

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200102702

FCC REPORT

Applicant: XINCHUANGXIN INTERNATIONAL CO., LTD

Address of Applicant: ROOM 605 6/F, FA YUEN COMMERCIAL BUILDING, 75-77

FA YUEN STREET MONGKOK KL Hongkong China

Equipment Under Test (EUT)

Product Name: MOBILE PHONE

Model No.: R60

Trade mark: CORN

FCC ID: 2ASWW-CORNR60

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 09 Jan., 2020

Date of Test: 10 Jan., to 03 Mar., 2020

Date of report issued: 04 Mar., 2020

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	04 Mar., 2020	Original

Tested by:	Test Engineer	Date:	04 Mar., 2020
Reviewed by:	Winner thang	Date:	04 Mar., 2020

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VERS	SION	2
3		TENTS	
4	TEST	SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
		GENERAL DESCRIPTION OF E.U.T.	
		TEST ENVIRONMENT AND TEST MODE	
		DESCRIPTION OF SUPPORT UNITS	
		MEASUREMENT UNCERTAINTY	
		ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7	LABORATORY FACILITY	6
		LABORATORY LOCATION	
	5.9	Test Instruments list	7
6	TEST	RESULTS AND MEASUREMENT DATA	8
	6.1	Antenna requirement:	8
	<mark>6.2</mark>	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	14
		Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1	Conducted Emission Method	
	6.6.2		
		Spurious Emission	
	6.7.1	Conducted Emission Method	
	6.7.2	Radiated Emission Method	
7	TES7	SETUP PHOTO	32
0	EUT	CONSTRUCTIONAL DETAILS	24

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	XINCHUANGXIN INTERNATIONAL CO.,LTD
Address:	ROOM 605 6/F, FA YUEN COMMERCIAL BUILDING, 75-77 FA YUEN STREET MONGKOK KL Hongkong China
Manufacturer:	SHENZHEN CHITENG TECHNOLOGY CO., LTD
Address:	SECOND FLOOR, AREA A, BUILDING 4, HUIYE TECHNOLOGY WORKSHOP, GUANGUANG ROAD, TANGJIA COMMUNITY STREET, GONGMING STREEST, GUANGMING NEW DISTRICT, SHENZHEN, GUANGDONG

5.2 General Description of E.U.T.

Product Name:	MOBILE PHONE
Model No.:	R60
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-2.54 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V, 2800mAh
AC adapter:	Model: CS001
	Input: AC100-240V, 50/60Hz, 0.15A
	Output: DC 5V, 1A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

Report No: CCISE200102702

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 6 of 34

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

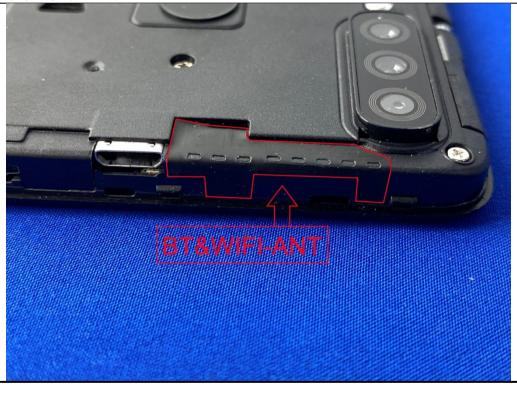
Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2020
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

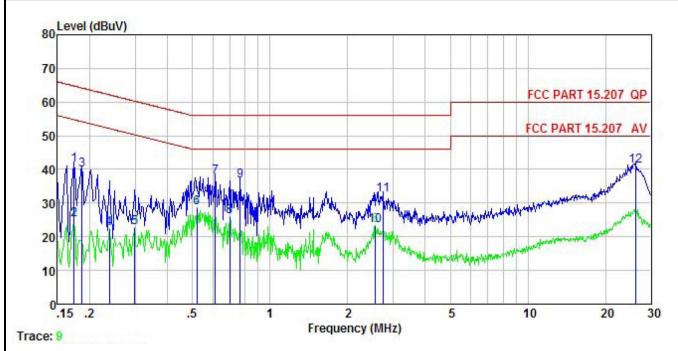
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is -2.54 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7		
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	·	Limit (dRu\/)		
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithn	n of the frequency.		
Test procedure	 The E.U.T and simulators line impedance stabilizati 500hm/50uH coupling im The peripheral devices at LISN that provides a 500 termination. (Please refer photographs). Both sides of A.C. line are interference. In order to fi positions of equipment ar according to ANSI C63.1 	on network (L.I.S.N.), whe pedance for the measuring also connected to the hm/50uH coupling impedent to the block diagram of the checked for maximum and the maximum emission all of the interface cab	nich provides a ing equipment. main power through a dance with 500hm the test setup and conducted on, the relative eles must be changed	
Test setup:	Reference LISN 40cm AUX Equipment E.U.1 Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	80cm Filter Filter Receiver	– AC power	
Test Instruments:	Refer to section 5.9 for details	}		
Test mode:	Refer to section 5.3 for details	3		
Test results:	Passed			

Measurement Data:

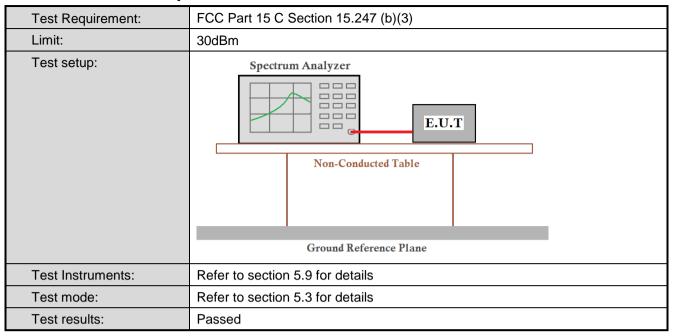
Product name:	MOBILE PHONE	Product model:	R60
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
2	MHz	dBu∀	dB	dB	₫B	dBu∀	dBu∀	dB	** <u>*****************</u>
1	0.174	29.82	-0.43	-0.11	10.77	40.05		-24.72	
2	0.174 0.214	14.10 26.95	-0.43 -0.41	-0.11 -0.18	10.77 10.76	24.33 37.12	63.05	-25.93	
4 5	0.489 0.521	18.04 27.04	-0.39 -0.39	-0.26 -0.36	10.76 10.76	28.15 37.05		-18.04 -18.95	Average OP
6	0.549	19.40	-0.39	-0.36	10.76	29.41	46.00	-16.59	Average
4 5 6 7 8 9	0.595 0.614	18.45 25.93	-0.38 -0.38		10.77 10.77	28.46 35.94		-17.54 -20.06	Average QP
9 10	0.697 2.664	17.01 24.05	-0.38 -0.43	-0.40 -0.24	10.77 10.93	27.00 34.31		-19.00 -21.69	Average OP
11 12	2.736 25.727	15.66 29.69	-0.43 -1.06	-0.23 0.99	10.93	25.93 40.49	46.00		Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

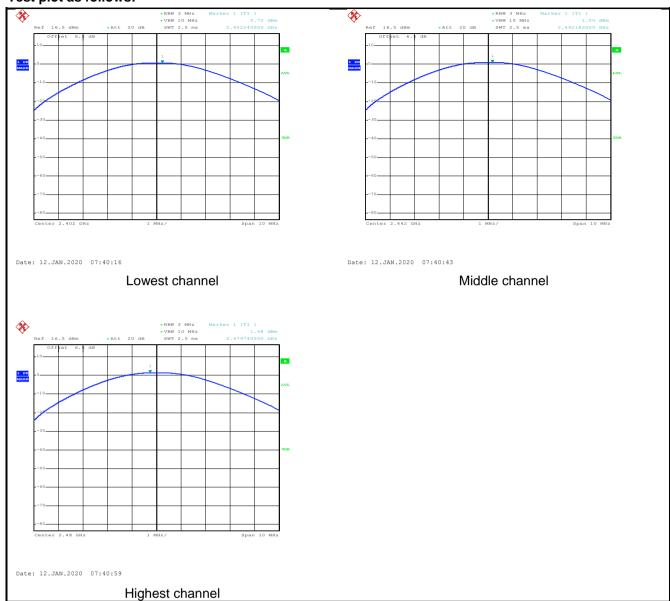
Product name:	MOBILE PHONE	Product model:	R60
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	<u>ab</u>	<u>dB</u>		dBu⊽	dBu₹	<u>ab</u>	
1	0.174	31.11	-0.69	0.00	10.77	41.19	64.77	-23.58	QP
2	0.174	14.92	-0.69	0.00	10.77	25.00	54.77	-29.77	Average
3	0.186	29.65	-0.69	0.00	10.76	39.72	64.20	-24.48	QP
1 2 3 4 5 6 7 8 9	0.238	12.30	-0.66	0.00	10.75	22.39	52.17	-29.78	Average
5	0.299	12.74	-0.63	0.01	10.74	22.86	50.28	-27.42	Average
6	0.521	18.35	-0.65	0.03	10.76	28.49	46.00	-17.51	Average
7	0.614	27.51	-0.64	0.04	10.77	37.68	56.00	-18.32	QP
8	0.697	15.91	-0.64	0.04	10.77	26.08	46.00	-19.92	Average
9	0.767	26.35	-0.64	0.05	10.80	36.56	56.00	-19.44	QP
10	2.567	12.68	-0.67	0.26	10.94	23.21	46.00	-22.79	Average
11	2.736	21.81	-0.67	0.28	10.93	32.35	56.00	-23.65	QP
12	26.278	30.88	-1.45	0.84	10.87	41.14		-18.86	

Notes:

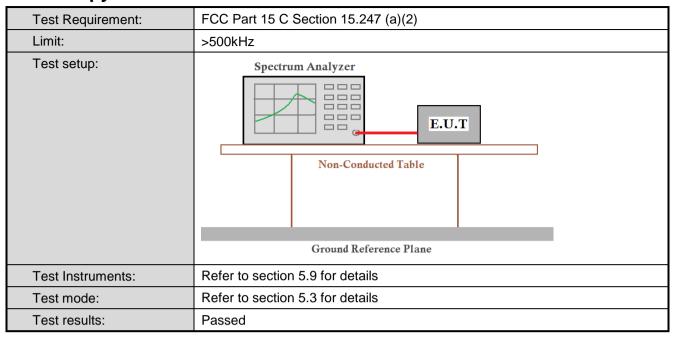
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power



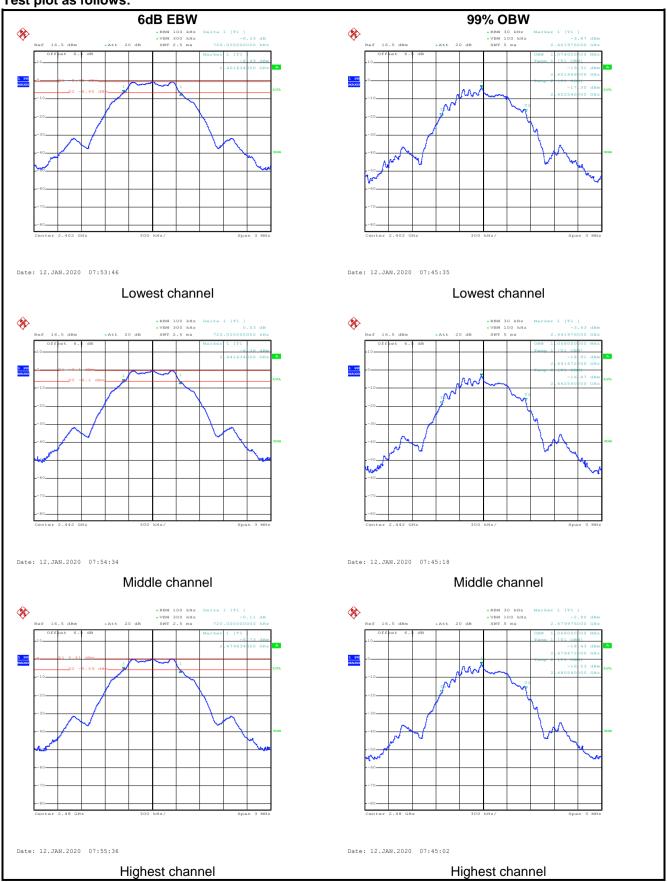
Measurement Data:

			-
Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	0.72		
Middle	1.00	30.00	Pass
Highest	1.48		



Test plot as follows:

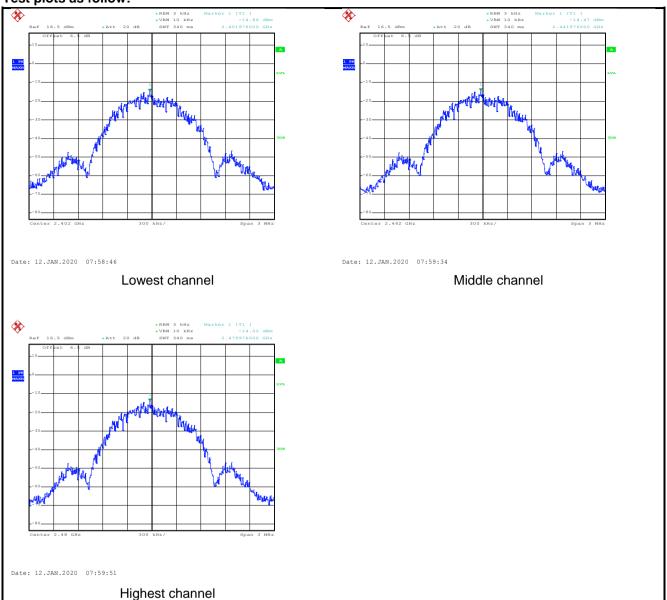
6.4 Occupy Bandwidth


Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	726		
Middle	720	>500	Pass
Highest	720		
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.074		
Middle	1.068	N/A	N/A
Highest	1.068		

Test plot as follows:

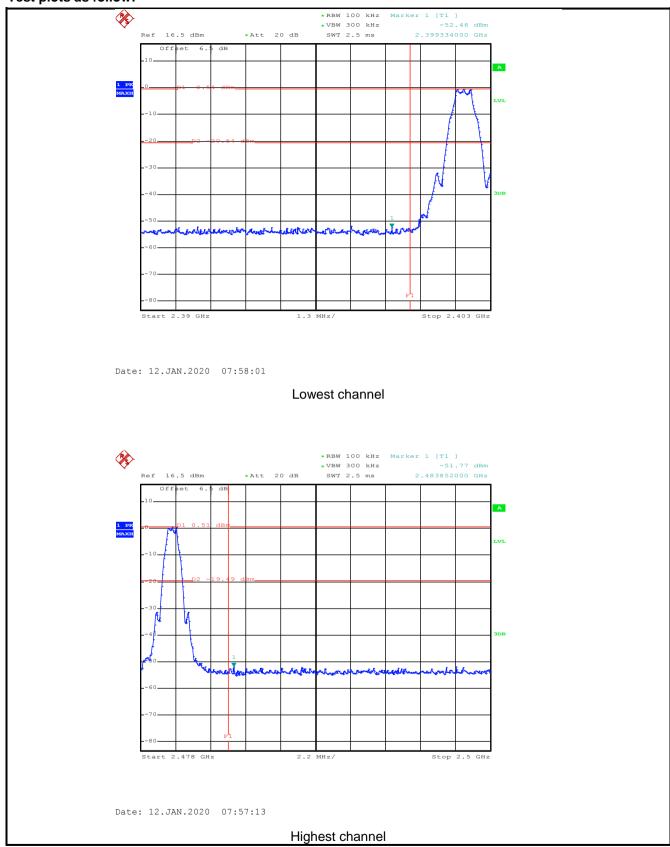
6.5 Power Spectral Density


Test Requirement:	FCC Part 15 C Section 15.247 (e)			
Limit:	8 dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-14.86		
Middle	-14.47	8.00	Pass
Highest	-14.02		

Test plots as follow:


6.6 Band Edge

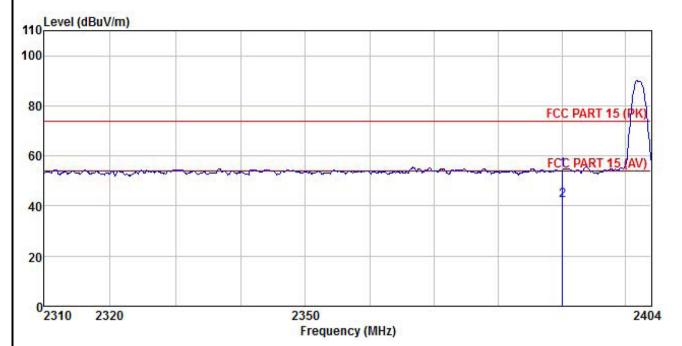
6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plots as follow:

6.6.2 Radiated Emission Method

Test Requirement:		Section 15.2	05 and 15.209					
Test Frequency Range:	2.3GHz to 2.5	2.3GHz to 2.5GHz						
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		RMS	1MHz	3MHz	Average Value			
Limit:	Frequer	ncy Li	mit (dBuV/m @3		Remark			
	Above 10	GHz —	54.00 74.00		verage Value Peak Value			
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters are to find the 5. The test-I Specified 6. If the emit the limit so of the EU have 10 ce	ad at a 3 meter nine the position was set 3 meter which was more anna height is very ad to determine zontal and very measurement suspected em then the anter then the anter and the rota table of maximum real receiver system Bandwidth with sission level of the specified, then it would be red dB margin would	the top of a rot camber. The tan of the highest ers away from the top aried from one retended from the the maximum with the EUT in a was tuned from was set to Peat the Maximum Holdhe EUT in peak testing could be corted. Otherwis	ating table 1. ble was rotat radiation. he interference of a variable meter to four value of the fis of the ante was arrange to heights from 0 degrees ak Detect Fuld Mode. mode was 1 stopped and the emissione by one u	ted 360 degrees ce-receiving e-height antenna meters above field strength, nna are set to d to its worst m 1 meter to 4 s to 360 degrees nction and d dB lower than d the peak values ons that did not sing peak, quasi-			
Test setup:	AE (T	Test Receiver	Horn Antenna 3m 1 Reference Plane Pre- Amptiller Cont	Antenna Tower				
Test Instruments:	Refer to section	on 5.9 for deta	ls					
Test mode:	Refer to section	on 5.3 for deta	ls					
Test results:	Passed							

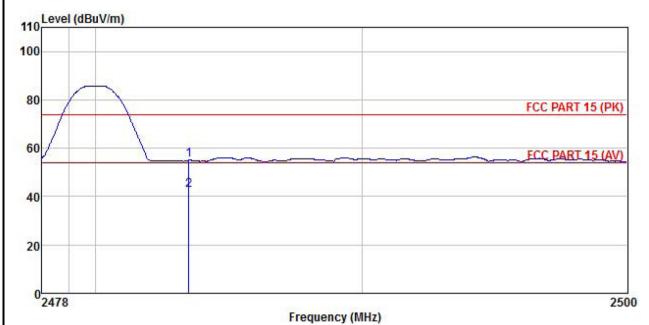

roduct	oduct Name: MOBILE PHONE			Product Model:		R60			
est By:		Mike		Test mode: BLE Tx mode		mode			
est Cha	annel:	Lowest c	hannel			Polarization:		Vertical	
est Vol	Itage:	AC 120/6	60Hz			Environme	ent:	Temp: 2	.4℃ Huni: 57%
Lev	vel (dBuV/m)								
2000	ver (ubu viiii)				71				
100									
80								FCC	PART 15 (PK)
60				~ ~~~~				FCC	PART 15 (AV)
20								2	
40									
1000									
20									
231	10 2320			2350	uency (MH	-1			2404
				rieq	uency (Mn	2)			
		Reads	intenna	Cable	Preamo		Timi+	Over	
	Freq	Level	Intenna Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	—dBu∜	<u>dB</u> /m		<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000	20.52	27. 07	4.69	0.00	53.96	74.00	-20.04	Peak
1		8.55		4.69	0.00	41 00	54.00	-12 01	Average

Remark.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	MOBILE PHONE	Product Model:	R60
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

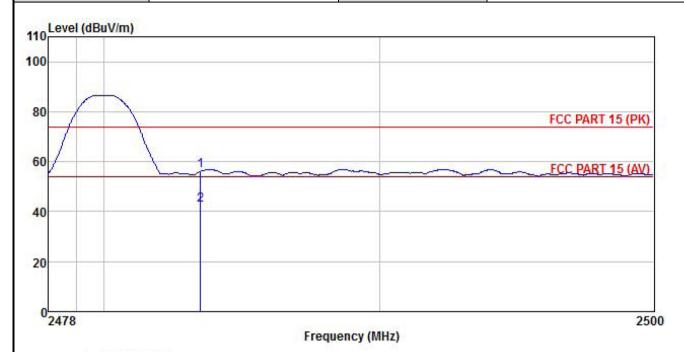
	Freq			Cable Preamp Loss Factor Lev					
-	MHz	dBu∀	<u>dB</u> /m	dB		$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000								


Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	MOBILE PHONE	Product Model:	R60
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Freq	ReadAntenna Freq Level Factor						
 MHz	dBu∜	<u>dB</u> /m	 <u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
2483.500 2483.500							

Remark:

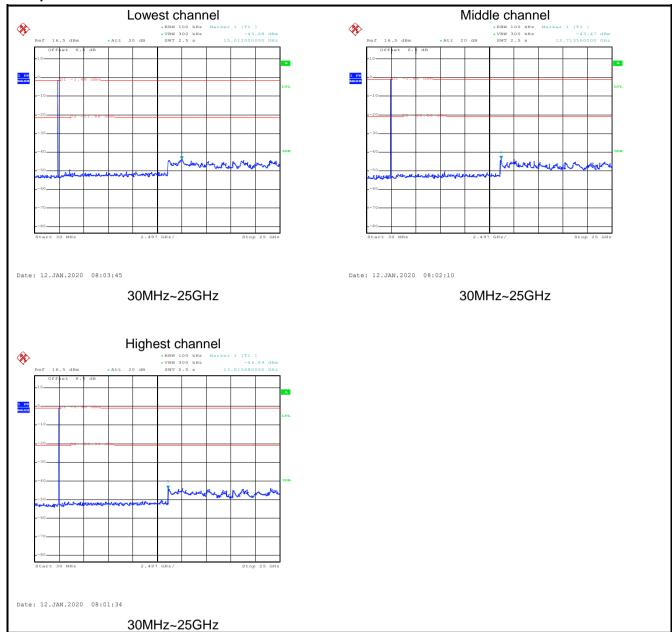
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	MOBILE PHONE	Product Model:	R60
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq	ReadAntenna Freq Level Factor			Cable Preamp Loss Factor Leve				
-	MHz	−−dBuV	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
	2483.500 2483.500								

Remark

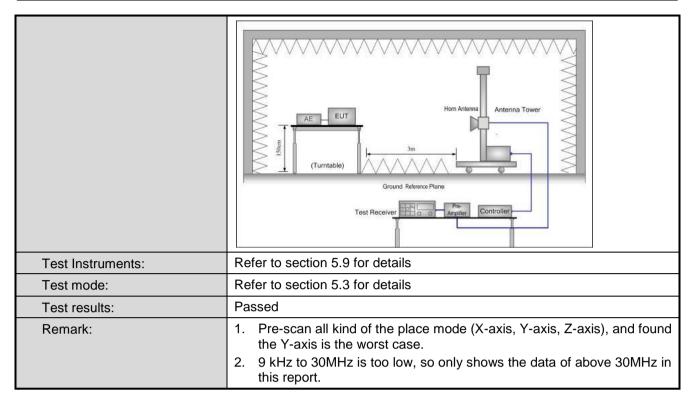
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.


6.7 Spurious Emission

6.7.1 Conducted Emission Method

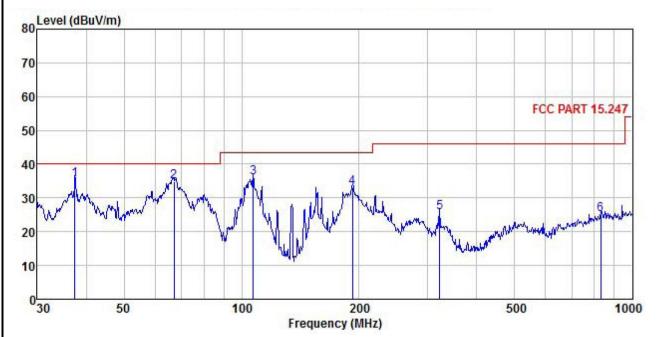
Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Limit:	n any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.9 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:



6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	05 and 15.209				
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detector	RBW	VBW		Remark	
. 1000.110.1 0010.p.	30MHz-1GHz	Quasi-peak	120KHz	300KHz		Quasi-peak Value	
	Al 4011-	Peak	1MHz	3M	Hz		
	Above 1GHz	RMS	1MHz	3M	Hz	Average Value	
Limit:	Frequency	/ L	imit (dBuV/m @	3m)		Remark	
	30MHz-88M	Hz	40.0		C	Quasi-peak Value	
	88MHz-216M	1Hz	43.5		C	Quasi-peak Value	
	216MHz-960N	ИНz	46.0			Quasi-peak Value	
	960MHz-1G	Hz	54.0		C	Quasi-peak Value	
	Above 1GF	lz 🗀	54.0			Average Value	
			74.0		L	Peak Value table 0.8m(below	
	highest rad The EUT antenna, w tower. The antenn the ground Both horize make the n For each s case and t meters and to find the n The test-re Specified E If the emiss the limit sp of the EUT have 10 dE	liation. was set 3 r rhich was mo na height is to determine ontal and veneasurement suspected en hen the ante the rota tab maximum rea eceiver syste sandwidth with sion level of ecified, then would be re margin wou	neters away nunted on the survived from one the maximum rtical polarization. mission, the Evenna was tuned ading. The maximum Haximum Haximu	from the top of a me met um valutions of EUT was do not be from 0 to Pealold Morak more stop wise the done be	ne intervariant of the areas arranged and the control of the areas arranged and the control of t	the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 tes to 360 degrees tect Function and is 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data	
Test setup:	EUT	4m 4m 0.8m 1m			Antenna Search Antenn Test reiver —	1	



Measurement Data (worst case):

Below 1GHz:

Product Name:	MOBILE PHONE	Product Model:	R60
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Intenna Factor						
	MHz	dBu∜	<u>dB</u> /π		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	37.416	52.49	11.80	1.14	29.92	35.51	40.00	-4.49	QP
1 2 3	67.202	54.05	9.11	1.44	29.74	34.86	40.00	-5.14	QP
3	107.134	51.65	11.90	2.02	29.48	36.09	43.50	-7.41	QP
4 5	192.419	48.60	10.38	2.82	28.88	32.92	43.50	-10.58	QP
5	321.061	37.09	14.03	3.01	28.50	25.63	46.00	-20.37	QP
6	830.400	26.67	22.21	4.25	28.08	25.05	46.00	-20.95	QP

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:		MOBILE PHONE				oduct Mod	R60			
est By:	I	Mike			Те	st mode:		BLE Tx n	node	
est Freque	ency:	30 MHz ~ 1	I GHz		Po	olarization: Horizontal				
est Voltage	e:	AC 120/60I	Hz		En	vironmen	t:	Temp: 24	1 ℃	Huni: 57%
Level (d	BuV/m)									
80	Duviniy									
70										
60										
00								FCC	PART	15.247
50					i i i					
40			2		4					
100				3	My ,					
			P N							
30			1		la Marie	Vi Ma	\.			6
	No.	M	War 1	nd d M		Jun 1	My Market	Marty working	ومستحدإلله	manifold robins
20	and the state of t	M	Washington M	NULAM		ym T	July Mary Mary Mary Mary Mary Mary Mary Mar	of the special property of the	المستعمداللاه	A AND PARTY OF THE
	and the state of t	w Awa	Word (NJJAM		Ym T	A Marken	and the second	ومستعمدإلده	part of the state of
20 10	and some that the sound of the		100	NJJAM	200	James Comments	John Warner		المستحدالله	1000
20 10	50		100	Frequ	200 ency (MHz)	June 1	My Marine	500	asilina and	1000
20 10	50		100	Frequ		Num To	M. Marian		alak franco	1000
20 10			Intenna	Cable	ency (MHz) Preamp		Limit	500 Over	Pon	
20 10	. Freq	Level	Intenna Factor	Cable Loss	ency (MHz) Preamp Factor	Level	Line	500 Over Limit	Rem	
20 10			Intenna Factor	Cable	ency (MHz) Preamp Factor	Level		500 Over Limit	Rem	
20 10 0 30	Freq MHz 81.497	Level dBuV 43.83	Antenna Factor — dB/m 7.91	Cable Loss ——————————————————————————————————	Preamp Factor dB	Level dBuV/m 23.83	Line dBuV/m 40.00	500 Over Limit dB -16.17	 QP	
20 10 0 30	Freq MHz 81.497 107.134	Level dBuV 43.83 53.37	Antenna Factor dB/m 7.91 11.90	Cable Loss 	Preamp Factor dB 29.63	Level dBuV/m 23.83 37.81	Line dBuV/m 40.00 43.50	Over Limit ———————————————————————————————————	QP QP	
20 10 0 30	Freq MHz 81.497	Level dBuV 43.83 53.37 48.66 52.30	Antenna Factor — dB/m 7.91	Cable Loss ——————————————————————————————————	Preamp Factor dB 29.63 29.48 29.17	Level dBuV/m 23.83 37.81 31.16	Line dBuV/m 40.00 43.50 43.50	500 Over Limit dB -16.17	QP QP QP	
20 10 0 30	Freq MHz 81.497 107.134 155.364	Level dBuV 43.83 53.37 48.66 52.30	Antenna Factor dB/m 7.91 11.90 9.12	Cable Loss ——————————————————————————————————	Preamp Factor dB 29.63 29.48 29.17 28.71	Level dBuV/m 23.83 37.81 31.16 37.91	Line dBuV/m 40.00 43.50 43.50 46.00 46.00	Over Limit ———————————————————————————————————	QP QP QP QP QP QP	

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Ahova 1GHz

Above 1GHz	2										
			Test ch	nannel: Lowe	est channel						
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	47.62	31.02	6.80	41.81	43.63	74.00	-30.37	Vertical			
4804.00	48.62	31.02	6.80	41.81	44.63	74.00	-29.37	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	39.68	31.02	6.80	41.81	35.69	54.00	-18.31	Vertical			
4804.00	38.47	31.02	6.80	41.81	34.48	54.00	-19.52	Horizontal			
			Test ch	nannel: Midd	dle channel						
			De	tector: Peak	Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	49.62	31.17	6.86	41.84	45.81	74.00	-28.19	Vertical			
4884.00	48.71	31.17	6.86	41.84	44.90	74.00	-29.10	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polarization			

Test channel: Highest channel												
			De	tector: Peak	Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4960.00	49.62	31.32	6.91	41.87	45.98	74.00	-28.02	Vertical				
4960.00	48.52	31.32	6.91	41.87	44.88	74.00	-29.12	Horizontal				
	Detector: Average Value											
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit	Polarization				

(dB)

41.87

41.87

Factor

(dB)

41.84

41.84

(dBuV/m)

36.44

35.87

36.51

36.14

(dBuV/m)

54.00

54.00

54.00

54.00

Remark:

4960.00

4960.00

Level

(dBuV)

40.25

39.68

(dBuV)

40.15

39.78

(MHz)

4884.00

4884.00

Factor

(dB/m)

31.17

31.17

Loss

(dB)

6.86

6.86

(dB)

6.91

6.91

(dB/m)

31.32

31.32

Project No.: CCISE2001027

Vertical

Horizontal

Polarization

Vertical

Horizontal

Limit

(dB)

-17.56

-18.13

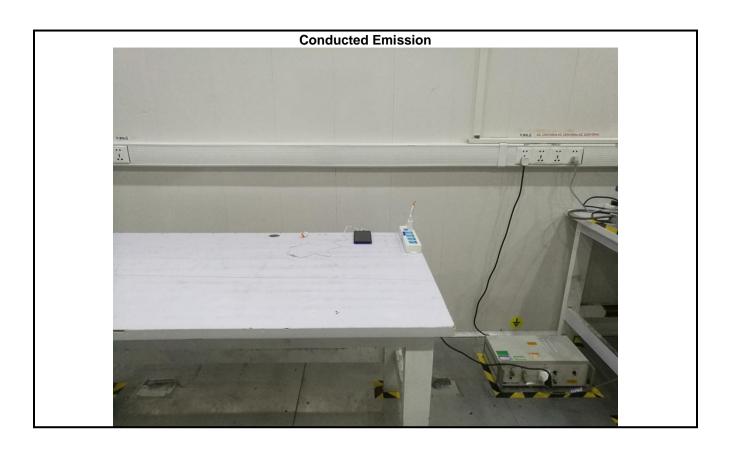
(dB)

-17.49

-17.86

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.


7 Test Setup Photo

8 EUT Constructional Details

Reference to the test report No.: CCISE200102701

-----End of report-----