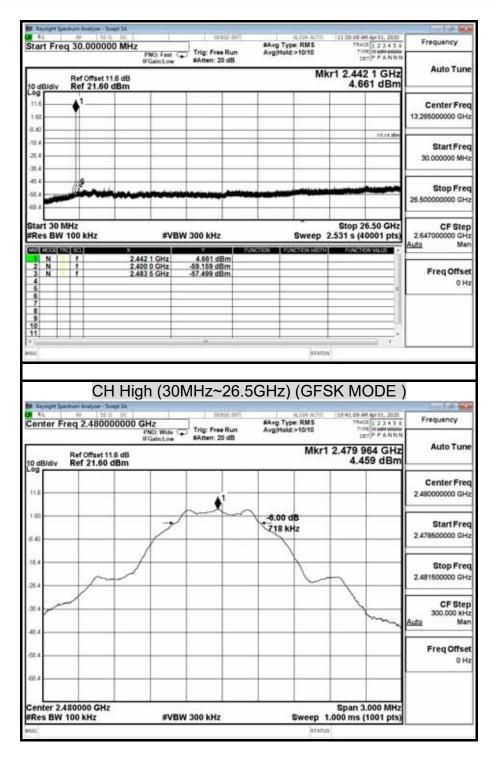

Page: 74 / 124 Rev.: 00

Page:	75 /	124
Rev.:	00	

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT


Model Name	SC6000M PRIME	Test By	Ted Huang	
Temp & Humidity	26.2 , 52%	Test Date	2020/04/01	

(Bluetooth 4.0 (GFSK) MODE)



Page: 76 / 124 Rev.: 00

Page: 77 / 124 Rev.: 00

Page: 78 / 124 Rev.: 00

RL (#	1.50 G DC 1.	SENSE:3N7	ALIA #200	11:16:59 AM Apr 81, 2020	and show that the second second
art Freq 2.4	75000000 GHz PN0	Feat	#Avg Type: RMS Avg/Hold:>10/10	TRACE 1 2 3 4 5 6 TUPE MUMMUMUM DET P P A N N N	Frequency
dBidiv Ref	0ffset 11.6 dB 21.60 dBm	in:Low #Atten: 20 dB	Mkr1 2.47	79 966 875 GHz 4.483 dBm	Auto Tur
9	•'				Center Fre
#0	- M				2.487500000 GH
4				-11.54.000	Start Fre
4	$/ \downarrow $				2.47500000 G
12 martin		_0 ³			Stop Fre
4			www.		2.50000000 G
art 2.47500 C les BW 100 P		#VBW 300 kHz	Sweep 2.	Stop 2.50000 GHz 567 ms (40001 pts)	CF Ste 2.500000 Mi Auto Mi
N 1	2.479 966 875 (GHz 4,483 dBm	HINGKON FUNCTION MORE	FUNCTION WALKING	Auto Mi
R N T	2.400 0 2.483 5	GHz — dBm GHz 40.765 dBm			Freq Offs
			statu		
Georget Spectrum Ro	50 0 DC	- save out	ALISA AUTO	1	Frequency
Georget Spectrum Ro	000000 MHz	strid pirf	A STATE OF A		Frequency
art Freq 30.	000000 MHz	Trig: Free Run	ALIDA ALTIN AAvg Type: RMS Avg(Hold:>10/10	1	Frequency
AL S art Freq 30.	000000 MHz PN0 IFGa Offset 11.5 dB	Trig: Free Run	ALIDA ALTIN AAvg Type: RMS Avg(Hold:>10/10	113822 44 April, 2020 TRACE [2 3 4 5 6 TOPE N MANNA DET P A NON CET P A NON	Frequency Auto Tur Center Fre
dBJdiv Ref	000000 MHz PN0 IFGa Offset 11.5 dB	Trig: Free Run	ALIDA ALTIN AAvg Type: RMS Avg(Hold:>10/10	11 18 20 AM Apr 81, 2020 TRACE (2.2.4.5.6 TYPE A NYN DET (P.F.A.NYN CT) 2.479 8 GHz 4.374 dBm	Frequency Auto Tur Center Fre 13.26500000 G
dBJdiv Ref	000000 MHz PN0 IFGa Offset 11.5 dB	Trig: Free Run	ALIDA ALTIN AAvg Type: RMS Avg(Hold:>10/10	113822 44 April, 2020 TRACE [2 3 4 5 6 TOPE N MANNA DET P A NON CET P A NON	Frequency Auto Tur Center Fre 13.26500000 Gi Start Fre
dB/div Ref	000000 MHz PN0 IFGa Offset 11.5 dB	Trig: Free Run	ALIDA ALTIN AAvg Type: RMS Avg(Hold:>10/10	11 18 20 AM Apr 81, 2020 TRACE (2.2.4.5.6 TYPE A NYN DET (P.F.A.NYN CT) 2.479 8 GHz 4.374 dBm	Frequency Auto Tur Center Fre
dBidiv Ref	000000 MHz PN0 IFGa Offset 11.5 dB	Trig: Free Run	ALIDA ALTIN AAvg Type: RMS Avg(Hold:>10/10	11 18 20 AM Apr 81, 2020 TRACE (2.2.4.5.6 TYPE A NYN DET (P.F.A.NYN CT) 2.479 8 GHz 4.374 dBm	Frequency Auto Tur Center Fro 13.26500000 Gi Start Fro 30.00000 Mi
dBJdiv Ref	000000 MHz PN0 IFGa Offset 11.5 dB	Trig: Free Run	ALIDA ALTIN AAvg Type: RMS Avg(Hold:>10/10	11 18 20 AM Apr 81, 2020 TRACE (2.2.4.5.6 TYPE A NYN DET (P.F.A.NYN CT) 2.479 8 GHz 4.374 dBm	Frequency Auto Tur Center Fro 13.26500000 Gi Start Fro 30.00000 Mi
dB/div Ref	000000 MHz P90 IFGe Offset 11.5 dB 21.60 dBm	#VBW 300 kHz	ALUE AUTO Avg Type: RNS AvgRHoid:>1010 MH	Stop 26.50 GHz	Frequency Auto Tur Center Fn 13.265000000 G Start Fn 30.000000 M Stop Fn 25.50000000 G
dBidiv Ref art Freq 30. Bidiv Ref art Freq 30. dBidiv Ref art 30 MHz Res BW 100 M Control of the second	(350, 0C) 000000 MHz PNO IFGe 00fiset 11.6 dB 21.60 dBm	# Feat Trig: Free Run #Attent: 20 dB	ALION AUTO AAvg Type: RMS AvgRHoid:>10/10 MH	Stop 26.50 GHz	Frequency Auto Tur Center Fn 13.265000000 G Start Fn 30.000000 M Stop Fn 25.50000000 G CF Sto 2.647000000 G
dBJdiv Ref art Freq 30. dBJdiv Ref art 30 MHz Res BW 100 Hz 1 2 N f 1 2 N f 1 2 N f	000000 MHz P90 IFGe Offset 11.5 dB 21.60 dBm	# Feat Trig: Free Run #Attent: 20 dB	ALUE AUTO Avg Type: RNS AvgRHoid:>1010 MH	Stop 26.50 GHz	Frequency Auto Tur Center Fr 13.265000000 G Start Fr 30.000000 M Stop Fr 26.50000000 G Auto M Freq Offs
Art Freq 30. Ref d art Freq 30. Ref d dBidiv Ref art 30 MHz tes BW 100 b Control 10 b Contro	(350, 0C) 000000 MHz PNO IFGe 00fiset 11.6 dB 21.60 dBm	# Feat Trig: Free Run #Attent: 20 dB	ALUE AUTO Avg Type: RNS AvgRHoid:>1010 MH	Stop 26.50 GHz	Frequency Auto Tur Center Fn 13.265000000 G Start Fn 30.000000 M Stop Fn 25.50000000 G
dB/div Ref dB/div Ref dB/div Ref art Freq 30. Ref dB/div Ref art 30 MHz tes BW 100 b CCON DESCENT	(350, 0C) 000000 MHz PNO IFGe 00fiset 11.6 dB 21.60 dBm	# Feat Trig: Free Run #Attent: 20 dB	ALUE AUTO Avg Type: RNS AvgRHoid:>1010 MH	Stop 26.50 GHz	Frequency Auto Tur Center Fri 13.265000000 Gi Start Fri 30.000000 Mi Stop Fri 25.50000000 Gi Auto Mi Freq Offs

8.6 RADIATED EMISSIONS

8.6.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS

LIMITS

§ 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(2)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page: 80 / 124 Rev.: 00

Report No.: T191125N08-RP1

§ 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

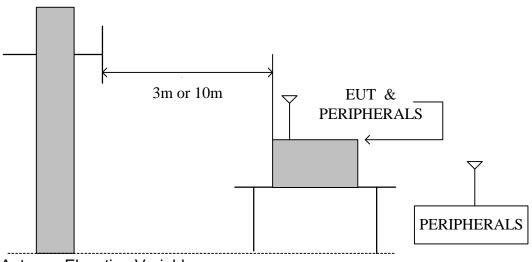
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz, However, operation within these frequency bands is permitted under other sections of this Part, e-g, Sections 15.231 and 15.241.

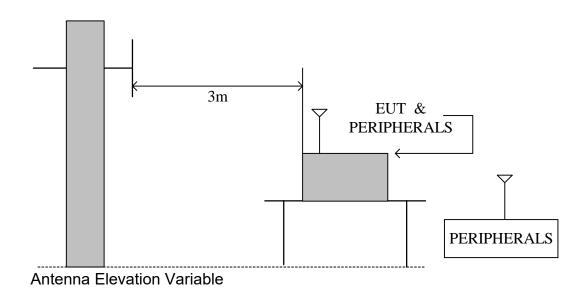
§ 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST EQUIPMENTS

The following test equipments are utilized in making the measurements contained in this report.


	Chamber Room #966							
Name of Equipment Manufacturer		Model	Serial Number	Calibration Date	Calibration Due			
Active Loop Antenna	ETS-LINDREN	6502	8905-2356	08/02/2019	08/01/2021			
Bi-Log Antenna With 6dB Att	Sunol & MCL	JB1 & BW-N6W5	A070506-2 & 0505	08/26/2019	08/25/2020			
Cable	Suhner	SUCOFLEX104PEA	20520/4PEA&O6	01/30/2020	01/29/2021			
Double Ridged Guide Horn Antenna	ETS-LINDGREN	3116	00078900	03/26/2020	03/25/2021			
EMI Test Receiver	R&S	ESCI	100221	05/06/2019	05/05/2020			
EXA Spectrum Analyzer	Ctrum KEYSIGHT N9010A		MY54430216	07/18/2019	07/17/2020			
Horn Antenna	Com-Power	AH-118	071032	04/30/2019	04/29/2020			
Pre-Amplifier	EMCI	EMC012645	980098	01/30/2020	01/29/2021			
Pre-Amplifier	HP	8447F	2443A01683	01/22/2020	01/21/2021			
Pre-Amplifier	MITEQ	AMF-6F-18004000-37-8P	985646	06/18/2019	06/17/2020			
Notch Filter	MICRO-TRONICS	BRM50702-01	018	N.C.R	N.C.R			
Software		Excel(ccs-c	o6-2020 v1.1)					

Page: 82 / 124 Rev.: 00


TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 to 1GHz.

Antenna Elevation Variable

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

Page: 83 / 124 Rev.: 00

TEST PROCEDURE

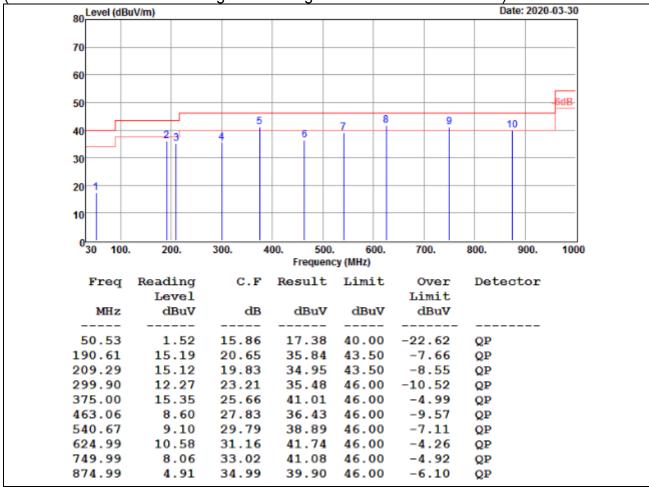
- a. The EUT was placed on the top of a rotating table 0.8/1.5 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. White measuring the radiated emission below 1GHz, the EUT was set 3/10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. White measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. The tests were performed in accordance with 558074 D01 DTS Meas Guidance v03r03.

NOTE :

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.
- No emission is found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)

TEST RESULTS

No non-compliance noted.



8.6.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz

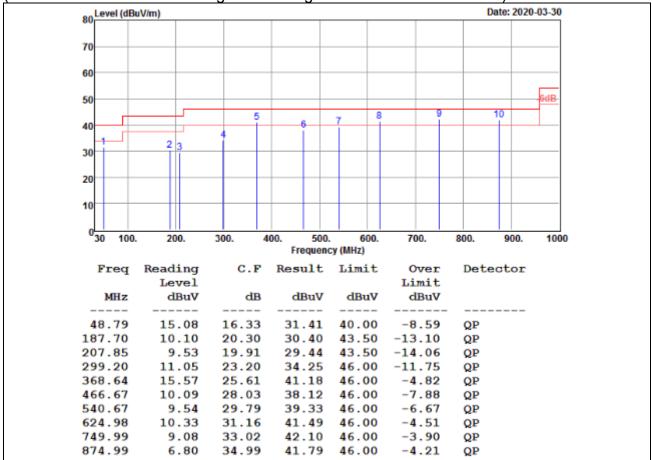
Product Name	Professional DJ Media Player	Test Date	2020/03/30	
Model	SC6000M PRIME	Test By	Ted Huang	
Test Mode	ТХ	TEMP& Humidity	24.2 /42%	

Horizontal

(The chart below shows the highest readings taken from the final data.)

Note: 1. QP= Quasi-peak Reading.

2. The other emission levels were very low against the limit



Page:	85 /	124
Rev.:	00	

Product Name	Professional DJ Media Player	Test Date	2020/03/30
Model	SC6000M PRIME	6000M PRIME Test By Tec	
Test Mode	ТХ	TEMP& Humidity	24.2 /42%

Vertical

(The chart below shows the highest readings taken from the final data.)

Note: 1. QP= Quasi-peak Reading.

2. The other emission levels were very low against the limit

8.6.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz

Product Name	2020/03/31		
Model	SC6000M PRIME	Test By	Ted Huang
Test Mode	IEEE 802.11b TX (CH Low)	TEMP& Humidity	25.4 , 56%

	TX / IEEE 802.11b mode / CH Low			Measure	ement	Distance a	at 3m 🛛 I	lorizontal	polarity	
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1201.18	60.68	25.13	2.18	46.28	0.42	42.13	74.00	-31.87	Р
*	1201.18	50.82	25.13	2.18	46.28	0.42	32.27	54.00	-21.73	А
*	4823.90	59.52	33.30	4.31	44.77	0.22	52.59	74.00	-21.41	Р
*	4823.90	51.48	33.30	4.31	44.77	0.22	44.55	54.00	-9.45	А
	7234.72	56.28	38.84	5.40	44.03	0.27	56.76	74.00	-17.24	Р
	7234.72	45.86	38.84	5.40	44.03	0.27	46.34	54.00	-7.66	А
	N/A									Р
	N/A									А

	TX / IE	EE 802.1	1b mod	e / CH Low	Measur	ement	Distance	at 3m	Vertical p	olarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1598.56	62.96	27.29	2.52	45.83	0.56	47.50	74.00	-26.50	Р
*	1598.56	50.68	27.29	2.52	45.83	0.56	35.22	54.00	-18.78	А
*	4823.78	57.32	33.30	4.31	44.77	0.22	50.39	74.00	-23.61	Р
*	4823.78	47.63	33.30	4.31	44.77	0.22	40.70	54.00	-13.30	А
	7236.86	55.86	38.85	5.40	44.03	0.27	56.35	74.00	-17.65	Р
	7236.86	45.76	38.85	5.40	44.03	0.27	46.25	54.00	-7.75	А
	N/A									Р
	N/A									А

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss

2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz

3. The result basic equation calculation is as follow:

Level = Reading + AF + Cable – Preamp + Filter , Margin = Level-Limit

4. The other emission levels were 20dB below the limit

5. The test limit distance is 3M limit.

Product Name	Professional DJ Media Player	Test Date	2020/03/31
Model	SC6000M PRIME	Test By	Ted Huang
Test Mode	IEEE 802.11b TX (CH Middle)	TEMP& Humidity	25.4 , 56%

	TX / IEE	E 802.11t	o mode	/ CH Middle	Measure	ement	Distance a	at 3m 🛛 I	Horizontal p	olarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1117.58	61.13	24.74	2.11	46.38	0.41	42.01	74.00	-31.99	Р
*	1117.58	54.68	24.74	2.11	46.38	0.41	35.56	54.00	-18.44	А
*	4873.26	57.65	33.47	4.34	44.77	0.23	50.91	74.00	-23.09	Р
*	4873.26	48.72	33.47	4.34	44.77	0.23	41.98	54.00	-12.02	А
*	7311.54	57.58	39.12	5.43	43.95	0.27	58.45	74.00	-15.55	Р
*	7311.54	47.62	39.12	5.43	43.95	0.27	48.49	54.00	-5.51	А
	N/A									Р
	N/A									А

I		E 002 111	mode	/ CH Middle	Maggur	omon	t Distance	ot 2m \	/ertical p	olarity
		Reading		Cable Loss			r	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)		(dBµV/m)		U	(P/Q/A)
1	1600.12	62.82	27.30	2.52	45.82	0.56	47.38	74.00	-26.62	Р
7	1600.12	50.78	27.30	2.52	45.82	0.56	35.34	54.00	-18.66	А
۲	4873.86	57.23	33.47	4.34	44.77	0.23	50.50	74.00	-23.50	Р
4	4873.86	46.86	33.47	4.34	44.77	0.23	40.13	54.00	-13.87	Α
4	7311.65	57.24	39.12	5.43	43.95	0.27	58.11	74.00	-15.89	Р
4	7311.65	46.32	39.12	5.43	43.95	0.27	47.19	54.00	-6.81	А
I	N/A									Р
ſ	N/A									А

REMARK:

AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz 1.

2.

З. The result basic equation calculation is as follow:

Level = Reading + AF + Cable - Preamp + Filter, Margin = Level-LimitThe other emission levels were 20dB below the limit

4.

5. The test limit distance is 3M limit.

Product Name	Professional DJ Media Player	Test Date	2020/03/31
Model	SC6000M PRIME	Test By	Ted Huang
Test Mode	IEEE 802.11b TX (CH High)	TEMP& Humidity	25.4 , 56%

	TX / IEI	EE 802.11	lb mod	e / CH High	Measure	ement	Distance a	at 3m 🛛 I	Horizontal	polarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1201.68	60.58	25.13	2.18	46.28	0.42	42.03	74.00	-31.97	Р
*	1201.68	50.75	25.13	2.18	46.28	0.42	32.20	54.00	-21.80	А
*	4923.58	58.26	33.64	4.37	44.78	0.23	51.72	74.00	-22.28	Р
*	4923.58	50.13	33.64	4.37	44.78	0.23	43.59	54.00	-10.41	А
*	7386.58	57.64	39.39	5.46	43.87	0.27	58.89	74.00	-15.11	Р
*	7386.58	48.23	39.39	5.46	43.87	0.27	49.48	54.00	-4.52	А
	N/A									Р
	N/A									А

	TX / IE	EE 802.1 ²	1b mod	e / CH High	Measur	ement	Distance	at 3m	Vertical polarity		
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)	
*	1598.26	62.68	27.29	2.52	45.83	0.56	47.22	74.00	-26.78	Р	
*	1598.26	50.75	27.29	2.52	45.83	0.56	35.29	54.00	-18.71	Α	
*	4923.78	57.58	33.64	4.37	44.78	0.23	51.04	74.00	-22.96	Р	
*	4923.78	47.62	33.64	4.37	44.78	0.23	41.08	54.00	-12.92	Α	
*	7384.62	55.43	39.38	5.46	43.87	0.27	56.67	74.00	-17.33	Р	
*	7384.62	46.28	39.38	5.46	43.87	0.27	47.52	54.00	-6.48	Α	
	N/A									Р	
	N/A									Α	

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss

2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz

3. The result basic equation calculation is as follow:

Level = Reading + AF + Cable – Preamp + Filter , Margin = Level-Limit 4. The other emission levels were 20dB below the limit

The other emission levels were 200B below
 The test limit distance is 3M limit.

Product Name	Professional DJ Media Player	Test Date	2020/03/31
Model	SC6000M PRIME	Test By	Ted Huang
Test Mode	IEEE 802.11g TX (CH Low)	TEMP& Humidity	25.4 , 56%

	TX / IE	EE 802.1 [°]	1g mod	e / CH Low	Measure	ement	Distance	at 3m	Horizontal	polarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1201.56	60.62	25.13	2.18	46.28	0.42	42.07	74.00	-31.93	Р
*	1201.56	50.72	25.13	2.18	46.28	0.42	32.17	54.00	-21.83	А
*	4825.85	57.58	33.31	4.32	44.77	0.22	50.65	74.00	-23.35	Р
*	4825.85	47.68	33.31	4.32	44.77	0.22	40.75	54.00	-13.25	А
	7237.23	56.52	38.85	5.40	44.03	0.27	57.02	74.00	-16.98	Р
	7237.23	46.45	38.85	5.40	44.03	0.27	46.95	54.00	-7.05	А
	N/A									Р
	N/A									А

	TX / IE	EE 802.1	1g mod	e / CH Low	Measur	ement	Distance	at 3m	Vertical polarity		
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)	
*	1599.78	62.52	27.30	2.52	45.82	0.56	47.08	74.00	-26.92	Р	
*	1599.78	50.63	27.30	2.52	45.82	0.56	35.19	54.00	-18.81	А	
*	4827.18	57.72	33.31	4.32	44.77	0.22	50.80	74.00	-23.20	Р	
*	4827.18	46.45	33.31	4.32	44.77	0.22	39.53	54.00	-14.47	Α	
Γ	7236.84	55.62	38.85	5.40	44.03	0.27	56.11	74.00	-17.89	Р	
Γ	7236.84	45.18	38.85	5.40	44.03	0.27	45.67	54.00	-8.33	Α	
	N/A									Р	
	N/A									Α	

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss

Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz 2.

The result basic equation calculation is as follow: З.

Level = Reading + AF + Cable – Preamp + Filter , Margin = Level-Limit The other emission levels were 20dB below the limit

4.

5. The test limit distance is 3M limit.

Product Name	Professional DJ Media Player	Test Date	2020/03/31
Model	SC6000M PRIME	Test By	Ted Huang
Test Mode	IEEE 802.11g TX (CH Middle)	TEMP& Humidity	25.4 , 56%

	TX / IEEE	802.11g	mode	/ CH Middle	Measure	ement	Distance a	at 3m 🛛 🛛	Horizontal p	olarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1201.26	60.75	25.13	2.18	46.28	0.42	42.20	74.00	-31.80	Р
*	1201.26	50.88	25.13	2.18	46.28	0.42	32.33	54.00	-21.67	А
*	4873.05	58.12	33.47	4.34	44.77	0.23	51.38	74.00	-22.62	Р
*	4873.05	47.32	33.47	4.34	44.77	0.23	40.58	54.00	-13.42	А
*	7311.52	55.78	39.12	5.43	43.95	0.27	56.65	74.00	-17.35	Р
*	7311.52	46.56	39.12	5.43	43.95	0.27	47.43	54.00	-6.57	А
	N/A									Р
	N/A									А

	TX / IEE	E 802.11g	g mode /	CH Middle	Measu	remen	t Distance	at 3m	Vertical polarity		
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)	
*	1601.23	63.12	27.31	2.52	45.82	0.56	47.69	74.00	-26.31	Р	
*	1601.23	50.86	27.31	2.52	45.82	0.56	35.43	54.00	-18.57	Α	
*	4872.32	56.28	33.47	4.34	44.77	0.23	49.54	74.00	-24.46	Р	
*	4872.32	46.86	33.47	4.34	44.77	0.23	40.12	54.00	-13.88	Α	
*	7308.53	55.86	39.11	5.43	43.95	0.27	56.72	74.00	-17.28	Р	
*	7308.53	45.45	39.11	5.43	43.95	0.27	46.31	54.00	-7.69	А	
	N/A									Р	
	N/A									А	

REMARK:

AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss
 Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz

З. The result basic equation calculation is as follow:

Level = Reading + AF + Cable - Preamp + Filter, Margin = Level-LimitThe other emission levels were 20dB below the limit

4.

5. The test limit distance is 3M limit.

Product Name	Professional DJ Media Player	Test Date	2020/03/31
Model	SC6000M PRIME	Test By	Ted Huang
Test Mode	IEEE 802.11g TX (CH High)	TEMP& Humidity	25.4 , 56%

	TX / IE	EE 802.11	lg mod	e / CH High	Measure	ement	Distance	at 3m	Horizontal	polarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1117.46	61.25	24.74	2.11	46.38	0.41	42.13	74.00	-31.87	Р
*	1117.46	54.57	24.74	2.11	46.38	0.41	35.45	54.00	-18.55	А
*	4920.14	57.23	33.63	4.37	44.78	0.23	50.68	74.00	-23.32	Р
*	4920.14	46.64	33.63	4.37	44.78	0.23	40.09	54.00	-13.91	А
*	7383.68	56.72	39.38	5.46	43.87	0.27	57.96	74.00	-16.04	Р
*	7383.68	46.23	39.38	5.46	43.87	0.27	47.47	54.00	-6.53	А
	N/A									Р
	N/A									А

	TX / IE	EE 802.1 [,]	1g mod	e / CH High	Measur	remen	t Distance	at 3m	Vertical p	olarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1600.16	62.74	27.30	2.52	45.82	0.56	47.30	74.00	-26.70	Р
*	1600.16	50.65	27.30	2.52	45.82	0.56	35.21	54.00	-18.79	А
*	4923.42	57.28	33.64	4.37	44.78	0.23	50.74	74.00	-23.26	Р
*	4923.42	46.33	33.64	4.37	44.78	0.23	39.79	54.00	-14.21	А
*	7382.68	55.36	39.38	5.46	43.87	0.27	56.59	74.00	-17.41	Р
*	7382.68	45.45	39.38	5.46	43.87	0.27	46.68	54.00	-7.32	А
	N/A									Р
	N/A									А

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss

2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz

3. The result basic equation calculation is as follow:

Level = Reading + AF + Cable – Preamp + Filter , Margin = Level-Limit 4. The other emission levels were 20dB below the limit

5. The test limit distance is 3M limit.

Product Name	Professional DJ Media Player	Test Date	2020/03/31
Model	SC6000M PRIME	Test By	Ted Huang
Test Mode	IEEE 802.11n HT20 TX (CH Low)	TEMP& Humidity	25.4 , 56%

	TX / IEEE	802.11n H	IT20 mo	de / CH Low	Measure	ement	Distance a	nt 3m H	lorizontal	polarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1117.52	61.43	24.74	2.11	46.38	0.41	42.31	74.00	-31.69	Р
*	1117.52	54.82	24.74	2.11	46.38	0.41	35.70	54.00	-18.30	А
*	4824.13	58.58	33.30	4.32	44.77	0.22	51.65	74.00	-22.35	Р
*	4824.13	47.66	33.30	4.32	44.77	0.22	40.73	54.00	-13.27	А
	7239.52	56.23	38.86	5.40	44.03	0.27	56.74	74.00	-17.26	Р
	7239.52	45.32	38.86	5.40	44.03	0.27	45.83	54.00	-8.17	А
	N/A									Р
	N/A									А

	TX / IEEE	802.11n H	IT20 mo	de / CH Low	Measur	ement	Distance	at 3m	Vertical	polarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1600.16	63.12	27.30	2.52	45.82	0.56	47.68	74.00	-26.32	Р
*	1600.16	50.86	27.30	2.52	45.82	0.56	35.42	54.00	-18.58	А
*	4828.68	57.26	33.32	4.32	44.77	0.22	50.35	74.00	-23.65	Р
*	4828.68	46.15	33.32	4.32	44.77	0.22	39.24	54.00	-14.76	А
	7237.82	56.24	38.86	5.40	44.03	0.27	56.74	74.00	-17.26	Р
	7237.82	44.95	38.86	5.40	44.03	0.27	45.45	54.00	-8.55	А
	N/A									Р
	N/A									А

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss

Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz 2.

З. The result basic equation calculation is as follow:

Level = Reading + AF + Cable – Preamp + Filter , Margin = Level-Limit The other emission levels were 20dB below the limit

4.

5. The test limit distance is 3M limit.

Product Name	Professional DJ Media Player	Test Date	2020/03/31
Model	SC6000M PRIME	Test By	Ted Huang
Test Mode	IEEE 802.11n HT20 TX (CH Middle)	TEMP& Humidity	25.4 , 56%

	TX / IEEE 8	802.11n H1	20 mode	/ CH Middle	Measure	ment	Distance a	it 3m 🛛 H	lorizontal	polarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1201.56	60.43	25.13	2.18	46.28	0.42	41.88	74.00	-32.12	Р
*	1201.56	50.82	25.13	2.18	46.28	0.42	32.27	54.00	-21.73	А
*	4877.32	56.65	33.48	4.34	44.78	0.23	49.93	74.00	-24.07	Р
*	4877.32	46.48	33.48	4.34	44.78	0.23	39.76	54.00	-14.24	А
*	7310.42	56.13	39.12	5.43	43.95	0.27	57.00	74.00	-17.00	Р
*	7310.42	46.22	39.12	5.43	43.95	0.27	47.09	54.00	-6.91	А
	N/A									Р
	N/A									А

	TX / IEEE 8	302.11n HT	20 mode	/ CH Middle	Measurement Distance at 3m Vertical polarity						
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)	
*	1598.68	62.75	27.29	2.52	45.83	0.56	47.29	74.00	-26.71	Р	
*	1598.68	50.86	27.29	2.52	45.83	0.56	35.40	54.00	-18.60	Α	
*	4876.23	57.21	33.48	4.34	44.78	0.23	50.49	74.00	-23.51	Р	
*	4876.23	46.72	33.48	4.34	44.78	0.23	40.00	54.00	-14.00	Α	
*	7309.56	55.68	39.11	5.43	43.95	0.27	56.54	74.00	-17.46	Р	
*	7309.56	45.45	39.11	5.43	43.95	0.27	46.31	54.00	-7.69	Α	
	N/A									Р	
	N/A									А	

REMARK:

AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss
 Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz

З. The result basic equation calculation is as follow:

Level = Reading + AF + Cable - Preamp + Filter, Margin = Level-LimitThe other emission levels were 20dB below the limit

4.

5. The test limit distance is 3M limit.

Product Name	Professional DJ Media Player	Test Date	2020/03/31
Model	SC6000M PRIME	SC6000M PRIME Test By	
Test Mode	IEEE 802.11n HT20 TX (CH High)	TEMP& Humidity	25.4 , 56%

	TX / IEEE	802.11n H	T20 mod	le / CH High	Measure	ement	Distance	at 3m	Horizontal p	oolarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1200.86	60.54	25.12	2.18	46.28	0.42	41.99	74.00	-32.01	Р
*	1200.86	50.63	25.12	2.18	46.28	0.42	32.08	54.00	-21.92	А
*	4922.34	57.12	33.64	4.37	44.78	0.23	50.58	74.00	-23.42	Р
*	4922.34	47.54	33.64	4.37	44.78	0.23	41.00	54.00	-13.00	А
*	7388.52	57.34	39.40	5.46	43.87	0.27	58.60	74.00	-15.40	Р
*	7388.52	47.58	39.40	5.46	43.87	0.27	48.84	54.00	-5.16	А
	N/A									Р
	N/A									А

	TX / IEEE	802.11n H	IT20 mod	le / CH High	Measur	ement	Distance	at 3m	Vertical	polarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1598.68	62.75	27.29	2.52	45.83	0.56	47.29	74.00	-26.71	Р
*	1598.68	50.62	27.29	2.52	45.83	0.56	35.16	54.00	-18.84	А
*	4924.85	56.52	33.64	4.37	44.78	0.23	49.99	74.00	-24.01	Р
*	4924.85	46.38	33.64	4.37	44.78	0.23	39.85	54.00	-14.15	А
*	7383.72	55.67	39.38	5.46	43.87	0.27	56.91	74.00	-17.09	Р
*	7383.72	45.52	39.38	5.46	43.87	0.27	46.76	54.00	-7.24	А
ſ	N/A									Р
	N/A									А

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss

Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz 2.

The result basic equation calculation is as follow: З.

Level = Reading + AF + Cable - Preamp + Filter , Margin = Level-Limit 4. The other emission levels were 20dB below the limit

The test limit distance is 3M limit. 5.

Product Name	Professional DJ Media Player	Test Date	2020/04/01
Model	SC6000M PRIME	Test By	Ted Huang
Test Mode	Bluetooth 4.0 TX (CH Low)	TEMP& Humidity	26.2 , 52%

	TX / Bluet	ooth 4.0 (C	GFSK) mo	de / CH Low	Measure	ement	Distance a	at 3m 🛛 I	Horizontal polarity		
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)	
*	1117.54	61.23	24.74	2.11	46.38	0.41	42.11	74.00	-31.89	Р	
*	1117.54	54.58	24.74	2.11	46.38	0.41	35.46	54.00	-18.54	А	
*	1201.08	60.62	25.12	2.18	46.28	0.42	42.07	74.00	-31.93	Р	
*	1201.08	50.76	25.12	2.18	46.28	0.42	32.21	54.00	-21.79	А	
*	4804.12	56.68	33.23	4.30	44.77	0.22	49.67	74.00	-24.33	Р	
*	4804.12	47.82	33.23	4.30	44.77	0.22	40.81	54.00	-13.19	А	
	N/A									Р	
	N/A									А	

	TX / Bluet	ooth 4.0 (C	GFSK) mo	de / CH Low	Measure	ement	Distance	at 3m	Vertical	polarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1050.13	62.34	24.43	2.05	46.45	0.41	42.77	74.00	-31.23	Р
*	1050.13	56.28	24.43	2.05	46.45	0.41	36.71	54.00	-17.29	А
*	1598.56	63.12	27.29	2.52	45.83	0.56	47.66	74.00	-26.34	Р
*	1598.56	50.75	27.29	2.52	45.83	0.56	35.29	54.00	-18.71	А
*	4804.05	57.25	33.23	4.30	44.77	0.22	50.24	74.00	-23.76	Р
*	4804.05	46.76	33.23	4.30	44.77	0.22	39.75	54.00	-14.25	Α
	N/A									Р
	N/A									Α

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss

2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz

 The result basic equation calculation is as follow: Level = Reading + AF + Cable – Preamp + Filter , Margin = Level-Limit

Level = Reading + AF + Cable - Preamp + Filter , Margin = Level-Limit
 The other emission levels were 20dB below the limit

5. The test limit distance is 3M limit.

Product Name	Professional DJ Media Player	Test Date	2020/03/31
Model	SC6000M PRIME	Test By	Ted Huang
Test Mode	Bluetooth 4.0 TX (CH Middle)	TEMP& Humidity	25.4 , 56%

	TX / Blueto	oth 4.0 (GF	SK) mode	e / CH Middle	Measure	ment	at 3m 🛛 H	Horizontal polarity		
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1117.48	61.42	24.74	2.11	46.38	0.41	42.30	74.00	-31.70	Р
*	1117.48	54.63	24.74	2.11	46.38	0.41	35.51	54.00	-18.49	А
*	1200.86	60.48	25.12	2.18	46.28	0.42	41.93	74.00	-32.07	Р
*	1200.86	50.58	25.12	2.18	46.28	0.42	32.03	54.00	-21.97	А
*	4883.68	57.82	33.50	4.35	44.78	0.23	51.12	74.00	-22.88	Р
*	4883.68	48.56	33.50	4.35	44.78	0.23	41.86	54.00	-12.14	А
	N/A									Р
	N/A									А

	TX / Blueto	ΓΧ / Bluetooth 4.0 (GFSK) mode / CH Middle					Distance	at 3m 🛛 🔪	/ertical	oolarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1050.08	62.08	24.43	2.05	46.45	0.41	42.51	74.00	-31.49	Р
*	1050.08	56.36	24.43	2.05	46.45	0.41	36.79	54.00	-17.21	А
*	1598.72	63.45	27.29	2.52	45.83	0.56	47.99	74.00	-26.01	Р
*	1598.72	50.68	27.29	2.52	45.83	0.56	35.22	54.00	-18.78	А
*	4884.23	56.72	33.51	4.35	44.78	0.23	50.03	74.00	-23.97	Р
*	4884.23	46.46	33.51	4.35	44.78	0.23	39.77	54.00	-14.23	А
	N/A									Р
	N/A									А

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss

Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz 2.

The result basic equation calculation is as follow: З.

Level = Reading + AF + Cable - Preamp + Filter , Margin = Level-Limit 4. The other emission levels were 20dB below the limit

The test limit distance is 3M limit. 5.

Product Name	Professional DJ Media Player	Test Date	2020/03/31
Model	SC6000M PRIME	Test By	Ted Huang
Test Mode	Bluetooth 4.0 TX (CH High)	TEMP& Humidity	25.4 , 56%

	TX / Blueto	oth 4.0 (G	FSK) mod	de / CH High	Measure	Measurement Distance at 3m				Horizontal polarity	
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)	
*	1117.60	61.52	24.74	2.11	46.38	0.41	42.40	74.00	-31.60	Р	
*	1117.60	54.76	24.74	2.11	46.38	0.41	35.64	54.00	-18.36	А	
*	1201.23	60.46	25.13	2.18	46.28	0.42	41.91	74.00	-32.09	Р	
*	1201.23	50.58	25.13	2.18	46.28	0.42	32.03	54.00	-21.97	А	
*	4960.12	59.13	33.76	4.39	44.78	0.24	52.74	74.00	-21.26	Р	
*	4960.12	50.58	33.76	4.39	44.78	0.24	44.19	54.00	-9.81	А	
	N/A									Р	
	N/A									А	

	TX / Blueto	oth 4.0 (G	FSK) mod	de / CH High	Measure	ement	Distance	at 3m	Vertical	polarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1050.24	62.43	24.43	2.05	46.45	0.41	42.86	74.00	-31.14	Р
*	1050.24	56.36	24.43	2.05	46.45	0.41	36.79	54.00	-17.21	Α
*	1598.76	63.28	27.29	2.52	45.83	0.56	47.82	74.00	-26.18	Р
*	1598.76	50.64	27.29	2.52	45.83	0.56	35.18	54.00	-18.82	Α
*	4959.82	58.24	33.76	4.39	44.78	0.24	51.85	74.00	-22.15	Р
*	4959.82	49.36	33.76	4.39	44.78	0.24	42.97	54.00	-11.03	А
	N/A									Р
	N/A									Α

REMARK:

AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss
 Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz

З. The result basic equation calculation is as follow:

Level = Reading + AF + Cable - Preamp + Filter, Margin = Level-LimitThe other emission levels were 20dB below the limit

4.

5. The test limit distance is 3M limit.

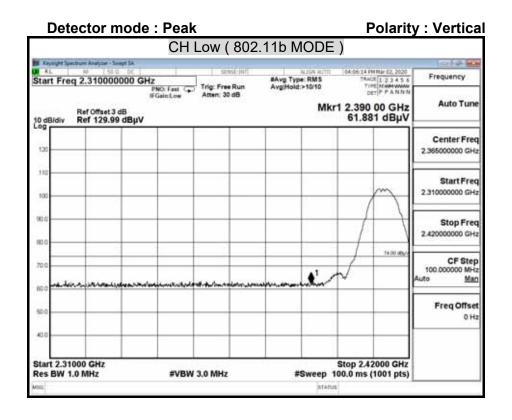
Page:	98 /	124
Rev.:	00	

8.6.4 RESTRICTED BAND EDGES

Model Name	SC6000M PRIME	Test By	Ted Huang
Temp & Humidity	25.4 , 56%	Test Date	2020/03/31

	CH Low (802.11	b MODE)	
Keysight Spectrum Analyzer - Swept SA	11	10000	and the second		Esta 🖴
tart Freq 2.310000000 G	Hz		Avg Type: RMS	12:27:25 PH Har 62, 2020 TRACE 1 2 3 4 5 TYPE NUMPERN	Frequency
Ref Offset 3 dB 0 dB/div Ref 129.99 dBµV	PNO: Fast C Trig: Free IFGainLow #Atten: 30		vg Hold:>10/10 Mkr	1 2.390 00 GH 62.717 dBµ	Z Auto Tune
120					Center Freq 2.36500000 GHz
100					Start Freq 2.31000000 GHz
00					Stop Freq 2.42000000 GHz
00	a grant and a stranger	سليتعموه	mart	√	CF Step 100.000000 MHz Auto Map
00			_		Freq Offset 0 Hz
0.0					-
tart 2.31000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz		#Sweep 1	Stop 2.42000 GH 00.0 ms (1001 pts	

Detector mode : Average


Polarity :

Horizontal

802.11b MODE)	
	quency
dB DET P ANNN	Auto Tun
	enter Fre 000000 GH
	Start Fre
	Stop Fre
100.00 Auto	CF Ste
Fr	req Offs 0 H
Stop 2.42000 GHz Sweep 8.577 s (1001 pts)	

Page: 99 / 124 Rev.: 00

Detector mode : Average

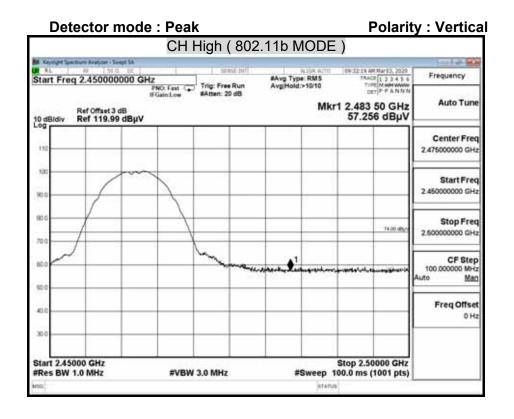
Polarity :

	CHI	_ow(802	2.11b MODE)	
Keysight Spectrum Analyzer - Swept SA AL NF 155.0 DC		Street over	ALISA W/DD	04-04-51 PM Mar 62, 2020	1010-00
Start Freq 2.31000000 GH		Trig: Free Run	#Avg Type: RMS Avg/Hold: 5/10	TRACE 1 2 3 4 5 6 TIPE N MANAGEMENT	Frequency
Ref Offset 3 dB	PNO: Fast G IFGainLow	Atten: 20 dB	1000 C 1000 C 1000	1 2.390 00 GHz 47.987 dBµV	
110					Center Free 2.365000000 GH
100					Start Free 2.31000000 GH
800					Stop Free 2.42000000 GH
80.0				× 100.004	CF Ster 100.000000 MH Auto Ma
400					Freq Offse
30.0		_			
Start 2.31000 GHz Res BW 1.0 MHz	#VBW	10 Hz	Sweep	Stop 2.42000 GHz 8.577 s (1001 pts)	

Page: 100 / 124 Rev.: 00

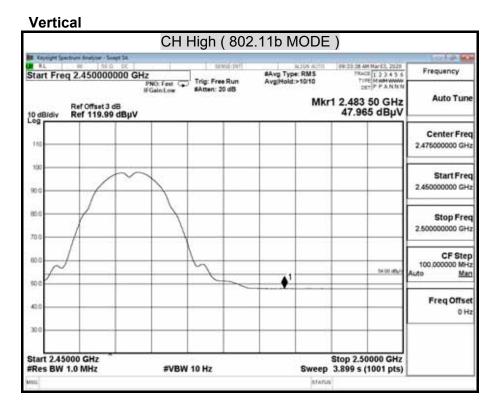
Polarity : Horizontal Detector mode : Peak CH High (802.11b MODE) Start Freq 2.45000000 GHz FRO: Fast Constraint of the second sec 09/29/24 AM Mar 03, 2020 TRACE 1, 2, 3, 4, 5, 6 T/FE A MM WWW DET P P A N N N #Avg Type: RMS Avg[Hold:>10/10 Frequency Auto Tune Mkr1 2.483 50 GHz Ref Offset 3 dB Ref 129.99 dBµV 61.073 dBµV 10 dB/div Center Freq 2,475000000 GHz 11 Start Freq 2 45000000 GHz 10 100 Stop Freq 2.50000000 GHz 80 14.00 μ CF Step 100.000000 MHz 70 **1** Map 60.1 Freq Offset 60 0 Hz in. Stop 2.50000 GHz Start 2,45000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz #Sweep 100.0 ms (1001 pts) STAT

Detector mode : Average


Polarity :

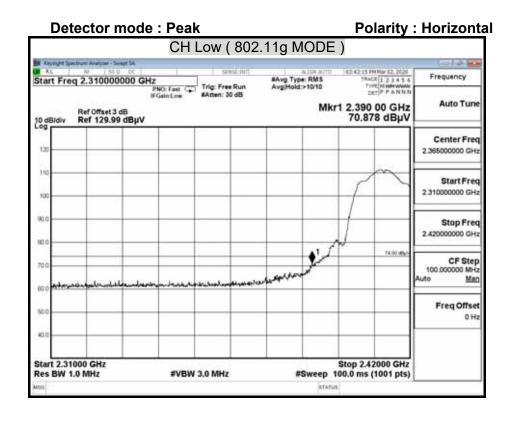
CH High (802.11b MODE) Start Freq 2.450000000 GHz FRO: Fast Cart Free Run IFGainLow FAtten: 20 dB R Keysight Spectrum Analyzer - Swept SA - Augusta TRACE 1 2 3 4 5 6 TRACE 1 2 3 4 5 6 TUPE N WH WHILE DET P P A N N N Avg Type: RMS Avg Hold:>10/10 Frequency Auto Tune Mkr1 2.483 50 GHz Ref Offset 3 dB Ref 119.99 dBµV 48.222 dBµV 10 dBidiv **Center Freq** 11 2,475000000 GHz 100 Start Freq 2.45000000 GHz 180 85 Stop Freq 2.50000000 GHz 70 CF Step 100.000000 MHz 60 54.00 JB Man 60 Freq Offset ii. 0 Hz x Stop 2.50000 GHz Start 2.45000 GHz #VBW 10 Hz #Res BW 1.0 MHz Sweep 3.899 s (1001 pts) STAD

Horizontal



Page: 101 / 124 Rev.: 00

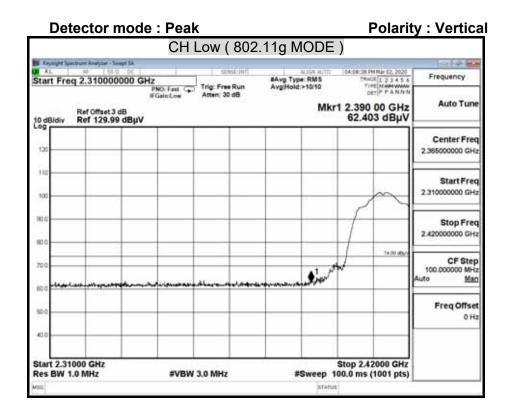
Detector mode : Average


Polarity:

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 102 / 124 Rev.: 00

Detector mode : Average


Polarity :

			Low (802	2.11g MODE)	
	trure Analyzer - Swept SA					La fait 🖬
Start Freq	2.310000000		SENSE:007	#Avg Type: RMS	03:41:17 PH Mar 02, 2020 TRACE 1 2 3 4 5 6	Frequency
	Ref Offset 3 dB Ref 119.99 dBj	PNO: Fast IFGainLow	Trig: Free Run #Atten: 20 dB	Avg(Hold: 7/10 Mk)	r1 2.390 00 GHz 52.425 dBµV	Auto Tune
110						Center Fred 2.365000000 GHz
105 90 0					\square	Start Free 2.31000000 GH
80 G						Stop Free 2.42000000 GH
80.0				91	9400 aby	CF Step 100.000000 MH Auto Mar
40.0						Freq Offse
30.0						
Start 2.310 Res BW 1.4		#VBW	10 Hz	Sweep	Stop 2.42000 GHz 8.577 s (1001 pts)	
665				BTAD	5	

Horizontal

Page: 103 / 124 Rev.: 00

Detector mode : Average

Polarity :

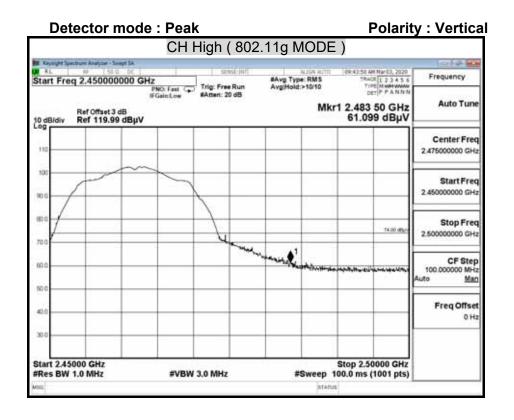
	CH Low (802	.11g MODE)	
Keynight Spectrum Analyzer - Swept SA	11 11 11 11 11 11 11 11 11 11 11 11 11	Alam Charles		
Start Freg 2.310000000	GHz SIME 31	#Avg Type: RMS	04:09:50 PH Har 62, 2020 TRACE 1 2 3 4 5 6	Frequency
Ref Offset 3 dB	PNO: Feet (Trig: Free Run IFGain:Low Atten: 20 dB	AvgiHold: 5/10 Mkr	1 2.390 00 GHz 48.358 dBµV	Auto Tune
110				Center Free 2.36500000 GH
90.0				Start Free 2.31000000 GH
80.6 70.0				Stop Free 2.42000000 GH
80.0		A ¹	54 00 48/4	CF Step 100.000000 MH Auto <u>Mar</u>
40.0				Freq Offse 0 H
30.0				
Start 2.31000 GHz Res BW 1.0 MHz	#VBW 10 Hz		Stop 2.42000 GHz 8.577 s (1001 pts)	
495		BTATUS		

Vertical

Page: 104 / 124 Rev.: 00

Polarity : Horizontal Detector mode : Peak CH High (802.11g MODE) Start Freq 2.45000000 GHz FRO: Fast Cart Free Run IFGainLow 08:56:24 AR Mar 03, 2020 TRACE 1, 2, 3, 4, 5, 6 T/FE, A MM WWW DET P P A N N.N #Avg Type: RMS Avg[Hold:>10/10 Frequency Auto Tune Mkr1 2.483 50 GHz 68.274 dBµV Ref Offset 3 dB Ref 129.99 dBµV 10 dB/div Center Freq 2,475000000 GHz 11 Start Freq 2 45000000 GHz 10 100 Stop Freq 2.50000000 GHz 80 5 14.00 μ all and CF Step 100.000000 MHz 70 Map 60.1 Freq Offset 60 0 Hz 400 Stop 2.50000 GHz Start 2,45000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz #Sweep 100.0 ms (1001 pts) STAT

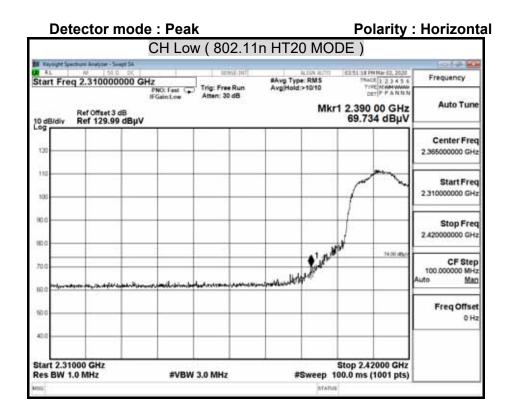
Detector mode : Average


Polarity :

CH High (802.11g MODE) Start Freq 2.45000000 GHz FRO: Fast Gain Low FAtten: 20 dB R Keysight Spectrum Analyzer - Swept SA - Augusta 11 08:54:24 AN Mar 03, 2020 TRACE 1, 2, 3, 4, 5, 6 TUPE N MM WMM DET P P A N N N #Avg Type: RMS Avg/Hold:>10/10 Frequency Auto Tune Mkr1 2.483 50 GHz 51.534 dBµV Ref Offset 3 dB Ref 119.99 dBµV 10 dBidiv **Center Freq** 11 2,475000000 GHz 100 Start Freq 2.45000000 GHz 180 80 Stop Freq 2.50000000 GHz 70 CF Step 100.000000 MHz 60 ¢1 54.00 JB Man 60 Freq Offset 40 0 Hz x Start 2.45000 GHz Stop 2.50000 GHz #VBW 10 Hz #Res BW 1.0 MHz Sweep 3.899 s (1001 pts) STAT

Horizontal

Page: 105 / 124 Rev.: 00

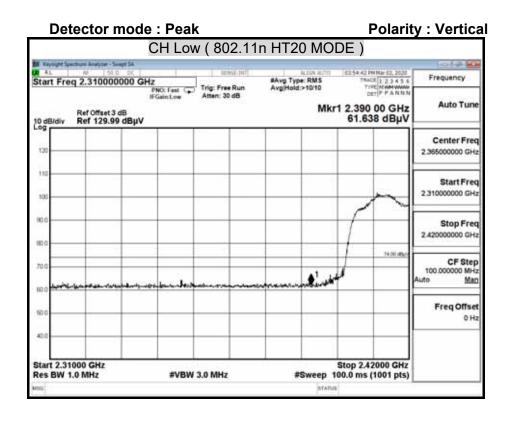

Detector mode : Average

Polarity :

CH	l High (802	2.11g MODE)	
Keysight Spectrum Analyzer - Swept SA R.L. 60 1 55 0. DC	save duri		09-45-29 AH Mar 03, 2020	
art Freq 2.45000000 GHz		#Avg Type: RMS Avg/Hold:>10/10	TRACE 1 2 3 4 5 6	Frequency
PNO: Feat IFGainLow Ref Offset 3 dB dB/div Ref 119.99 dBµV	#Atten: 20 dB	20 2 0302020474	1 2.483 50 GHz 48.570 dBµV	Auto Tuni
10				Center Free 2.475000000 GH
				Start Fre 2.45000000 GH
	Λ			Stop Free 2.50000000 GH
		▲ 1	54.00 485/4	CF Step 100.000000 MH Auto Ma
10				Freq Offse 0 H
art 2,45000 GHz			Stop 2.50000 GHz	

Page: 106 / 124 Rev.: 00

Detector mode : Average


Polarity :

		CH Lov	N (802.11	n HT20 MO	DE)	
	ectrure Analyzer - Swept Si		and the second second second	and an and a state	And the state of the	
Start Fre	g 2.31000000		SEASE ONT	RAvg Type: RMS	103-49-51 PH Mar 62, 2020 TRACE 1 2 3 4 5 6	Frequency
10 dBidiv	Ref Offset 3 dB Ref 119.99 dB	PNO: Fast G	¹ Trig: Free Run #Atten: 20 dB	AvgiHold: \$10 Mki	1 2.390 00 GHz 51.341 dBµV	Auto Tune
110						Center Fred 2.365000000 GH
100 90 0					\square	Start Free 2.31000000 GH
во с 70 с						Stop Free 2.42000000 GH
80.0				9 ¹ /		CF Step 100.000000 MH Auto Mar
40.0						Freq Offse
30.0						
Start 2.31 Res BW 1	000 GHz I.0 MHz	#VBW	10 Hz	Sweep	Stop 2.42000 GHz 8.577 s (1001 pts)	
ests.				STATU	5	

Horizontal

Page: 107 / 124 Rev.: 00

Detector mode : Average

Polarity :

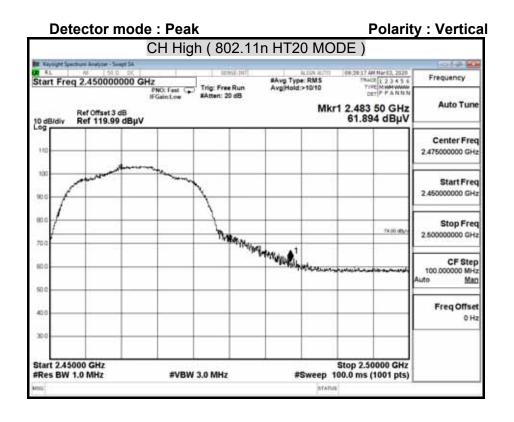
		CH Lov	v (802.11	n HT20 MC	DE)	
Keysight Is AL	AV 55.0 DC	and N	stast dat	I I I I I I I I I I I I I I I I I I I	10157.01 PH Har 02, 2020	Transie and
Start Fre	eq 2.310000000 G	PNO: Fast	Trig: Free Run	#Avg Type: RMS Avg/Hold:>10/10	THACE 1 2 3 4 5 6 TYPE MARKWARK	
10 dB/div	Ref Offset 3 dB Ref 119.99 dBµV	IFGaintow	Atten: 20 dB	Mk	r1 2.390 00 GHz 47.940 dBµV	Auto Tur
110						Center Fre 2.36500000 GH
100						Start Fre 2.31000000 GH
80 G						Stop Fre 2.42000000 GP
0.0				A 1	54.00 aby/	CF Sto 100.000000 Mi Auto M
40.0						Freq Offs
30.0						
Start 2.3	1000 GHz 1.0 MHz	#VBW	10 Hz	Sweep	Stop 2.42000 GHz 8.577 s (1001 pts)	
195				BTAD		

Page: 108 / 124 Rev.: 00

Detector mode : Average

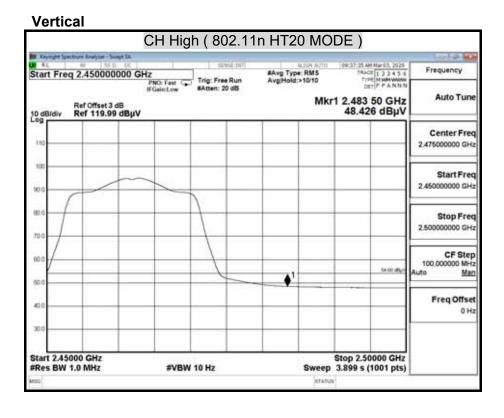
. .

.. .


Polarity :

	CH High	n (802.11	n HT20 I	MODE)	
Keysight Spectrum Analyzer - Swept SA		a contract only of	17 20.00			
Start Freg 2.450000000 C	SHz	SINGEONT	#Avg Type: RM	15	TRACE 1 2 3 4 5 6	Frequency
Ref Offset 3 dB	PNO: Fast CP IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg(Hold:>10)	Mkr1 2.4	33 50 GHz 228 dBµV	Auto Tune
og 110						Center Free 2.475000000 GH
100						Start Free 2.45000000 GH
800						Stop Free 2.50000000 GH
1000			e'		54.00 JPp-V	CF Step 100.000000 MH Auto Mar
40.0						Freq Offse 0 H
Start 2.45000 GHz Res BW 1.0 MHz	#VBW	10 Hz	sv		.50000 GHz s (1001 pts)	

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。



Page: 109 / 124 Rev.: 00

Detector mode : Average

Polarity :

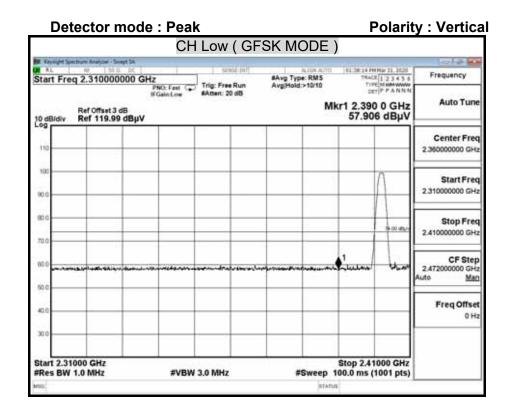
Page: 110 / 124 Rev.: 00

Bluetooth 4.0

Model Name	SC6000M PRIME	Test By	Ted Huang
Temp & Humidity	26.2 , 52%	Test Date	2020/04/01

CI	H Low (GF	SK MODE)	
Kaysight Spectrum Analyzer - Swept SA AL NF SE 0. DC	street doit	AUA A/D	101-12-50 PM Mar 11, 2020	
tart Freq 2.310000000 GHz	Trig: Free Run	#Avg Type: RM5 Avg/Hold:>10/10	TRACE 1 2 3 4 5 6 T/PE M 404 WWW	Frequency
Ref Offset 3 dB 0 dBidiv Ref 119.99 dBµV	#Atten: 20 dB	м	kr1 2.390 0 GHz 57.933 dBμV	Auto Tune
110				Center Freq 2.36000000 GHz
102			Λ	Start Freq 2 31000000 GHz
800				Stop Freq
no a			6 00 mp/	2.41000000 GHz
00 			Simon Uni	CF Step 2.47200000 GHz Auto Man
0.0				Freq Offset 0 Hz
0.0				
tart 2.31000 GHz Res BW 1.0 MHz #VB	W 3.0 MHz	#Sweep	Stop 2.41000 GHz 100.0 ms (1001 pts)	

Polarity : Horizontal

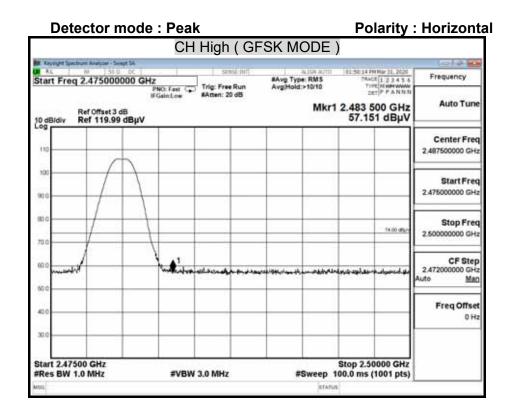

Keysight Spectrum Analyzer - Swept SA	1			
Start Freq 2.31000000	GHz	#Avg Type: RM5	11:34:18 PH Mar 31, 2020 TRACE 1 2 3 4 5 6	Frequency
Ref Offset 3 dB 10 dBidiv Ref 119.99 dBj	PNO: Fast Trig: Free Run IFGain:Low #Atten: 20 d5	AvgiHold:>1010 Mkr1	2.390 0 GHz 48.626 dBµV	Auto Tune
110				Center Free 2.36000000 GH
100 90 0				Start Free 2.31000000 GH
850				Stop Free 2.41000000 GH
80.0		1	54 be any	CF Step 2.47200000 GH Auto Mar
40.0				Freq Offse 0 H
30.0				
Start 2.31000 GHz #Res BW 1.0 MHz	#VBW 2.7 kHz		op 2.41000 GHz 93 ms (1001 pts)	

Detector mode : Average

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

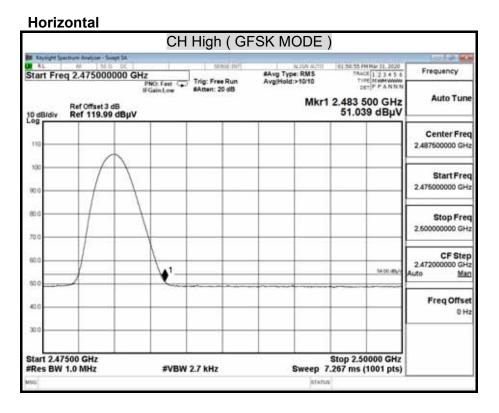
Page: 111 / 124 Rev.: 00

Detector mode : Average

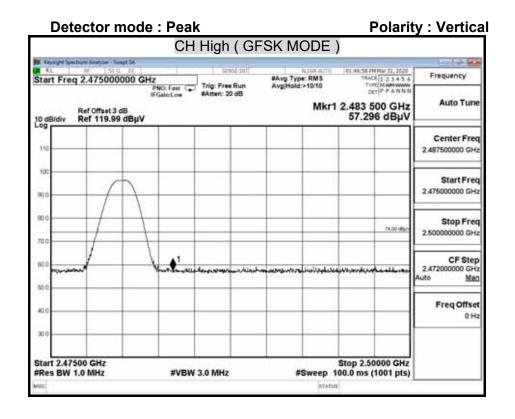

Polarity :

	CH Low (G	FSK MODE)	
E Keysight Spectrum Analyzer - Swept SA		a na sananan		
tart Freg 2.310000000 G	SEASE ONT	#Avg Type: RMS	01:38:51 PH Mar 31, 2020 TRACE 1 2 3 4 5 6	Frequency
Ref Offset 3 dB 0 dB/div Ref 119.99 dB/J	PNO: Fest Trig: Free Run IFGain:Low #Atten: 20 dB	AvgiHold:>1010 Mi	kr1 2.390 0 GHz 48.599 dBµV	Auto Tune
110				Center Free 2.360000000 GH
100			Λ	Start Free 2.31000000 GH
ab c				Stop Free 2.41000000 GH
10 0 10 0			1	CF Step 2.47200000 GH Auto Mar
40.0				Freq Offse
30.0				
Hart 2.31000 GHz Res BW 1.0 MHz	#VBW 2.7 kHz	Sweep 2	Stop 2.41000 GHz 28.93 ms (1001 pts)	

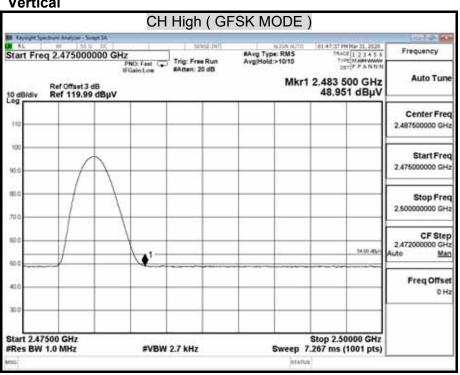
• • ...ti - 1



Page: 112 / 124 Rev.: 00


Detector mode : Average

Polarity :



Page: 113 / 124 Rev.: 00

Detector mode : Average

Polarity:

Vertical

Page: 114 / 124 Rev.: 00

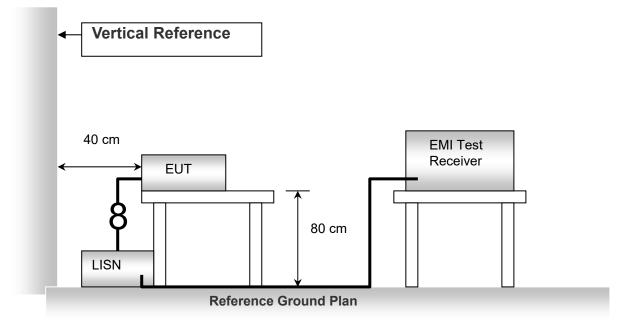
8.7 POWERLINE CONDUCTED EMISSIONS

<u>LIMITS</u>

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted limit (dBµv)	
	Quasi-peak	Average
0.15 - 0.5	66 to 56	56 to 46
0.5 - 5	56	46
5 - 30	60	50


TEST EQUIPMENTS

The following test equipments are used during the conducted power line tests :

Conducted Emission room #1					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
BNC Coaxial Cable	CCS	BNC50	11	02/25/2019	02/24/2020
EMI Test Receiver	R&S	ESCS 30	100348	02/19/2019	02/18/2020
LISN	SCHWARZBECK	NNLK8130	8130124	01/02/2019	01/01/2021
LISN	FCC	FCC-LISN-50-32-2	08009	06/12/2019	06/11/2020
Pulse Limiter	R&S	ESH3-Z2	100116	02/25/2019	02/24/2020
Software	e3(6.101222)				

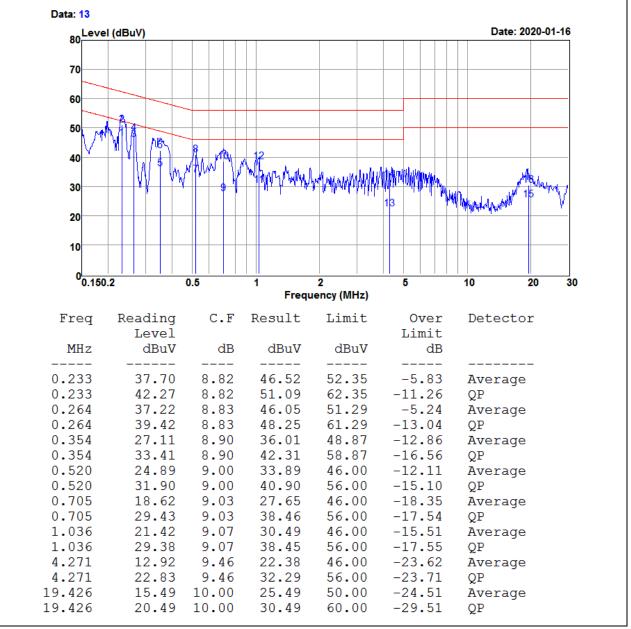
TEST SETUP

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80cm above the horizontal ground plane. The EUT IS CONFIGURED IN ACCORDANCE WITH ANSI C63.10.

The resolution bandwidth is set to 9 kHz for both quasi-peak detection and average detection measurements.

Line conducted data is recorded for both NEUTRAL and LINE.


TEST RESULTS

No non-compliance noted.

Model No.	SC6000M PRIME	Test Mode	Normal Operation
Environmental Conditions		Resolution Bandwidth	9 kHz
Tested by	Leo Wang		

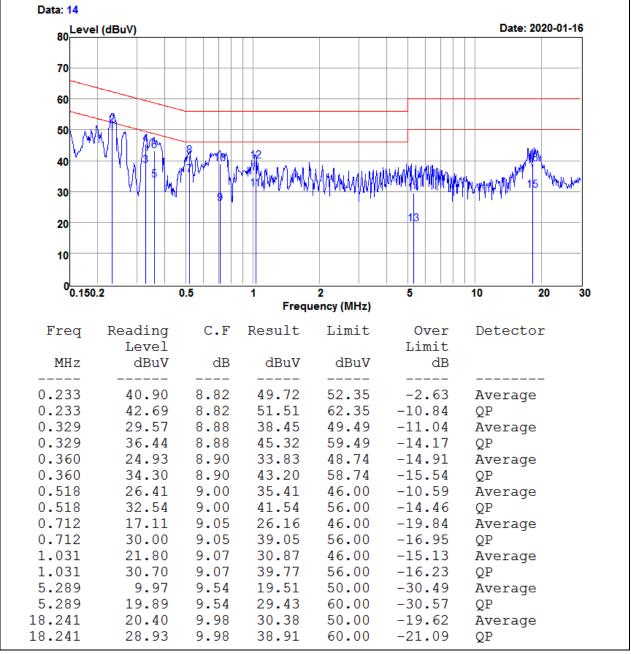
Line

(The chart below shows the highest readings taken from the final data.)

NOTE:

1. Measured Level (dBuV) = LISN Factor (dB) + Cable Loss (dB)+ Meter Reading (dBuV)

2. Over Limit (dBuV) = Measured Level (dBuV) – Limits (dBuV)


This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Model No.	SC6000M PRIME	Test Mode	Normal Operation
Environmental Conditions	12/10 68% 84	Resolution Bandwidth	9 kHz
Tested by	Leo Wang		

Neutral

(The chart below shows the highest readings taken from the final data.)

NOTE:

1. Measured Level (dBuV) = LISN Factor (dB) + Cable Loss (dB)+ Meter Reading (dBuV)

2. Over Limit (dBuV) = Measured Level (dBuV) – Limits (dBuV)

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

9. ANTENNA REQUIREMENT

9.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

9.2 ANTENNA CONNECTED CONSTRUCTION

Type: WLAN EMBEDDEN ANTENNA Model: WLA-EM-1707-0064-B Manufacturer: BRITO Gain: 4.6 dBi

=== END of Report ===