

Dynamic Frequency Selection (DFS) Test Report FCC Part15 Subpart E & RSS-247 Issue 2

Product Name :	Virtual Reality System
Model No. :	MH-A32, MH-A64
FCC ID :	2AGOZMH-A
IC :	20849-MHA

Applicant :	Oculus VR LLC
Address :	1 Hacker Way, Bldg 18Menlo Park CA 94025-1456

Date of Receipt	:	Sep. 12, 2017
Test Date	:	Sep. 12, 2017~ Oct. 26, 2017
Issued Date	:	Dec. 04, 2017
Report No.	:	1792053R-RF-FCC-DFS
Report Version	:	V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by A2LA, TAF or any agency of the government. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification (Suzhou) Co., Ltd.

DFS Test Report

Issued Date: Dec. 04, 2017 Report No. : 1792053R-RF-FCC-DFS

Product Name Applicant Address Manufacturer Address Model No. FCC ID IC EUT Voltage Test Voltage Brand Name Applicable Standard	 Virtual Reality System Oculus VR LLC 1 Hacker Way, Bldg 18Menlo Park CA 94025-1456 Oculus VR LLC 1 Hacker Way, Bldg 18Menlo Park CA 94025-1456 MH-A32, MH-A64 2AGOZMH-A 20849-MHA 5 V dc, 2 A AC 120V/60Hz Oculus Go FCC CFR Title 47 Part 15 Subpart E KDB 905462 D02 v02 KDB 905462 D03 v01r02
Test Result	RSS-Gen Issue 4 / RSS-247 Issue 2 : Pass
Performed Location	 DEKRA Testing and Certification (Suzhou) Co., Ltd. No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 FCC Designation Number: CN1199; ISED Lab Code: 4075B
Operation Mode (5470~5725MHz)	 Master device Slaver device with radar detection function Slaver device without radar detection function
Documented By	Kitty Li
	(Adm. Specialist: Kitty Li)
Reviewed By	Frankhe
	(Senior Engineer: Frank He)
Approved By	Harry 2han
	(Engineering Manager: Harry Zhao)

TABLE OF CONTENTS

Description Page

1.	GENERAL INFORMATION	4
1.1.	EUT Description	4
1.2.	Antenna information	
1.3.	Standard Requirement	7
1.4.	UNII Device Description	7
1.5.	Test Equipment	
1.6.	Test Setup	
1.7.	Limits	
1.8.	Client Device requreiment	15
1.9.	Radar Waveform Calibration	
1.10	. Radar Waveform Calibration Result	17
2.	Channel Move Time and Channel Closing Transmission Time	21
2.1.	Test Procedure	21
2.2.	Test Requirement	
2.3.	Uncertainty	
2.4.	Test Result of Channel Move Time and Channel Closing Transmission Time	

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Virtual Reality System									
Brand Name	Ocu	Oculus Go								
Model No.	MH-	A32, MH-A64								
EUT Voltage	5 V (dc, 2 A								
Type of Modulation	OFC	M-BPSK, QPSK, 16	QAN	Л, Є	4QAM, 128QAM,	256	QAM			
Data Rate	802.	11a: 6/9/12/18/24/36	6/48/	54I	Mbps					
	802.	11n: up to 300Mbps								
	802.	11ac: up to 866.6Mb	ps							
Channel Control	Auto)		-						
Transmit modes	\square	802.11a	\square	80	02.11n(20MHz)	\square	802.11n(40MHz)			
	\square	802.11ac(20MHz)	\square	80	02.11ac(40MHz)	\square	802.11ac(80MHz)			
Support Bands				Outdoor AP						
				Indoor AP						
		5150MHz~5250MHz		Fixed point-to-point AP			P			
				Mobile and Portable Client						
	\square	5250MHz~5350MH	z							
			_	\boxtimes	With TDWR Cha	nne	S			
		5470MHz~5725MHz		Without TDWR Channels						
	\square	5725MHz~5850MH	Z							

Note:

1. The RF specifications of two models are identical. The difference is below:

Their memory is different.

	MH-A32	MH-A64
memory	32G	64G

There is not any change in design, circuitry or construction for this device, including RF parameters (antenna, software, firmware and hardware versions, power, frequency ranges, etc.).

We used MH-A32 for all the test items.

Antenna information

Antenna Model N	0.	N/A							
Antenna Manufac	turer	SPE	ED						
Antenna Delivery		\boxtimes	1*TX+1*F	*RX 🛛 2*TX+2*RX 🔲 3*TX+4*RX					
Antenna Technolo	ogy	\boxtimes	SISO						
					Basic	methodology			
					Secto	rized antenna sy	/stems	3	
					Cross-polarized antennas				
			MIMO	\square	Unequal antenna gains, with equal transmit powers				
				\boxtimes	Spatial Multiplexing				
				\square	Cyclic Delay Diversity (CDD)				
Antenna Type		PIF	Antenna						
Antenna Gain									
		Ant Gain							
Antenna Technology		(dBi)							
Ant1		4.0							
SISO	Ant2					2.9			
	· · ·		3.48dBi for Power; 6.48dBi for PSD						

802.11a/n/ac-20MHz Center Working Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 52:	5260 MHz	Channel 56:	5280 MHz	Channel 60:	5300 MHz	Channel 64	5320 MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 100:	5500 MHz	Channel 104:	5520 MHz	Channel 108:	5540 MHz	Channel 112:	5560 MHz
Channel 116:	5580 MHz	Channel 120:	5600 MHz	Channel 124:	5620 MHz	Channel 128:	5640 MHz
Channel 132:	5660 MHz	Channel 136:	5680 MHz	Channel 140:	5700 MHz	N/A	N/A

802.11n/ac-40MHz Center Working Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 54:	5270 MHz	Channel 62:	5310 MHz	N/A	N/A	N/A	N/A
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 102:	5510 MHz	Channel 110:	5550 MHz	Channel 118:	5590 MHz	Channel 126:	5630 MHz
Channel 134:	5670 MHz	N/A	N/A	N/A	N/A	N/A	N/A

802.11ac-80MHz Center Working Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 42:	5210 MHz	Channel 58:	5290 MHz	N/A	N/A	N/A	N/A
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 106:	5530 MHz	Channel 122:	5610 MHz	Channel 138:	5690 MHz	Channel 155:	5775 MHz

1.2. Standard Requirement

FCC Part 15.407:

U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30dBm. A TPC mechanism is not required for systems with an E.I.R.P. of less than 500mW.

1.3. UNII Device Description

The UUT operates in the following band: 5250-5350 MHz, 5470-5725 MHz

The UUT is a Client Device that does not have radar detection capability and ad-hoc function. The highest gain antenna assembly utilized with the EUT has a maximum gain of 4.0dBi in 5GHz frequency band. The 50-ohm Tx/Rx antenna port is connected to the test system to perform conducted tests. TPC is not required since the maximum EIRP is less than 500mW (27dBm).

The UUT utilizes 802.11a/n IP based architecture. Three nominal channel bandwidths, 20 MHz, 40MHz and 80MHz are implemented.

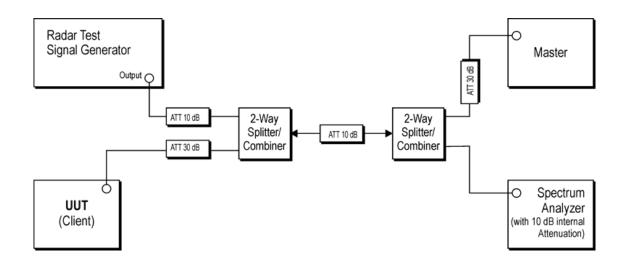
WLAN traffic is generated by streaming the video file "TestFile.mp2" from the Master device to the Slave device in full motion video mode using the "Nero Show Time 3" with the V3.0.1.3 Codec package.

The master device is a Cisco 802.11a/b/g/n Access Point. The Cisco Access Point FCC ID: LDK102061.

The UUT is a client device without radar detection therefore the interference threshold level is not required.

Statement: Information regarding the parameters of the detected Radar Waveforms is not available to the end user.

1.4. Test Equipment


Dynamic Frequency Selection (DFS) / TR-8

Instrument	Manufacturer	Туре No.	Serial No	Cal. Due Date
Spectrum Analyzer	Agilent	N9010A	MY48030494	2018.05.12
Vector Signal Generator	Agilent	E4438C	MY49070163	2018.03.28

Instrument	Manufacturer	Туре No.	Serial No
Splitter/Combiner (Qty: 2)	Mini-Circuits	ZAPD-50W 4.2-6.0 GHz	NN256400424
Splitter/Combiner (Qty: 2)	MCLI	PS3-7	4463/4464
ATT (Qty: 1)	Mini-Circuits	VAT-30+	30912
Laptop PC	Asus	N80V	8BN0AS226971468
RF Cable (Qty: 6)	Mini-Circuits	N/A	DFS-1~6

Software	Manufacturer	Function
Pulse Building	Agilent	Radar Signal Generation Software
DFS Tool	Agilent	DFS Test Software

1.5. Test Setup

1.6. Limits

According to §15.407(h), 905462 D02 UNII DFS Compliance Procedures New Rules v01 and FCC 14-30 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

	Operational Mode				
Requirement	Master	Client (without radar	Client (with radar		
	Master	detection)	detection)		
Non-Occupancy	Vee	Not Deguined	Vee		
Period	Yes	Not Required	Yes		
DFS Detection	Vee	Not Deguined	Yes		
Threshold	Yes	Not Required			
Channel Availability	Vee	Not Deguined	Not Dogwinod		
Check Time	Yes	Not Required	Not Required		
U-NII Detection	Vaa	Not Doguirod	Vee		
Bandwidth	Yes	Not Required	Yes		

Applicability of DFS requirements prior to use of a channel

Applicability of DFS requirements during normal operation

	Operational Mode			
Requirement	Master or Client (with radar	Client (without radar detection)		
	detection)	Client (without radar detection)		
DFS Detection	Yes	Not Poquirod		
Threshold		Not Required		
Channel Closing	Yes	Yes		
Transmission Time	fes	fes		
Channel Move Time	Yes	Yes		
U-NII Detection	Yes	Not required		
Bandwidth		Not required		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client (without radar detection)				
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required				
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link				
All other tests	Any single BW mode	Not required				
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in all 20 MHz channel blocks and a null frequencies between the bonded 20 MHz channel blocks.						

DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (see note)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral	
density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the	
power spectral density requirement	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

DFS Response requirement values

Parameter	Value
Non-Occupancy Period	Minimum 30 minutes
Channel Availability Check Time	60 Seconds
Channel Maus Time	10 Seconds
Channel Move Time	(See Note1)
	200 milliseconds + an aggregate of 60
Channel Closing Transmission Time	milliseconds over remaining 10 second period.
	(See Notes 1 and 2)
	Minimum 100% of the U-NII 99% transmission
U-NII Detection Bandwidth	power bandwidth. See Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Short Pulse Radar Test Waveforms

Radar TypePulse Width (µsec)PRI (µsec)Number of PulsesMinimum Percentage of Successful DetectionMinimum Number of Trials01142818See Note 1See Note 111Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a $\left(\frac{1}{9\cdot10^6}\right)$ 60%307Fest B: 15 unique PRI values randomly selected from the list of 23 PRI values randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test A $excluding PRIvaluesselected inTest A60%3021-5150-23023-2960%3036-10200-50016-1860%30411-20200-50012-1660%30Aggregate (Radar Types 1-4)Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidthtest, channel move time, and channel closing time tests.120$	Table 5 – Short Pulse Radar Test Waveforms							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum		
011428DetectionTrials01142818See Note 1See Note 111Test A: 15 unique PRI values randomly selected from the list of 23 PRI values Table 5aRoundup $\left(\frac{1}{360}\right)$. $\left(\frac{19 \cdot 10^6}{PRI_{\muuse}}\right)$ 60%307Test B: 15 unique PRI values randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test A μ sec, excluding PRI values selected in Test A 2 1-5150-23023-2960%3021-5150-23023-2960%30303030303021-5150-23023-2960%30 <td>Type</td> <td>Width</td> <td>(µsec)</td> <td></td> <td>Percentage of</td> <td>Number</td>	Type	Width	(µsec)		Percentage of	Number		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(µsec)			Successful	of		
11Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5aRoundup $\left(\frac{1}{360}\right)$. $\left(\frac{19\cdot10^6}{PRI_{\musse}}\right)$ 60%30Test B: 15 unique PRI values randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test A μ sec, excluding PRI values selected in Test A 0.00% 30 21.5150-230 $23-29$ 60% 30 36-10200-50016-18 60% 30 411-20200-50012-16 60% 30 Aggregate (Radar Types 1-4)80\%120					Detection	Trials		
$\begin{array}{ c c c c c }\hline 1 & 1 & Test A: 15 unique \\ PRI values \\ randomly selected \\ from the list of 23 \\ PRI values in \\ Table 5a \\\hline Test B: 15 unique \\ PRI values \\ randomly selected \\ within the range \\ of 518-3066 \\ \mu \ sec, \ with a \\ minimum \\ increment of 1 \\ \mu \ sec, \\ excluding \ PRI \\ values \\ selected \ in \\ Test A \\\hline \hline 2 & 1-5 & 150-230 & 23-29 & 60\% & 30 \\\hline 3 & 6-10 & 200-500 & 16-18 & 60\% & 30 \\\hline 4 & 11-20 & 200-500 & 12-16 & 60\% & 30 \\\hline Aggregate (Radar Types 1-4) & 80\% & 120 \\\hline Note 1: Short \ Pulse \ Radar \ Type \ 0 \ should \ be used \ for \ the detection \ bandwidth \\\hline \end{array}$	0	1	1428	18	See Note 1	See Note		
PRI values randomly selected from the list of 23 PRI values in Table 5aRoundup $\left(\frac{1}{360}\right)^{\cdot}$ $\left(\frac{19\cdot10^{6}}{PRL_{\muuse}}\right)$ Test B: 15 unique PRI values randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test A $\left(\frac{1}{360}\right)^{\cdot}$ $\left(\frac{19\cdot10^{6}}{PRL_{\muuse}}\right)$ 21-5150·23023-2960%3036-10200-50016-1860%30411-20200-50012-1660%30Aggregate (Radar Types 1-4)80%120Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth								
randomly selected from the list of 23 PRI values in Table 5aRoundup $19 \cdot 10^6$ $\mathbb{PRI_{\muuse}}$ Test B: 15 unique PRI values randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test ARoundup21-5150-23023-2921-5150-23023-2936-10200-50016-18411-20200-50012-16Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth	1	1	Test A: 15 unique	$\left(\begin{pmatrix} 1 \end{pmatrix} \right)$	60%	30		
randomly selected from the list of 23 PRI values in Table 5aRoundup $(19 \cdot 10^6)$ (PRI_{\muuse}) Test B: 15 unique PRI values randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test ARoundup21-5150-23023-2921-5150-23023-2936-10200-50016-18411-20200-50012-16Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth			PRI values	360				
from the list of 23 PRI values in Table 5a 2 $((19\cdot10^{\circ}))$ Test B: 15 unique PRI values randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test A21-521-521-5150-23023-2960%3036-10200-50016-18411-20200-50012-16Aggregate (Radar Type 0 should be used for the detection bandwidth			randomly selected	Roundun				
Table 5a $((1104 \mu mec))$ Test B: 15 unique PRI values Test B: 15 unique PRI values randomly selected within the range of 518-3066 μ sec, with a minimum μ sec, with a minimum increment of 1 μ sec, excluding PRI values excluding PRI values selected in Test A 1000000000000000000000000000000000000			from the list of 23	(19·10 ⁶)				
Test B: 15 unique PRI values Test B: 15 unique PRI values randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test A 7 2 1-5 150-230 2 1-5 150-230 3 6-10 200-500 4 11-20 200-500 Aggregate (Radar Types 1-4) 80% 120 Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth 16			PRI values in	PRI				
PRI values randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test AA21-5150-23023-2960%3036-10200-50016-1860%30411-20200-50012-1660%30Aggregate (Radar Type 1-4)80%120Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth			Table 5a	((""""")				
randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test A 2 1-5 150-230 2 1-5 150-230 23-29 60% 30 3 6-10 200-500 16-18 4 11-20 200-500 12-16 60% 30 Aggregate (Radar Types 1-4) 80% 120 Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth			Test B: 15 unique					
within the range of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test A								
of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test A 7 2 1-5 150-230 23-29 60% 30 3 6-10 200-500 16-18 60% 30 4 11-20 200-500 12-16 60% 30 Aggregate (Radar Types 1-4) 80% Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth			randomly selected					
μ sec, with a minimum increment of 1 μ sec, μ sec, excluding PRI values selected in Test A 10 2 1-5 150-230 23-29 60% 30 3 6-10 200-500 16-18 60% 30 4 11-20 200-500 12-16 60% 30 Aggregate (Radar Types 1-4) 80% Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth								
minimum increment of 1 μ sec, excluding PRI values μ sec, excluding PRI 2 1-5 150-230 23-29 60% 30 3 6-10 200-500 16-18 60% 30 4 11-20 200-500 12-16 60% 30 Aggregate (Radar Types 1-4) 80% 120 Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth			of 518-3066					
increment of 1 μ sec, μ sec, excluding PRI values selected in Test A 7 2 1-5 150-230 23-29 60% 30 3 6-10 200-500 16-18 60% 30 4 11-20 200-500 12-16 60% 30 Aggregate (Radar Types 1-4) 80% Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth			μ sec, with a					
μ sec, excluding PRI values selected in Test A μ sec, excluding PRI values 2 1-5 1-5 150-230 23-29 60% 3 6-10 200-500 16-18 60% 30 4 11-20 200-500 12-16 60% 30 Aggregate (Radar Types 1-4) 80% Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth			minimum					
excluding PRI values selected in Test A a b b 2 1-5 150-230 23-29 60% 30 3 6-10 200-500 16-18 60% 30 4 11-20 200-500 12-16 60% 30 Aggregate (Radar Types 1-4) 80% 120 Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth			increment of 1					
values selected in Test A values selected in Test A 2 1-5 150-230 23-29 60% 30 3 6-10 200-500 16-18 60% 30 4 11-20 200-500 12-16 60% 30 Aggregate (Radar Types 1-4) 80% 120 Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth			μ sec,					
selected in Test A selected in Test A 2 1-5 150-230 23-29 60% 30 3 6-10 200-500 16-18 60% 30 4 11-20 200-500 12-16 60% 30 Aggregate (Radar Types 1-4) 80% 120 Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth			excluding PRI					
Test A Test A 2 1-5 150-230 23-29 60% 30 3 6-10 200-500 16-18 60% 30 4 11-20 200-500 12-16 60% 30 Aggregate (Radar Types 1-4) 80% 120 Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth			values					
2 1-5 150-230 23-29 60% 30 3 6-10 200-500 16-18 60% 30 4 11-20 200-500 12-16 60% 30 Aggregate (Radar Types 1-4) 80% 120 Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth			selected in					
3 6-10 200-500 16-18 60% 30 4 11-20 200-500 12-16 60% 30 Aggregate (Radar Types 1-4) 80% 120 Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth			Test A					
4 11-20 200-500 12-16 60% 30 Aggregate (Radar Types 1-4) 80% 120 Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth		1-5	150-230	23-29	60%	30		
Aggregate (Radar Types 1-4) 80% 120 Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth	3	6-10	200-500	16-18	60%	30		
Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth				12-16	60%	30		
	Aggregate	(Radar Types	1-4)		80%	120		
test, channel move time, and channel closing time tests.	1					width		
,	test, cha	nnel move t	ime, and channel	closing time tests.				

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 usec is selected, the number of

pulses would be = Roundup
$$\left\{ \left(\frac{1}{360}\right) \cdot \left(\frac{19 \cdot 10^6}{3066}\right) \right\} = \text{Roundup}\{17.2\} = 18.$$

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930. 5	518
2	1858.7	538
3	1792. 1	558
4	1730. 1	578
5	1672. 2	598
6	1618. 1	618
7	1567.4	638
8	1519.8	658
9	1474. 9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285. 3	778
15	1253. 1	798
16	1222. 5	818
17	1193. 3	838
18	1165. 6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066. 1	938
23	326.2	3066

Table 5a - Pulse Repetition Intervals Values for Test A

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4.

Long Pulse Radar Test Signal

Radar Waveform	Bursts	Pulses Per Burst	Pulse Width (μsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000-2000	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the long pulse radar test signal. If more than 30 waveforms are used for the long pulse radar test signal, then each additional waveform must also be unique and not repeated from the previous waveforms.

Frequency Hopping Radar Test Signal

Radar	Pulse	PRI	Hopping	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(μsec)	Sequence	Per Hop	Rate	Percentage	Trials
	$(\mu \sec)$		Length		(kHz)	of	
			(msec)			Successful	
						Detection	
6	1	333	300	9	.333	70%	30

For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

1.7. Client Device requreiment

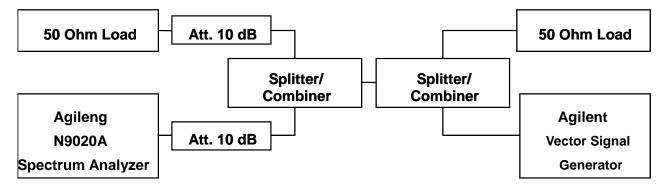
a) A Client Device will not transmit before having received appropriate control signals from a Master Device.

b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.

c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply.

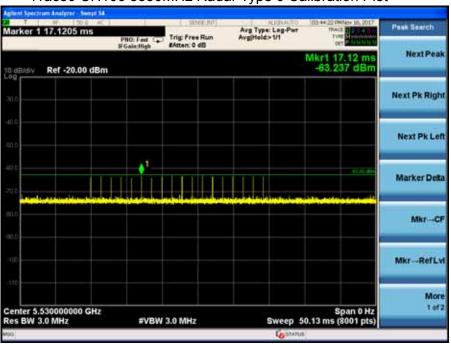
d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same.

e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear.



1.8. Radar Waveform Calibration

The following equipment setup was used to calibrate the conducted radar waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process there were replace 50ohm terminal from master and client device and no transmissions by either the master or client device. The spectrum analyzer was switched to the zero span (time domain) at the frequency of the radar waveform generator. Peak detection was utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3MHz and 3 MHz.

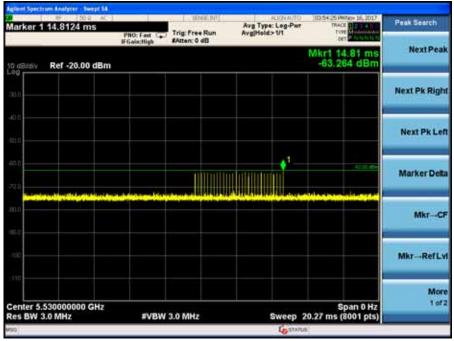

The signal generator amplitude was set so that the power level measured at the spectrum analyzer was -61dBm due to the interference threshold level is not required.

Conducted Calibration Setup

1.9. Radar Waveform Calibration Result

11ac80 CH106 5530MHz Radar Type 0 Calibration Plot

11ac80 CH106 5530MHz Radar Type 1A Calibration Plot



11ac80 CH106 5530MHz Radar Type 1B Calibration Plot

11ac80 CH106 5530MHz Radar Type 2 Calibration Plot

11ac80 CH106 5530MHz Radar Type 3 Calibration Plot

11ac80 CH106 5530MHz Radar Type 4 Calibration Plot

PNO: Fast 😱	Trig: Free Run #Atten: 0 dB	Avg Type: Log-Pwr Avg[Hold>1/1	THACE TO BE A BOOM	Peak Search
			Mkr1 2.163 ms -63.116 dBm	NextPeak
				Next Pk Righ
				Next Pk Lef
			O DE Ave	Marker Delta
	fadalara hayay bayin kin f			Mkr→Cf
				MkrRefLv
avew	3.0 MHz	Sween 1	Span 0 Hz	More 1 of 3
			IF Galactings #Atten: 0 dB	IF Galacity Attack 0 dB Mkr1 2.163 ms -63,116 dBm -63,116 dBm -63,

11ac80 CH106 5530MHz Radar Type 5 Calibration Plot

11ac80 CH106 5530MHz Radar Type 6 Calibration Plot

arker 1 3.76200 ms	PNO: Fast 😱	Trig: Free Run #Atten: 0 dB	Avg Type: Log-Pwr Avg Hold>1/1	DH 1400 PMNex 16, 2017 TRACE DI MANANA TYPE MANANANA OFT DISLUZION O	Peak Search
0 dBidiv Ref +20.00 dBm				Mkr1 3.762 ms -63.467 dBm	Next Peak
0.0					Next Pk Righ
nn					Next Pk Lef
70.0				43.22 APM	Marker Delta
	de de la déclicé		dinin dan dan selar dini sera	eta da integra linitaren -	MkrC
100					MkrRefLv
enter 5.530000000 GHz Res BW 3.0 MHz	svaw.	3.0 MHz	Sween 1	Span 0 Hz 0.13 ms (8001 pts)	More 1 of 2

2. Channel Move Time and Channel Closing Transmission Time

2.1. Test Procedure

These tests define how the following DFS parameters are verified during In-Service Monitoring; Channel Closing Transmission Time and Channel Move Time.

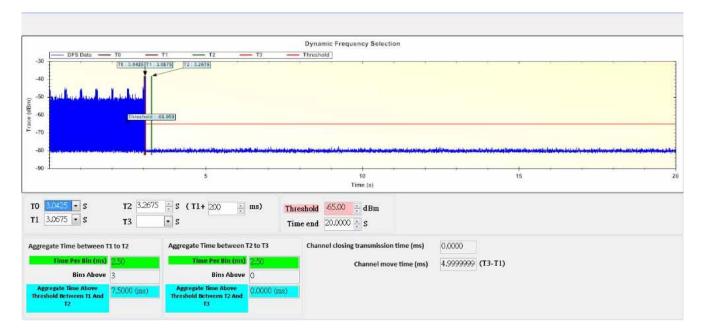
The steps below define the procedure to determine the above mentioned parameters when a radar burst with a level -61dBm is generated on the operating channel of the U-NII device.

A U-NII device operating as a Client device will associate with the Master device at 5530MHz.

During the in-service monitoring detection probability and channel moving tests the system was configured with a streaming video file from the master device (sourced by the PC connected to the master device via an Ethernet interface) to the client device. The streamed file was the "FCC" test file and the client device was using Media Player Classic as required by FCC Part 15 Subpart E.

Observe the transmissions of the EUT at the end of the radar burst on the operating channel for duration greater than 10 seconds. Measure and record the transmissions from the spectrum analyzer during the observation time (Channel Move Time). Compare the channel move time and channel closing transmission time results to the limits defined in the DFS Response requirement values table.

2.2. Test Requirement


Parameter	Value	
Channel Move Time	10 Seconds	
Channel Closing Transmission	200 milliseconds + approx. 60 milliseconds over	
Time	remaining 10 seconds period	

2.3. Uncertainty

± 1ms.

2.4. Test Result of Channel Move Time and Channel Closing Transmission Time

Product : Virtual Reality System 5530MHz. (802.11ac80MHz)

Test Item	Limit	Results	
Channel Move Time	10 s	Pass	
Channel Clasing Transmission Time	200ms + an aggregate of 60ms over	60ms over	
Channel Closing Transmission Time	remaining 10 second period.	Pass	

The End