

TEST REPORT

Report No.:	BCTC2208245828E
Applicant:	Nexxt Solutions
Product Name:	Smart Wi-Fi camera
Model/Type Ref.:	NHC-F410
Tested Date:	2022-08-26 to 2022-09-05
Issued Date:	2022-09-05

Shenzhen BCTC Testing Co., Ltd.

No.: BCTC/RF-EMC-005

Page: 1 of 68

Edition: A.5

FCC ID: X4YHACF410

Product Name:	Smart Wi-Fi camera			
Trademark:	N/A			
Model/Type Ref.:	NHC-F410			
Prepared For:	Nexxt Solutions			
Address:	3505 N.W 107TH AVE. MIAMI, Florida 33178, United States			
Manufacturer:	Sungale Electronics (Shenzhen) Limited			
Address:	No. 1302, DaHong High-Tech Park, No. 6-18, Xinhe Road, Xinqiao, BaoAn, Shenzhen 518125, CHINA			
Prepared By:	Shenzhen BCTC Testing Co., Ltd.			
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China			
Sample Received Date:	2022-08-26			
Sample tested Date:	2022-08-26 to 2022-09-05			
Issue Date:	2022-09-05			
Report No.:	BCTC2208245828E			
Test Standards:	FCC Part15.247 ANSI C63.10-2013			
Test Results:	PASS			
Remark:	This is WIFI-2.4GHz band radio test report.			

Tested by:

Yove Le

Brave Zeng/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page: 2 of 68

Table Of Content

Test	t Report Declaration F	Page
1.	Version	5
2.	Test Summary	
3.	Measurement Uncertainty	
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	8
4.3	Support Equipment	9
4.4	Channel List	9
4.5	Test Mode	
4.6	Table Of Parameters Of Text Software Setting	10
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	
6.	Conducted Emissions	
6.1	Block Diagram Of Test Setup	
6.2	Limit	
6.3	Test Procedure	
6.4	EUT Operating Conditions	
6.5	Test Result.	
7.	Radiated Emissions	
7.1	Block Diagram Of Test Setup	
7.2 7.3	Limit Test Procedure	
7.3 7.4	EUT Operating Conditions	
7.4		
7.5 8.	Radiated Band Emission Measurement And Restricted Bands Of Opera	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test Procedure	20 27
8.4	EUT operating Conditions	27
8.5	Test Deput	00
9.	Power Spectral Density Test Block Diagram Of Test Setup Limit Test Procedure EUT Operating Conditions Test Result	
9.1	Block Diagram Of Test Setup.	
9.2	Limit	
9.3	Test Procedure	30
9.4	EUT Operating Conditions	30
9.5	Test Result	31
10.	Bandwidth Test	
10.1	Bandwidth Test Block Diagram Of Test Setup	
10.2	2 Limit	
10.3	3 Test Procedure	
10.4	EUT Operating Conditions	

46
46
46
46
46
47
48
48
48
48
48
48
57
57
57
57
57
64
64
64
65
66

(Note: N/A means not applicable)

Page: 4 of 68

1. Version

Report No. Issue Date		Description	Approved
BCTC2208245828E	2022-09-05	Original	Valid

2. Test Summary

The Product has been tested according to the following specifications:

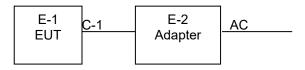
No.	Test Parameter	Clause No	Results
1	Conducted Emission	15.207	PASS
2	6dB Bandwidth	15.247 (a)(2)	PASS
3	Peak Output Power	15.247 (b)	PASS
4	Radiated Spurious Emission	15.247 (d)	PASS
5	Power Spectral Density	15.247 (e)	PASS
6	Restricted Band of Operation	15.205	PASS
7	Band Edge (Out of Band Emissions)	15.247 (d)	PASS
8	Antenna Requirement	15.203	PASS

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(9kHz-30MHz)	U=3.7dB
2	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission(150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59°C

4. Product Information And Test Setup


4.1 Product Information

Model/Type Ref.:	NHC-F410
Model differences:	N/A
Operation Frequency:	802.11b/g/n20MHz:2412~2462 MHz 802.11n40MHz:2422~2452 MHz
Bit Rate of Transmitter	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6Mbps 802.11n Up to 150Mbps
Type of Modulation:	OFDM/DSSS
Number Of Channel	802.11b/g/n20MHz:11 CH 802.11n40MHz: 7 CH
Antenna Gain:	3.44dBi
Antenna Type:	Internal antenna
Ratings:	DC 5V from adapter
Adapter Information:	MODEL: MX15W-0502500UU INPUT: 100-240V~50-60Hz 0.4A OUTPUT: DC 5V 2.5A

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Smart Wi-Fi camera	N/A	NHC-F410	N/A	EUT
E-2	Adapter	N/A	MX15W-0502500UU	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	0.3M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

Channel List for 802.11b/g/n(20)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
01	2412	02	2417	03	2422		
04	2427	05	2432	06	2437		
07	2442	08	2447	09	2452		
10	2457	11	2462				

Channel List for 802.11n(40)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
03	2422	04	2427	05	2432	
06	2437	07	2442	08	2447	
09	2452					

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

configuration mode(c) montioned abo	sto mae ottalaalou roopoolitoly.
Pretest Mode	Description
Mode 1	802.11b CH1/ CH6/ CH11
Mode 2	802.11g CH1/ CH6/ CH11
Mode 3	802.11n20 CH1/ CH6/ CH11
Mode 4	802.11n40 CH3/ CH6/ CH9
Mode 5	Link Mode

	Radiated Emission	4 - 4
Final Test Mode	Description	
Mode 5	Link Mode	

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	CMD				
Frequency	2412 MHz	2437 MHz	2462 MHz		
Parameters	DEF	DEF	DEF		
Frequency	2422MHz	2437MHz	2452MHz		
Parameters	DEF	DEF	DEF		

Page: 10 of 68

5. Test Facility And Test Instrument Used

5.1 Test Facility

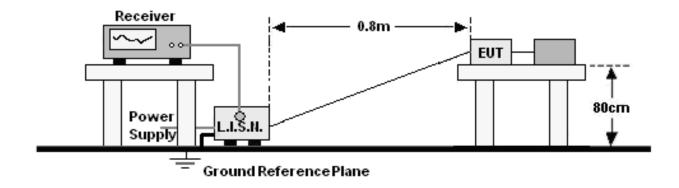
All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 IC Registered No.: 23583

Conducted Emissions Test									
Equipment Manufacturer Model# Serial# Last Cal. Next Ca									
Receiver	Receiver R&S		102075	May 24, 2022	May 23, 2023				
LISN	R&S	ENV216	101375	May 24, 2022	May 23, 2023				
Software Frad		EZ-EMC	EMC-CON 3A1	/	/				
Attenuator	/	10dB DC-6GHz	1650	May 24, 2022	May 23, 2023				

5.2 Test Instrument Used

	RF Conducted Test								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.				
Power Metter	Keysight	E4419	١	May 24, 2022	May 23, 2023				
Power Sensor (AV)	Keysight	E9300A	١	May 24, 2022	May 23, 2023				
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 24, 2022	May 23, 2023				
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	L management	May 24, 2022	May 23, 2023				

Page: 11 of 68



	Radiated Emissions Test (966 Chamber01)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
966 chamber	ChengYu	966 Room	966	Jun. 06. 2020	Jun. 05, 2023		
Receiver	Receiver R&S		102075	May 24, 2022	May 23, 2023		
Receiver	R&S	ESRP	101154	May 24, 2022	May 23, 2023		
Amplifier	SKET	LAPA_01G18 G-45dB	١	May 24, 2022	May 23, 2023		
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 24, 2022	May 23, 2023		
TRILOG Broadband Schwarzbeck Antenna		VULB9163 942		May 26, 2022	May 25, 2023		
Horn Antenna	Horn Antenna Schwarzbeck		1541	Jun. 06, 2022	Jun. 05, 2023		
Horn Antenna(18G Schwarzbeck Hz-40GHz)		BBHA9170	00822	Jun. 06, 2022	Jun. 05, 2023		
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 26, 2022	May 25, 2023		
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 26, 2022	May 25, 2023		
Power Metter	Keysight	E4419	١	May 26, 2022	May 25, 2023		
Power Sensor (AV)	Keysight	E9300A	١	May 26, 2022	May 25, 2023		
Signal Analyzer20kH Keysight z-26.5GHz		N9020A	MY49100060	May 26, 2022	May 25, 2023		
Spectrum Analyzer9kHz- 40GHz	Spectrum Analyzer9kHz- R&S		١	May 26, 2022	May 25, 2023		
Software	Frad	EZ-EMC	FA-03A2 RE	α α α α α α α α α α α α α α			

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit (dBuV)		
FREQUENCY (MHz)	Quas-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

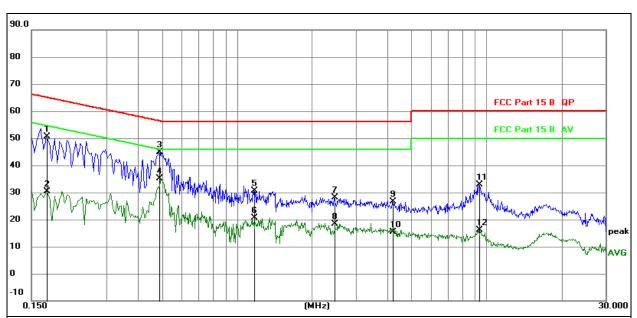
6.3 Test Procedure

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT Operating Conditions

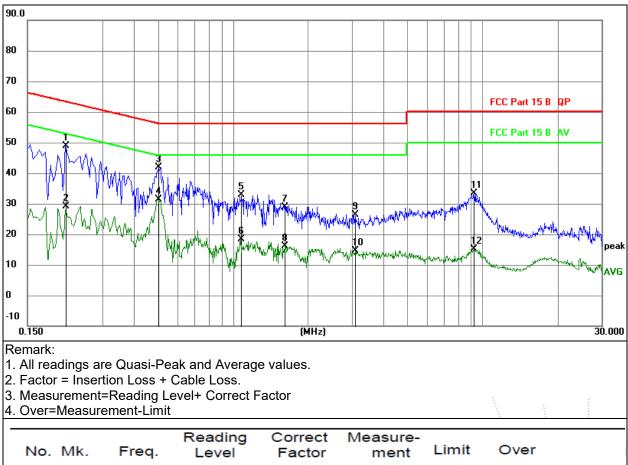
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	Line
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 1

Remark:

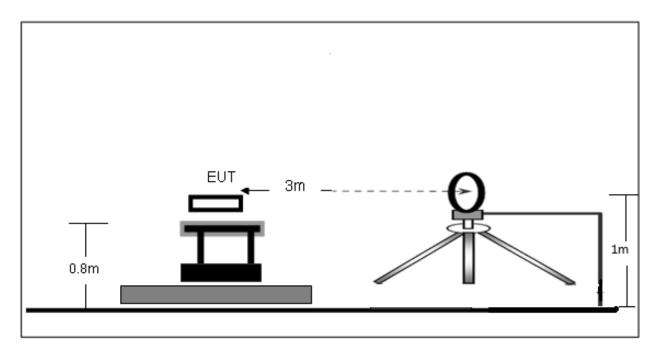
All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement=Reading Level+ Correct Factor

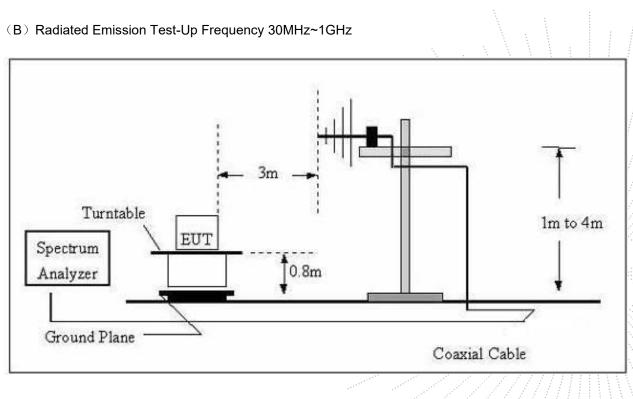

4. Over=Measurement-Limit

• • • •								
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1725	30.85	19.73	50.58	64.84	-14.26	QP
2		0.1725	10.58	19.73	30.31	54.84	-24.53	AVG
3		0.4875	25.27	19.72	44.99	56.21	-11.22	QP
4	*	0.4875	15.44	19.72	35.16	46.21	-11.05	AVG
5		1.1715	10.74	19.78	30.52	56.00	-25.48	QP
6		1.1715	0.96	19.78	20.74	46.00	-25.26	AVG
7		2.4585	8.16	19.93	28.09	56.00	-27.91	QP
8		2.4585	-1.66	19.93	18.27	46.00	-27.73	AVG
9		4.2045	6.50	20.11	26.61	56.00	-29.39	QP
10		4.2045	-4.72	20.11	15.39	46.00	-30.61	AVG
11		9.3075	12.57	20.26	32.83	60.00	-27.17	QP
12		9.3075	-4.19	20.26	16.07	50.00	-33.93	AVG

No.: BCTC/RF-EMC-005

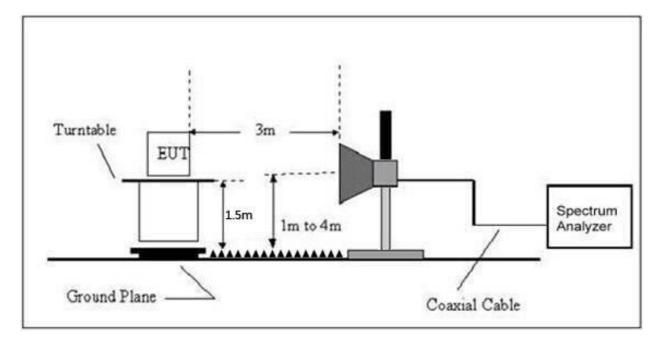
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	Neutral
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 1


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	-
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.2128	29.07	19.80	48.87	63.10	-14.23	QP
2		0.2128	9.36	19.80	29.16	53.10	-23.94	AVG
3	*	0.4994	22.23	19.72	41.95	56.01	-14.06	QP
4		0.4994	11.78	19.72	31.50	46.01	-14.51	AVG
5		1.0710	13.00	19.77	32.77	56.00	-23.23	QP
6		1.0710	-1.27	19.77	18.50	46.00	-27.50	AVG
7		1.6105	9.15	19.83	28.98	56.00	-27.02	QP
8		1.6105	-3.66	19.83	16.17	46.00	-29.83	AVG
9		3.0901	6.34	20.00	26.34	56.00	-29.66	QP
10		3.0901	-5.31	20.00	14.69	46.00	-31.31	AVG
11		9.2532	13.00	20.26	33.26	60.00	-26.74	QP
12		9.2532	-5.08	20.26	15.18	50.00	-34.82	AVG



7. Radiated Emissions

7.1 Block Diagram Of Test Setup


(A) Radiated Emission Test-Up Frequency Below 30MHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed:

Frequency	Field Strength	Distance	Field Strength Li	mit at 3m Distance
(MHz)	uV/m	(m)	uV/m	dBuV/m
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY	Limit (dBuV/	m) (at 3M)
(MHz)		AVERAGE
Above 1000	74	

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 - 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

7.3 Test Procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting		
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average		

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).

h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

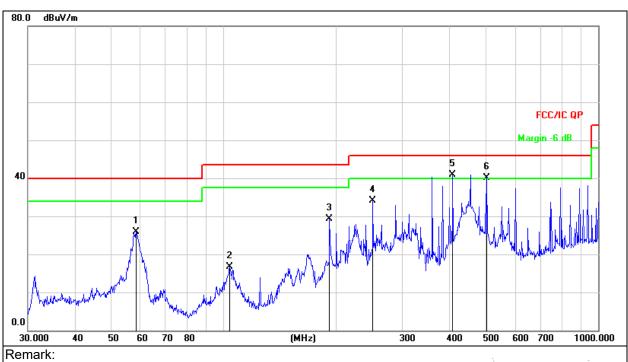
7.5 Test Result

Below 30MHz

Temperature:	26°C	Relative Humidity:	54%
Pressure:	101 kPa	Test Voltage :	AC120V/60Hz
Test Mode :	Mode 1	Polarization :	+

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
			· · · · · · · · · · · · · · · · · · ·	PASS
				PASS

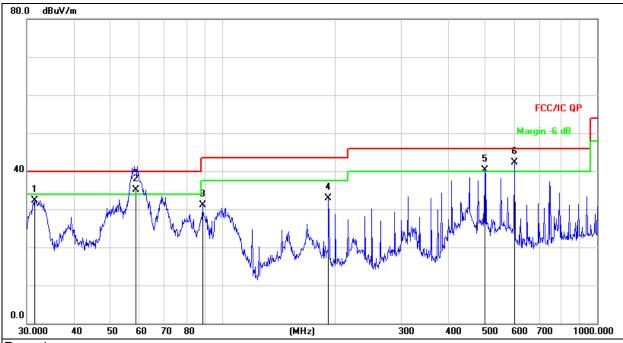
Note:


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Between 30MHz – 1GHz

Temperature:	26°C	Relative Humidity:	54%
Pressure:	101 kPa	Test Voltage :	AC120V/60Hz
Test Mode :	Mode 1	Polarization :	Horizontal



Antenna Factor + Cable Loss – Pre-amplifier.
 Measurement=Reading Level+ Correct Factor
 Over= Measurement-Limit

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
	58.4074	42.43	-16.46	25.97	40.00	-14.03	QP
	103.8055	33.59	-16.97	16.62	43.50	-26.88	QP
	191.7450	45.86	-16.60	29.26	43.50	-14.24	QP
	250.3012	48.26	-14.18	34.08	46.00	-11.92	QP
*	408.9460	50.83	-9.92	40.91	46.00	-5.09	QP
İ	504.7062	47.76	-7.73	40.03	46.00	-5.97	QP
	*	MHz 58.4074 103.8055 191.7450 250.3012 * 408.9460	Mk. Freq. Level MHz dBuV 58.4074 42.43 103.8055 33.59 191.7450 45.86 250.3012 48.26 * 408.9460 50.83	Mk. Freq. Level Factor MHz dBuV dB 58.4074 42.43 -16.46 103.8055 33.59 -16.97 191.7450 45.86 -16.60 250.3012 48.26 -14.18 * 408.9460 50.83 -9.92	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 58.4074 42.43 -16.46 25.97 103.8055 33.59 -16.97 16.62 191.7450 45.86 -16.60 29.26 250.3012 48.26 -14.18 34.08 * 408.9460 50.83 -9.92 40.91	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dB/m 58.4074 42.43 -16.46 25.97 40.00 103.8055 33.59 -16.97 16.62 43.50 191.7450 45.86 -16.60 29.26 43.50 250.3012 48.26 -14.18 34.08 46.00 * 408.9460 50.83 -9.92 40.91 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB/m dB 58.4074 42.43 -16.46 25.97 40.00 -14.03 103.8055 33.59 -16.97 16.62 43.50 -26.88 191.7450 45.86 -16.60 29.26 43.50 -14.24 250.3012 48.26 -14.18 34.08 46.00 -11.92 * 408.9460 50.83 -9.92 40.91 46.00 -5.09

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kpa	Test Voltage :	AC120V/60Hz
Test Mode :	Mode 1	Polarization :	Vertical

Remark:

1.Factor = Antenna Factor + Cable Loss – Pre-amplifier.
 2. Measurement=Reading Level+ Correct Factor

Over= Measurement-	Limit
--------------------------------------	-------

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		31.5095	50.27	-17.87	32.40	40.00	-7.60	QP
2	ļ.	58.4335	51.66	-16.47	35.19	40.00	-4.81	QP
3		88.3421	49.94	-18.74	31.20	43.50	-12.30	QP
4		191.7450	49.53	-16.60	32.93	43.50	-10.57	QP
5	ļ.	501.1790	48.02	-7.81	40.21	46.00	-5.79	QP
6	*	601.4265	47.83	-5.50	42.33	46.00	-3.67	QP

Between 1GHz – 25GHz **802.11b**

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector		
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре		
	Low channel:2412MHz								
V	4824.00	52.66	-0.43	52.23	74.00	-21.77	PK		
V	4824.00	44.31	-0.43	43.88	54.00	-10.12	AV		
V	7236.00	43.44	8.31	51.75	74.00	-22.25	PK		
V	7236.00	33.37	8.31	41.68	54.00	-12.32	AV		
Н	4824.00	51.28	-0.43	50.85	74.00	-23.15	PK		
Н	4824.00	41.42	-0.43	40.99	54.00	-13.01	AV		
Н	7236.00	41.50	8.31	49.81	74.00	-24.19	PK		
Н	7236.00	34.42	8.31	42.73	54.00	-11.27	AV		
		Mic	dle channel:2	437MHz					
V	4874.00	50.23	-0.38	49.85	74.00	-24.15	PK		
V	4874.00	41.42	-0.38	41.04	54.00	-12.96	AV		
V	7311.00	41.26	8.83	50.09	74.00	-23.91	PK		
V	7311.00	31.28	8.83	40.11	54.00	-13.89	AV		
Н	4874.00	48.66	-0.38	48.28	74.00	-25.72	PK		
Н	4874.00	37.73	-0.38	37.35	54.00	-16.65	AV		
Н	7311.00	39.59	8.83	48.42	74.00	-25.58	PK		
Н	7311.00	31.04	8.83	39.87	54.00	-14.13	AV		
		Hi	gh channel:24	l62MHz					
V	4924.00	51.40	-0.32	51.08	74.00	-22.92	PK		
V	4924.00	41.27	-0.32	40.95	54.00	-13.05	AV		
V	7386.00	43.52	9.35	52.87	74.00	-21.13	PK		
V	7386.00	33.97	9.35	43.32	54.00	-10.68	AV		
Н	4924.00	49.28	-0.32	48.96	74.00	-25.04	PK		
Н	4924.00	39.46	-0.32	39.14	54.00	-14.86	AV		
Н	7386.00	40.89	9.35	50.24	74.00	-23.76	РК		
Н	7386.00	32.94	9.35	42.29	54.00	-11.71	AV		

Remark:

1.Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

In restricted bands of operation, The spurious emissions below the permissible value more than 20dB
 The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

802.11g

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector			
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре			
	Low channel:2412MHz									
V	4824.00	54.19	-0.43	53.76	74.00	-20.24	PK			
V	4824.00	46.13	-0.43	45.70	54.00	-8.30	AV			
V	7236.00	44.75	8.31	53.06	74.00	-20.94	PK			
V	7236.00	35.43	8.31	43.74	54.00	-10.26	AV			
Н	4824.00	52.71	-0.43	52.28	74.00	-21.72	PK			
Н	4824.00	42.78	-0.43	42.35	54.00	-11.65	AV			
Н	7236.00	43.57	8.31	51.88	74.00	-22.12	PK			
Н	7236.00	35.64	8.31	43.95	54.00	-10.05	AV			
		Mic	dle channel:2	437MHz						
V	4874.00	50.82	-0.38	50.44	74.00	-23.56	PK			
V	4874.00	44.39	-0.38	44.01	54.00	-9.99	AV			
V	7311.00	43.11	8.83	51.94	74.00	-22.06	PK			
V	7311.00	34.87	8.83	43.70	54.00	-10.30	AV			
Н	4874.00	46.47	-0.38	46.09	74.00	-27.91	PK			
Н	4874.00	36.27	-0.38	35.89	54.00	-18.11	AV			
Н	7311.00	41.37	8.83	50.20	74.00	-23.80	PK			
Н	7311.00	33.66	8.83	42.49	54.00	-11.51	AV			
		Hi	gh channel:24	462MHz						
V	4924.00	52.78	-0.32	52.46	74.00	-21.54	PK			
V	4924.00	42.26	-0.32	41.94	54.00	-12.06	AV			
V	7386.00	45.22	9.35	54.57	74.00	-19.43	PK			
V	7386.00	34.99	9.35	44.34	54.00	-9.66	AV			
Н	4924.00	50.58	-0.32	50.26	74.00	-23.74	PK			
Н	4924.00	40.85	-0.32	40.53	54.00	-13.47	AV			
Н	7386.00	42.82	9.35	52.17	74.00	-21.83	PK			
Н	7386.00	35.74	9.35	45.09	54.00	-8.91	AV			

Remark:

1.Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

802.11n20

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector		
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре		
	Low channel:2412MHz								
V	4824.00	53.09	-0.43	52.66	74.00	-21.34	PK		
V	4824.00	43.83	-0.43	43.40	54.00	-10.60	AV		
V	7236.00	45.10	8.31	53.41	74.00	-20.59	PK		
V	7236.00	35.28	8.31	43.59	54.00	-10.41	AV		
Н	4824.00	49.87	-0.43	49.44	74.00	-24.56	PK		
Н	4824.00	39.18	-0.43	38.75	54.00	-15.25	AV		
Н	7236.00	43.63	8.31	51.94	74.00	-22.06	PK		
Н	7236.00	36.02	8.31	44.33	54.00	-9.67	AV		
		Mic	dle channel:2	437MHz					
V	4874.00	49.10	-0.38	48.72	74.00	-25.28	PK		
V	4874.00	41.67	-0.38	41.29	54.00	-12.71	AV		
V	7311.00	39.36	8.83	48.19	74.00	-25.81	PK		
V	7311.00	30.52	8.83	39.35	54.00	-14.65	AV		
Н	4874.00	45.90	-0.38	45.52	74.00	-28.48	PK		
Н	4874.00	35.99	-0.38	35.61	54.00	-18.39	AV		
Н	7311.00	36.78	8.83	45.61	74.00	-28.39	PK		
Н	7311.00	28.28	8.83	37.11	54.00	-16.89	AV		
		Hi	gh channel:24	162MHz					
V	4924.00	51.45	-0.32	51.13	74.00	-22.87	PK		
V	4924.00	41.08	-0.32	40.76	54.00	-13.24	AV		
V	7386.00	42.61	9.35	51.96	74.00	-22.04	PK		
V	7386.00	32.64	9.35	41.99	54.00	-12.01	AV		
Н	4924.00	49.19	-0.32	48.87	74.00	-25.13	PK		
Н	4924.00	39.35	-0.32	39.03	54.00	-14.97	AV		
Н	7386.00	40.89	9.35	50.24	74.00	-23.76	PK		
Н	7386.00	32.39	9.35	41.74	54.00	-12.26	AV		

Remark:

1.Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

802.11n40

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector		
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре		
	Low channel:2422MHz								
V	4844.00	52.36	-0.43	51.93	74.00	-22.07	PK		
V	4844.00	42.14	-0.43	41.71	54.00	-12.29	AV		
V	7266.00	41.98	8.31	50.29	74.00	-23.71	PK		
V	7266.00	31.02	8.31	39.33	54.00	-14.67	AV		
Н	4844.00	50.61	-0.43	50.18	74.00	-23.82	PK		
Н	4844.00	40.41	-0.43	39.98	54.00	-14.02	AV		
Н	7266.00	40.40	8.31	48.71	74.00	-25.29	PK		
Н	7266.00	32.29	8.31	40.60	54.00	-13.40	AV		
		Mic	Idle channel:2	437MHz					
V	4874.00	48.41	-0.38	48.03	74.00	-25.97	PK		
V	4874.00	40.52	-0.38	40.14	54.00	-13.86	AV		
V	7311.00	38.11	8.83	46.94	74.00	-27.06	PK		
V	7311.00	29.40	8.83	38.23	54.00	-15.77	AV		
Н	4874.00	47.32	-0.38	46.94	74.00	-27.06	PK		
Н	4874.00	37.76	-0.38	37.38	54.00	-16.62	AV		
Н	7311.00	35.56	8.83	44.39	74.00	-29.61	PK		
Н	7311.00	27.43	8.83	36.26	54.00	-17.74	AV		
		Hi	gh channel:24	I52MHz			# *		
V	4904.00	51.14	-0.32	50.82	74.00	-23.18	PK		
V	4904.00	41.97	-0.32	41.65	54.00	-12.35	AV		
V	7356.00	43.93	9.35	53.28	74.00	-20.72	PK		
V	7356.00	33.43	9.35	42.78	54.00	-11.22	AV		
Н	4904.00	48.38	-0.32	48.06	74.00	-25.94	PK		
Н	4904.00	37.55	-0.32	37.23	54.00	-16.77	AV		
Н	7356.00	40.97	9.35	50.32	74.00	-23.68	PK		
Н	7356.00	33.12	9.35	42.47	54.00	-11.53	AV		

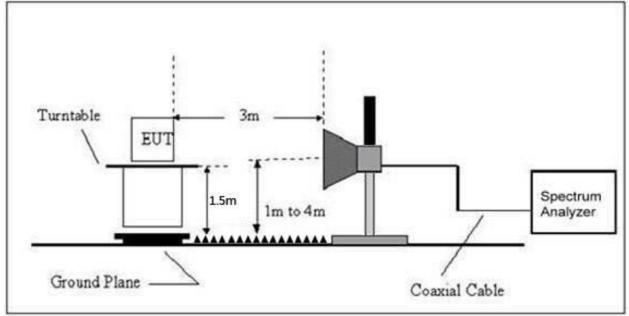
Remark:

1.Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss - Pre-amplifier....

Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.


3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY	Limit (dBuV/	m) (at 3M)
(MHz)	PEAK	AVERAGE
Above 1000	74	54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test Procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

	Polar (H/V)	Frequency (MHz)	Reading Level	Correct Factor	Factor (dBuV/m)	Limits (dBuV/m)		Result				
	(п/•)	(11172)	(dBuV/m)	(dB)	PK	PK	AV					
	Low Channel 2412MHz											
	Н	2390.00	54.19	-6.70	47.49	74.00	54.00	PASS				
	Н	2400.00	58.96	-6.71	52.25	74.00	54.00	PASS				
	V	2390.00	54.33	-6.70	47.63	74.00	54.00	PASS				
000 11h	V	2400.00	57.49	-6.71	50.78	74.00	54.00	PASS				
802.11b		High Channel 2462MHz										
	Н	2483.50	57.08	-6.79	50.29	74.00	54.00	PASS				
	Н	2500.00	51.34	-6.81	44.53	74.00	54.00	PASS				
	V	2483.50	57.50	-6.79	50.71	74.00	54.00	PASS				
	V	2500.00	53.17	-6.81	46.36	74.00	54.00	PASS				
	Low Channel 2412MHz											
	Н	2390.00	54.13	-6.70	47.43	74.00	54.00	PASS				
	Н	2400.00	58.07	-6.71	51.36	74.00	54.00	PASS				
	V	2390.00	54.82	-6.70	48.12	74.00	54.00	PASS				
802.11g	V	2400.00	58.28	-6.71	51.57	74.00	54.00	PASS				
ouz.11y			Hig	h Channel 24	462MHz							
	Н	2483.50	58.24	-6.79	51.45	74.00	54.00	PASS				
	Н	2500.00	53.59	-6.81	46.78	74.00	54.00	PASS				
	V	2483.50	58.45	-6.79	51.66	74.00	54.00	PASS				
	V	2500.00	54.55	-6.81	47.74	74.00	54.00	PASS				

Remark:

1. Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

	Polar (H/V)	Frequency (MHz)	Reading Level	Correct Factor	Measure- ment (dBuV/m)	Limits (dBuV/m)		Result
	(11/1/)	(1411 12)	(dBuV/m)	(dB)	РК	PK	AV	
			Lov	w Channel 24	412MHz	L		
	Н	2390.00	53.41	-6.70	46.71	74.00	54.00	PASS
	Н	2400.00	56.76	-6.71	50.05	74.00	54.00	PASS
	V	2390.00	53.19	-6.70	46.49	74.00	54.00	PASS
802.11	V	2400.00	56.54	-6.71	49.83	74.00	54.00	PASS
n20			Hig	h Channel 24	462MHz			
	Н	2483.50	57.22	-6.79	50.43	74.00	54.00	PASS
	Н	2500.00	50.86	-6.81	44.05	74.00	54.00	PASS
	V	2483.50	55.97	-6.79	49.18	74.00	54.00	PASS
	V	2500.00	52.58	-6.81	45.77	74.00	54.00	PASS
			Lov	w Channel 24	422MHz			
	Н	2390.00	53.98	-6.70	47.28	74.00	54.00	PASS
	Н	2400.00	58.04	-6.71	51.33	74.00	54.00	PASS
	V	2390.00	53.20	-6.70	46.50	74.00	54.00	PASS
802.11	V	2400.00	57.52	-6.71	50.81	74.00	54.00	PASS
n40			Hig	h Channel 24	452MHz			
	Н	2483.50	56.09	-6.79	49.30	74.00	54.00	PASS
	Н	2500.00	52.32	-6.81	45.51	74.00	54.00	PASS
	V	2483.50	55.65	-6.79	48.86	74.00	54.00	PASS
	V	2500.00	52.98	-6.81	46.17	74.00	54.00	PASS

Remark:

1. Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level – Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

9. Power Spectral Density Test

9.1 Block Diagram Of Test Setup

9.2 Limit

FCC Part15 (15.247) , Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS				

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

9.3 Test Procedure

1. Set analyzer center frequency to DTS channel center frequency.

- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

9.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

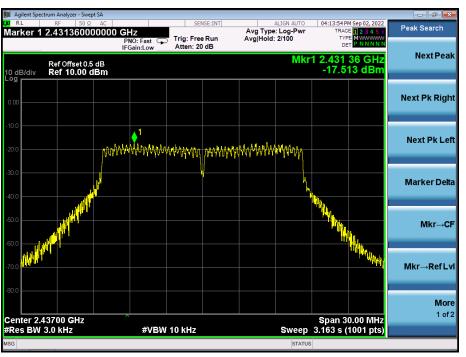
9.5 Test Result

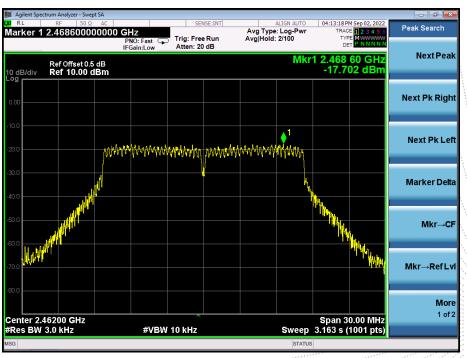
Temperature :	26°C	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	DC 5V

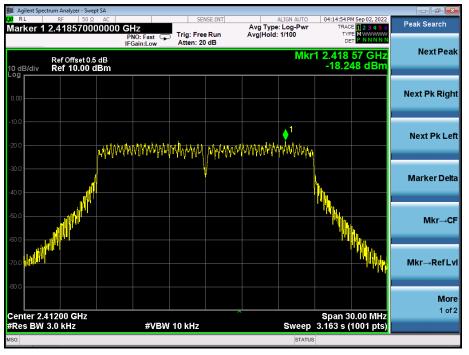
Mode	Frequency	Power Spectral Density(dBm/3kHz)	Limit (dBm/3kHz)	Result
	2412 MHz	-17.439	8	PASS
В	2437 MHz	-17.134	8	PASS
	2462 MHz	-17.178	8	PASS
	2412 MHz	-17.364	8	PASS
G	2437 MHz	-17.513	8	PASS
	2462 MHz	-17.702	8	PASS
	2412 MHz	-18.248	8	PASS
N20	2437 MHz	-17.882	8	PASS
	2462 MHz	-16.961	8	PASS
	2422 MHz	-20.351	8	PASS
N40	2437 MHz	-21.679	8	PASS
	2452 MHz	-21.169	8	PASS

TX CH06

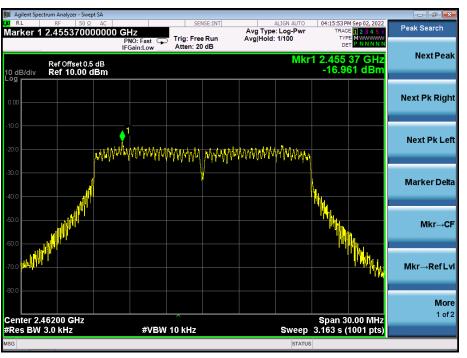



TX CH11




TX CH06

TX CH11



TX CH06



TX CH11


N40 Mode TX CH03

TX CH09

10. Bandwidth Test

10.1 Block Diagram Of Test Setup

10.2 Limit

		FCC Part15 (15.247) , Subpart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

10.3 Test Procedure

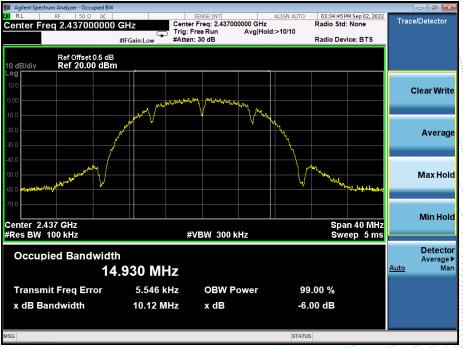
- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

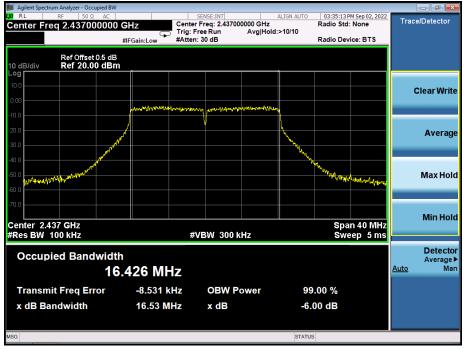
10.5 Test Result


Temperature :	26°C	Re	elative H	lumidity :	54%	
Pressure :	101kPa	Τe	est Volta	ige :	DC 5V	
Mode	Frequency (MHz)	6dB bandw (MHz)	ridth	Limi (kHz		Result
	2412	10.12		500)	Pass
В	2437	10.12		500		Pass
	2462	10.12		500		Pass
	2412	16.54		500		Pass
G	2437	16.53		500	1	Pass
	2462	16.53		500		Pass
	2412	17.67		500		Pass
N20	2437	17.67		500		Pass
	2462	17.66		500		Pass
	2422	36.45		500		Pass
N40	2437	36.44		500		Pass
	2452	36.40		500	1	Pass

B Mode TX CH 01

TX CH 06

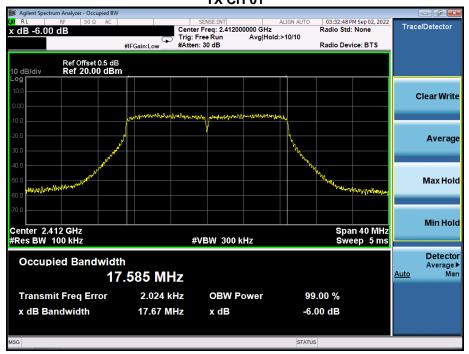
TX CH 11



G Mode TX CH 01



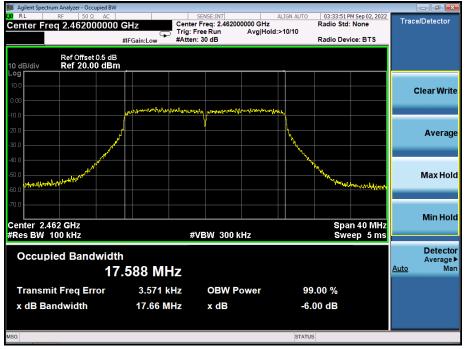
TX CH 06



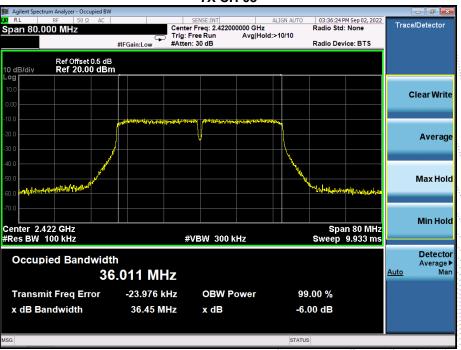
TX CH 11



N20 Mode TX CH 01



TX CH 06



TX CH 11



N40 Mode TX CH 03

TX CH 06

TX CH 09

11. Peak Output Power Test

11.1 Block Diagram Of Test Setup

11.2 Limit

		FCC Part15 (15.247)	, Subpart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

11.3 Test Procedure

a. The EUT was directly connected to the Power meter

11.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

Page: 46 of 68

11.5 Test Result

Temperature :	26 °C		Relative Humidity :	54%
Pressure :	101kPa		Test Voltage :	DC 5V
		Frequency	Maximum Condu Output Power(PK)	
		(MHz)	(dBm)	dBm
		2412	12.68	30
802.11b		2437	12.94	30
		2462	12.97	30
		2412	11.23	30
802.11g		2437	11.28	30
		2462	11.28	30
		2412	10.04	30
802.11n20	0	2437	10.16	30
		2462	10.25	30
		2422	9.30	30
802.11n40	0	2437	9.43	30
		2452	9.45	30

12. 100 KHz Bandwidth Of Frequency Band Edge

12.1 Block Diagram Of Test Setup

12.2 Limit

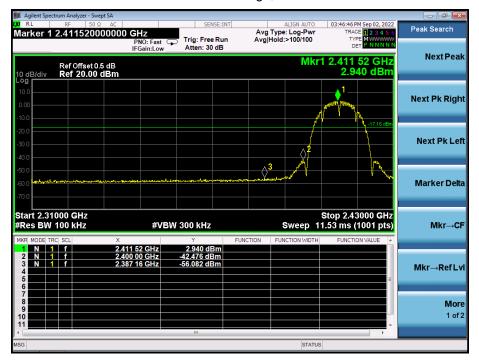
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

12.3 Test Procedure

Using the following spectrum analyzer setting:

- a) Set the RBW = 100KHz.
- b) Set the VBW = 300KHz.
- c) Sweep time = auto couple.
- d) Detector function = peak.
- e) Trace mode = max hold.
- f) Allow trace to fully stabilize..

12.4 EUT Operating Conditions

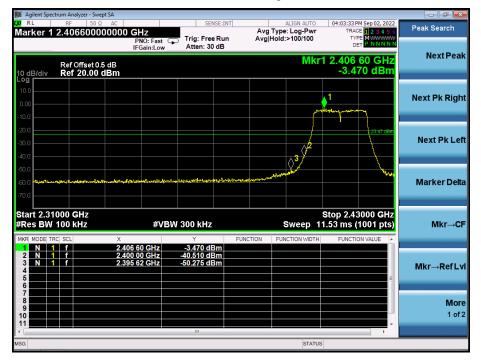

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

12.5 Test Result

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	DC 5V

802.11b: Band Edge, Left Side

802.11b: Band Edge, Right Side


802.11g: Band Edge, Left Side

802.11g: Band Edge, Right Side

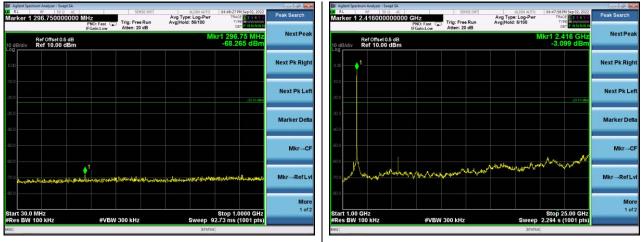
802.11n-HT20: Band Edge, Left Side

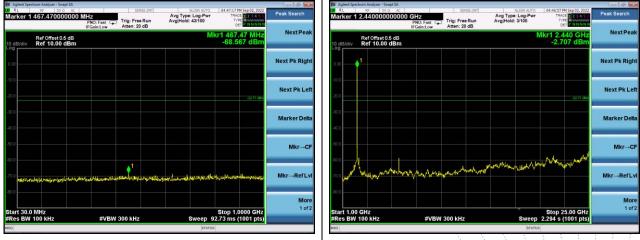
802.11n-HT20: Band Edge, Right Side



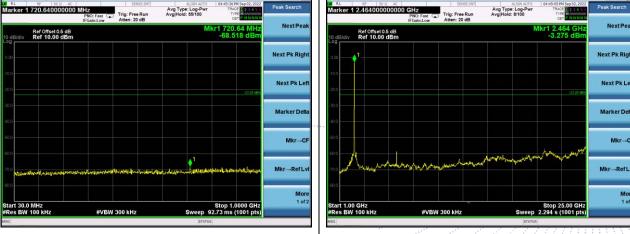
802.11n-HT40: Band Edge, Left Side

802.11n-HT40: Band Edge, Right Side


CONDUCTED EMISSION MEASUREMENT 802.11b



802.11g


Low Channel 2412MHz

Middle Channel 2437MHz

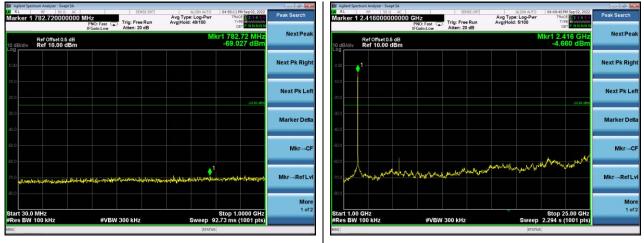
High Channel 2462MHz

NextPe

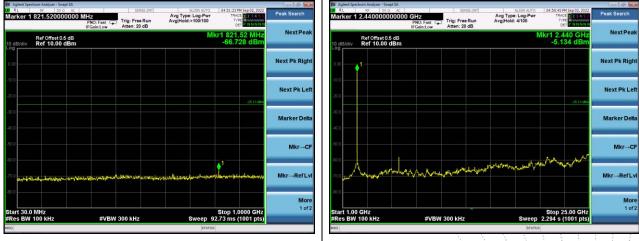
Next Pk Le

Marker De

Mkr→0


Mkr-Refl

More 1 of 3




802.11 n20

Low Channel 2412MHz

Middle Channel 2437MHz

High Channel 2462MHz

#VBW 300 kHz

Report No.: BCTC2208245828E

Peak Sear

NextPe

Next Pk Rig

Next Pk Le

Marker De

Mkr→C

More 1 of 3

Mkr→RefL

Stop 25.00 GHz 2.294 s (1001 pts

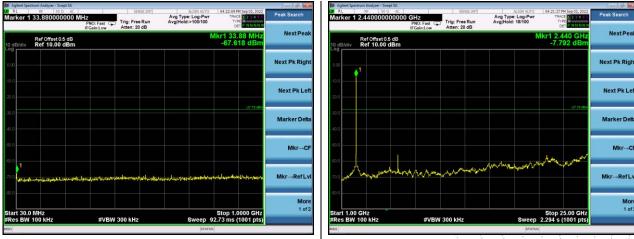
802.11 n40

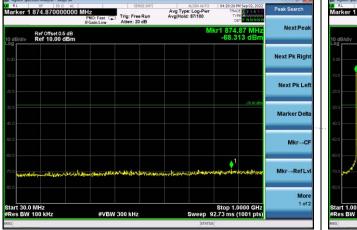
30.0 M

Ref Offset 0.5 dB Ref 10,00 dBm

Aglent Spectrum Analytic song RL Song Song Act Marker 1 2.4160000000000 GHz PROFest Ow Atten: 20 dB Agrees appendix RF 50 R AC arker 1 457.7700000000 MHz PNO: Fast C Trig: Free Run Atten: 20 dB Peak Search Aug Type: Log-Pwr Avg[Hold:>100/100 Avg Type: Log-Pwr Avg|Hold: 12/100 NextPe 1 457.77 I Ref Offset 0.5 dB Ref 10.00 dBm 1 2.416 (-8.489 d Next Pk Righ Next Pk Lef Marker Del Mkr-C <p¹ Mkr→RefLv

art 1.00 GHz es BW 100 k


#VBW 300 kHz


Low Channel 2422MHz

More 1 of 2

Stop 1.000 92.73 ms (100

High Channel 2452MHz

13. Duty Cycle Of Test Signal

13.1 Standard Requirement

Pre-analysis Check: While conducting average power measurement, duty cycle of each mode shall be checked to ensure its duty cycle in order to compensate for the loss due to insufficient ratio of duty cycle. All duty cycle is pre-scanned, and result as obtained below shows only the most representative ones where duty cycle is conducted as the given transmission with given virtual operation that expresses the percentage.

13.2 Formula

Duty Cycle = Ton / (Ton+Toff)

13.3 Test Procedure

1.Set span = Zero

2. RBW = 8MHz

3. VBW = 8MHz,

4. Detector = Peak

13.4 Test Result

	Duty Cycle	Duty Fator (dB)
802.11b	1	0
802.11g	1	0
802.11n(HT20)	1	0
802.11n(HT40)	1	0

Agilent Spectrum Analyzer - Swept S/ R.L RF 50 Ω				ALIGN AUTO		07:28:1	0 PM Aug 23, 2022
enter Freq 2.412000		Fast ↔→ Trig:	Free Run en: 30 dB		e: Log-Pwr	Т	RACE 12345 TYPE WWWWW DET PNNNN
Ref Offset 2.35 dB/div Ref 20.00 dB	dB					Mkr1	50.00 ms 3.79 dBm
			↓1				L
0							
.0							
.0							
.0							
.0							
.0							
enter 2.412000000 GH es BW 8 MHz	z	#VBW 8.0 I	MHz		Sweep	100.0 ms	Span 0 Hz (10001 pts)
N 1 t	× 50.00 ms	Ƴ 8.79 dBm	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	A
							=
				CTATUS			
	Du	itv Cvcle NVI		status 7MHz Ant1			,
			NT b 243			07:28:3	7 PM Aug 23, 2022
RL RF 50 Ω	A AC 000 GHz	SENSE:INT	NT b 243	7MHz Ant1 ALIGN AUTO	e: Log-Pwr	07:28:3 T	
RL RF 50 Ω nter Freq 2.4370000	A AC OOO GHz PNO: IFGair dB	SENSE:INT	NT b 243 Free Run	7MHz Ant1 ALIGN AUTO	e: Log-Pwr	™ Mkr1	7 PM Aug 23, 202 RACE 1 2 3 4 5 TYPE WWWWWW DET P. N.N.N. 50.00 ms
RL RF 50 0 Inter Freq 2.4370000 Ref Offset 2.36 dB/div Ref 20.00 dB	A AC OOO GHz PNO: IFGair dB	SENSE:INT	NT b 243 Free Run	7MHz Ant1 ALIGN AUTO	e: Log-Pwr	™ Mkr1	7 PM Aug 23, 2022 RACE 1 2 3 4 5 TYPE WWWWW DET P NNNN
RL RF 50.0 Inter Freq 2.4370000 Ref Offset 2.36 dB/div Ref 20.00 dB 9 0	A AC OOO GHz PNO: IFGair dB	SENSE:INT	NT b 243 Free Run m: 30 dB	7MHz Ant1 ALIGN AUTO	e: Log-Pwr	™ Mkr1	7 PM Aug 23, 2027 RACE 1 2 3 4 5 TYPE WWWWWW DET P. N.N.N.N. 50.00 ms
Ref Offset 2.36 dB/div Ref 20.00 dB	A AC OOO GHz PNO: IFGair dB	SENSE:INT	NT b 243 Free Run m: 30 dB	7MHz Ant1 ALIGN AUTO	e: Log-Pwr	™ Mkr1	7 PM Aug 23, 2027 RACE 1 2 3 4 5 TYPE WWWWWW DET P. N.N.N.N. 50.00 ms
RL RF 50.0 ////////////////////////////////////	A AC OOO GHz PNO: IFGair dB	SENSE:INT	NT b 243 Free Run m: 30 dB	7MHz Ant1 ALIGN AUTO	e: Log-Pwr	™ Mkr1	7 PM Aug 23, 2027 RACE 1 2 3 4 5 TYPE WWWWWW DET P. N.N.N.N. 50.00 ms
Ref Offset 2.36 Bef Offset 2.36 Bef 20.00 dB Control of the set	A AC OOO GHz PNO: IFGair dB	SENSE:INT	NT b 243 Free Run m: 30 dB	7MHz Ant1 ALIGN AUTO	e: Log-Pwr	™ Mkr1	7 PM Aug 23, 2027 RACE 1 2 3 4 5 TYPE WWWWWW DET P. N.N.N.N. 50.00 ms
Ref Offset 2.36 Bef Offset 2.36 Bef 20.00 dB	A AC OOO GHz PNO: IFGair dB	SENSE:INT	NT b 243 Free Run m: 30 dB	7MHz Ant1 ALIGN AUTO	e: Log-Pwr	™ Mkr1	7 PM Aug 23, 2027 RACE 1 2 3 4 5 TYPE WWWWWW DET P. N.N.N.N. 50.00 ms
RL RF 50.0 Inter Freq 2.4370000	A AC OOO GHz PNO: IFGair dB	SENSE:INT	NT b 243 Free Run m: 30 dB	7MHz Ant1 ALIGN AUTO	e: Log-Pwr	™ Mkr1	7 PM Aug 23, 2027 RACE 1 2 3 4 5 TYPE WWWWWW DET P. N.N.N.N. 50.00 ms
RL RF 50.0 Inter Freq 2.4370000	A AC 000 GHz PNO: IFGair dB 300 200 200 200 200 200 200 200 200 200	SENSE:INT	NT b 243	7MHz Ant1 ALIGN AUTO		T Mkr1 10	7 PM Aug 23, 2027 RACE 1 2 3 4 5 TYPE WWWWWW DET P. N.N.N.N. 50.00 ms
RL RF 50.0 nter Freq 2.4370000 nter Freq 2.4370000 dB/div Ref 0ffset 2.36 dB/div Ref 20.00 dB 0	A AC DOO GHZ PNC: IFGair dB B M I I I I I I I I	SENSE:INT Fast →→ Trig: #Atte #Atte #VBW 8.0 I	NT b 243	7MHz Ant1 ALIGN AUTO	Sweep	T Mkr1 10	7 PM Aug 23, 2022 ACE 2 3 4 5 6 TYPE WINNIN 50.000 ms 0.18 dBm
RL RF 50.0 Inter Freq 2.4370000 Ref Offset 2.36 B/div Ref 20.00 dB Ref Ref 20.00 dB R Ref R Ref R R R R R R	A AC 000 GHz PNO: IFGair dB 30 20 20 20 20 20 20 20 20 20 20 20 20 20	SENSE:INT Fast → Trig: Llow #Atte	NT b 243 Free Run m: 30 dB		Sweep	Mkr1 10 100.0 ms	7 PM Aug 23, 2022 ACE 2 3 4 5 6 TYPE WINNIN 50.000 ms 0.18 dBm
RL RF 50.0 Inter Freq 2.4370000 Ref Offset 2.36 dB/div Ref 20.00 dB 9	A AC DOO GHZ PNC: IFGair dB B M I I I I I I I I	SENSE:INT Fast →→ Trig: #Atte #Atte #VBW 8.0 I	NT b 243 Free Run m: 30 dB		Sweep	Mkr1 10 100.0 ms	7 PM Aug 23, 2022 ACE 2 3 4 5 6 TYPE WINNIN 50.000 ms 0.18 dBm
RL RF 50.0 Inter Freq 2.4370000 Ref Offset 2.36 dB/div Ref 20.00 dB 0 0 0	A AC DOO GHZ PNC: IFGair dB B M I I I I I I I I	SENSE:INT Fast →→ Trig: #Atte #Atte #VBW 8.0 I	NT b 243 Free Run m: 30 dB		Sweep	Mkr1 10 100.0 ms	7 PM Aug 23, 2022 ACE 2 3 4 5 6 TYPE WINNIN 50.000 ms 0.18 dBm
Ref 50.0 nter Freq 2.4370000 B/div Ref 20.00 dB B 0 0 C 0 0 D 0	A AC DOO GHZ PNC: IFGair dB B M I I I I I I I I	SENSE:INT Fast →→ Trig: #Atte #Atte #VBW 8.0 I	NT b 243 Free Run m: 30 dB		Sweep	Mkr1 10 100.0 ms	7 PM Aug 23, 20 7 PM Aug 23, 20 7 PM Aug 23, 20 7 PM Aug 23, 20 7 PM Aug 23, 20 12 3 4 5 7 PM Aug 23, 20 12 4 5 7 PM Aug 24 12 4 5 7 PM Aug 24 12 4 5 7 PM Aug 24 12 7 PM Aug 24
Ref 50 Q Inter Freq 2.4370000 Inter Freq 2.4370000 IB/div Ref 20.00 dB IB/div Inter 2.437000000 GH IS BW 8 MHz Inter 2.437000000 GH INDE TRC SCL N N I	A AC DOO GHZ PNC: IFGair dB B M I I I I I I I I	Fast → Trig: Flow #Atte #VBW 8.0 I Y 10.18 dBm	NT b 243 Free Run m: 30 dB		Sweep	Mkr1 10 100.0 ms	7 PM Aug 23, 2027

Agilent Spectrum Analyzer - Swept 5 RL RF 50 Ω	AC	SE	NSE:INT	ALIGN AUTO		07:28:5	4 PM Aug 23, 2022
enter Freq 2.462000	Р	NO: Fast ↔→ Gain:Low	Trig: Free Run #Atten: 30 dB	Avg Ty	e: Log-Pwr	т	RACE 123456 TYPE WWWWWW DET PNNNNN
Ref Offset 2.39	dB					Mkr1	50.00 ms 0.19 dBm
dB/div Ref 20.00 dE	3m		<u> </u>). 19 aBm
).0							
.00							
.0							
.0							
.0							
.0							
.0							
enter 2.462000000 GH							Span 0 Hz
es BW 8 MHz	12	#VBW	/ 8.0 MHz		Sweep	100.0 ms	(10001 pts)
N 1 t	× 50.00 ms	Y 10.19 d	FUNCTION Bm	FUNCTION WIDTH	F	UNCTION VALUE	<u> </u>
							=
							-
				STATUS			
		Duty Cycle	NVNT g 24				
	SA		Ť	12MHz Ant1		07-20-5	6 PM Aug 23 2022
RL RF 50 Ω	AC 0000 GHz	SE	INSE:INT	12MHz Ant1	De: Log-Pwr	TI	6 PM Aug 23, 2022
RL RF 50 Ω	sa AC 10000 GHz PI		Ť	12MHz Ant1	e: Log-Pwr	TI	6 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE DET P N N N N
RL RF 50Ω enter Freq 2.412000	AC DOOO GHZ PIFO	SE NO: Fast ↔	NSE:INT Trig: Free Run	12MHz Ant1	De: Log-Pwr	Mkr1	6 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWW DET PNNNNN 50.00 ms
RL RF 50 Ω enter Freq 2.412000 Ref Offset 2.35 dB/div Ref 20.00 dE	AC DOOO GHZ PI IF0 dB Bm	SE NO: Fast ↔ Gain:Low	Trig: Free Run #Atten: 30 dB	12MHz Ant1 Align auto Avg Tyj		Mkr1	6 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N 50.00 ms 0.65 dBm
RL RF 50 Ω Inter Freq 2.412000 Ref Offset 2.35 Bef Offset 2.35 Ref 20.00 dB 9 9 9 9 9 9 9 9	AC DOOO GHZ PI IF0 dB Bm	SE NO: Fast ↔ Gain:Low	Trig: Free Run #Atten: 30 dB	12MHz Ant1 Align auto Avg Tyj		۳ Mkr1 1	6 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N 50.00 ms 0.65 dBm
RL RF 50 Ω Inter Freq 2.412000 Ref Offset 2.35 Ref Offset 2.35 αB/div Ref 20.00 dB Ref 20.00 dB 9	AC DOOO GHZ PI IF0 dB Bm	SE NO: Fast ↔ Gain:Low	Trig: Free Run #Atten: 30 dB	12MHz Ant1 Align auto Avg Tyj		۳ Mkr1 1	6 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N 50.00 ms 0.65 dBm
RL RF 50 Ω Inter Freq 2.412000 Ref Offset 2.35 αB/div Ref 20.00 dB 9 9 10 9 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <th10< th=""> <th10< th=""> <th10< th=""></th10<></th10<></th10<>	AC DOOO GHZ PI IF0 dB Bm	SE NO: Fast ↔ Gain:Low	Trig: Free Run #Atten: 30 dB	12MHz Ant1 Align auto Avg Tyj		۳ Mkr1 1	6 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N 50.00 ms 0.65 dBm
RL RF 50 Ω Inter Freq 2.412000 Ref Offset 2.35 Bef Offset 2.35 Ref 20.00 dE 9 9 9 100 100 100 0 100 100 0 100 100 0 100 100 0 100 100 0 100 100 0 100 100 0 100 100	AC DOOO GHZ PI IF0 dB Bm	SE NO: Fast ↔ Gain:Low	Trig: Free Run #Atten: 30 dB	12MHz Ant1 Align auto Avg Tyj		۳ Mkr1 1	6 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N 50.00 ms 0.65 dBm
RL RF 50 Ω Inter Freq 2.412000 Ref Offset 2.35 dB/div Ref 20.00 dB 9 9 9 9 10 1000000000000000000000000000000000000	AC DOOO GHZ PI IF0 dB Bm	SE NO: Fast ↔ Gain:Low	Trig: Free Run #Atten: 30 dB	12MHz Ant1 Align auto Avg Tyj		۳ Mkr1 1	6 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N 50.00 ms 0.65 dBm
RL RF 50 Ω Inter Freq 2.412000 Ref Offset 2.35 Ref Offset 2.35 B/div Ref 20.00 dE Ref 20.00 dE 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <th10< th=""> 10 <th10< th=""></th10<></th10<>	AC DOOO GHZ PI IF0 dB Bm	SE NO: Fast ↔ Gain:Low	Trig: Free Run #Atten: 30 dB	12MHz Ant1 Align auto Avg Tyj		۳ Mkr1 1	6 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N 50.00 ms 0.65 dBm
RL RF 50 Q Inter Freq 2.412000 Ref Offset 2.35 Ref 20.00 dE B S S S B S S S S B S S S S S B S <th< td=""><td>AC DOOO GHZ PI IF0 dB Bm</td><td>SE NO: Fast ↔ Gain:Low</td><td>Trig: Free Run #Atten: 30 dB</td><td>12MHz Ant1 Align auto Avg Tyj</td><td></td><td>۳ Mkr1 1</td><td>6 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N 50.00 ms 0.65 dBm</td></th<>	AC DOOO GHZ PI IF0 dB Bm	SE NO: Fast ↔ Gain:Low	Trig: Free Run #Atten: 30 dB	12MHz Ant1 Align auto Avg Tyj		۳ Mkr1 1	6 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N 50.00 ms 0.65 dBm
RL RF 50 Q Inter Freq 2.412000 Ref Offset 2.35 dB/div Ref 20.00 dE 9	SA AC D0000 GHz PI IFG AB BM AB AC AC AC AC AC AC AC AC AC AC	SE NO: Fast ↔ Gain:Low	Trig: Free Run #Atten: 30 dB	12MHz Ant1 Align auto Avg Tyj			6 PMAU 23, 2022 RACE 12, 23 4, 3 6 DET P NNNNN 50.00 ms 0.65 dBm
RL PF 50 Ω Inter Freq 2.412000 B/div Ref 20.00 dB C C C C C C C C C C C C C C C C C C C	SA AC D0000 GHz PIFO S dB BM SM SM SM SM SM SM SM SM SM S	NO: Fast Gain:Low	INSE:INT		Sweep	TI Mkr1 10 100.0 ms	6 PMAUR 23, 2022 MAGE (1, 2, 3, 4, 5) THE P NNNNN 50.00 ms 0.65 dBm
RL PF 50 Ω Inter Freq 2.412000 Ref Offset 2.35 Ref 20.00 dF Ref Offset 2.35 Ref 20.00 dF Ref 20.00 dF Ref 0 frset 2.35 Ref 20.00 dF Ref 20.00 dF Ref 0 frset 2.35 Ref 20.00 dF Ref 20.00 dF Ref 0 frset 2.35 Ref 20.00 dF Ref 20.00 dF Ref 0 frset 2.35 Ref 20.00 dF Ref 20.00 dF Ref 0 frset 2.35 Ref 20.00 dF Ref 20.00 dF Ref 0 frset 2.35 Ref 20.00 dF Ref 20.00 dF Ref 0 frset 2.35 Ref 20.00 dF Ref 20.00 dF Ref 0 frset 2.35 Ref 20.00 dF Ref 20.00 dF Ref 0 frset 2.35 Ref 20.00 dF Ref 20.00 dF Ref 0 frset 2.35 Ref 20.00 dF Ref 20.00 dF R MODE TRC SCL R MODE TRC SCL R MODE TRC SCL	SA AC D0000 GHz PI IFG AB BM AB AC AC AC AC AC AC AC AC AC AC	NO: Fast Gain:Low	INSE:INT	12MHz Ant1 Align auto Avg Tyj	Sweep		6 PMAU 23, 2022 RACE 12, 23 4, 3 6 DET P NNNNN 50.00 ms 0.65 dBm
RL PF 50.0. Inter Freq 2.412000 Ref Offset 2.35 B/div Ref 20.00 dB Image: State of the state	SA AC AC AC P P P P P P P P P P P P P	NO: Fast Gain:Low #VBW	INSE:INT		Sweep	TI Mkr1 10 100.0 ms	6 PMAU 23, 2022 RACE 12, 23 4, 3 6 DET P NNNNN 50.00 ms 0.65 dBm
RL RF 50 Q Inter Freq 2.412000 Ref Offset 2.35 Ref 20.00 dE BU/div Ref 20.00 dE Ref 20.00 dE G Image: State of the stat	SA AC AC AC P P P P P P P P P P P P P	NO: Fast Gain:Low #VBW	INSE:INT		Sweep	TI Mkr1 10 100.0 ms	6 PMAU 23, 2022 RACE 12, 23 4, 3 6 DET P NNNNN 50.00 ms 0.65 dBm
RL PF 50 Q enter Freq 2.412000 Ref Offset 2.35 dB/div Ref 20.00 dE 9	SA AC AC AC P P P P P P P P P P P P P	NO: Fast Gain:Low #VBW	INSE:INT		Sweep	TI Mkr1 10 100.0 ms	6 PMAU 23, 2022 RACE 12, 23 4, 3 6 DET P NNNNN 50.00 ms 0.65 dBm
Ref Offset 2.35 dB/div Ref 20.00 dB	SA AC AC AC P P P P P P P P P P P P P	NO: Fast Gain:Low #VBW	INSE:INT		Sweep	TI Mkr1 10 100.0 ms	6 PMAU 23, 2022 RACE 12, 23 4, 3 6 DET P NNNNN 50.00 ms 0.65 dBm

gilent Spectrum Analyzer - Swept S		Ity Cycle NVN					
RL RF 50 Ω nter Freg 2.437000	AC 0000 GHz	SENSE:INT		ALIGN AUTO Avg Type: I	_og-Pwr	TI	6 PM Aug 23, 2022 RACE 1 2 3 4 5 6
		rust -	Free Run n: 30 dB				
Ref Offset 2.36	dB					Mkr1	50.00 ms 9.79 dBm
dB/div Ref 20.00 dE) 1			a subble second state	9.79 abm
	n de ferende de la servicie de la composition de la provisión de la servicie de la servic						
]							
D							
nter 2.437000000 GH	łz	#VDW 0.0.0	Al 1-		0	100.0	Span 0 Hz
S BW 8 MHZ	X	#VBW 8.0 M		FUNCTION WIDTH		INCTION VALUE	(10001 pts)
N 1 t	50.00 ms	9.79 dBm					
							==
							-
			1	STATUS			•
	Di	ity Cycle NVN	JT a 2462'				
gilent Spectrum Analyzer - Swept S	SA		<u> </u>				
RL RF 50 Ω nter Freq 2.462000	0000 GHz	SENSE:INT	Free Run	ALIGN AUTO Avg Type: I	_og-Pwr	TI	4 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE W
	IFGair		n: 30 dB				TYPE WWWWWW DET PNNNNN
Ref Offset 2.39 B/div Ref 20.00 dB	dB Bm						50.00 ms 0.27 dBm
0							
·							
)) 							
nter 2.462000000 GH	1z	#VBW 8.0 M	ЛН2		Sweep	100.0 ms	Span 0 Hz (10001 pts)
nter 2.462000000 GF 5 BW 8 MHz	X	#VBW 8.0 M		FUNCTION WIDTH		100.0 ms	Span 0 Hz (10001 pts)
nter 2.462000000 GH s BW 8 MHz				FUNCTION WIDTH			
nter 2.462000000 GF s BW 8 MHz	X	Y		FUNCTION WIDTH			
nter 2.462000000 GH s BW 8 MHz	X	Y		FUNCTION WIDTH			
nter 2.462000000 GH s BW 8 MHz	X	Y		FUNCTION WIDTH			
nter 2.462000000 GH s BW 8 MHz	X	Y		FUNCTION WIDTH			

Agilent Spectrum Analyzer - Swept SA R L RF 50 Ω	AC	SENSE	E:INT	ALIGN AUTO		07:32:4	💷 🗗 💌
nter Freq 2.4120000	PNO	:Fast ⊶⊶ T n:Low #	rig: Free Run Atten: 30 dB	Avg Type	: Log-Pwr	т	RACE 123456 TYPE WWWWWW DET PNNNNN
Ref Offset 2.35 d dB/div Ref 20.00 dB						Mkr1	50.00 ms 0.50 dBm
9 0 relatives to one of the ten table	til den het en den det de la det de la stal	al Dubast das surena deba das		and the standard state of the state	والمراجع والمراجع والمراجع	a de la proposition de la constante	a la a la bala di data di puesta di assessa da la
0 other the second participant of the state programme						i di di cumula di sca di ana da serata set	il in internet and a state of the state
o							
0							
0							
0							
0							
0							
nter 2.412000000 GH s BW 8 MHz	z	#VBW 8	.0 MHz		Sweep	100.0 ms	Span 0 Hz (10001 pts)
N 1 t	× 50.00 ms	۲ 10.50 dBn	FUNCTION	FUNCTION WIDTH	FI	JNCTION VALUE	<u>^</u>
	50.00 1115	10.50 0.51					
							=
				STATUS			
		ty Cycle N\	/NT n20 24	37MHz Ant1			
Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω		SENSE	E:INT	ALIGN AUTO			51 PM Aug 23, 2022
nter Freq 2.4370000	PNO		rig: Free Run Atten: 30 dB	Avg Type	: Log-Pwr	т	RACE 1 2 3 4 5 6 TYPE WWWWWWW DET P NNNN
D-6.0%+0.26		n:Low #/				Mkr1	
	dB	n:Low #/				Mkr1 1	50.00 ms 0.68 dBm
Ref Offset 2.36 dB/div Ref 20.00 dB	dB	n:Low #4		resource (Marci Auro Sherry Ar 655,000) And Sherry Ar Andrew Sherry Ar 655,000 (Marci Ar 100)	adıyını dekeş bereş bereş belidi. Adıyını dekeş bereş beş beş beş beş beş beş beş beş beş b	Mkr1 10	50.00 ms
dB/div Ref 20.00 dB	dB	n:Low #J		gagan gidi ng kang kang di Katang kang Li dang di pang kang di kang di kang di kang di	nagan taka Jene Janu Julia Para taka Juga Kana Julia	Mkr1 1(50.00 ms
dB/div Ref 20.00 dB	dB			zenneg (dago) kong keng keng keng keng keng keng keng ke	nagan takeg bere basa bili b	Mkr1 1(50.00 ms
dB/div Ref 20.00 dB	dB			enne chi chim key Middad ang		Mkr1 1	50.00 ms
dB/div Ref 20.00 dB	dB					Mkr1 10	50.00 ms
dB/div Ref 20.00 dB	dB						50.00 ms
dB/div Ref 20.00 dB	dB					Mkr1 10	50.00 ms
Image: style Image: style<						Mkr1 10	50.00 ms 0.68 dBm
By div Ref 20.00 dB Image: state	dB data data su data ang bardana data data su data ang bardana data data su data ang bardana data	n:Low #	.0 MHz		· · ·	100.0 ms	50.00 ms
By div Ref 20.00 dB Image: State of the state			.0 MHz	FUNCTION WIDTH	· · ·		50.00 ms 0.68 dBm
By div Ref 20.00 dB Image: NU in the second of the s	X X	#VBW 8	.0 MHz	FUNCTION WIDTH	· · ·	100.0 ms	50.00 ms 0.68 dBm
By div Ref 20.00 dB Image: Non-State State S	X X X X X X X X X X X X X X X X X X X	#VBW 8	.0 MHz	FUNCTION WIDTH	· · ·	100.0 ms	50.00 ms 0.68 dBm
By div Ref 20.00 dB Image: State of the state	X X X X X X X X X X X X X X X X X X X	#VBW 8	.0 MHz	FUNCTION WIDTH	· · ·	100.0 ms	50.00 ms 0.68 dBm Span 0 Hz (10001 pts)
dB/div Ref 20.00 dB	X X X X X X X X X X X X X X X X X X X	#VBW 8	.0 MHz	FUNCTION WIDTH	· · ·	100.0 ms	50.00 ms 0.68 dBm Span 0 Hz (10001 pts)

Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω A				ALIGN AUTO		07:31:3	3 PM Aug 23, 2022
enter Freq 2.4620000	000 GHz PNO: IFGain	Fast ⊶⊶ Trig:F	Free Run n: 30 dB	Avg Type:	Log-Pwr	T	ACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N
Ref Offset 2.39 c	B					Mkr1	50.00 ms
dB/div Ref 20.00 dB	m		6 1			<u> </u>	9.85 dBm
1.0 person dest des des billion per des person de no		i degrade productiva productiva productiva productiva productiva productiva productiva productiva productiva p	na hari vina lata dala	tern den som den den det		l den e den bled te bere de	d state obsi dan dest de
.0							
.0							
.0							
.0							
.0							
enter 2.462000000 GHz es BW 8 MHz	2	#VBW 8.0 N	٩Hz		Sweep	100.0 ms	Span 0 Hz (10001 pts)
N 1 t	× 50.00 ms	Ƴ 9.85 dBm	FUNCTION	FUNCTION WIDTH	Fl	JNCTION VALUE	A
		0.00 0.01					
							=
				STATUS			
		y Cycle NVN1	n40 242	2MHz Ant1			
Agilent Spectrum Analyzer - Swept SA R L RF 50 Ω A	AC	SENSE:INT		ALIGN AUTO Avg Type:		07:35:2	0 PM Aug 23, 2022
enter Freq 2.4220000			Free Run n: 30 dB	Avg Type.	Log-r wi		RACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N
Ref Offset 2.35 c							50.00 ms
dB/div Ref 20.00 dB	m					ş	9.32 dBm
1.0 Arguest and the state of th					North States and States		
.0							
.0							
.0							
.0							
.0							
0 0 0 0 0 0 0 0 0 0 0 0 0 0		#VBW 8.0 M	1H7		Sween	100 0 ms	Span 0 Hz (10001 nts)
enter 2.422000000 GHz s BW 8 MHz	2 X	#VBW 8.0 N	AHz FUNCTION	FUNCTION WIDTH		100.0 ms	Span 0 Hz (10001 pts)
0 enter 2.422000000 GHz s BW 8 MHz R MODE TRC SCL N 1 t				FUNCTION WIDTH			
0 0 0 0 0 0 0 0 0 0 0 0 0 0	x	Y		FUNCTION WIDTH			(10001 pts)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x	Y		FUNCTION WIDTH			
Image: state	x	Y		FUNCTION WIDTH			(10001 pts)
0	x	Y	FUNCTION	FUNCTION WIDTH			(10001 pts)

Agilent Spectrum Analyzer - Swe R L RF 50 Ω		SENSE:	INT	ALIGN AUTO		07:35:4	8 PM Aug 23, 2022
nter Freq 2.43700	PN	0:Fast ⊶⊶ Tri	ig: Free Run tten: 30 dB		e: Log-Pwr	TF	RACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N
Ref Offset 2.	36 dB					Mkr1	50.00 ms
dB/div Ref 20.00	dBm		1			/	7.05 dBm
			n nite and a statistic of				
.0							
.0							
.0							
.0							
.0							
.0							
enter 2.437000000 (s BW 8 MHz	GHz	#VBW 8.0	0 MHz		Sweep	100.0 ms	Span 0 Hz (10001 pts)
N 1 f	x 50.00 ms	Y 7.05 dDm	FUNCTION	FUNCTION WIDTH		UNCTION VALUE	<u>^</u>
N 1 t	50.00 ms	7.05 dBm					
							=
				STATUS			
	Di	the Cuala NIV					
		ity Cycle NV	NT n40 24	52MHz Ant1			
	pt SA			ALIGN AUTO	o: Log Pug	07:36:2	4 PM Aug 23, 2022
RL RF 50 Ω	pt SA 2 AC 00000 GHz PN0	SENSE: D: Fast ↔ Tri	INT ig: Free Run	ALIGN AUTO	e: Log-Pwr	TF	
RL RF 50 Ω Inter Freq 2.45200	pt SA 2 AC DOOOO GHZ PNO IFGa	SENSE: D: Fast ↔ Tri	INT	ALIGN AUTO	e: Log-Pwr	Tr Mkr1	4 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWW DET P NNNN 50.00 ms
RL RF 50 Ω nter Freq 2.45200 Ref Offset 2: dB/div Ref 20.00	pt SA AC OOOOO GHz PNO IFGa 38 dB	SENSE: D: Fast ↔ Tri	INT ig: Free Run tten: 30 dB	ALIGN AUTO	e: Log-Pwr	Tr Mkr1	4 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWWW DET PNNNN
RL RF 50 Ω nter Freq 2.45200 Ref Offset 2: dB/div Ref 20.00 f 9 0	pt SA AC OOOOO GHz PNO IFGa 38 dB	SENSE: D: Fast ↔ Tri	INT ig: Free Run	ALIGN AUTO	e: Log-Pwr	Tr Mkr1	4 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWW DET P NNNN 50.00 ms
RL RF 50 Ω nter Freq 2.4520(Ref Offset 2: dB/div Ref 20.00 f 9 0 0 0 0 0 0 0 0 0 0 0 0 0	pt SA AC OOOOO GHz PNO IFGa 38 dB	SENSE: D: Fast ↔ Tri	INT ig: Free Run tten: 30 dB	ALIGN AUTO	e: Log-Pwr	Tr Mkr1	4 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWW DET P NNNN 50.00 ms
RL RF 50 Ω nter Freq 2.4520(Ref Offset 2: dB/div Ref 20.00 i 9 9 9 9 9 9 9 9 9 9 9 9 9	pt SA AC OOOOO GHz PNO IFGa 38 dB	SENSE: D: Fast ↔ Tri	INT ig: Free Run tten: 30 dB	ALIGN AUTO	e: Log-Pwr	Tr Mkr1	4 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWW DET P NNNN 50.00 ms
RL RF 50 Ω nter Freq 2.4520(B/div Ref 20.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	pt SA AC OOOOO GHz PNO IFGa 38 dB	SENSE: D: Fast ↔ Tri	INT ig: Free Run tten: 30 dB	ALIGN AUTO	e: Log-Pwr	Tr Mkr1	4 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWW DET P NNNN 50.00 ms
RL RF 50 Ω nter Freq 2.4520(B/div Ref 20.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	pt SA AC OOOOO GHz PNO IFGa 38 dB	SENSE: D: Fast ↔ Tri	INT ig: Free Run tten: 30 dB	ALIGN AUTO	e: Log-Pwr	Tr Mkr1	4 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWW DET P NNNN 50.00 ms
RL RF 50 Q Inter Freq 2.45200 Ref Offset 2. Ref Offset 2. Ref 20.00 G Image: State of the st	pt SA AC OOOOO GHz PNO IFGa 38 dB	SENSE: D: Fast ↔ Tri	INT ig: Free Run tten: 30 dB	ALIGN AUTO	e: Log-Pwr	Tr Mkr1	4 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWW DET P NNNN 50.00 ms
RL RF 50 Ω Inter Freq 2.45200 Ref Offset 2.3 dB/div Ref 20.00 0	pt SA AC OOOOO GHz PNO IFGa 38 dB	SENSE: D: Fast ↔ Tri	INT ig: Free Run tten: 30 dB	ALIGN AUTO	E Log-Pwr	Tr Mkr1	4 PM Aug 23, 2022 RACE 1 2 3 4 5 6 TYPE WWWWW DET P NNNN 50.00 ms
RL RF 50 Q Inter Freq 2.45200 Ref Offset 2. BIdiv Ref 20.00 (Image: State of the state of t	pt SA AC D00000 GHz PNt IFGa 38 dB dBm	SENSE: D: Fast Tri ain:Low +A	int diama di anticologia di anticologica di anticolo	ALIGN AUTO			4 PMAU9 23, 2022 RAGE 11 23 4 5 6 DET P NNNNN 50.00 ms 9.15 dBm
RL RF 50 Q Inter Freq 2.45200 Ref Offset 2. B/div Ref 20.00 d 0	pt SA AC DO0000 GHz PNt IFGa 38 dB dBm dBm GHz	SENSE: D: Fast →→ Tri ain:Low → #A	int international internationa		Sweep	Tr Mkr1 S No. successory 100.0 ms	4 PMAug 23, 2022 Mace [] 23 4 5 6 Det P NNNNN 50.00 ms 9.15 dBm
RL RF 50 Q nter Freq 2.45200 Ref Offset 2: dB/div Ref 20.00 f 0	pt SA AC D00000 GHz PNt IFGa 38 dB dBm	SENSE: D: Fast Tri ain:Low +A	int interest in the second sec	ALIGN AUTO	Sweep		4 PMAU9 23, 2022 RAGE 11 23 4 5 6 DET P NNNNN 50.00 ms 9.15 dBm
RL RF 50 Q Inter Freq 2.45200 Ref Offset 2: B/div Ref 20.00 d Image: Second	pt SA AC DO0000 GHz PNC IFGa 38 dB dBm 4 4 4 4 4 4 4 4 4 4 4 4 4	SENSE: D: Fast \rightarrow Tri ain:Low $+$ #A	int interest in the second sec		Sweep	Tr Mkr1 S No. successory 100.0 ms	4 PMAU9 23, 2022 RAGE 11 23 4 5 6 DET P NNNNN 50.00 ms 9.15 dBm
RL RF 50 Q Inter Freq 2.45200 Ref Offset 2: dB/div Ref 20.00 (g	pt SA AC DO0000 GHz PNC IFGa 38 dB dBm 4 4 4 4 4 4 4 4 4 4 4 4 4	SENSE: D: Fast \rightarrow Tri ain:Low $+$ #A	int interest in the second sec		Sweep	Tr Mkr1 S No. successory 100.0 ms	4 PMAU9 23, 2022 RAGE 11 23 4 5 6 DET P NNNNN 50.00 ms 9.15 dBm
RL RF 50 Q Inter Freq 2.45200 Ref Offset 2: B/div Ref 20.00 f Image: Second	pt SA AC DO0000 GHz PNC IFGa 38 dB dBm 4 4 4 4 4 4 4 4 4 4 4 4 4	SENSE: D: Fast \rightarrow Tri ain:Low $+$ #A	int interest in the second sec		Sweep	Tr Mkr1 S No. successory 100.0 ms	4 PMAU9 23, 2022 RAGE 11 23 4 5 6 DET P NNNNN 50.00 ms 9.15 dBm
RL RF 50 Q Inter Freq 2.45200 Ref Offset 2: dB/div Ref 20.00 (0	pt SA AC DO0000 GHz PNC IFGa 38 dB dBm 4 4 4 4 4 4 4 4 4 4 4 4 4	SENSE: D: Fast \rightarrow Tri ain:Low $+$ #A	int interest in the second sec		Sweep	Tr Mkr1 S No. successory 100.0 ms	4 PMAU9 23, 2022 RAGE 11 23 4 5 6 DET P NNNNN 50.00 ms 9.15 dBm

14. Antenna Requirement

14.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

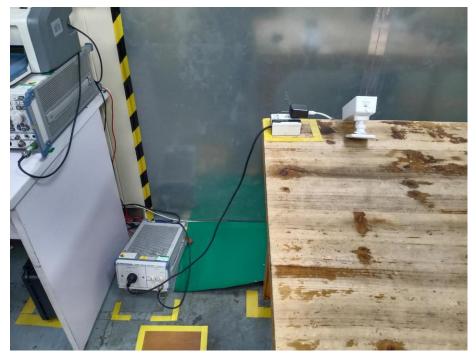
14.2 Test Result

The EUT antenna is Internal antenna, fulfill the requirement of this section.

15. EUT Photographs

EUT Photo 1

EUT Photo 2


No.: BCTC/RF-EMC-005

Page: 65 of 68

16. EUT Test Setup Photographs

Conducted emissions Photo

Radiated Measurement Photos

Page: 66 of 68

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without the "special seal for inspection and testing".

4. The test report is invalid without the signature of the approver.

5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The test report without CMA mark is only used for scientific research, teaching, enterprise product development and internal quality control purposes.

8. The quality system of our laboratory is in accordance with ISO/IEC17025.

9. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

***** END *****

No.: BCTC/RF-EMC-005