MEASUREMENT AND TECHNICAL REPORT

CUBIC COMMUNICATIONS, INC. 9535 Waples Street San Diego, CA 92121-2953

DATE: 25 February 1999

This Report Concerns:	Original Grant:	Х	C	lass II Change:				
Equipment 5 kW HF Transmitter, Model CTX-5000, S/N 501 Type:								
Deferred grant requeste 0.457(d)(1)(ii)?	d per 47 CFR		Yes: Defer unti	1:	No: X			
<i>Company Name</i> agrees to of the intended date of a	o notify the Comm nnouncement of t	nission by: he product :	N/A so that the gr	rant can be iss	ued on that date.			
Transition Rules Request per 15.37? Yes: *No:								
(*) FCC Part 2, Paragray	ohs 2.985, 2.987(a)), (c), 2.991,	2993, Part 82	7, Paragraphs	87.131, 87.139, 87.141			
Report Prep	pared by:	TÜV 1004 San Pho Fax:	/ PRODU(40 Mesa Ri Diego, CA ne: 619 546 : 619 546	CT SERVIC m Road 92121-2912 5 3999 5 0364	SE 2			

TABLE OF CONTENTS

		Pages
1	GENERAL INFORMATION	4
1.1	Product Description	4
1.2	Related Submittal Grant	6
1.3	Tested System Details	6
1.4	Test Methodology	7
1.5	Test Facility	8
1.6	Part 2 Requirements	9
2	PRODUCT LABELING	11
	Figure 2.1 FCC ID Label	12
	Figure 2.2 Location of Label on EUT	13
3	SYSTEM TEST CONFIGURATION	14
	3.1 Justification	14
	3.2 EUT Exercise Software	14
	3.3 Special Accessories	14
	3.4 Equipment Modifications	14
	3.5 Configuration of Tested System	14
	Figure 3.1 Configuration of Tested System	14
4	BLOCK DIAGRAM OF EUT	15
	4.1 Block Diagram Description	15
	Figure 4.1 Block Diagram of EUT	16
5	RADIATED EMISSION DATA	17
	Equipment	23
	Field Strength Calculation	24

Report No. S8597-08 (FCC ID: NVSCTX5000)

6	CONDUCTED EMISSION DATA	25
	Equipment	26
	Equipment for Occupied Bandwidth	65
7	Signature page	87
8	Data Tested by Cubic Communications	88

1 GENERAL INFORMATION

1.1 Product Description

NAME, MODEL, SER	RIAL # C	DF EUT: 5	5 kW HF Transmitter, Model CTX-5000, S/N 501						
DESCRIPTION OF E	UT:	T =	Transmitter, output power = 5 kW maximum, ± 1 dB; frequency range = 2-30 MHz.						
			Components of EUT						
Description		Model Numbe	er .	Serial Number				FCC ID Number	
Exciter		T-4180		606	6		Ν	VSCTX-1000	
Control unit		CTX-5000		501	1		Ν	/Α	
Power supply		30330		101	11838		Ν	/Α	
Power supply		30330		101	10558		Ν	/Α	
PA 1		PA5050A		616	3		Ν	VSCTX-1000	
PA 2		PA5050A		617	7		Ν	/A	
PA 3		PA5050A		618	3		Ν	/Α	
PA 4		PA5050A		614	1		Ν	/Α	
PA 5		PA5050A		619	9		Ν	/A	
PA 6		PA5050A		613	3		Ν	/A	
Combiner		1260-D6		157	78-980908	3	Ν	/A	
OPERATING MODE(S):	U	SB; AME						
			I/O CABLES						
CONNECTION	RF out	tput	AC input Power	Audio			Serial remote		
SHIELD	Yes		No		Yes		Yes		
CONNECTORS	CONNECTORS Type LC				D-sub, 1	5-pin		D-sub, 15-pin	
TERMINATION TYPE	50 ohr	n load							
LENGTH	6'		50'						
REMOVABLE	Yes		Yes	Yes				Yes	
POWER CORDS		S	See I/O cables						
			POWER INTERF	ACE					
FREQUENCY/AC/DC	VOLT	AGE: 6	60 Hz/ 208 Vac						
PHASES/CURRENT:		3	/						
		OSC	CILLATOR FREQU	JENO	CIES				
FREQUENCY (MF	Hz)	EUT LO	DCATION		D	DESCRIPTIO	ON	I OF USE	
10.000 MHz		T-4180		Fre	quency re	eference			
Variable 42.455-70.45	55	T-4180		3rd	L.O.				
40 MHz		5-4180		2nc	1 L.O.				
480 kHz		T-4180		1st	L.O.				
48 MHz		T-4180		DS	P clock				
32 "		T-4180		CP	U clock				
50 "		PA-5050		CP	U clock				
50 " CONTROLL			र	CP					
1.8432 MHz CONTROLL			र	Uart clock					
1.8432 MHz PA-5050				Uart clock					
POWER SUPPLY									
DESCRIPTION	MAN	UFACTURER	MODEL #		SERIAL # SWIT		TCHING/LINEAR FREQ.		
28 Vdc, 330 AMPS	Power	r Ten	30330	1011838 Switching - frequency u			requency unknown.		
28 Vdc, 330 AMPS	Power	r Ten	30330		1010558				

POWER LINE FILTERS									
MANUFACTURER	MOI	DEL NO.	QTY.	LOCATION (LOCATION ON EUT				
Unknown	Unknown		2	Power supplies					
Corcom	3EF2F		1	T-4180					
CRITICAL EMI COMPONENTS									
DESCRIPTION OF ENCLOS	SURE:	Dual side-	-by-side 19" ra	icks.					
INTER	ACING AN	D/OR SIMUI	LATORS PER	IPHERAL EQUIPMENT:					
DESCRIPTION	MANUFA	CTURER	MODEL #	# SERIAL #	FCC ID				
N/A									

1 GENERAL INFORMATION (continued)

1.2 Related Submittal/Grant

None

1.3 Tested System Details

The FCC IDs for all equipment, plus descriptions of all cables used in the tested system are:

None

1.4 Test Methodology

Purpose of Test:	To demonstrate compliance with the ANSI C63.4 setup.
Test Performed:	X 1. Conducted Emissions, FCC Part 2, ParagraphS 2.987(a)(c); 2.989; 2.991 and Part 87, Paragraph 87.139
	2. Radiated Emissions EN55022: 1992 Class B limit, 30 - 1,000 MHz, 10 meters
	4. Engineering evaluations
	5. Frequency Stability, Part 2, Paragraph 2.995, and Part 87, Paragraph 87.133

X RF Output Power, Part 2, Paragraph 2.985, Part 87, Paragraph 87.131

Both Conducted and radiated testing were performed according to the procedures in FCC/ANSI C63.4 and CSA 108.8 - M1983. Radiated testing was performed at an antenna-to-EUT distance of 3 meters (1 - 10 GHz).

1.5 Test Facility

The open area test site and conducted measurement data were tested by:

TÜV PRODUCT SERVICE 10040 Mesa Rim Road San Diego, CA 92121-2912 Phone: 619 546 3999 Fax: 619 546 0364

The Test Site Data and performance comply with ANSI 63.4 and are registered with the FCC, 7435 Oakland Mills Rd, Columbia Maryland 21046. All Measurement Data is acquired according to the content of FCC Measurement Procedure and ANSI C63.4, unless supplemented with additional requirements as noted in the test report.

1.6 Part 2 Requirements

Production Quantity - more than one

Technical description which shall include following items:Type or types of emission.3K15J3E; 3K00H3E

Frequency Range. 2-30 MHz

Frequency tolerance ±10 Hz Emission Designator: 300kH3E; 300kJ3E Microprocessor: i386EX Range of Operating Power values or specific operating power levels; Description of any means provided for variation of operating power. 100-5000 W

Maximum power rating. 5000 W

DC voltages applied to and **dc currents** into the final radio frequency amplifying device for normal operation over the power range. 28 V, 30 Amps maximum

Function of each electron tube or semiconductor or other active circuit device. In manuals: T-4180, page 4-1; in PA-5050A, page 4-1.

Complete circuit diagrams and schematic diagrams. Attached

Operating Manual (User manual) If not available when the application is filed, a draft should be provided. The completed manual should be submitted as soon as available. The Commission may specify a date. Attached

Tune-up procedure over the power range, or at specific operating power levels. In manual.

Description of all circuitry and devices provided for determining and stabilizing frequency. T-4180 manual 4-2.8 attached

Description of circuits or devices employed for suppressions of spurious radiation, for limiting modulation, and for limiting power. T-4180 manual 4-2.8 attached. **Description of the modulation system** used, including the response characteristics (frequency, phase and amplitude) of any filters provided; In T-4180 manual: 4-2.6.2 attached.

Description of the modulating wavetrain, shall be submitted for the maximum rated conditions under which the equipment will be operated. In T-4180 manual: 4-2.6.2 attached. Report No. S8597-08 (FCC ID: NVSCTX5000)

2 PRODUCT LABELING

Figure 2.1 FCC ID Label

See following page.

		· · · · · · · · · · · · · · · · · · ·
SAN DIEGO	CA, USA GAGE CODE 595	rions
Model Desc. Model No.	5KW SYSTEM CTX ~ 5000	
PART NO.	2245 - 1000 - 1	
FCC ID NO.	501 NVSCTX 5000	OAR

.

Figure 2.2 Location of Label

Back, top, left of EUT

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The 5 kW HF Transmitter, Model CTX-5000, S/N 501 was initially tested for FCC emission in the following configuration:

See Block Diagram, paragraph 4.1.

3.2 EUT Exercise Software

None

3.3 Special Accessories

None

3.4 Modification

None

3.5 Configuration of Tested System

See Block Diagram, paragraph 4.1.

4 BLOCK DIAGRAM OF 5 kW HF Transmitter, Model CTX-5000, S/N 501

4.1 Block Diagram Description

Transmitter

See following page for block diagram.

Page 16

5 RADIATED EMISSION DATA

The following data lists the significant emission frequencies, measured levels, correction factor (which includes cable and antenna corrections), the corrected reading, and the limit.

See following page(s).

REPORT No:	S8597	TESTED BY: DM

CUSTOMER: Cubic Communications, Inc. TEST DIST: 3 Meters

E U T: CTX-5000 5kW HF Transmitter TEST SITE: 1

EUT MODE: Full Power - Transmit BICONICAL: 451

DATE: 10-Dec-98 LOG PERIODIC: 243

NOTES:

OTHER: 427 and 459

,

RBW and VBW = 100 kHz above 30 MHz.RBW and VBW = 10 kHz below 30 MHz using a spectrum analyzer.Used rod antenna below 30 MHz.

FREQ	VER1 (dB	FICAL (uv)	HORIZ((dB	ONTAL uv)	CORRECTION FACTOR	MAX L (dBu)	EVEL V/m)	SPEC (dBu)	LIMIT V/m)	MAR (di	lgin 3)	EU1 Rotat	Anten Heigt	[
(14112)	pk	av	pk	av	(dB/m)	pk	av	pk	av	pk	av	ō	na	
29	96.6				20.0	116.6		-						
58	45.5		38.7		11.7	57.2		84.4		-27.2				
87	66.6		65		9.9	76.5		84.4		-7.9		0	1.5	
116	49.3		46.3		14.8	64.1		84.4		-20.3				
145	53.6		37.2		18.1	71.7		84.4		-12.7				
174	46.6		41.2		19.0	65.6		84.4		-18.8				
203	57.7		51.9		16.0	73.7		84.4		-10.7				
232	42.2		42.7		17.1	59.8		84.4		-24.6				
261	49.6		47.2	:	18.7	68.3		84.4		-16.1				
290	37		28.5		19.7	56.7		84.4		-27.7				
			1											
<u> </u>														
					1									
	1							1						
	<u> </u>													
·····			 		1			1	ľ					
			1			İ						1		
	 	†	İ 👘									1		
			<u> </u>	· · ·	1	İ								

REPORT No: S8597 TESTED BY: DM& MW SPEC: FCC Part 2, Para. 2.993 & Part 87, Para. 87.139

CUSTOMER: Cubic Communications, Inc. TEST DIST: 3 Meters

E U T: CTX-5000 5kW HF Transmitter TEST SITE: 1

EUT MODE: Full Power - Transmit BICONICAL: 451

DATE: 12/10& 22/98 LOG PERIODIC: 243,

NOTES:

OTHER: 427 and 459

RBW and VBW = 100 kHz above 30 MHz. RBW and VBW = 10 kHz below 30 MHz using a spectrum analyzer. Used rod antenna below 30 MHz.

FREQ (MHz)	VERT (dB pk	rical uv) av	HORIZ((dB pk	DNTAL uv) av	CORRECTION FACTOR (dB/m)	MAX L (dBu ¹ pk	EVEL V/m) av	SPEC (dBu\ pk	LIMIT V/m) av	MAR (di pk	lGIN B) av	EUT Rotatio	Antenna Height	
16	73.5				20.0	93.5		-						-
32	23		10		20.2	43.2		84.4		-41.2				
48	59.5		59.4		14.7	74.2		84.4		-10.2		331	1	
64	43		30		10.0	53.0		84.4		-31.4				
80	65		62		8.7	73.7		84.4		-10.7		180	1	
96	55.6		57		11.6	68.6		84.4		-15.8				
112	53		51		14.5	67.5		84.4		-16.9				
128	34.8		33		16.4	51.2		84.4		-33.2				
144	48.3		43.3		18.0	66.3		84.4		-18.1		90		
160	46.4		39		18.4	64.8		84.4		-19.6				
			l											

(*) Tie-wrapped I/O cables, power cables, etc. to chassis. Grounded chassis to turntable at all four corners and at the back. Installed a filter, Delta 3E80D, 3x80AMP/250 Vac viewed from the rear on the bottom center of the left rack.

Porge 19

REPORT No: \$8597 TESTED BY: DM & MW SPEC: FCC Part 2, Para. 2.993 & Part 87, Para. 87.139

CUSTOMER: Cubic Communications, Inc. TEST DIST: 3 Meters

E U T: CTX-5000 5kW HF Transmitter TEST SITE: 1

EUT MODE: Full Power - Transmit BICONICAL: 451

DATE: 12/11& 22/98

427 and 459

NOTES:

RBW and VBW = 100 kHz above 30 MHz using a spectrum analyzer. RBW and VBW = 10 kHz below 30 MHz using a spectrum analyzer. 12/22- RBW = 120 kHz using a receiver. Used rod antenna for frequencies except 24, 56 and 80 MHz. Used biconical antenna for 24, 56 and 80 MHz.

LOG PERIODIC: N/A

FREQ (MHz)	VER (dB pk	FICAL iuv) av	HORIZ((dB pk	DNTAL uv) av	CORRECTION FACTOR (dB/m)	MAX L (dBu' pk	EVEL V/m) av	SPEC (dBu ^v pk	LIMIT V/m) av	MAR (di pk	tGIN B) av	EUT Rotatio	Antenna Height	
8	56.5		1		20.0	76.5		-						
16	33.7				20.0	53.7		84.4		-30.7				
24	30.1		30.8		25.7	56.5		84.4		-27.9				
32	24				20.0	44.0		84.4		-40.4				
40	55.3				20.0	75.3		84.4		-9.1		90		
48	46.8				20.0	66.8		84.4		-17.6				
56	56.4		52.5		14.7	71.1		84.4		-13.3				
64	37.4				20.0	57.4		84.4		-27				
72	57.1				20.0	77.1		84.4		-7.3		90		
80	46.2		44.7		8.7	54.9		84.4		-29.5				
														L
												[
									1					

(*) Tie-wrapped I/O cables, power cables, etc. to chassis. Grounded chassis to turntable at all four corners and at the back. Installed a filter, Delta 3E80D, 3x80AMP/250 Vac viewed from the rear on the bottom center of the left rack.

Page 20'

REPORT No:	S8597	TESTED BY: DM
	00001	

CUSTOMER: Cubic Communications, Inc. TEST DIST: 3 Meters

E U T: CTX-5000 5kW HF Transmitter TEST SITE: 1

EUT MODE: Full Power - Transmit BICONICAL: 451

DATE: 11-Dec-98 LOG PERIODIC: N/A

NOTES:

OTHER: 427 and 459

RBW and VBW = 10 kHz below 30 MHz.	
RBW and VBW = 100 kHz above 30 MHz.	
Used spectrum analyzer and rod antenna.	

EPEO VERTICAL		HORIZ	ONTAL	CORRECTION	MAX L	EVEL	SPEC	LIMIT	MAR	GIN	ଅଲ _₹ ≩			
		(dB	uv)	FACTOR	(dBu	V/m)	(dBu)	V/m)	(di	3)	lă Ü	eig		
(01712)	pk	av	pk	av	(dB/m)	pk	av	pk	av	pk	av	tio	ht	
4	71.4				20.0	81.4		-						
8	33.1				20.0	53.1		84.4		-31.3				
12	44.6				20.0	64.6		84.4		-19.8				
16	34.4				20.0	54.4		84.4		-30				
20	50				20.0	70.0		84.4		-14.4				
24	44				20.0	64.0		84.4		-20.4				
28	51				20.0	71.0		84.4		-13.4				
32	11				20.0	31.0		84.4		-53.4				
36	29.9				20.0	49.9		84.4		-34.5				
40	27				20.0	47.0		84.4		-37.4				
·	-													
					1									
					1									
· · ·			 											
1			† · · · ·											

REPORT No: \$8597 TESTED BY: DM

SPEC: FCC Part 2, Para. 2.993 & Part 87, Para. 87.139

CUSTOMER: Cubic Communications, Inc. TEST DIST: 3 Meters

E U T: CTX-5000 5kW HF Transmitter TEST SITE: 1

EUT MODE: Full Power - Transmit BICONICAL: N/A

DATE: 11-Dec-98 LOG PERIODIC: N/A

NOTES:

OTHER: 427 and 459

RBW and VBW = 10 kHz. Used spectrum anlayzer and rod antenna.

FREQ (MHz)	VERT (dB pk	IICAL uv) av	HORIZ((dB pk	DNTAL uv) av	CORRECTION FACTOR (dB/m)	MAX L (dBu\ pk	EVEL V/m) av	SPEC (dBu\ pk	LIMIT //m) av	MAR (di pk	(GIN 3) av	EUT Rotatio	Antenna Height	
2	76.3				20.0	96.3		-						
4	45.3				20.0	65.3		84.4		-19.1				
6	57.8				20.0	77.8		84.4		-6.6		90		
8	33.2				20.0	53.2		84.4		-31.2				
10	45				20.0	65.0		84.4		-19.4				
12	35.7			h	20.0	55.7		84.4		-28.7				
14	38				20.0	58.0		84.4		-26.4				
16	36.1				20.0	56.1		84.4		-28.3				
18	32				20.0	52.0		84.4		-32.4				
20	23				20.0	43.0		84.4		-41.4	-			
		-												
	· · · ·													
	· · · ·	-	1											
	-													
	1													
·														
-														
	!													
			1											
	1										[
	i		1											
	1													
	1										İ. İ			
	<u> </u>													

Emissions Test Conditions: RADIATED EMISSIONS, FCC Part 2, Paragraph 2.993 and Part 87, Paragraph 87.139

The RADIATED EMISSIONS measurements were performed at the following test location :

Test not applicable

□ - Roof (Small Open Area Test Site)

■ - Canyon #1 (10- and 30-Meter Open Area Test Site), Carroll Canyon, San Diego

□ - Canyon #2 (3- and 10-Meter Open Area Test Site), Carroll Canyon, San Diego

Testing was performed at a test distance of:

□ - 1 meters

3 meters

□ - 10 meters

Test Equipment Used :

Model No.	Prop. No.	Description	Manufacturer	Serial No.	Cal Date
3110	451	Antenna, Biconical	EMCO	1378	09/26/99
3146	243	Antenna, Log Periodic Dipole	EMCO	106X	09/26/99
ESVS 30	427	EMI Test Receiver	Rohde & Schwarz	830350/006	02/12/99
ESHS 30	459	EMI Test Receiver	Rohde & Schwarz	832354/004	01/05/99

Remarks:

Field Strength Calculation

If a preamplifier was used during the Radiated Emission Testing, it is required that the amplifier gain must be subtracted from the Spectrum Analyzer (Meter) Reading. In addition, a correction factor for the antenna, cable used and a distance factor, if any, must be applied to the Meter Reading before a true field strength reading can be obtained. In the automatic measurement, these considerations are automatically presented as a part of the print out. In the case of manual measurements and for greater efficiency and convenience, instead of using these correlation factors for each meter reading, the specification limit was modified to reflect these correlation factors at each frequency value so that the meter readings can be compared directly to the modified specification limit. This modified specification limit is referred to as the "Corrected Meter Reading Limit" or simply the CMRL, which is the actual field strength present at the antenna. The quantity can be derived in the following manner:

Corrected Meter Reading Limit (CMRL) = SAR + AF + CL - AG - DC

Where, SAR = Spectrum Analyzer Reading

- AF = Antenna Factor
- CL = Cable Loss
- AG = Amplifier Gain (if any)
- DC = Distance Correction (if any)

Assume the following situation: A meter reading of 29.4 dBuV was obtained from a Class A computing device measured at 83 MHz. Assume an antenna factor of 9.2 dB, a cable loss of 1.4 dB and amplifier gain of 20.0 dB at 83 MHz. The final field strength would be determined as follows:

CMRL = 29.4 dBuV + 9.2dB = 1.4 dB - 20 dB/M - 0.0 dB

CMRL = 20.0 dBuV/M

This result is well below the FCC and CSA Class A limit of 29.5 dbuV/m at 83 MHz.

For the manual mode of measurement, a table of corrected meter reading limit was used to permit immediate comparison of the meter reading to determine if the measure emission amplitude exceeded the specification limit at that specific frequency.

6 CONDUCTED EMISSION DATA

CUBIC COMMUNICATIONS, INC.

5 kW HF Transmitter, Model CTX-5000, S/N 501

See following page(s).

Emissions Test Conditions: CONDUCTED EMISSIONS, FCC Part 2, Paragraphs 2.987(a),(c), 2.991 and Part 87, Paragraph 87.139

The RADIATED EMISSIONS measurements were performed at the following test location :

□ - Test not applicable

- □ Roof (Small Open Area Test Site)
- - Canyon #1 (10- and 30-Meter Open Area Test Site), Carroll Canyon, San Diego
- □ Canyon #2 (3- and 10-Meter Open Area Test Site), Carroll Canyon, San Diego

Testing was performed at a test distance of:

- □ 1 meters
- 3 meters
- □ 10 meters

Test Equipment Used :

Spectrum Analyzer, Hewlett Packard (HP), Model 8568B, P/N 187, Cal Date 10/05/99 Spectrum Analyzer Display, HP, Model 85662B, P/N 188, Cal Date 10/05/99 30 dB attenuator, P/N 534, JFW, Model 50FH-030-10, NCR Variac, P/N 073, NCR DMM, Tektronix, NCR 6 dB Attenuator, Narda, Model 766-6, P/N 590, NCR 6 dB Attenuator, Narda, Model 765-6, P/N 589, NCR Directional Coupler, Werlatone, Model G5444, Cal Date 6/10/99 Frequency Counter, HP, 5386A, Cal Date 10/05/99 RF Power Meter, Bird Electronics Corp., Model 4421, S/N 0141, NCR Power Sensor, Bird Electronics Corp., Model 4024, S/N 8032, Cal Date 6/16/99 Tenuline coaxial Attenuator (30 dB), Bird Electronics Corp., Model 8329-300, S/N 1593, NCR Two Channel synthesizer, HP, 83326A, S/N 2437A00156, Clas Date 09/15/99 Audio Synthesizer Telulex, Model SG-100, Cal Date 10/06/99

```
Remarks:
```

REPORT NO: S8597

DATE: 08 January 1999

TEST: RF Output Power

CUSTOMER: CUBIC COMMUNICATIONS, INC.

EUT: Model CTX-5000 5 kW HF Transmitter

SPECIFICATION: FCC Part 2, Paragraph 2.985 and Part 87, Paragraph 87.131

Emission	F _o (MHz)	Output Power (dBm)	Output Power (kW)
J3E	2	66.6	4.6
J3E	4	66.8	4.8
J3E	8	66.6	4.6
J3E	16	66.6	4.6
J3E	29	66.4	4.4
H3E	2	66.6	4.6
H3E	4	66.8	4.8
H3E	8	66.6	4.6
H3E	16	66.6	4.6
H3E	29	66.2	4.2
CW	2	66.8	4.8
CW	4	66.9	4.9
CW	8	66.7	4.7
CW	16	66.8	4.8
CW	29	66.5	4.5

Test Setup for RF Output Power (Part 2, Paragraph 2.985)

REPORT NO: S8597

DATE: 16 December 1998

TEST: Frequency Stability

CUSTOMER: CUBIC COMMUNICATIONS, INC.

EUT: Model CTX-5000 5 kW HF Transmitter

SPECIFICATION: FCC Part 2, Paragraph 2.995(d)

Voltage (Vac)	Frequency (MHz)
220	24.900012
187	24.900012
248	24.900011

Test Setup for Frequency Stability (Part 2, Paragraph 2.995(d)

*Used to ensure that power was present. Recorded power meter readings Test Setup for Rear Line Input (Part 2. 2.987(a), and Part 87, Paragraph 87.141)

ŝ

3 dB	.30	54			shingen	ug W a	ma	dB	зø	EN	ATT	dBm	73.0	REF	hр
			h	mm	mmm	mm								18/	1Ø (
			h			ſ						· · · · · · · · · · · · · · · · · · ·		PK	POS
			-			•								SET -	0FF5 73
		1					-							-	38
						<u> </u>	1					20 8			
														Ē	
Λ												1		Γ	
NW	VW							14	www.	M	why approxy	man	MAN		
	1					<u> </u>			<u> </u>					F	

0 AE	F 73.Ø	dBm	ATT	EN 30	dB ′	man	ywas	lington		<u>و</u>	52.90	d
dB/							m	mm	mm	m		
S PK							/			h		
FSET									·			
3.0						J						
			<u> </u>			f						
						Π						
	_			! 	_	$\left - \right $					+	
			<u></u>				• <u>·</u>					
												7
			<u> </u>								- <u>\</u> A	Ļ
	M. W. W.	www.www.w	Mar My	W Why	HAM.						ww	
							· · · · · · · · · · · · · · · · · · ·	<u> </u>				—

Test Setup for Rear Line Input (Part 2. 987(c), and Part 87, Paragraph 87.141)

Cubic Communications, Inc. Modulation Characteristics December 16, 1998 S8597 FCC Part 2, Para. 2.987(c) and Part 87, Para. 87.141 FCC ID: NVSCTX-5000

Cubic Communications, Inc. Modulation Characteristics December 16, 1998 S8597 FCC Part 2, Para. 2.987(c) and Part 87, Para. 87.141 FCC ID: NVSCTX-5000

Test Setup for Spurious Emissions at Antenna Terminals (Part 2, Paragraph 2.991 and Part 87, Paragraph 87.139)

	-64		gen	yutish	dB ma	EN 20	ATT	<u> </u>	dBm	5.4	· 76	REF	hp
												в/	Øc
										Ì		РK	os
												ET	FFS 73
									KER	ARI	M	2	в.
								iz dB	1 MH .90	.Ø 64	-		
		L									-		
									Ť				
Hilpenhapsed	aparportile."	14.41.44.44.144.144.144.144	un un un un un un un un un un un un un u	, in the bary	a given have	ninterior	Mulum	line	winter a labor	WW	the state of the s		

<i>hr</i> , REF	2. f _o = 29 M	4 dBm		ΑΤΤ	EN 2	ø	1113 Ma	ng Wosh	refer	 ™ 	(R _ 29 -6;	э.2 MH 3.90 d
.ø.db/								.				
		P										
US PK												
FFSET		-										
73.Ø B	мла	KED										
	29	P M⊦	- <u>4</u>									
	-63	.9ø	фВ									
	-											
	-											1
			_									
			1									
		. .									al	
		white we have	***** ****					~~~~	** ~	****		
i			-			-+						

Test Setup for Microphone Input (Part 2, Paragraph 2.987(c))

Microphone Input(20 mVp-p). J3E emission.

Microphone Input(20 mVp-p). H3E emission. Test Setup for Microphone Input (Part 2, Paragraph 2.987(a))

Equipment list for Occupied Bandwidth

20 dB Attenuator, P/N 589 and 590 Spectrum Analyzer Audio Frequency Generator Directional Coupler Coaxial Attenuator, Model 8329-30, s/N 4414, Bird Electronic Corporation

HP 85662A, Display 3001A18426, Cal Date 9/23/99 Spectrum Analyzer HP8568B, 2928A04873, Cal Date 9/23/99 20 dB Attenuator, Pastemack 7010-20 Directional Coupler, Werlatone, Model G5444, Cal Date 6/10/99 RF Power Meter, Bird Electronics Corp., Model 4421, S/N 0141, NCR Power Sensor, Bird Electronics Corp., Model 4024, S/N 8032, Cal Date 6/16/99 Tenuline coaxial Attenuator (30 dB), Bird Electronics Corp., Model 8329-300, S/N 1593, NCR Two Channel synthesizer, HP, 83326A, S/N 2437A00156, Cal Date 09/15/99 Audio Synthesizer Telulex, Model SG-100, Cal Date 10/06/99 Test Setup for FCC Part 2, Paragraph 2.989 and Part 87, Paragraph 87.139(c)(1)(2)(3), Occupied Bandwidth Test Setup for December Test Dates

7 SIGNATURE PAGE

GENERAL REMARKS:

SUMMARY:

All tests according to United States Standard 47 CFR Part 15, Subpart B

- Performed
- I Not Performed

The Equipment Under Test

- - Fulfills the general approval requirements cited on page 1.
- □ **Does not** fulfill the general approval requirements cited on page 1.

- TÜV PRODUCT SERVICE, INC. -

Responsible Engineer:

Mary Lebshington

Mary Washington (EMC Engineer)

8. Data tested by Cubic Communications, Test Setup, and Attestation Statement

Frequency Stability, Part 2, Paragraph 2.995, and Part 87, Paragraph 87.133

Cubic Communications, Inc. Frequency Stability January 15, 1999 S8597 FCC Part 2, para. 2.995 and Part 87, Para. 87.133 FCC ID: NVSCTX-5000

Frequency Stability

Test Procedure for Temperature Stability Test

Description: The requirements are that the "frequency determining unit" be checked from Α. -30°C to +50°C. The unit must "soak" for one hour before the measurement is taken. This means that the test will be 8 hours.

The only part of the CTX-5000 that must be in the Temperature chamber is the T-4180.

The frequency measurement is taken from the output of the CTX-5000 with a frequency counter (HP5386A) through an appropriate amount of attenuation. The power need not be 5kW - use 100W.

The resolution of the frequency counter will be 0.1 Hz.

Longer Control and RF coax cables must be used between the T-4180 in the chamber and the controller in the CTX-5000.

(Step #)

- B.

Procedure: 1. Begin: Put the warmed-up T-4180, tuned to 30.0 MHz, into the temperature chamber. Connect it to the CTX-5000. Make a baseline frequency measurment at ambient temperature (+22°C).

- 2. Time 0: Turn on the temp chamber and set it to -30°C. Wait 1 hour.
- 3. Time 1: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to -20°C. Wait one hour.
- 4. Time 2: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to -10°C. Wait one hour,
- 5. Time 3: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to 0°C. Wait one hour.
- 6. Time 4: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to +10°C. Wait one hour.
- 7. Time 5: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to +20°C. Wait one hour.
- 8. Time 6: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to +30°C. Wait one hour.
- 9. Time 7: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to +40°C. Wait one hour.
- 10. Time 8: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to +50°C. Wait one hour.
- 11. Time 9: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to +22°C. Wait one hour.
- 12. Time 10: Key the CTX-5000 and make a final baseline freq.measurement.

TEST DATA SHEET TEMPERATURE STABILITY TEST CTX-5000 1-15-99

Verify that the frequency of the CTX-5000 remains ± 10 Hz from -30° C to $+50^{\circ}$ C.

	Temp (°C)	Frequency (Hz)
Step 1	+22	30,0000024
Step 2		
Step 3	30	<u>30,0000039</u>
Step 4	20	<u>30,00000 4 0</u>
Step 5	10	<u>30,0000 40</u>
Step 6	0	30.0000038
Step 7	+10	30.000035
Step 8	+20	30.0000032
Step 9	+30	30.0000029
Step 10	+40	30,0000026
Step 11	+50	30.000002 5
Step 12	+22	30,00000 29

1/12/99

...

FCCTEST.5KT Created 11-12-98

TEMPERTURE STABILITY TEST FCC CERTIVICATION CTX-5000 5 kW TRANSMITTER

- A. <u>Purpose:</u> To verify the frequency stability of the CTX-5000 across the full required temperature range.
- B. Specification: Less than 10 hz change from -30°C to +50°C in 10°C increments.
- C. Equipment:

Temperature Chamber					
2 kW 30 dB Attenuator	Bird	8329-300	864	NCR	
250 W 20 dB Attenuator	Winschal	45-20-33	N/A	NCR	
Frequency counter	HP	5386A	CAL F	DATE:	10-5-99

D. Set Up: The T-4180 has the 10 MHz OCXO inside which controls the accuracy of the transmitted frequency. Set the frequency to the highest frequency, 30.0 MHz Remove the T-4180 from the CTX-5000 and place it inside the temperature chamber. Connect the following cables: Remote control, AC power, CTX Controller and RF Out. Connect the RF output of the CTX-5000 to a 2 kW, 30 dB attenuator. Connect a 20 dB attenuator and a frequency counter to the output of the 30 dB attenuator.

Transmitt at 100 W to verify that the frequency counter reads the RF output. Set the temperature chamber to the temperatures shown in the following procedure. Let the T-4180 soak for 1 hour at each temperture. Transmitt to verify that the frequency is within specifications. Go to the next frequency.

E. Diagram:

q۶

F. <u>Procedure:</u> (Step #)

1. Begin: Put the warmed-up T-4180, tuned to 30.0 MHz, into the temperature chamber. Connect it to the CTX-5000. Make a baseline frequency measurment at ambient temperature (+22°C).

- 2. Time 0: Turn on the temp chamber and set it to -30°C. Wait 1 hour.
- 3. Time 1: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to -20°C. Wait one hour.
- 4. Time 2: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to -10°C. Wait one hour.
- 5. Time 3: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to 0°C. Wait one hour.
- 6. Time 4: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to +10°C. Wait one hour.
- Time 5: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to +20°C. Wait one hour.
- 8. Time 6: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to +30°C. Wait one hour.
- Time 7: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to +40°C. Wait one hour.
- 10. Time 8: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to +50°C. Wait one hour.
- 11. Time 9: Key the CTX-5000 and make a frequency measurement. Set the temperature chamber to +22°C. Wait one hour.
- 12. Time 10: Key the CTX-5000 and make a final baseline frequency measurement.

93

To Whom it May Concern:

This is to certify that the test data performed by Cubic Communications, Inc. for FCC ID: NVSCTX-5000 was performed according to the CFR 47 paragraphs reference on the data records.

Tomas Michael E. Norman

Signed

Printed

2-19-99

Date