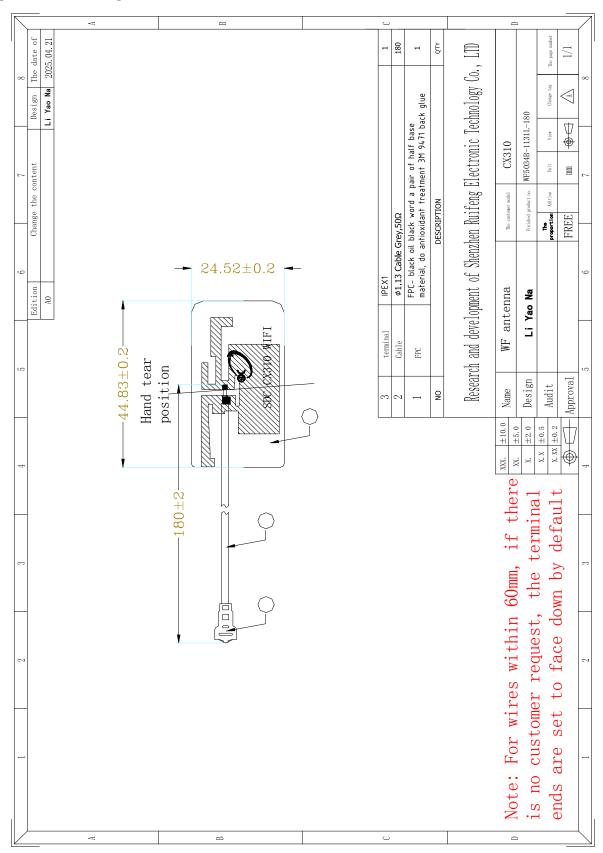


Acknowledgment Letter

SPECIFICATION FOR APPROVAL

Customer Name	Weihide							
Customer Project Name	CX310	Project Name	CX310					
Customer P/N		RF P/N	WF5034B-1131L-180					
Band	WIF12. 4G/5. 8G/BT	WIF12. 4G/5. 8G/BT						
Version	A0	A0						
	Designer Info	ormation						
RF Engineer	Fu Xuerong	R&D Diretor	Xia Chenglei					
ME Engineer	Huang Zongbao							

	Appr	ustomer	Approva I		
	Prepared By	Checked By	Checked By	Approval By	
Signature	Huang Zongbao	Fu Xuerong	Xia Chenglei		
Date	2025. 4. 21	2025. 4. 21	2025. 4. 21		

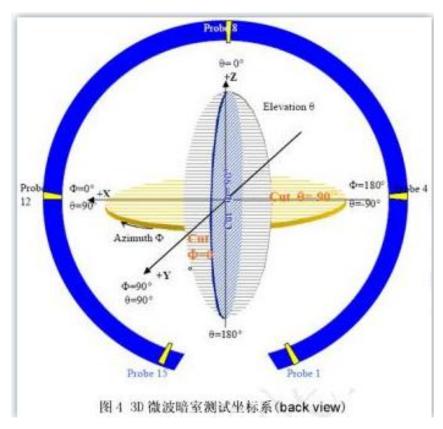

	hange Log								
Version	Change Description	Person in Charge	Charge Approval By Date						

Catalogue

No.	Item	Page No.
1	Drawing or Product Image	3
2	Dimensions Test Report	4
3	RF Performance Test Report	5-7
4	Reliability Test Report1	8
5	Package Document	9
6	RoHS Control list for Sample	10
7	Install Wizard or Other	10

Drawing or Product Image

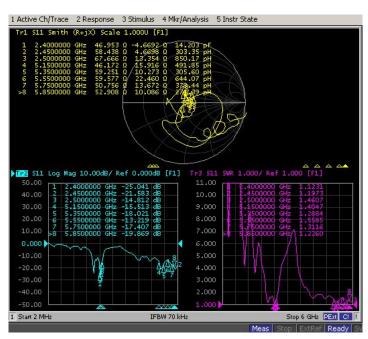
Sample Dimensions Test Report


Test Date	2025. 4. 21	Sample Qty.	3	Inspector	Xu Yanfang			
Dimension No.	Standard	Sample 1	Sample 2 Sample		Pass/NG			
①length	44. 83±0. 2mm	44. 83	44. 93	44. 83	Pass			
②breadth	24. 52±0. 2mm	24. 52	24. 62	24. 52	Pass			
3thickness	0.1±0.03mm	0. 1	0. 1	0. 1	Pass			
4Line length	ne length 180±2mm		181	180	Pass			
	PASS							
Inspector & Date	Inspector & Date Xu Yanfang 2025.4.21 Approval &D ate							

RF Performance Test Report

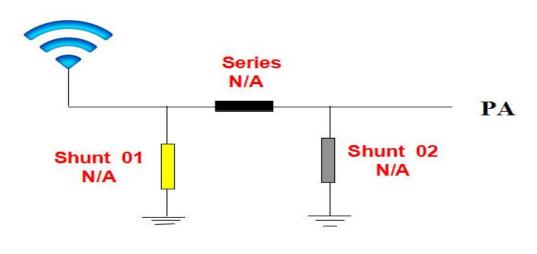
Antenna Test Equipment Introduction

Test of antenna input characteristics using **Agilent E5071C** and **Agilent 5062A** vector network analyzer; The radiation pattern of the antenna are tested using the guangping 3D near field Anechoic Chamber, and the instrument is used to agilent8960 E5515 and Agilent E4438C. The test coordinates of the darkroom are as follows:



1. S11 Parameter-VSWR

Measuring Method $\,$ is a $50\,\Omega$ coaxial cable is connected to the antenna. Then this cable is connected to a network analyzer to measure the S11 parameter, Keeping this fixture away from metal at least 20cm.


S11 Parameter-VSWR

frequency (MHZ)	2400	2450	2500	5150	5300	5500	5700	5850
SWR	1. 12	1. 19	1.46	1.4	1. 28	1.55	1. 31	1. 22
Smith	46. 9 Ω	58. 4 Ω	67. 6 Ω	46. 1 Ω	59. 2 Ω	59. 5 Ω	50. 7 Ω	52. 9 Ω
Log Mag	-25	-21.5	-14.8	-15.5	-18	-13. 2	-17. 4	-19.8

2. Antenna Matching Network

Antenna

3. Gain & Efficiency

Frequency (MHz)	Efficiency (%)	Peak GAIN (dBi)
2400	41. 27	1. 15
2450	43. 65	1. 37
2500	42. 37	1. 29
5150	41. 62	1. 13
5350	40. 53	0.87
5500	41. 70	1.4
5750	40. 88	0.6
5850	42. 61	1. 60

4. WIFI OTA Data

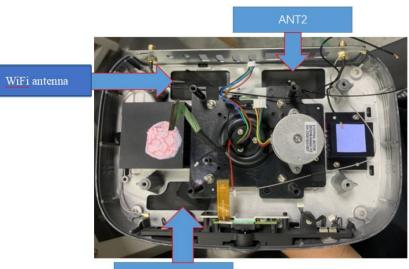
2.4G WIFI		TRP			TIS	
Channel	CH1	СН6	CH12	CH1	СН6	CH12
802.11 <mark>b</mark> , 11M	13. 17	13. 73	12. 49	-78. 72	-77. 69	-77. 14
802.11g,54M	12. 53	12. 98	11. 92	-66. 34	-66. 25	-66. 07
802. 11 <mark>n</mark> , MCS7 (65M)	11. 85	11. 76	11. 43	-64. 29	-64. 11	-64. 36
5.8G WIFI		TRP			TIS	
Channel	СН36	СН60	CH165	СН36	CH161	CH165
802.11 <mark>A</mark> , 54M	12. 52	11. 16	11. 47	-70. 77	-69. 36	-68. 76

Reliability Test Report

Test Date	2025. 4. 21	Sample Qty.	3	Inspector	Xu Ya	nfang	
Test Item	Requirement	testing equipment	Sample 1	Sample 2	Sample 3	PASS/NG	
high temperature storage	Expose to+85 °C for 24 hours, recover for 2 hours, and conduct testing	Constant temperature and humidity box	ОК	ОК	ОК	Pass	
low temperature storage	Expose to -40 ° C for 24 hours, recover for 2 hours, and perform testing	Constant temperature and humidity box	ОК	ОК	ок	Pass	
High temperature operation	Powered on for 24 hours at+60 °C	Constant temperature and humidity box	ок	ОК	ок	Pass	
Low temperature operation	Powered on for 24 hours at -20 °C	Constant temperature and humidity box	ок	ок	ок	Pass	
Salt spray test	(5 ± 0. 5)%sodium chloride, pHValue is6.5~7.2, Temperature of experimental chamber (35±2)°C □24H ☑48H	Salt spray testing machine	ОК	OK	ОК	Pass	
Connector riveting and pulling force	1.13Wire diameter≥ 10N 0.81Wire diameter≥ 8N RG174≥60N RG178≥50N	Push-pull force gauge	≥10N	≥10N	≥10N	Pass	
	Conclusion						
Inspector &	Xu Yanfang 2025. 4. 21						

Product ROHS Composition Declaration Form

produc	Unifo rm	Harmful substance content(PPM)						Date of HS test
t name		Pb	Cd	Hg	Cr	Br	HS test report number	report
		ND	ND	ND	ND	ND		
		ND ND ND ND ND						
	FPC	ND	ND	ND	ND	ND		
WIFI&		ND	ND	ND	ND	ND		
BT		ND	ND	ND	ND	ND	UNIB21042707HR-01	2025. 4. 21
	wire	ND	ND	ND	ND	ND		
anten		ND	ND	ND	ND	ND		
na	rod	ND	ND	ND	ND	ND		
	termin	ND	ND	ND	ND	ND		


Install Wizard or Other

setup script:

Take 1 PCS of product, tear off the release paper on the back of the FPC by hand, and then align the FPC positioning hole position with the shell positioning hole position (positioning rib position or positioning line), and attach it flat to the shell, as shown in the following figure:

Installation process precautions:

- \square Ensure that the FPC is fully attached to the housing after pasting the antenna;
- \square Align the positioning hole with the position of the casing positioning column;
- □Align FPC edge with shell edge;
- $\label{thm:continuous} \begin{tabular}{ll} \blacksquare \begin{tabular}{ll} \blacksquare \begin{tabular}{ll} \textbf{When attaching the terminal to the PCBA end of the motherboard, please first align the terminals and then snap them vertically;} \end{tabular}$
- ■When disassembling antenna terminals, it is necessary to use a tool (such as a special pry bar) to vertically lift the terminals and not directly pull the wires for disassembly

ANT1