

FCC Test Report

FCC ID : 188NBG6818

Equipment : AC2600 Multi-Gigabit Security WiFi Router

Model No. : NBG6818

Brand Name : ZYXEL

Applicant : Zyxel Communications Corporation

Address : No.2 Industry East RD. IX, Hsinchu Science

Park, Hsinchu 30075, Taiwan, R.O.C

Standard : 47 CFR FCC Part 15.247

Received Date : Sep. 23, 2019

Tested Date : Oct. 19 ~ Nov. 11, 2019

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Along Chen / Assistant Manager Gary Chang / Manager

Taf Testing Laboratory

2732

Page: 1 of 35

Report No.: FR992302AE

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	Test Equipment List and Calibration Data	
1.5	Test Standards	10
1.6	Deviation from Test Standard and Measurement Procedure	10
1.7	Measurement Uncertainty	10
2	TEST CONFIGURATION	11
2.1	Testing Condition	11
2.2	The Worst Test Modes and Channel Details	11
3	TRANSMITTER TEST RESULTS	12
3.1	Conducted Emissions	12
3.2	6dB and Occupied Bandwidth	15
3.3	RF Output Power	18
3.4	Power Spectral Density	20
3.5	Emissions in Restricted Frequency Bands	23
3.6	Emissions in non-restricted Frequency Bands	33
4	TEST LABORATORY INFORMATION	35

Release Record

Report No.	Version	Description	Issued Date
FR992302AE	Rev. 01	Initial issue	Jan. 07, 2020

Report No.: FR992302AE Page: 3 of 35

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	AC Power Line Conducted Emissions	[dBuV]: 0.270MHz 45.59 (Margin -15.53dB) - QP	Pass
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 54.25MHz	Pass
15.209	Radiated Effissions	35.12 (Margin -4.88dB) - PK	F a 3 3
15.247(b)(3)	Maximum Output Power	Power [dBm]: 3.18	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Report No.: FR992302AE Page: 4 of 35

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz) Bluetooth (MHz) Channel Number Data Rate						
2400-2483.5	V4.0 LE	2402-2480	0-39 [40]	1 Mbps		
Note 1: Bluetooth LE (Low energy) uses GFSK modulation.						

1.1.2 Antenna Details

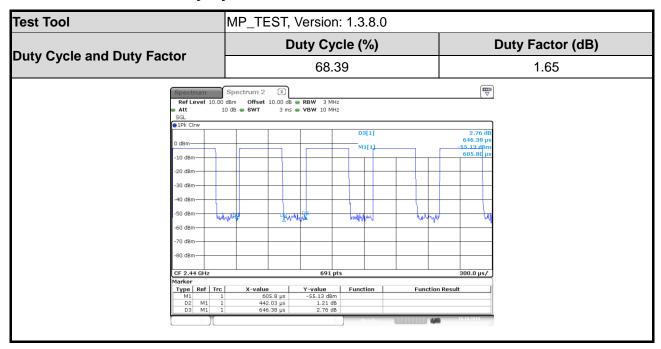
Ant. No.	Туре	Connector	Gain (dBi)	Remarks
1	Printed Monopole Antenna	N/A	4	

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	12Vdc from adapter
-------------------	--------------------

1.1.4 Accessories

	Accessories					
No.	Equipment	Description				
1	Adapter	Brand: APD Model: WA-36N12R Power Rating: I/P: 100-240Vac, 50-60Hz 0.9Max O/P: 12Vdc, 3A Power Line: 1.8m non-shielded without core				
2	RJ45 cable	Brand: EKSON Model: ZP01-C333 Power Line: 2.15m non-shielded without core				


Report No.: FR992302AE Page: 5 of 35

1.1.5 Channel List

	Frequency band (MHz)				2400~	2483.5	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
37	2402	9	2422	18	2442	28	2462
0	2404	10	2424	19	2444	29	2464
1	2406	38	2426	20	2446	30	2466
2	2408	11	2428	21	2448	31	2468
3	2410	12	2430	22	2450	32	2470
4	2412	13	2432	23	2452	33	2472
5	2414	14	2434	24	2454	34	2474
6	2416	15	2436	25	2456	35	2476
7	2418	16	2438	26	2458	36	2478
8	2420	17	2440	27	2460	39	2480

1.1.6 Test Tool and Duty Cycle

1.1.7 Power Index of Test Tool

Modulation Mode	Test Frequency (MHz)				
Modulation Mode	2402	2440	2480		
GFSK/1Mbps	0x0F	0x0F	0x0F		


Report No.: FR992302AE Page: 6 of 35

1.2 Local Support Equipment List

	Support Equipment List							
No.	Equipment	Brand	Model	FCC ID	Remarks			
1	USB Flash	Transcend	JetFlash 500 16G					
2	Notebook	DELL	Latitude E6430	DoC				
3	Notebook	DELL	Latitude E6440	DoC				
4	RJ45 load							

1.3 Test Setup Chart

Report No.: FR992302AE Page: 7 of 35

1.4 Test Equipment List and Calibration Data

Test Item	Conducted Emission	Conducted Emission						
Test Site	Conduction room 1 / (Conduction room 1 / (CO01-WS)						
Tested Date	Nov. 11, 2019	Nov. 11, 2019						
Instrument	Manufacturer	Manufacturer Model No. Serial No. Calibration Date Calibration Until						
Receiver	R&S	ESR3	101657	Jan. 08, 2019	Jan. 07, 2020			
LISN	R&S ENV216 101579 Mar. 08, 2019 Mar							
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Oct. 22, 2019	Oct. 21, 2020			
Measurement Software AUDIX e3 6.120210k NA NA								

Test Item	Radiated Emission				
Test Site	966 chamber1 / (03Cl	H01-WS)			
Tested Date	Oct. 19, 2019				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101498	Dec. 27, 2018	Dec. 26, 2019
Receiver	R&S	ESR3	101658	Dec. 11, 2018	Dec. 10, 2019
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jul. 12, 2019	Jul. 11, 2020
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 18, 2018	Dec. 17, 2019
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 15, 2018	Nov. 14, 2019
Loop Antenna	R&S	HFH2-Z2	100315	Jan. 11, 2019	Jan. 10, 2020
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 07, 2019	Oct. 06, 2020
Preamplifier	EMC	EMC02325	980225	Jul. 09, 2019	Jul. 08, 2020
Preamplifier	Agilent	83017A	MY39501308	Oct. 08, 2019	Oct. 07, 2020
Preamplifier	EMC	EMC184045B	980192	Aug. 01, 2019	Jul. 31, 2020
RF Cable	EMC	EMC104-SM-SM-80 00	181106	Oct. 07, 2019	Oct. 06, 2020
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Oct. 07, 2019	Oct. 06, 2020
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Oct. 07, 2019	Oct. 06, 2020
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	160502	Oct. 07, 2019	Oct. 06, 2020
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Oct. 07, 2019	Oct. 06, 2020
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Oct. 07, 2019	Oct. 06, 2020
Measurement Software	AUDIX	e3	6.120210g	NA	NA
Note: Calibration Inter	val of instruments liste	d above is one year.			

Report No.: FR992302AE Page: 8 of 35

Test Item	Radiated Emission						
Test Site	966 chamber1 / (03CH01-WS)						
Tested Date	Nov. 11, 2019						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	R&S	FSV40	101498	Dec. 27, 2018	Dec. 26, 2019		
Receiver	R&S	ESR3	101658	Dec. 11, 2018	Dec. 10, 2019		
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jul. 12, 2019	Jul. 11, 2020		
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 18, 2018	Dec. 17, 2019		
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 15, 2018	Nov. 14, 2019		
Loop Antenna	R&S	HFH2-Z2	100315	Jan. 11, 2019	Jan. 10, 2020		
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 07, 2019	Oct. 06, 2020		
Preamplifier	EMC	EMC02325	980225	Jul. 09, 2019	Jul. 08, 2020		
Preamplifier	Agilent	83017A	MY39501308	Oct. 08, 2019	Oct. 07, 2020		
Preamplifier	EMC	EMC184045B	980192	Aug. 01, 2019	Jul. 31, 2020		
RF Cable	EMC	EMC104-SM-SM-80 00	181106	Oct. 07, 2019	Oct. 06, 2020		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Oct. 07, 2019	Oct. 06, 2020		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Oct. 07, 2019	Oct. 06, 2020		
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	160502	Oct. 07, 2019	Oct. 06, 2020		
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Oct. 07, 2019	Oct. 06, 2020		
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Oct. 07, 2019	Oct. 06, 2020		
Measurement Software	AUDIX	e3	6.120210g	NA	NA		

Test Item	RF Conducted						
Test Site	(TH01-WS)						
Tested Date	Nov. 01, 2019						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	R&S	FSV40	101063	Apr. 17, 2019	Apr. 16, 2020		
Power Meter	Anritsu	ML2495A	1241002	Oct. 23, 2019	Oct. 22, 2020		
Power Sensor	Anritsu	MA2411B	1207366	Oct. 23, 2019	Oct. 22, 2020		
AC POWER SOURCE	APC	AFC-500W	F312060012	Nov. 29, 2018	Nov. 28, 2019		
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA		
Note: Calibration Inte	rval of instruments liste	d above is one year.	•	•			

Report No.: FR992302AE Page: 9 of 35

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2013 FCC KDB 558074 D01 15.247 Meas Guidance v05r02

1.6 Deviation from Test Standard and Measurement Procedure

None

1.7 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty					
Parameters	Uncertainty				
Bandwidth	±34.130 Hz				
Conducted power	±0.808 dB				
Power density	±0.583 dB				
Conducted emission	±2.715 dB				
AC conducted emission	±2.92 dB				
Radiated emission ≤ 1GHz	±3.41 dB				
Radiated emission > 1GHz	±4.59 dB				

Report No.: FR992302AE Page: 10 of 35

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	23°C / 68%	Akun Chung
Radiated Emissions	03CH01-WS	23-24°C / 63-64%	Roger Lu Aska Huang
RF Conducted	TH01-WS	22°C / 64%	Brad Wu

FCC Designation No.: TW2732FCC site registration No.: 181692

➤ ISED#: 10807A

➤ CAB identifier: TW2732

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate	Test Configuration
AC Power Line Conducted Emissions Radiated Emissions ≤ 1GHz	BT LE	2480	1Mbps	
Maximum Output Power 6dB bandwidth Power spectral density Radiated Emissions > 1GHz	BT LE	2402, 2440, 2480	1Mbps	

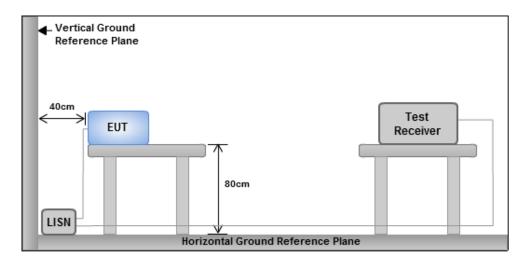
NOTE:

Report No.: FR992302AE Page: 11 of 35

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

3 Transmitter Test Results

3.1 Conducted Emissions

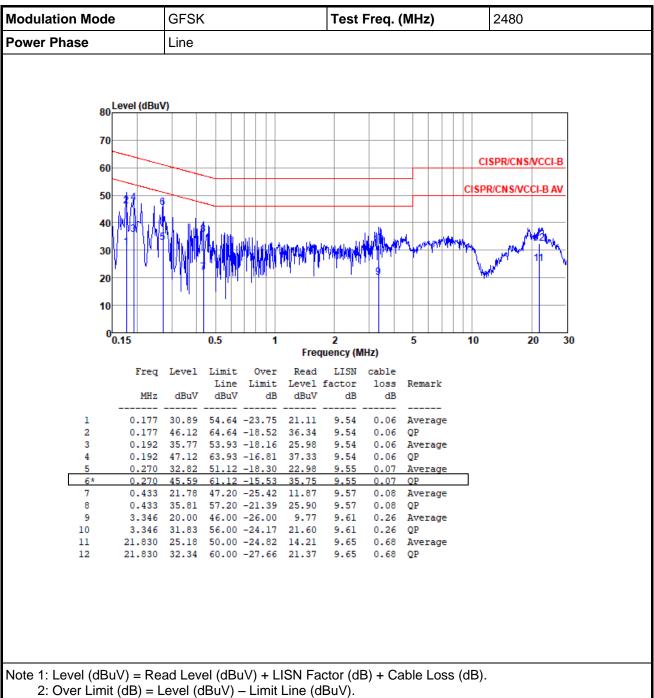

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5	66 - 56 *	56 - 46 *				
0.5-5	56	46				
5-30	60	50				
Note 1: * Decreases with the logarithm of the frequency.						

3.1.2 Test Procedures

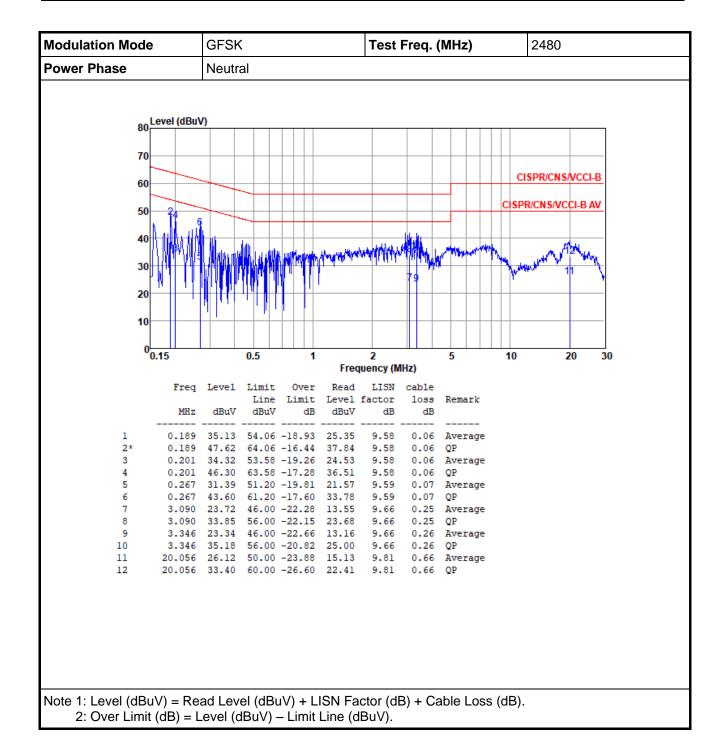
- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup


Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR992302AE Page: 12 of 35



3.1.4 **Test Result of Conducted Emissions**

Report No.: FR992302AE Page: 13 of 35

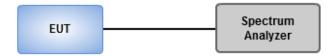
Report No.: FR992302AE Page: 14 of 35

3.2 6dB and Occupied Bandwidth

3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures


6dB Bandwidth

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- Set resolution bandwidth (RBW) = 1% ~ 5 % of OBW, Video bandwidth = 3 x RBW
- 2. Detector = Sample, Trace mode = max hold.
- 3 Sweep = auto couple, Allow the trace to stabilize.
- 4. Use the OBW measurement function of spectrum analyzer to measure the occupied bandwidth.

3.2.3 Test Setup

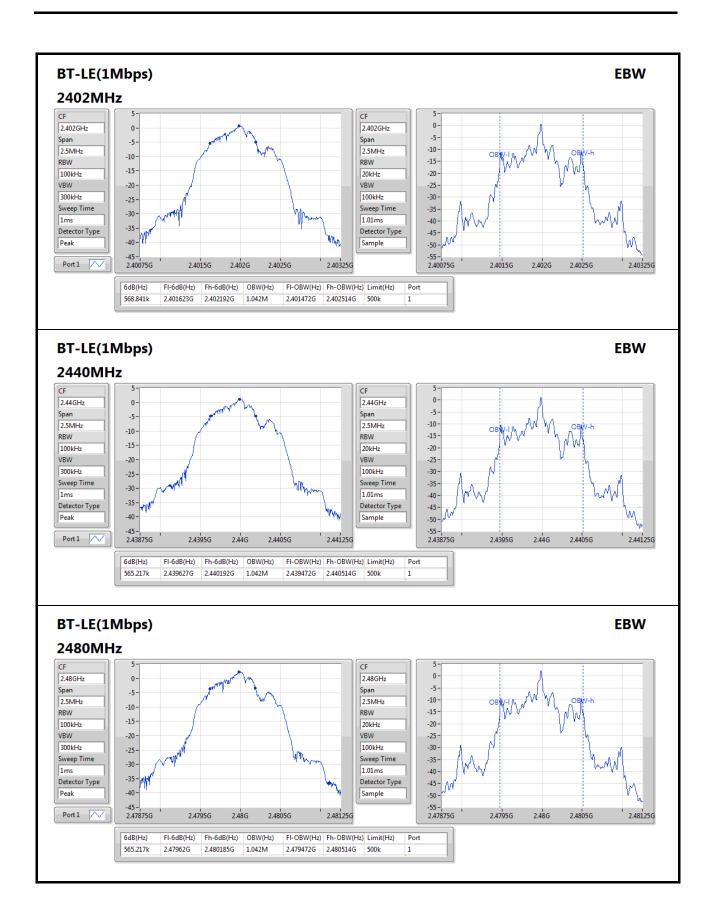
Report No.: FR992302AE Page: 15 of 35

3.2.4 Test Result of 6dB and Occupied Bandwidth

Summary

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	-	-	-	-
BT-LE(1Mbps)	568.841k	1.042M	1M04F1D	565.217k	1.042M

Max-N dB = Maximum 6dB down bandwidth; **Max-OBW** = Maximum 99% occupied bandwidth; **Min-N dB** = Minimum 6dB down bandwidth; **Min-OBW** = Minimum 99% occupied bandwidth;


Result

Mode	Result	Limit (Hz)	Port 1-N dB (Hz)	Port 1-OBW (Hz)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	500k	568.841k	1.042M
2440MHz	Pass	500k	565.217k	1.042M
2480MHz	Pass	500k	565.217k	1.042M

Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;

Report No.: FR992302AE Page: 16 of 35

Report No.: FR992302AE Page: 17 of 35

3.3 RF Output Power

3.3.1 Limit of RF Output Power

Conducted power shall not exceed 1Watt.

Antenna gain <= 6dBi, no any corresponding reduction is in output power limit.

3.3.2 Test Procedures

A broadband RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.3.3 Test Setup

Report No.: FR992302AE Page: 18 of 35

3.3.4 Test Result of Maximum Output Power

Summary of Peak Conducted Output Power

Mode	Power (dBm)	Power (W)
2.4-2.4835GHz	-	-
BT-LE(1Mbps)	3.18	0.00208

Result

Mode	Result	Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	4.00	1.82	30.00
2440MHz	Pass	4.00	1.76	30.00
2480MHz	Pass	4.00	3.18	30.00

Summary of Conducted (Average) Output Power

Mode	Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
BT-LE(1Mbps)	2.76	0.00189

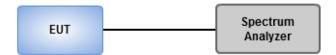
Result

Mode	Result	Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	4.00	1.35	-
2440MHz	Pass	4.00	1.32	-
2480MHz	Pass	4.00	2.76	-

Note: Average power is for reference only.

Report No.: FR992302AE Page: 19 of 35

3.4 Power Spectral Density


3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

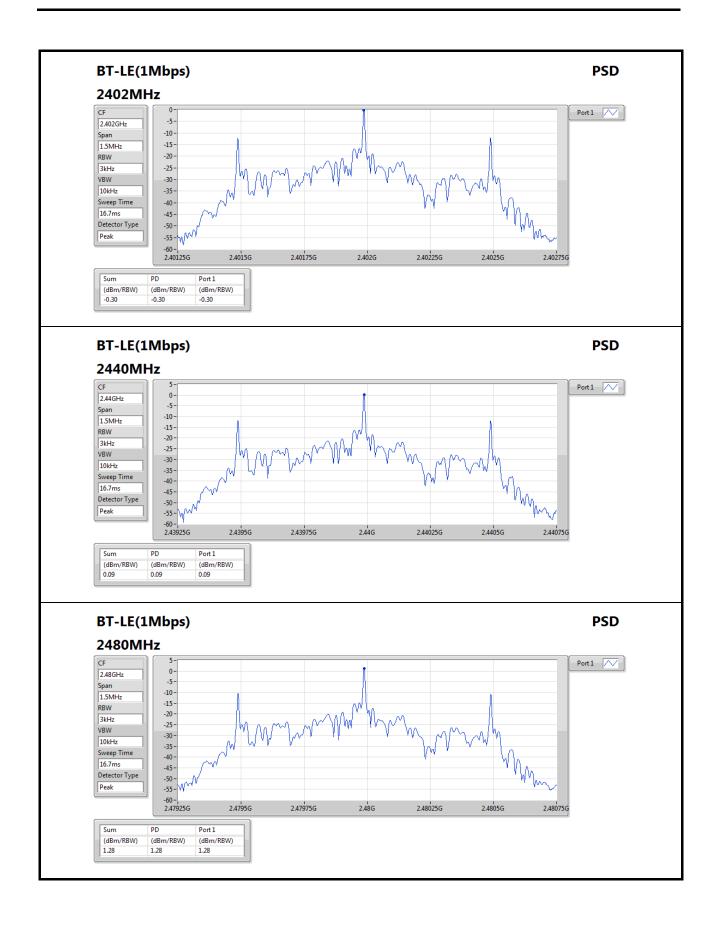
- 1. Set the RBW = 3 kHz, VBW = 10 kHz.
- 2. Detector = Peak, Sweep time = auto couple.
- 3. Trace mode = max hold, allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

3.4.3 Test Setup

Report No.: FR992302AE Page: 20 of 35

3.4.4 Test Result of Power Spectral Density

Summary


Mode	PD
	(dBm/RBW)
2.4-2.4835GHz	-
BT-LE(1Mbps)	1.28

Result

Mode	Result	Gain	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	4.00	-0.30	8.00
2440MHz	Pass	4.00	0.09	8.00
2480MHz	Pass	4.00	1.28	8.00

Report No.: FR992302AE Page: 21 of 35

Report No.: FR992302AE Page: 22 of 35

3.5 Emissions in Restricted Frequency Bands

3.5.1 Limit of Emissions in Restricted Frequency Bands

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2**:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

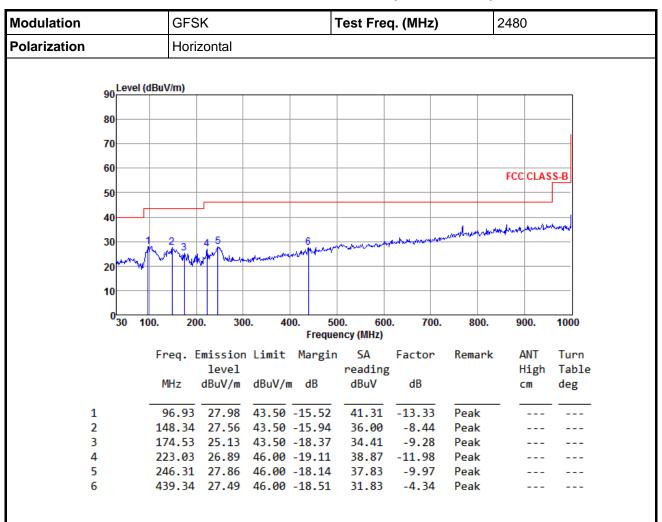
3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR992302AE Page: 23 of 35


3.5.3 Test Setup

Report No.: FR992302AE Page: 24 of 35

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

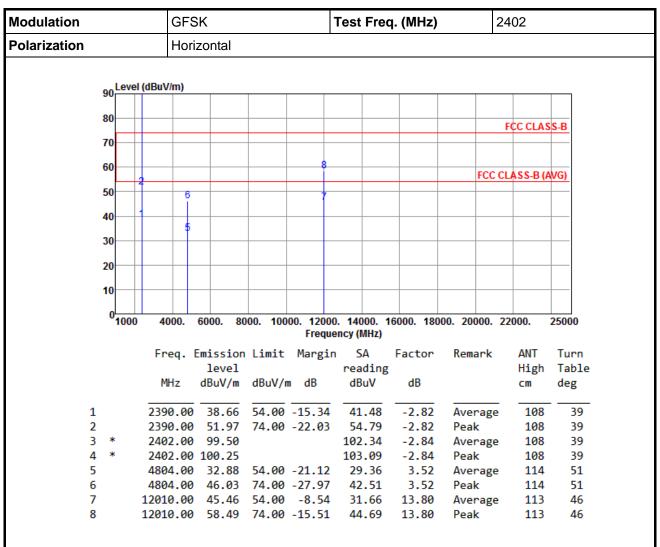
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR992302AE Page: 25 of 35

Modulation	GFSk	(Test Free	q. (MHz)	2480		
Polarization	Vertic	al	<u>'</u>			<u> </u>		
	1							
90 Level	(dBuV/m)							_
80								
70								
60							FCC CLAS	S-B
50								
40								
	2 0. 2						Nother Care was of him	mond
30	M Mr.	4 5	6	March Construction of the	Acres de la Constitución de la C	August Company		
20	W ~~W	Andrew Marchant	ANV.					
10								
030	100. 200.	300.		00. 600 ency (MHz)	0. 700.	800.	900.	1000
	Enca En	nission Lim	•		Factor	Remark	ANT	Turn
	Freq. C	level	itt mangti	reading		Kemark	High	Table
	MHz o	BuV∕m dBu	ıV/m dB	dBuV	dB		cm	deg
1	54.25	35.12 40.	00 -4.88	43.66	-8.54	Peak		
2		34.68 43.		47.99	-13.31	Peak		
3	151.25	29.16 43.	50 -14.34	37.53	-8.37	Peak		
4			00 -20.83	36.18	-11.01	Peak		
5	339.43		00 -22.12		-7.11	Peak		
6	443.22	27.38 46.	00 -18.62	31.56	-4.18	Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
 *Factor includes antenna factor , cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

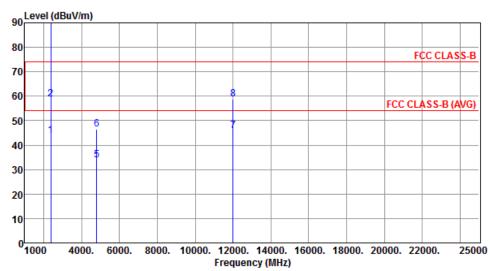
Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR992302AE Page: 26 of 35

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR992302AE Page: 27 of 35

Modulation	GFSK	Test Freq. (MHz)	2402
Polarization	Vertical		

		Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1		2390.00	43.92	54.00	-10.08	46.74	-2.82	Average	106	138
2		2390.00	58.82	74.00	-15.18	61.64	-2.82	Peak	106	138
3	*	2402.00	91.71			94.55	-2.84	Average	106	138
4	*	2402.00	92.78			95.62	-2.84	Peak	106	138
5		4804.00	33.96	54.00	-20.04	30.44	3.52	Average	114	321
6		4804.00	46.64	74.00	-27.36	43.12	3.52	Peak	114	321
7		12010.00	45.99	54.00	-8.01	32.19	13.80	Average	109	116
8		12010.00	58.65	74.00	-15.35	44.85	13.80	Peak	109	116

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR992302AE Page: 28 of 35

Modulation			GFS	SK			Test Freq. (MHz)			2440		
Polarization			Hori	zontal		•			•			
	90	Level	(dBuV/m)									
	80											
	00									FCC CLAS	S-B	
	70											
	60											
	00	L 2	6	10					FCC (CLASS-B (A	WG)	
	50		8									
	40		5	9								
			7									
	30											
	20											
	10											
	0	1000	4000.	6000. 80	000. 100	100 4200	14000 4	6000 400	00. 20000.	22000	25000	
		1000	4000.	0000. 80	JUU. 100		ency (MHz)	0000. 180	00. 20000.	22000.	23000	
			Freq.	Emission	Limit	Margin	s SA	Factor	Remark	ANT	Turn	
				level			reading			High	Table	
			MHz	dBuV/m	dBuV/ı	m dB	dBuV	dB		cm	deg	
	1		2390.00	40.36	54.00	-13.64	43.18	-2.82	Average	102	41	
	2		2390.00	52.79	74.00	-21.21	55.61	-2.82	Peak	102	41	
	3 *		2440.00				102.82	-2.87	Average		41	
	4 *	c	2440.00				103.60	-2.87	Peak	102	41	
	5			39.51			42.47	-2.96	Average		41	
	6		2483.50			-21.07	55.89	-2.96	Peak	102	41	
	7 8		4880.00 4880.00			-20.84 -28.11	29.57 42.30	3.59 3.59	Average Peak	110 110	28 28	
	9		7320.00			-14.26	30.58	9.16	Average		44	
	_		7320.00	55.74	34.00	14.20	50.50	5.10	Average	120		

9.16

Peak

126

44

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

7320.00 53.12 74.00 -20.88 43.96

*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR992302AE Page: 29 of 35

Report Version: Rev. 01

10

Modulation	GFS	SK			Test Free	q. (MHz)	2	440					
Polarization			Vertical										
	90	Level	(dBuV/m)										
	80									FCC CLAS	SS-B		
	70												
	60	1 :	6	10					FCC C	LASS-B (A	AVG)		
	50		8	Ĭ									
]].	, i	9									
	40	\vdash		+1									
	30												
	20												
	10	+									-		
	0	Щ											
		1000	4000.	6000. 8	000. 100		0. 14000. 1 ency (MHz)	16000. 180	00. 20000. 2	2000.	25000		
			Freq.	Emissio	n Limit	Margi	n SA	Factor	Remark	ANT	Turn		
				level			reading	Ţ		High	Table		
			MHz	dBuV/m	dBuV/	m dB	dBuV	dB		cm	deg		
	1		2390.00	40.58	54.00	-13.42	43.40	-2.82	Average	100	138		
	2		2390.00			-20.06	56.76	-2.82	Peak	100	138		
	3 *	k	2440.00			20.00	93.42	-2.87	Average	100	138		
	4 *	k	2440.00				94.46	-2.87	Peak	100	138		
!	5		2483.50	40.28	54.00	-13.72		-2.96	Average	100	138		
	6		2483.50	53.89	74.00	-20.11	56.85	-2.96	Peak	100	138		
	7		4880.00	32.98	54.00	-21.02	29.39	3.59	Average	115	36		

3.59

9.16

9.16

Peak

Peak

Average

115

116

116

36

47

47

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

4880.00 46.74 74.00 -27.26 43.15

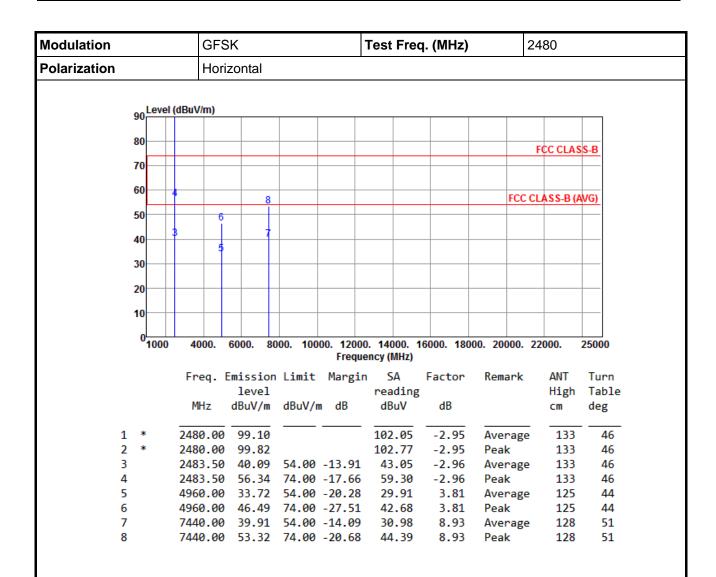
7320.00 40.72 54.00 -13.28 31.56

7320.00 53.08 74.00 -20.92 43.92

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR992302AE Page: 30 of 35


Report Version: Rev. 01

8

9

10

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR992302AE Page: 31 of 35

Modulation Polarization			GFS	GFSK			Test Freq. (MHz)			2480		
			Vertical									
	90	Level	(dBuV/m)									
	8	0								FCC CLAS	S R	
	70	n —								TCCCLAS	3-0	
	- "	ا										
	6	0							FCC (CLASS-B (A	WC)	
	-		1 .	8					FCC	CLASS-B (A	400)	
	5	U	l									
	4	0	3	1								
			5									
	3	0										
	20	0									 	
	10	0										
		0	1000	2000			44000	40000 400		20000	05000	
		1000	4000.	6000. 80	00. 100). 14000. ency (MHz)	16000. 180	00. 20000.	22000.	25000	
			Frea.	Emission	Limit			Factor	Remark	ANT	Turn	
				level			reading			High	Table	
			MHz	dBuV/m	dBuV/ı	n dB	dBuV	dB		cm	deg	
	1	*	2480.00	90.68			93.63	-2.95	Average	100	84	
		*	2480.00				94.51	-2.95	Peak	100	84	
	3		2483.50	40.29	54.00	-13.71	43.25	-2.96	Average	100	84	
	4		2483.50	53.01	74.00	-20.99	55.97	-2.96	Peak	100	84	
	5		4960.00			-20.35	29.84	3.81	Average		66	
	6		4960.00			-26.50	43.69	3.81	Peak	105	66	
	7		7440.00	40.88	54.00	-13.12	31.95	8.93	Average	110	82	

8.93

Peak

110

82

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain

7440.00 53.76 74.00 -20.24 44.83

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"*" is Peak / Average value of fundamental frequency

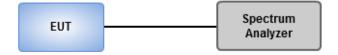
Report No.: FR992302AE Page: 32 of 35

3.6 Emissions in non-restricted Frequency Bands

3.6.1 Emissions in non-restricted frequency bands limit

Peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

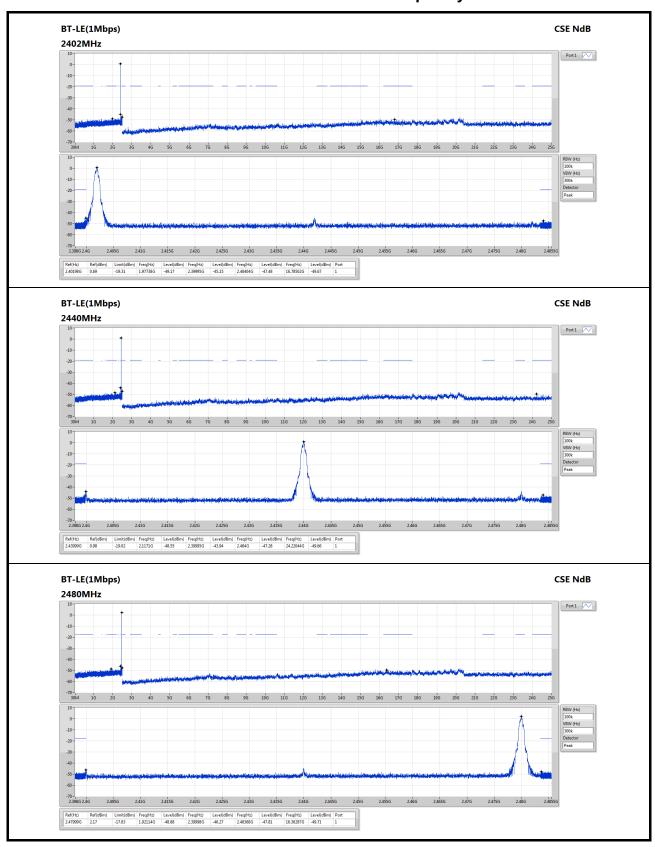
3.6.2 Test Procedures


Reference level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Use the peak marker function to determine the maximum PSD level

Emission level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Scan Frequency range is up to 25GHz
- 4. Use the peak marker function to determine the maximum amplitude level


3.6.3 Test Setup

Report No.: FR992302AE Page: 33 of 35

3.6.4 Test Result of Emissions in non-restricted Frequency Bands

Report No.: FR992302AE

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

<u>==END</u>==

Report No.: FR992302AE Page: 35 of 35