

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202308306F01

TEST Report

Applicant: Shenzhen Information Infinity Co., Ltd.

Address of Applicant: 1st Floor, Building B, Clean Sunshine Park, No.15, Keji North

2nd Road, Songpingshan Community, Xili street, Nanshan

District, Shenzhen, China

Manufacturer: Shenzhen Information Infinity Co., Ltd.

Address of 1st Floor, Building B, Clean Sunshine Park, No.15,Keji North

Manufacturer: 2nd Road, Songpingshan Community, Xili street, Nanshan

District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: GAMING MECHANICAL KEYBOARD

Model No.: Monster Airmars K3

Series model: N/A

Trade Mark:

MMONSTER®

FCC ID: 2A8PV-K3

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Aug.15,2023

Date of Test: Aug.15,2023~Aug.21,2023

Date of report issued: Aug.21,2023

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Aug.21,2023	Original

Tested/ Prepared By	Heber He	Date:	Aug.21,2023	
	Project Engineer			
Check By:	Bruce Zhu	Date:	Aug.21,2023	
	Reviewer			
Approved By :	Kerin Yang HT	Date:	Aug.21,2023	
	Authorized Signature			

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	5
4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS	7 7 7 7 7
5. TEST INSTRUMENTS LIST	8
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED OUTPUT POWER 6.3. CHANNEL BANDWIDTH	
7. TEST SETUP PHOTO	30
8 FUT CONSTRUCTIONAL DETAILS	30

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	30~1000MHz	3.45 dB	(1)			
Radiated Emission	1~6GHz	3.54 dB	(1)			
Radiated Emission	6~40GHz	5.38 dB	(1)			
Conducted Disturbance 0.15~30MHz 2.66 dB (1)						
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.			

4. General Information

4.1. General Description of EUT

•	
Product Name:	GAMING MECHANICAL KEYBOARD
Model No.:	Monster Airmars K3
Series model:	N/A
Test sample(s) ID:	HTT202308306-1(Engineer sample) HTT202308306-2(Normal sample)
Operation frequency	2402~2480 MHz
Number of Channels	40
Modulation Type	GFSK
Channel separation	2MHz
Antenna Type:	PCB Antenna
Antenna Gain:	3.85 dBi
Power Supply:	DC 3.7V/4000mAh From Battery and DC 5V From External Circuit
Adapter Information (Auxiliary test provided by the lab):	Mode: GS-0500200 Input: AC100-240V, 50/60Hz, 0.3A max Output: DC 5V, 2A

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

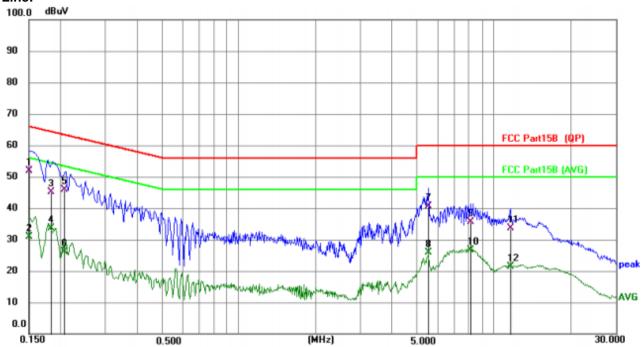
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

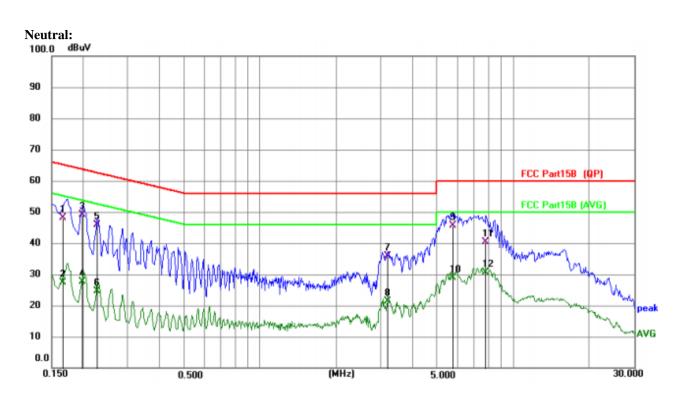
<u>J.</u>	163t III3ti uille	110 1101				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2021	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2021	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2023	Apr. 25 2024
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2023	Apr. 25 2024
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2023	Apr. 25 2024
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2023	Apr. 25 2024
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2023	Apr. 25 2024
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2023	Apr. 25 2024
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2023	May. 20 2024
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2023	May. 19 2024
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2023	Apr. 25 2024
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2023	Apr. 25 2024
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2023	Apr. 25 2024
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2023	Apr. 25 2024
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2023	Apr. 25 2024
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2023	Apr. 25 2024
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2023	May. 22 2024
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2023	May. 22 2024
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2023	Apr. 25 2024
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2023	Apr. 25 2024
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2023	Apr. 25 2024
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2021	Aug. 09 2024
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2023	Apr. 25 2024
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2023	Apr. 25 2024
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2023	Apr. 25 2024
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2023	Apr. 25 2024
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2023	Apr. 25 2024
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2023	Apr. 27 2024
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

6. Test results and Measurement Data

6.1. Conducted Emissions


Total Daniel	F00 P==145 C 0	<u>,</u>			
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto				
Limit:	Frequency range (MHz) Limit (dBuV)				
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5 56 46 5-30 60 50				
	* Decreases with the logarithr		50		
Test setup:		•			
Test procedure:	Reference Plane AUX Equipment Test table/Insulation plane Receiver Receiver 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance for the measuring equipment. LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs).				
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.				
Test Instruments:	Refer to section 6.0 for details	3			
Test mode:	Refer to section 5.2 for details	5			
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.: 1012mbar		
Test voltage:	AC 120V, 60Hz				
Test results:	PASS				

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Measurement data:

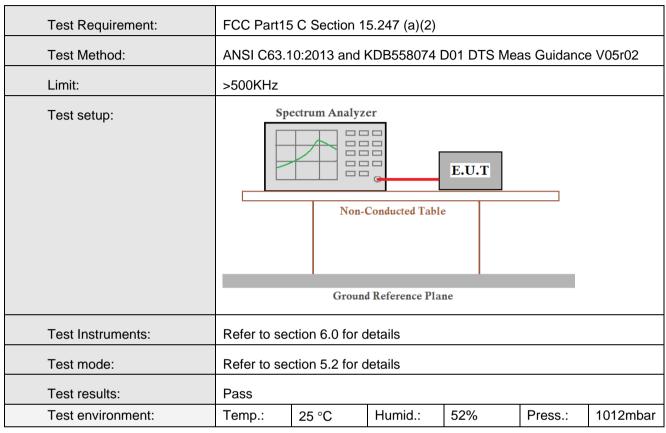
No. M		Reading Level	Correct	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1505	41.64	10.16	51.80	65.97	-14.17	QP
2	0.1505	20.62	10.16	30.78	55.97	-25.19	AVG
3	0.1840	35.04	10.19	45.23	64.30	-19.07	QP
4	0.1840	23.32	10.19	33.51	54.30	-20.79	AVG
5	0.2074	35.79	10.21	46.00	63.31	-17.31	QP
6	0.2074	16.01	10.21	26.22	53.31	-27.09	AVG
7	5.5285	29.93	10.61	40.54	60.00	-19.46	QP
8	5.5285	15.17	10.61	25.78	50.00	-24.22	AVG
9	8.0841	25.00	10.65	35.65	60.00	-24.35	QP
10	8.0841	15.96	10.65	26.61	50.00	-23.39	AVG
11	11.5983	22.71	10.82	33.53	60.00	-26.47	QP
12	11.5983	10.44	10.82	21.26	50.00	-28.74	AVG

Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
MHz		dB	dBuV	dBuV	dB	Detector
0.1659	38.01	10.18	48.19	65.16	-16.97	QP
0.1659	17.15	10.18	27.33	55.16	-27.83	AVG
0.1991	39.01	10.21	49.22	63.65	-14.43	QP
0.1991	17.43	10.21	27.64	53.65	-26.01	AVG
0.2265	35.62	10.22	45.84	62.58	-16.74	QP
0.2265	14.35	10.22	24.57	52.58	-28.01	AVG
3.1985	25.38	10.46	35.84	56.00	-20.16	QP
3.1985	10.82	10.46	21.28	46.00	-24.72	AVG
5.7828	35.01	10.61	45.62	60.00	-14.38	QP
5.7828	18.21	10.61	28.82	50.00	-21.18	AVG
7.7929	29.63	10.74	40.37	60.00	-19.63	QP
7.7929	19.95	10.74	30.69	50.00	-19.31	AVG
	MHz 0.1659 0.1659 0.1991 0.1991 0.2265 0.2265 3.1985 3.1985 5.7828 7.7929	Freq. Level MHz 0.1659 38.01 0.1659 17.15 0.1991 39.01 0.1991 17.43 0.2265 35.62 0.2265 14.35 3.1985 25.38 3.1985 10.82 5.7828 35.01 5.7828 18.21 7.7929 29.63	Freq. Level Factor MHz dB 0.1659 38.01 10.18 0.1659 17.15 10.18 0.1991 39.01 10.21 0.1991 17.43 10.21 0.2265 35.62 10.22 0.2265 14.35 10.22 3.1985 25.38 10.46 3.1985 10.82 10.46 5.7828 35.01 10.61 5.7828 18.21 10.61 7.7929 29.63 10.74	Freq. Level Factor ment MHz dB dBuV 0.1659 38.01 10.18 48.19 0.1659 17.15 10.18 27.33 0.1991 39.01 10.21 49.22 0.1991 17.43 10.21 27.64 0.2265 35.62 10.22 45.84 0.2265 14.35 10.22 24.57 3.1985 25.38 10.46 35.84 3.1985 10.82 10.46 21.28 5.7828 35.01 10.61 45.62 5.7828 18.21 10.61 28.82 7.7929 29.63 10.74 40.37	Freq. Level Factor ment Limit MHz dB dBuV dBuV 0.1659 38.01 10.18 48.19 65.16 0.1659 17.15 10.18 27.33 55.16 0.1991 39.01 10.21 49.22 63.65 0.1991 17.43 10.21 27.64 53.65 0.2265 35.62 10.22 45.84 62.58 0.2265 14.35 10.22 24.57 52.58 3.1985 25.38 10.46 35.84 56.00 3.1985 10.82 10.46 21.28 46.00 5.7828 35.01 10.61 45.62 60.00 5.7828 18.21 10.61 28.82 50.00 7.7929 29.63 10.74 40.37 60.00	Freq. Level Factor ment Limit Over MHz dB dBuV dBuV dB 0.1659 38.01 10.18 48.19 65.16 -16.97 0.1659 17.15 10.18 27.33 55.16 -27.83 0.1991 39.01 10.21 49.22 63.65 -14.43 0.1991 17.43 10.21 27.64 53.65 -26.01 0.2265 35.62 10.22 45.84 62.58 -16.74 0.2265 14.35 10.22 24.57 52.58 -28.01 3.1985 25.38 10.46 35.84 56.00 -20.16 3.1985 10.82 10.46 21.28 46.00 -24.72 5.7828 35.01 10.61 45.62 60.00 -14.38 5.7828 18.21 10.61 28.82 50.00 -21.18 7.7929 29.63 10.74 40.37 60.00 -19.63

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

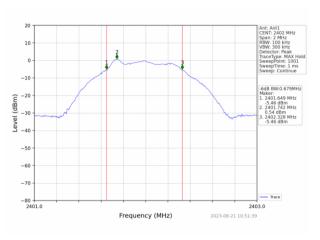
6.2. Conducted Output Power


Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (b)(3)							
Test Method:	ANSI C63.1	0:2013 and I	KDB558074 I	D01 DTS Me	as Guidance	e V05r02			
Limit:	30dBm	30dBm							
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to see	ction 6.0 for c	letails						
Test mode:	Refer to see	ction 5.2 for c	letails						
Test results:	Pass								
Test environment:	Temp.:								

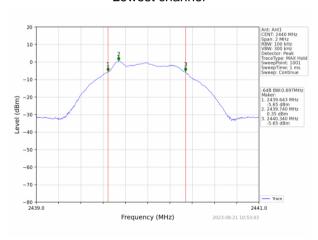
Measurement Data

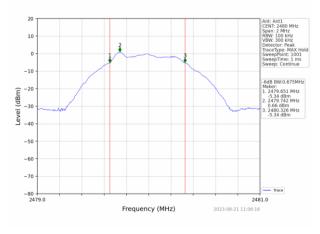
Test channel	Test channel Peak Output Power (dBm)		Result
Lowest	0.59		
Middle	0.41	30.00	Pass
Highest	0.71		

6.3. Channel Bandwidth

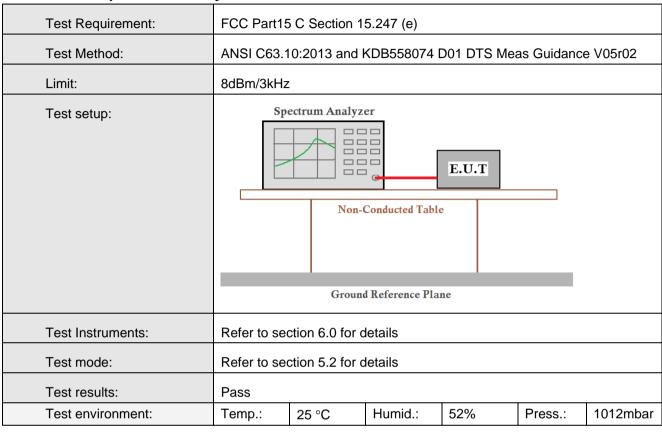


Measurement Data


Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result		
Lowest	0.679				
Middle	0.697	>500	Pass		
Highest	0.675				

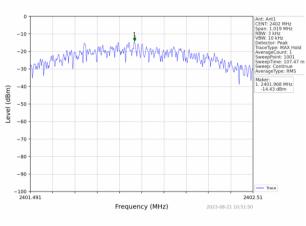

Test plot as follows:

Lowest channel

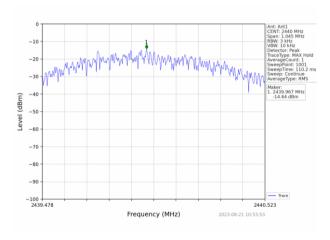

Middle channel

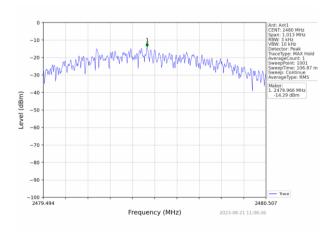
Highest channel

6.4. Power Spectral Density



Measurement Data


Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-14.43		
Middle	-14.64	8.00	Pass
Highest	-14.29		

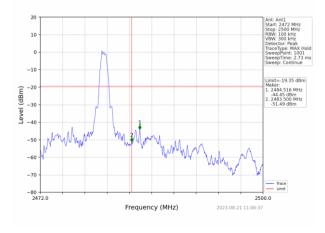

Test plot as follows:

Lowest channel

Middle channel

Highest channel




6.5. Band edges

6.5.1 Conducted Emission Method

	0.3.1 Conducted Linission Method								
Test Requirement:	FCC Part15	C Section 1	5.247 (d)						
Test Method:	ANSI C63.1	0:2013 and h	KDB558074 I	D01 DTS Mea	as Guidance	e V05r02			
Limit:	spread spe- power that i below that i highest leve	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to see	ction 6.0 for d	letails						
Test mode:	Refer to see	ction 5.2 for d	letails						
Test results:	Pass								
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								

Test plot as follows:

Lowest channel

Highest channel

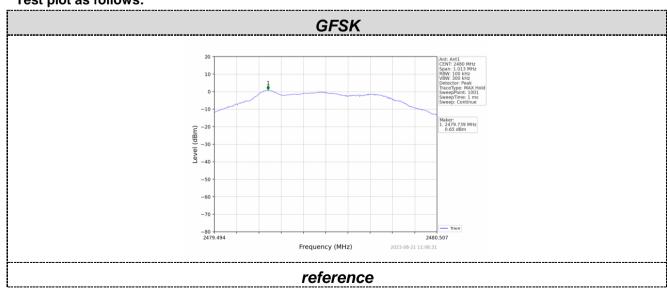
6.5.2 Radiated Emission Method

Test Requirement:	FCC Part15	C Section 1	5.209 a	and 15.205					
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	All of the res	strict bands		ested, only	the wor	st band's (2	2310MHz to		
Test site:	Measuremen								
Receiver setup:	Frequency	Detec	ctor	RBW	VBW	/ \	/alue		
		Pes		1MHz	3MHz		Peak		
	Above 1GH	IZ RM		1MHz	3MHz		verage		
Limit:	Fred	quency	L	imit (dBuV	/m @3m		/alue		
		e 1GHz		54.0 74.0			Average Peak		
Test setup:	Test Antenna- Turn Table- <150cm >= Page in a manufacture Page in a manufacture The state of the state								
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. The radiation measurements are performed in X, Y, Z axis positioning. 								
Test Instruments:	Refer to sect	e mode is re ion 6.0 for d		ini uie iep	O1 t.				
Test mode:	Refer to section 5.0 for details Refer to section 5.2 for details								
Test mode.	Pass								
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								

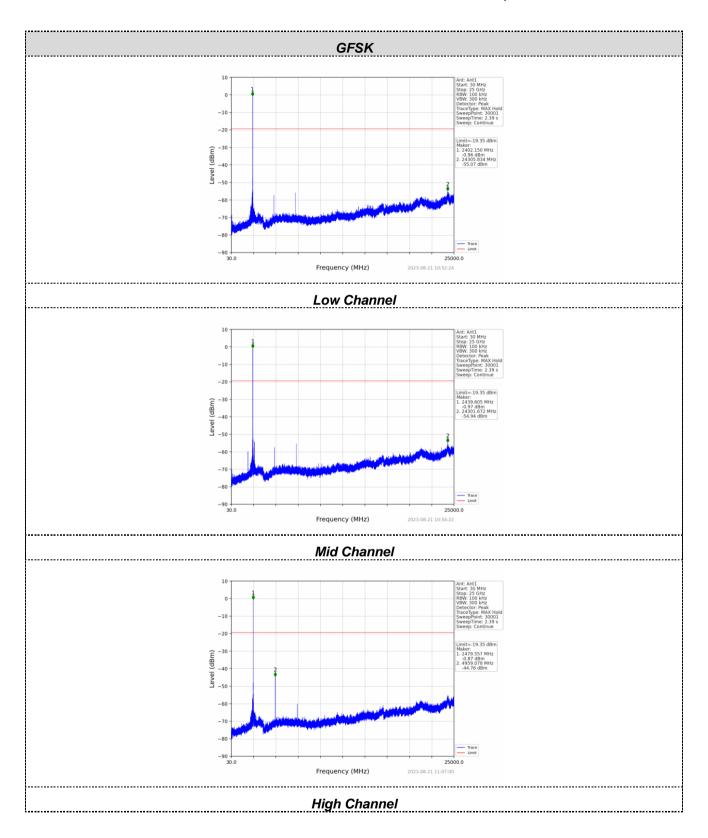
Measurement Data

Operation Mode: GFSK

Freque	ncy(MHz)	:	24	02	Pola	arity:	Н	HORIZONTAL		
Frequency (MHz)	Emis Le ^s (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	60.65	PK	74	13.35	62.04	27.2	4.31	32.9	-1.39	
2390.00	44.96 AV		54	9.04	46.35	27.2	4.31	32.9	-1.39	
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL		
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	59.01	PK	74	14.99	60.40	27.2	4.31	32.9	-1.39	
2390.00	46.69	AV	54	7.31	48.08	27.2	4.31	32.9	-1.39	
Freque	ncy(MHz)	:	2480		P olarity:		н	ORIZONTA	۸L	
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	55.99	PK	74	18.01	56.92	27.4	4.47	32.8	-0.93	
2483.50	45.97	AV	54	8.03	46.90	27.4	4.47	32.8	-0.93	
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL		
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	55.26	PK	74	18.74	56.19	27.4	4.47	32.8	-0.93	
2483.50	43.84	AV	54	10.16	44.77	27.4	4.47	32.8	-0.93	

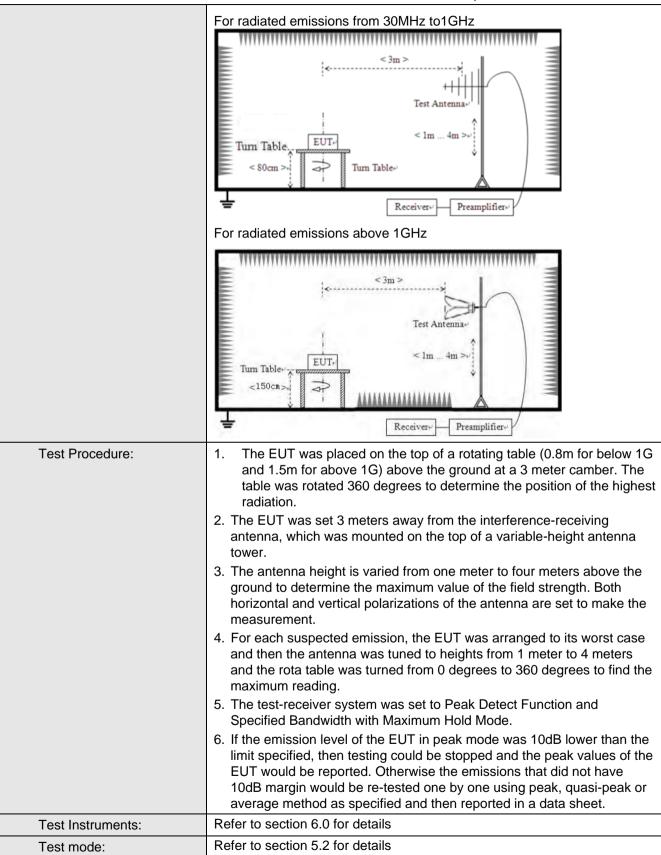


6.6. Spurious Emission


6.6.1 Conducted Emission Method

0.0.1 Conducted Linission Me								
Test Requirement:	FCC Part15	C Section 1	5.247 (d)					
Test Method:	ANSI C63.1	0:2013 and I	KDB558074 I	D01 DTS Me	as Guidanc	e V05r02		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spo	Spectrum Analyzer E.U.T						
Test Instruments:	Refer to sec	ction 6.0 for c	letails					
Test mode:	Refer to sec	ction 5.2 for c	letails	-	-			
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

Test plot as follows:



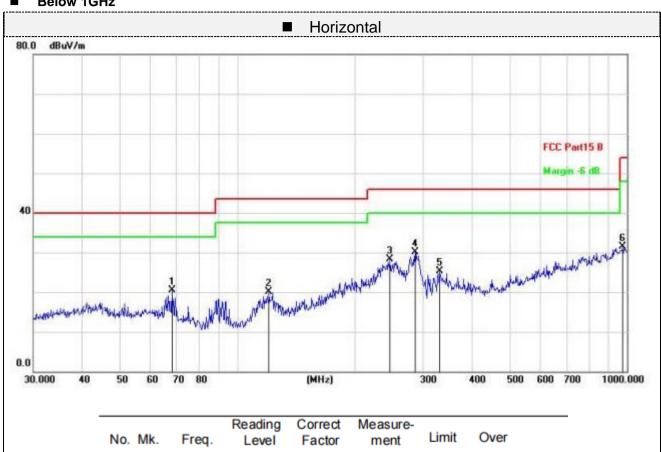
6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209				
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distar	nce: 3	3m				
Receiver setup:	Frequency		Detector	RB\	W	VBW	Value
	9KHz-150KHz	Qι	ıasi-peak	2001	Hz	600Hz	z Quasi-peak
			ıasi-peak	9KF	Ηz	30KH	z Quasi-peak
			ıasi-peak	120K	Ήz	300KH	z Quasi-peak
	Above 1GHz		Peak	1MF	Ηz	3MHz	z Peak
	Above 1G112		Peak	1MF	Ηz	10Hz	Average
Limit:	Frequency		Limit (u\	//m)	>	'alue	Measurement Distance
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP	300m
	0.490MHz-1.705MH		24000/F(KHz)			QP	30m
	1.705MHz-30MH	lz	30		QP		30m
	30MHz-88MHz	100		QP			
	88MHz-216MHz		150		QP		
	216MHz-960MH	Z	200			QP	3m
	960MHz-1GHz		500		QP		
	Above 1GHz		500		Average		
			5000		Peak		
Test setup:	For radiated emission	ns fr	om 9kHz to	30MH	lz		
	Tum Table Tum Table Receiver						

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			
Test voltage:	AC 120V, 60Hz								
Test results:	Pass								

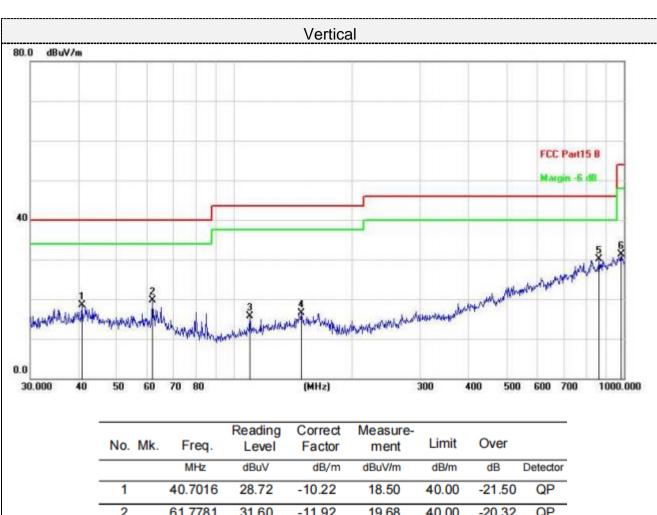
Measurement data:

Remark:


Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.



Below 1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		68.1514	33.58	-13.01	20.57	40.00	-19.43	QP
2		120.6991	33.03	-13.02	20.01	43.50	-23.49	QP
3		246.8149	39.91	-11.67	28.24	46.00	-17.76	QP
4	*	285.9778	41.25	-11.10	30.15	46.00	-15.85	QP
5		331.3546	35.69	-10.44	25.25	46.00	-20.75	QP
6		975.7529	27.92	3.58	31.50	54.00	-22.50	QP

No.	Mk.	Freq.	Reading Level	Correct Factor			Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		40.7016	28.72	-10.22	18.50	40.00	-21.50	QP
2		61.7781	31.60	-11.92	19.68	40.00	-20.32	QP
3		109.7960	29.83	-14.09	15.74	43.50	-27.76	QP
4		148.4410	27.20	-10.76	16.44	43.50	-27.06	QP
5	*	863.0562	28.94	1.20	30.14	46.00	-15.86	QP
6		982.6200	27.57	3.65	31.22	54.00	-22.78	QP

Final Level =Receiver Read level + Correct Factor

■ Above 1-25GHz

Freque	ncy(MHz)):	2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	60.19	PK	74	13.81	54.49	31	6.5	31.8	5.7
4804.00	41.39	AV	54	12.61	35.69	31	6.5	31.8	5.7
7206.00	53.97	PK	74	20.03	41.32	36	8.15	31.5	12.65
7206.00	44.43	AV	54	9.57	31.78	36	8.15	31.5	12.65

Freque	ncy(MHz)	:	2402		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	58.22	PK	74	15.78	52.52	31	6.5	31.8	5.7
4804.00	42.49	AV	54	11.51	36.79	31	6.5	31.8	5.7
7206.00	53.16	PK	74	20.84	40.51	36	8.15	31.5	12.65
7206.00	44.03	AV	54	9.97	31.38	36	8.15	31.5	12.65

Frequency(MHz):			2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.84	PK	74	14.16	53.68	31.2	6.61	31.65	6.16
4880.00	45.05	AV	54	8.95	38.89	31.2	6.61	31.65	6.16
7320.00	53.57	PK	74	20.43	40.62	36.2	8.23	31.48	12.95
7320.00	44.28	AV	54	9.72	31.33	36.2	8.23	31.48	12.95

Freque	ncy(MHz)	:	2440		Polarity:		VERTICAL		
Frequency	Emission Level (dBuV/m)			Margin	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor
(MHz)				(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4880.00	61.65	PK	74	12.35	55.49	31.2	6.61	31.65	6.16
4880.00	42.56	AV	54	11.44	36.40	31.2	6.61	31.65	6.16
7320.00	53.98	PK	74	20.02	41.03	36.2	8.23	31.48	12.95
7320.00	44.67	AV	54	9.33	31.72	36.2	8.23	31.48	12.95

Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	62.37	PK	74	11.63	55.71	31.4	6.76	31.5	6.66
4960.00	41.77	AV	54	12.23	35.11	31.4	6.76	31.5	6.66
7440.00	53.56	PK	74	20.44	40.26	36.4	8.35	31.45	13.3
7440.00	44.70	AV	54	9.30	31.40	36.4	8.35	31.45	13.3

Freque	ncy(MHz)	:	2480		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	62.73	PK	74	11.27	56.07	31.4	6.76	31.5	6.66
4960.00	42.58	AV	54	11.42	35.92	31.4	6.76	31.5	6.66
7440.00	54.15	PK	74	19.85	40.85	36.4	8.35	31.45	13.3
7440.00	45.06	AV	54	8.94	31.76	36.4	8.35	31.45	13.3

Remark:

⁽¹⁾ Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

⁽²⁾ When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 3.85 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the **appendix II** for details.

