

Page: 1 of 294

SAR TEST REPORT

The following samples were submitted and identified on behalf of the client as:

Equipment Under Test 7-inch Rugged Tablet

Brand Name Pioneerpos Model No. DASH7E1

Company Name Pioneer POS Solution, Inc.

Company Address 238 Benton Ct., City of Industry, CA 91789 Standards IEEE / ANSI C95.1, C95.3, IEEE 1528 2003,

KDB248227D01v02r01, KDB616217D04v01r01, KDB865664D01v01r03, KDB865664D02v01r01, KDB941225D01v03, KDB941225D05v02r03,

KDB447498D01v05r02

FCC I D CPOD7E1-LTE

Date of Receipt Apr. 01, 2015

Date of Test(s) Jun. 15, 2015 ~ Jun. 22, 2015

Date of I ssue Aug. 04, 2015

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Taiwan Electronic & Communication Laboratory or testing done by SGS Taiwan Electronic & Communication Laboratory in connection with distribution or use of the product described in this report must be approved by SGS Taiwan Electronic & Communication Laboratory in writing.

Signed on behalf of SGS	
Sr. Engineer	Sr. Engineer
afor Chen	John Teh
Afu Chen	John Yeh
Date: Aug. 04, 2015	Date: Aug. 04, 2015

Page: 2 of 294

Version

Report Number	Revision	Date	Memo
EN/2015/40004	00	2015/7/20	Initial creation of test report.
EN/2015/40004	01	2015/8/4	1 st modification

This test report contains a reference to the previous version test report that it replaces.

Page: 3 of 294

Contents

1. General Information	4
1.1 Testing Laboratory	4
1.2 Details of Applicant	4
1.3 Description of EUT	5
1.4 Test Environment	53
1.5 Operation Description	53
1.6 The SAR Measurement System	59
1.7 System Components	61
1.8 SAR System Verification	63
1.9 Tissue Simulant Fluid for the Frequency Band	65
1.10 Evaluation Procedures	68
1.11 Probe Calibration Procedures	69
1.12 Test Standards and Limits	72
2. Summary of Results	74
3. Simultaneous Transmission Analysis	94
3.1 Estimated SAR calculation	95
3.2 SPLSR evaluation and analysis	95
4. Instruments List	182
5. Measurements	183
6. SAR System Performance Verification	213
7. DAE & Probe Calibration Certificate	222
8. Uncertainty Budget	238
9. Phantom Description	239
10. System Validation from Original Equipment Supplier	240

Page: 4 of 294

1. General Information

1.1 Testing Laboratory

SGS Taiwan Ltd. E	SGS Taiwan Ltd. Electronics & Communication Laboratory				
No.134, Wu Kung	No.134, Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei				
City, Taiwan	City, Taiwan				
Tel	+ 886-2-2299-3279				
Fax	+ 886-2-2298-0488				
Internet	http://www.tw.sgs.com/				

1.2 Details of Applicant

Company Name	Pioneer POS Solution, Inc.
Company Address	238 Benton Ct., City of Industry, CA 91789

Page: 5 of 294

1.3 Description of EUT

Equipment Under Test 7-inch Rugged Tablet						
Brand Name	Pioneerpos					
Model No.	DASH7E1					
FCC ID	CPOD7E1-LTE					
Mode of Operation	☑GPRS ☑EDGE ☑WCDMA ☑HSDPA ☑HSUPA ☑LTE ☑CDMA 1xRTT ☑CDMA 1x EVDO Rev.0/ Rev.A ☑WLAN802.11 a/b/g/n(20M/40M) ☑Bluetooth					
	GPRS	1/4.1 (1Dn2UP) 1/8.3 (1Dn1UP)				
	EDGE	1/2 (1Dn4UP) 1/2.76 (1Dn3UP) 1/4.1 (1Dn2UP) 1/8.3 (1Dn1UP)				
Duty Cycle	WCDMA	1				
	LTE	1				
	CDMA 1xRTT/ EVDO Rev.0/ Rev. A	1				
	WLAN802.11 a/b/g/n(20M/40M)	1				
	Bluetooth	1				

Page: 6 of 294

	GPRS850	824.2		848.8
	GPRS1900	1850.2		1909.8
	WCDMA Band II	1852.4		1907.6
	WCDMA Band IV	1712.4		1752.6
	WCDMA Band V	826.4		846.6
	LTE FDD Band II	1850		1910
	LTE FDD Band IV	1710		1755
	LTE FDD Band V	824	_	849
	LTE FDD Band XIII	777	_	787
	LTE FDD Band XVII	704	_	716
	LTE FDD Band XXV	1850	_	1915
	CDMA (BC0)	824.7	_	848.31
TX Frequency Range (MHz)	CDMA (BC1)	1851.25	_	1908.75
(IVID2)	CDMA (BC10)	817.9		823.1
	WLAN802.11 b/g/n(20M)	2412	_	2462
	WLAN802.11 n(40M)	2422	_	2452
	WLAN802.11 a/n(20M)	5180		5240
	WLAN802.11 n(40M)	5190		5230
	WLAN802.11 a/n(20M)	5260	_	5320
	WLAN802.11 n(40M)	5270		5310
	WLAN802.11 a/n(20M)	5500		5700
	WLAN802.11 n(40M)	5510		5670
	WLAN802.11 a/n(20M)	5745		5825
	WLAN802.11 n(40M)	5710		5795
	Bluetooth	2402		2480

Page: 7 of 294

	GPRS850	128		251
	GPRS1900	512		810
	WCDMA Band II	9262		9538
	WCDMA Band IV	1312	_	1513
	WCDMA Band V	4132		4233
	LTE FDD Band II	18607	_	19193
	LTE FDD Band IV	19957	_	20393
	LTE FDD Band V	20407		20643
	LTE FDD Band XIII	23205		23255
	LTE FDD Band XVII	23755		23825
	LTE FDD Band XXV	26047		26683
Channel Number	CDMA (BC0)	1013		777
(ARFCN)	CDMA (BC1)	25		1175
	CDMA (BC10)	476	_	684
	WLAN802.11 b/g/n(20M)	1		11
	WLAN802.11 n(40M)	3	_	9
	WLAN802.11 a/n(20M)	36		48
	WLAN802.11 n(40M)	38		46
	WLAN802.11 a/n(20M)	52	_	64
	WLAN802.11 n(40M)	54		62
	WLAN802.11 a/n(20M)	100		140
	WLAN802.11 n(40M)	102		134
	WLAN802.11 a/n(20M)	149		165
	WLAN802.11 n(40M)	142		159
	Bluetooth	0		78

Page: 8 of 294

Max. SAR (1 g) (Unit: W/Kg)						
Band	Measured	Reported	Channel	Position		
GPRS 850	0.991	0.991	251	Left side		
GRPS 1900	1.26	1.335	512	Back side_Curve		
WCDMA Band II	1.160	1.160	9262	Back side_Curve		
WCDMA Band IV	1.07	1.131	1513	Back side_Curve		
WCDMA Band V	0.565	0.615	4183	Left side		
LTE FDD Band II	0.983	1.090	19100	Top side		
LTE FDD Band IV	1.150	1.193	20175	Back side		
LTE FDD Band V	0.419	0.601	20600	Left side		
LTE FDD Band XIII	0.583	0.837	23230	Left side		
LTE FDD Band XVII	0.312	0.438	23780	Left side		
LTE FDD Band XXV	1.140	1.159	26590	Top side		
CDMA (BC0)	0.72	0.771	1013	Left side		
CDMA (BC1)	1.00	1.009	1175	Back side		
CDMA (BC10)	0.659	0.723	560	Left side		

Page: 9 of 294

	Max. SAR (1 g) (Unit: W/Kg)							
Antenna	Band	Measured	Reported	Channel	Position			
	WLAN802.11 b	0.825	1.010	11	Right side			
	WLAN802.11 a 5.2G	0.383	0.441	40	Right side			
	WLAN802.11 n(40M) 5.2G	0.303	0.372	46	Right side			
	WLAN802.11 n(20M) 5.3G	0.261	0.303	60	Right side			
Main	WLAN802.11 n(40M) 5.3G	0.27	0.319	54	Right side			
	WLAN802.11 n(20M) 5.6G	0.276	0.327	104	Right side			
	WLAN802.11 n(20M) 5.6G	0.313	0.372	120	Right side			
	WLAN802.11 n(20M) 5.6G	0.324	0.401	140	Right side			
	WLAN802.11 n(40M) 5.8G	0.349	0.513	159	Right side			
	WLAN802.11 b	0.83	0.842	6	Top side			
	WLAN802.11 a 5.2G	0.792	0.928	36	Top side			
	WLAN802.11 n(40M) 5.2G	0.775	0.810	46	Top side			
Aux	WLAN802.11 n(20M) 5.3G	0.69	0.855	60	Top side			
	WLAN802.11 n(40M) 5.3G	0.793	0.919	54	Top side			
	WLAN802.11 n(20M) 5.6G	0.654	0.821	120	Top side			
	WLAN802.11 n(40M) 5.8G	0.586	0.877	159	Top side			

Page: 10 of 294

GPRS/ EDGE conducted power table:

di 113/ LDGE conducted power table.						
Burst average power						
Max. Rated Avg. Power + Max. Tolerance (dBm)			33	30.8		
			1Dn1UP	1Dn2UP		
EUT mode	Frequency (MHz)	CH	Avg. (dBm)	Avg. (dBm)		
	824.2	128	31.70	30.78		
GPRS 850	836.6	190	31.70	30.74		
	848.8	848.8 251 32.10		30.80		
	Source-bas	sed tim	e average powe	er		
	824.2	128	22.67	24.76		
GPRS 850	836.6	190	22.67	24.72		
	848.8	251	23.07	24.78		
The division factor compared to the number of TX time slot						
Division factor				2 TX time slot		
			-9.03	-6.02		

Burst average power						
Max. Rated Avg. Power + Max. Tolerance (dBm)			28	28	28	28
			1Dn1UP	1Dn2UP	1Dn3UP	1Dn4UP
EUT mode	Frequency (MHz)	CH	Avg. (dBm)	Avg. (dBm)	Avg. (dBm)	Avg. (dBm)
	824.2	128	26.50	26.30	26.20	26.20
EDGE 850	836.6	190	26.50	26.30	26.20	26.20
(MCS5)	848.8	251	26.50	26.30	26.20	26.20
		S	ource-based tim	e average powe	er	
EDGE 850	824.2	128	17.47	20.28	21.94	23.19
(MCS5)	836.6	190	17.47	20.28	21.94	23.19
(IVICSS)	848.8	251	17.47	20.28	21.94	23.19
	The division factor compared to the number of TX time slot					
Division factor			1 TX time slot -9.03	2 TX time slot -6.02	3 TX time slot -4.26	4 TX time slot -3.01

Page: 11 of 294

	Burs	st aver	age power	
	ted Avg. Powe olerance (dBr		30	28.5
			1Dn1UP	1Dn2UP
EUT mode	Frequency (MHz)		Avg. (dBm)	Avg. (dBm)
0000	1850.2	512	29.00	28.23
GPRS	1880	661	29.20	28.33
1900	1909.8	810	29.00	28.29
	Source-bas	sed tim	e average powe	er
GPRS	1850.2	512	19.97	22.21
1900	1880	661	20.17	22.31
1900	1909.8	810	19.97	22.27
The divisi	on factor com	pared	to the number c	of TX time slot
Div	vision factor		1 TX time slot -9.03	2 TX time slot -6.02

			Puret aver	ago powor		
			Burst avera	age power		
	ted Avg. Powe olerance (dBn		27	27	27	27
	·	,	1Dn1UP	1Dn2UP	1Dn3UP	1Dn4UP
EUT mode	Frequency	CH	Avg.	Avg.	Avg.	Avg.
EOT IIIOGE	(MHz)		(dBm)	(dBm)	(dBm)	(dBm)
EDGE	1850.2	512	25.30	25.10	25.00	25.00
1900	1880	661	25.30	25.10	25.00	25.00
(MCS5)	1909.8	810	25.20	25.10	25.00	25.00
		S	ource-based tim	e average powe	er	
EDGE	1850.2	512	16.27	19.08	20.74	21.99
1900	1880	661	16.27	19.08	20.74	21.99
(MCS5)	1909.8	810	16.17	19.08	20.74	21.99
	The div	ision fa	actor compared	to the number c	of TX time slot	_
Div	Division factor			2 TX time slot	3 TX time slot	4 TX time slot
DIV	rision racion		-9.03	-6.02	-4.26	-3.01

Page: 12 of 294

WCDMA Band II / Band IV / Band V - HSDPA / HSUPA conducted power table:

Max. Rated Avg. Band CH Power + Rel99		HSDPA mode AV(dBm)			HSUPA mode AV(dBm)					HSPA+ mode AV(dBm)							
Danu	ОП	Max. Tolerance (dBm)	AV(dBm)	SUB-1	SUB-2	SUB-3	SUB-4	SUB-1	SUB-2	SUB-3	SUB-4	SUB-5	SUB-1	SUB-2	SUB-3	SUB-4	SUB-5
WCDMA	9262	21.5	21.50	20.99	20.38	20.51	20.58	21.42	19.97	19.98	20.10	20.32	21.43	19.91	20.40	20.02	21.23
Band II	9400	21.5	21.36	20.87	20.22	20.42	20.43	21.34	19.89	19.90	20.02	20.22	21.33	19.81	20.32	19.92	21.18
Rel 7	9538	21.5	21.48	20.92	20.33	20.39	20.51	21.42	19.97	19.98	20.10	20.27	21.43	19.91	20.44	20.02	21.29
WCDMA	1312	22	21.77	21.28	20.65	20.8	20.87	21.69	20.24	20.25	20.37	20.91	21.70	20.18	20.67	20.29	21.50
Band IV	1412	22	21.75	21.31	20.61	20.86	20.87	21.73	20.28	20.29	20.41	20.98	21.72	20.20	20.71	20.31	21.57
Rel 7	1513	22	21.76	21.26	20.61	20.73	20.85	21.70	20.25	20.26	20.38	20.93	21.71	20.19	20.72	20.30	21.57
WCDMA	4132	23	22.55	22.00	21.48	21.54	21.59	22.51	20.57	20.55	20.62	21.27	22.52	20.55	21.50	20.58	22.33
Band V	4183	23	22.63	22.12	21.52	21.64	21.68	22.56	20.64	20.62	20.7	21.61	22.55	20.57	21.55	20.63	22.32
Rel 7	4233	23	22.49	22.03	21.36	21.54	21.6	22.41	20.45	20.49	20.53	21.39	22.40	20.37	21.39	20.43	22.22

HSDPA

SUB-TEST	β_{c}	$\beta_{\sf d}$	β _d (SF)	β_c/β_d	β _{HS} (<i>Note1, Note 2</i>)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

HSUPA

HOUFA													
SUB-TEST	$eta_{ m c}$	$eta_{ t d}$	β _d (SF)	$\beta_{\text{o}}/\beta_{\text{d}}$	β _{HS} (Note1)	eta_{ec}	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed} 1: 47/15 eta_{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	15/15	64	15/15	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Page: 13 of 294

LTE FDD Band II/ Band IV/ Band V/ Band XIII/ Band XVII / Band XXV power table:

	ii/ Band	·		FDD Band 2				
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)
				1860	18700	21.83	22	0
			0	1880	18900	21.76	22	0
				1900	19100	21.63	22	0
				1860	18700	21.81	22	0
		1 RB	50	1880	18900	21.60	22	0
				1900	19100	21.71	22	0
				1860	18700	21.81	22	0
			99	1880	18900	21.75	22	0
				1900	19100	21.88	22	0
				1860	18700	21.69	22	0-1
	QPSK		0	1880	18900	21.87	22	0-1
				1900	19100	21.53	22	0-1
				1860	18700	21.81	22	0-1
		50 RB	25	1880	18900	21.72	22	0-1
				1900	19100	21.52	22	0-1
			1860	18700	21.86	22	0-1	
		50	1880	18900	21.81	22	0-1	
			1900	19100	21.55	22	0-1	
			1860	18700	21.77	22	0-1	
		100RB		1880	18900	21.74	22	0-1
20				1900	19100	21.62	22	0-1
20				1860	18700	20.70	22	0-1
			0	1880	18900	20.66	22	0-1
				1900	19100	20.52	22	0-1
				1860	18700	20.65	22	0-1
		1 RB	50	1880	18900	20.50	22	0-1
				1900	19100	20.63	22	0-1
				1860	18700	20.69	22	0-1
			99	1880	18900	20.65	22	0-1
				1900	19100	20.71	22	0-1
				1860	18700	20.75	22	0-2
	16-QAM		0	1880	18900	20.70	22	0-2
				1900	19100	20.53	22	0-2
				1860	18700	20.75	22	0-2
		50 RB	25	1880	18900	20.68	22	0-2
			1900	19100	20.37	22	0-2	
			1860	18700	20.71	22	0-2	
			50	1880	18900	20.79	22	0-2
				1900	19100	20.55	22	0-2
				1860	18700	20.61	22	0-2
		10	00RB	1880	18900	20.65	22	0-2
				1900	19100	20.51	22	0-2

Page: 14 of 294

				FDD Band 2	2			
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)
				1857.5	18675	21.77	22	0
			0	1880	18900	21.61	22	0
				1902.5	19125	21.49	22	0
				1857.5	18675	21.67	22	0
		1 RB	36	1880	18900	21.45	22	0
				1902.5	19125	21.61	22	0
				1857.5	18675	21.61	22	0
			74	1880	18900	21.60	22	0
				1902.5	19125	21.75	22	0
				1857.5	18675	21.61	22	0-1
	QPSK		0	1880	18900	21.65	22	0-1
				1902.5	19125	21.48	22	0-1
				1857.5	18675	21.62	22	0-1
		36 RB	18	1880	18900	21.54	22	0-1
				1902.5	19125	21.49	22	0-1
				1857.5	18675	21.68	22	0-1
			37	1880	18900	21.66	22	0-1
				1902.5	19125	21.48	22	0-1
					18675	21.64	22	0-1
		75RB		1880	18900	21.57	22	0-1
15			1	1902.5	19125	21.44	22	0-1
_				1857.5	18675	20.54	22	0-1
			0	1880	18900	20.52	22	0-1
				1902.5	19125	20.47	22	0-1
				1857.5	18675	20.56	22	0-1
		1 RB	36	1880	18900	20.39	22	0-1
				1902.5	19125	20.44	22	0-1
			3 .	1857.5	18675	20.57	22	0-1
			74	1880	18900	20.55	22	0-1
				1902.5	19125	20.61	22	0-1
	10 0014		0	1857.5	18675	20.45	22	0-2
	16-QAM		0	1880	18900	20.61	22	0-2
				1902.5	19125	20.24	22	0-2
		00.00	10	1857.5	18675	20.58	22	0-2
		36 RB	18	1880	18900	20.45	22	0-2
				1902.5	19125	20.39	22	0-2
		27	1857.5	18675	20.58	22	0-2	
			37	1880	18900	20.51	22	0-2
				1902.5	19125	20.35	22	0-2
		7	5RB	1857.5 1880	18675	20.51	22	0-2
		/	טו וט		18900	20.49	22	0-2
				1902.5	19125	20.35	22	0-2

Page: 15 of 294

	FDD Band 2											
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)				
				1855	18650	21.62	22	0				
			0	1880	18900	21.60	22	0				
				1905	19150	21.25	22	0				
				1855	18650	21.60	22	0				
		1 RB	25	1880	18900	21.49	22	0				
				1905	19150	21.64	22	0				
				1855	18650	21.55	22	0				
			49	1880	18900	21.37	22	0				
				1905	19150	21.80	22	0				
				1855	18650	21.58	22	0-1				
	QPSK		0	1880	18900	21.69	22	0-1				
				1905	19150	21.42	22	0-1				
				1855	18650	21.61	22	0-1				
		25 RB	12	1880	18900	21.44	22	0-1				
				1905	19150	21.48	22	0-1				
				1855	18650	21.64	22	0-1				
			25	1880	18900	21.57	22	0-1				
				1905	19150	21.52	22	0-1				
					18650	21.61	22	0-1				
		50RB		1880	18900	21.41	22	0-1				
10				1905	19150	21.55	22	0-1				
10								1855	18650	20.59	22	0-1
			0	1880	18900	20.48	22	0-1				
				1905	19150	20.47	22	0-1				
				1855	18650	20.59	22	0-1				
		1 RB	25	1880	18900	20.38	22	0-1				
				1905	19150	20.60	22	0-1				
				1855	18650	20.67	22	0-1				
			49	1880	18900	20.61	22	0-1				
				1905	19150	20.42	22	0-1				
				1855	18650	20.35	22	0-2				
	16-QAM		0	1880	18900	20.57	22	0-2				
				1905	19150	20.14	22	0-2				
				1855	18650	20.48	22	0-2				
	25 RB	25 RB	12	1880	18900	20.48	22	0-2				
			1905	19150	20.34	22	0-2					
			1855	18650	20.48	22	0-2					
		25	1880	18900	20.46	22	0-2					
				1905	19150	20.43	22	0-2				
1				1855	18650	20.55	22	0-2				
		5	0RB	1880	18900	20.47	22	0-2				
				1905	19150	20.28	22	0-2				

Page: 16 of 294

				FDD Band 2	2			
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)
				1852.5	18625	21.56	22	0
			0	1880	18900	21.68	22	0
				1907.5	19175	21.21	22	0
				1852.5	18625	21.69	22	0
		1 RB	12	1880	18900	21.49	22	0
				1907.5	19175	21.70	22	0
				1852.5	18625	21.52	22	0
			24	1880	18900	21.33	22	0
				1907.5	19175	21.88	22	0
				1852.5	18625	21.63	22	0-1
	QPSK		0	1880	18900	21.68	22	0-1
				1907.5	19175	21.44	22	0-1
				1852.5	18625	21.60	22	0-1
		12 RB	6	1880	18900	21.37	22	0-1
				1907.5	19175	21.46	22	0-1
				1852.5	18625	21.59	22	0-1
			13	1880	18900	21.60	22	0-1
				1907.5	19175	21.46	22	0-1
				1852.5	18625	21.62	22	0-1
		2	5RB	1880	18900	21.44	22	0-1
5				1907.5	19175	21.52	22	0-1
				1852.5	18625	20.66	22	0-1
			0	1880	18900	20.38	22	0-1
				1907.5	19175	20.55	22	0-1
				1852.5	18625	20.63	22	0-1
		1 RB	12	1880	18900	20.30	22	0-1
				1907.5	19175	20.59	22	0-1
				1852.5	18625	20.72	22	0-1
			24	1880	18900	20.61	22	0-1
				1907.5	19175	20.46	22	0-1
				1852.5	18625	20.45	22	0-2
	16-QAM		0	1880	18900	20.61	22	0-2
				1907.5	19175	20.23	22	0-2
				1852.5	18625	20.57	22	0-2
	12 RB	12 RB	6	1880	18900	20.58	22	0-2
			1907.5	19175	20.35	22	0-2	
			1852.5	18625	20.58	22	0-2	
		13	1880	18900	20.53	22	0-2	
				1907.5	19175	20.52	22	0-2
		_	5DD	1852.5	18625	20.52	22	0-2
		2	5RB	1880 1907.5	18900	20.45	22	0-2
					19175	20.31	22	0-2

Page: 17 of 294

				FDD Band 2	2							
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)				
				1851.5	18615	21.55	22	0				
			0	1880	18900	21.61	22	0				
				1908.5	19185	21.25	22	0				
				1851.5	18615	21.51	22	0				
		1 RB	7	1880	18900	21.48	22	0				
				1908.5	19185	21.74	22	0				
				1851.5	18615	21.65	22	0				
			14	1880	18900	21.36	22	0				
				1908.5	19185	21.87	22	0				
				1851.5	18615	21.56	22	0-1				
	QPSK		0	1880	18900	21.59	22	0-1				
				1908.5	19185	21.51	22	0-1				
				1851.5	18615	21.52	22	0-1				
		8 RB	8 RB	4	1880	18900	21.37	22	0-1			
				1908.5	19185	21.44	22	0-1				
				1851.5	18615	21.70	22	0-1				
			7	1880	18900	21.65	22	0-1				
				1908.5	19185	21.58	22	0-1				
		15RB		1851.5	18615	21.59	22	0-1				
				1880	18900	21.34	22	0-1				
3				1908.5	19185	21.54	22	0-1				
Ü								1851.5	18615	20.67	22	0-1
			0	1880	18900	20.48	22	0-1				
				1908.5	19185	20.43	22	0-1				
				1851.5	18615	20.69	22	0-1				
		1 RB	7	1880	18900	20.43	22	0-1				
				1908.5	19185	20.50	22	0-1				
				1851.5	18615	20.76	22	0-1				
			14	1880	18900	20.65	22	0-1				
				1908.5	19185	20.44	22	0-1				
				1851.5	18615	20.43	22	0-2				
	16-QAM		0	1880	18900	20.58	22	0-2				
				1908.5	19185	20.19	22	0-2				
		0.55	_	1851.5	18615	20.57	22	0-2				
	8 RB	4	1880	18900	20.45	22	0-2					
			1908.5	19185	20.39	22	0-2					
		7	1851.5	18615	20.44	22	0-2					
		7	1880	18900	20.49	22	0-2					
				1908.5	19185	20.49	22	0-2				
		4	5DR	1851.5	18615	20.58	22	0-2				
			5RB	1880	18900	20.42	22	0-2				
				1908.5	19185	20.29	22	0-2				

Page: 18 of 294

				FDD Band 2	2			
				T D D Dand 7			Target	
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)
				1850.7	18607	21.52	22	0
			0	1880	18900	21.53	22	0
				1909.3	19193	21.29	22	0
				1850.7	18607	21.56	22	0
		1 RB	2	1880	18900	21.57	22	0
				1909.3	19193	21.60	22	0
				1850.7	18607	21.47	22	0
			5	1880	18900	21.38	22	0
				1909.3	19193	21.90	22	0
				1850.7	18607	21.67	22	0-1
	QPSK		0	1880	18900	21.76	22	0-1
				1909.3	19193	21.35	22	0-1
				1850.7	18607	21.60	22	0-1
		3 RB	2	1880	18900	21.42	22	0-1
				1909.3	19193	21.48	22	0-1
				1850.7	18607	21.73	22	0-1
			3	1880	18900	21.64	22	0-1
				1909.3	19193	21.46	22	0-1
					18607	21.65	22	0-1
		6	SRB	1880	18900	21.32	22	0-1
1.4				1909.3	19193	21.59	22	0-1
				1850.7	18607	20.54	22	0-1
			0	1880	18900	20.52	22	0-1
				1909.3	19193	20.48	22	0-1
				1850.7	18607	20.57	22	0-1
		1 RB	2	1880	18900	20.35	22	0-1
				1909.3	19193	20.52	22	0-1
				1850.7	18607	20.73	22	0-1
			5	1880	18900	20.69	22	0-1
				1909.3	19193	20.41	22	0-1
				1850.7	18607	20.26	22	0-2
	16-QAM		0	1880	18900	20.57	22	0-2
				1909.3	19193	20.17	22	0-2
				1850.7	18607	20.53	22	0-2
		3 RB	2	1880	18900	20.45	22	0-2
				1909.3	19193	20.33	22	0-2
			1850.7	18607	20.58	22	0-2	
			3	1880	18900	20.40	22	0-2
				1909.3	19193	20.46	22	0-2
				1850.7	18607	20.50	22	0-2
		6	SRB	1880	18900	20.43	22	0-2
				1909.3	19193	20.26	22	0-2

Page: 19 of 294

				FDD Band 4	<u> </u>			
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)
				1720	20050	21.81	22	0
			0	1732.5	20175	21.84	22	0
				1745	20300	21.85	22	0
				1720	20050	21.90	22	0
		1 RB	50	1732.5	20175	21.80	22	0
				1745	20300	21.91	22	0
				1720	20050	21.86	22	0
			99	1732.5	20175	21.82	22	0
				1745	20300	21.88	22	0
				1720	20050	21.65	22	0-1
	QPSK		0	1732.5	20175	21.75	22	0-1
				1745	20300	21.78	22	0-1
				1720	20050	21.66	22	0-1
		50 RB	25	1732.5	20175	21.79	22	0-1
				1745	20300	21.85	22	0-1
				1720	20050	21.75	22	0-1
			50	1732.5	20175	21.78	22	0-1
				1745	20300	21.78	22	0-1
				1720	20050	21.70	22	0-1
		100RB		1732.5	20175	21.81	22	0-1
20				1745	20300	21.74	22	0-1
20				1720	20050	20.71	22	0-1
			0	1732.5	20175	20.76	22	0-1
				1745	20300	20.79	22	0-1
				1720	20050	20.81	22	0-1
		1 RB	50	1732.5	20175	20.73	22	0-1
				1745	20300	20.81	22	0-1
				1720	20050	20.83	22	0-1
			99	1732.5	20175	20.81	22	0-1
				1745	20300	20.85	22	0-1
				1720	20050	20.63	22	0-2
	16-QAM		0	1732.5	20175	20.70	22	0-2
				1745	20300	20.69	22	0-2
				1720	20050	20.61	22	0-2
	50 RB	50 RB	25	1732.5	20175	20.70	22	0-2
				1745	20300	20.83	22	0-2
			1720	20050	20.69	22	0-2	
			50	1732.5	20175	20.70	22	0-2
				1745	20300	20.72	22	0-2
				1720	20050	20.66	22	0-2
		10	00RB	1732.5	20175	20.78	22	0-2
				1745	20300	20.64	22	0-2

Page: 20 of 294

FDD Band 4										
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)		
				1717.5	20025	21.77	22	0		
			0	1732.5	20175	21.74	22	0		
				1747.5	20325	21.85	22	0		
				1717.5	20025	21.85	22	0		
		1 RB	36	1732.5	20175	21.73	22	0		
				1747.5	20325	21.80	22	0		
				1717.5	20025	21.76	22	0		
			74	1732.5	20175	21.74	22	0		
				1747.5	20325	21.87	22	0		
				1717.5	20025	21.57	22	0-1		
	QPSK	PSK	0	1732.5	20175	21.75	22	0-1		
				1747.5	20325	21.72	22	0-1		
				1717.5	20025	21.57	22	0-1		
		36 RB	18	1732.5	20175	21.75	22	0-1		
				1747.5	20325	21.80	22	0-1		
				1717.5	20025	21.67	22	0-1		
			37	1732.5	20175	21.69	22	0-1		
				1747.5	20325	21.77	22	0-1		
				1717.5	20025	21.64	22	0-1		
		7	5RB	1732.5	20175	21.80	22	0-1		
15				1747.5	20325	21.72	22	0-1		
15				1717.5	20025	20.68	22	0-1		
			0	1732.5	20175	20.72	22	0-1		
				1747.5	20325	20.75	22	0-1		
				1717.5	20025	20.73	22	0-1		
		1 RB	36	1732.5	20175	20.70	22	0-1		
				1747.5	20325	20.77	22	0-1		
				1717.5	20025	20.77	22	0-1		
			74	1732.5	20175	20.76	22	0-1		
				1747.5	20325	20.80	22	0-1		
				1717.5	20025	20.60	22	0-2		
	16-QAM		0	1732.5	20175	20.62	22	0-2		
				1747.5	20325	20.68	22	0-2		
				1717.5	20025	20.58	22	0-2		
		36 RB	18	1732.5	20175	20.62	22	0-2		
				1747.5	20325	20.82	22	0-2		
				1717.5	20025	20.60	22	0-2		
			37	1732.5	20175	20.62	22	0-2		
				1747.5	20325	20.65	22	0-2		
			1717.5	20025	20.62	22	0-2			
		75RB	1732.5	20175	20.73	22	0-2			
				1747.5	20325	20.64	22	0-2		

Page: 21 of 294

FDD Band 4											
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)			
				1715	20000	21.75	22	0			
			0	1732.5	20175	21.70	22	0			
				1750	20350	21.75	22	0			
				1715	20000	21.78	22	0			
		1 RB	25	1732.5	20175	21.70	22	0			
				1750	20350	21.78	22	0			
				1715	20000	21.68	22	0			
			49	1732.5	20175	21.69	22	0			
				1750	20350	21.81	22	0			
				1715	20000	21.55	22	0-1			
	QPSK		0	1732.5	20175	21.72	22	0-1			
				1750	20350	21.63	22	0-1			
				1715	20000	21.53	22	0-1			
		25 RB	12	1732.5	20175	21.71	22	0-1			
				1750	20350	21.79	22	0-1			
				1715	20000	21.62	22	0-1			
			25	1732.5	20175	21.67	22	0-1			
				1750	20350	21.68	22	0-1			
				1715	20000	21.60	22	0-1			
		50	0RB	1732.5	20175	21.71	22	0-1			
10				1750	20350	21.67	22	0-1			
				1715	20000	20.60	22	0-1			
			0	1732.5	20175	20.67	22	0-1			
				1750	20350	20.69	22	0-1			
				1715	20000	20.64	22	0-1			
		1 RB	25	1732.5	20175	20.68	22	0-1			
				1750	20350	20.72	22	0-1			
				1715	20000	20.70	22	0-1			
			49	1732.5	20175	20.72	22	0-1			
				1750	20350	20.70	22	0-1			
				1715	20000	20.53	22	0-2			
	16-QAM		0	1732.5	20175	20.56	22	0-2			
				1750	20350	20.63	22	0-2			
				1715	20000	20.56	22	0-2			
		25 RB	12	1732.5	20175	20.54	22	0-2			
				1750	20350	20.74	22	0-2			
				1715	20000	20.56	22	0-2			
			25	1732.5	20175	20.53	22	0-2			
				1750	20350	20.59	22	0-2			
		50RB		1715	20000	20.62	22	0-2			
			1732.5	20175	20.66	22	0-2				
				1750	20350	20.54	22	0-2			

Page: 22 of 294

FDD Band 4										
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)		
				1712.5	19975	21.68	22	0		
			0	1732.5	20175	21.66	22	0		
				1752.5	20375	21.68	22	0		
				1712.5	19975	21.70	22	0		
		1 RB	12	1732.5	20175	21.67	22	0		
				1752.5	20375	21.68	22	0		
				1712.5	19975	21.65	22	0		
			24	1732.5	20175	21.65	22	0		
				1752.5	20375	21.81	22	0		
				1712.5	19975	21.48	22	0-1		
	QPSK		0	1732.5	20175	21.70	22	0-1		
				1752.5	20375	21.59	22	0-1		
				1712.5	19975	21.51	22	0-1		
		12 RB	6	1732.5	20175	21.63	22	0-1		
				1752.5	20375	21.70	22	0-1		
				1712.5	19975	21.58	22	0-1		
			13	1732.5	20175	21.64	22	0-1		
				1752.5	20375	21.60	22	0-1		
				1712.5	19975	21.58	22	0-1		
		2	5RB	1732.5	20175	21.71	22	0-1		
5				1752.5	20375	21.64	22	0-1		
			0	1712.5	19975	20.56	22	0-1		
				1732.5	20175	20.62	22	0-1		
				1752.5	20375	20.62	22	0-1		
				1712.5	19975	20.55	22	0-1		
		1 RB	12	1732.5	20175	20.67	22	0-1		
				1752.5	20375	20.62	22	0-1		
				1712.5	19975	20.67	22	0-1		
			24	1732.5	20175	20.71	22	0-1		
				1752.5	20375	20.69	22	0-1		
				1712.5	19975	20.50	22	0-2		
	16-QAM		0	1732.5	20175	20.52	22	0-2		
				1752.5	20375	20.58	22	0-2		
				1712.5	19975	20.55	22	0-2		
		12 RB	6	1732.5	20175	20.49	22	0-2		
				1752.5	20375	20.71	22	0-2		
			4.5	1712.5	19975	20.54	22	0-2		
			13	1732.5	20175	20.43	22	0-2		
			1752.5	20375	20.58	22	0-2			
		25RB	EDD	1712.5	19975	20.60	22	0-2		
			1732.5	20175	20.63	22	0-2			
				1752.5	20375	20.53	22	0-2		

Page: 23 of 294

	FDD Band 4										
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)			
				1711.5	19965	21.62	22	0			
			0	1732.5	20175	21.65	22	0			
				1753.5	20385	21.59	22	0			
				1711.5	19965	21.63	22	0			
		1 RB	7	1732.5	20175	21.61	22	0			
				1753.5	20385	21.68	22	0			
				1711.5	19965	21.59	22	0			
			14	1732.5	20175	21.56	22	0			
				1753.5	20385	21.77	22	0			
				1711.5	19965	21.42	22	0-1			
	QPSK		0	1732.5	20175	21.69	22	0-1			
				1753.5	20385	21.50	22	0-1			
				1711.5	19965	21.43	22	0-1			
		8 RB	4	1732.5	20175	21.55	22	0-1			
				1753.5	20385	21.62	22	0-1			
				1711.5	19965	21.50	22	0-1			
			7	1732.5	20175	21.62	22	0-1			
				1753.5	20385	21.57	22	0-1			
				1711.5	19965	21.56	22	0-1			
		1:	5RB	1732.5	20175	21.61	22	0-1			
3				1753.5	20385	21.55	22	0-1			
3				1711.5	19965	20.53	22	0-1			
			0	1732.5	20175	20.54	22	0-1			
				1753.5	20385	20.61	22	0-1			
				1711.5	19965	20.52	22	0-1			
		1 RB	7	1732.5	20175	20.65	22	0-1			
				1753.5	20385	20.56	22	0-1			
				1711.5	19965	20.62	22	0-1			
			14	1732.5	20175	20.66	22	0-1			
				1753.5	20385	20.60	22	0-1			
				1711.5	19965	20.46	22	0-2			
	16-QAM		0	1732.5	20175	20.49	22	0-2			
				1753.5	20385	20.52	22	0-2			
				1711.5	19965	20.52	22	0-2			
		8 RB	4	1732.5	20175	20.43	22	0-2			
				1753.5	20385	20.67	22	0-2			
				1711.5	19965	20.46	22	0-2			
			7	1732.5	20175	20.36	22	0-2			
				1753.5	20385	20.56	22	0-2			
			1711.5	19965	20.51	22	0-2				
		15RB	1732.5	20175	20.57	22	0-2				
				1753.5	20385	20.51	22	0-2			

Page: 24 of 294

BW(Mhz) Modulation RB Size RB Offset Frequency (MHz) Channel Conducted power (dBm) Max. Tolerance	FDD Band 4											
BW(Mhz) Modulation RB Size RB Offset Frequency (MHz) Channel Conducted power (dBm) Max. (dBm) GBP(RB)		Target										
1.4 1 RB	BW(Mhz)	Modulation	RB Size	RB Offset		Channel	power	Power + Max. Tolerance	Allowed per			
1 RB 2 1754.3 20393 21.64 22 0 0 1710.7 19957 21.68 22 0 0 1732.5 20175 21.66 22 0 0 1754.3 20393 21.61 22 0 0 1754.3 20393 21.61 22 0 0 1754.3 20393 21.61 22 0 0 1754.3 20393 21.71 22 0 1754.3 20393 21.71 22 0 0 1754.3 20393 21.71 22 0 0 1754.3 20393 21.71 22 0 0 1754.3 20393 21.71 22 0 0 1754.3 20393 21.55 22 0-1 1754.3 20393 21.55 22 0-1 1754.3 20393 21.55 22 0-1 1754.3 20393 21.55 22 0-1 1754.3 20393 21.55 22 0-1 1754.3 20393 21.63 22 0-1 1754.3 20393 21.63 22 0-1 1754.3 20393 21.63 22 0-1 1754.3 20393 21.63 22 0-1 1754.3 20393 21.63 22 0-1 1754.3 20393 21.63 22 0-1 1754.3 20393 21.55 22 0-1 1754.3 20393 21.55 22 0-1 1754.3 20393 21.55 22 0-1 1754.3 20393 21.55 22 0-1 1754.3 20393 21.55 22 0-1 1754.3 20393 21.55 22 0-1 1754.3 20393 21.55 22 0-1 1754.3 20393 21.55 22 0-1 1754.3 20393 21.55 22 0-1 1754.3 20393 21.55 22 0-1 1754.3 20393 20.54 22 0-1 1754.3 20393 20.54 22 0-1 1754.3 20393 20.54 22 0-1 1754.3 20393 20.54 22 0-1 1754.3 20393 20.54 22 0-1 1754.3 20393 20.54 22 0-1 1754.3 20393 20.65 22 0-2 1754.3 20393 20.65 22 0-2 1754.3 20393 20.69 22 0-2 20.2 1754.3 20393 20.69 22 0-2 20.2 1754.3 20393 20.69 22 0-2 20.2 1754.3 20393 20.69 22 0-2 20.2 1754.3 20393 20.69 22 0-2 20.2 1754.3 20393 20.69 22 0-2 20.2 1754.3 20393 20.69 22 0-2 20.2 1754.3 20393 20.69 22 0-2 20.2 1754.3 20393 20.69 22 0-2 20.2 1754.3 20393 20.69 22 0-2 20.2 1754.3 20393 20.69 22 0-2 20.2 1754.3 20393 20.69 22 0-2 20.2 1754.3 20393 20.69 22 0-2 20.2 1754.3 20393 20.69 22 0-2 20.2 1754.3 20393 20.49 22 0-2 20.2 1754.3 20393 20.					1710.7	19957	21.60	22	0			
1 RB 2 1710.7 19957 21.68 22 0 0 1732.5 20175 21.66 22 0 0 1754.3 20393 21.61 22 0 0 1732.5 20175 21.66 22 0 0 1732.5 20175 21.67 22 0 1754.3 20393 21.61 22 0 0 1732.5 20175 21.64 22 0 1754.3 20393 21.71 22 0 1754.3 20393 21.71 22 0 1754.3 20393 21.71 22 0 1 1732.5 20175 21.61 22 0 1 1732.5 20175 21.61 22 0 1 1732.5 20175 21.61 22 0 1 1732.5 20175 21.61 22 0 1 1732.5 20175 21.61 22 0 1 1732.5 20175 21.61 22 0 1 1754.3 20393 21.55 22 0 1 1 1754.3 20393 21.55 22 0 1 1 1754.3 20393 21.63 22 0 1 1 1754.3 20393 21.63 22 0 1 1 1754.3 20393 21.55 22 0 1 1 1754.3 20393 21.55 22 0 1 1 1754.3 20393 21.55 22 0 1 1 1754.3 20393 21.55 22 0 1 1 1754.3 20393 21.55 22 0 1 1 1754.3 20393 21.55 22 0 1 1 1754.3 20393 21.55 22 0 1 1 1754.3 20393 21.55 22 0 1 1 1754.3 20393 21.55 22 0 1 1 1754.3 20393 20.54 22 0 1 1 1754.3 20393 20.54 22 0 1 1 1754.3 20393 20.54 22 0 1 1 1754.3 20393 20.54 22 0 1 1 1754.3 20393 20.54 22 0 1 1 1754.3 20393 20.60 22 0 1 1 1764.3 20393 20.60 22 0 1 1 1764.3 20393 20.60 22 0 1 1 1764.3 20393 20.60 22 0 1 1 1764.3 20393 20.60 22 0 1 1 1764.3 20393 20.60 22 0 1 1 1764.3 20393 20.60 22 0 1 1 1764.3 20393 20.60 22 0 1 1 1764.3 20393 20.60 22 0 1 1 1764.3 20393 20.60 22 0 1 1 1 1764.3 20393 20.60 22 0 1 1 1 1764.3 20393 20.60 22 0 1 1 1 1764.3 20393 20.60 22 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				0	1732.5	20175	21.61	22	0			
1.4 1 RB					1754.3	20393	21.64	22	0			
1.4 1754.3 20393 21.61 22 0					1710.7	19957	21.68	22	0			
1.4 A			1 RB	2	1732.5	20175	21.66	22	0			
OPSK OPSK OPSK 1732.5 20175 21.64 22 0 1754.3 20393 21.71 22 0.1 1710.7 19957 21.47 22 0.1 1732.5 20175 21.61 22 0.1 1754.3 20393 21.55 22 0.1 1754.3 20393 21.55 22 0.1 1754.3 20393 21.55 22 0.1 1754.3 20393 21.55 22 0.1 1754.3 20393 21.55 22 0.1 1754.3 20393 21.55 22 0.1 1754.3 20393 21.63 22 0.1 1754.3 20393 21.63 22 0.1 1754.3 20393 21.63 22 0.1 1754.3 20393 21.55 22 0.1 1754.3 20393 21.55 22 0.1 1754.3 20393 21.55 22 0.1 1754.3 20393 21.55 22 0.1 1754.3 20393 21.55 22 0.1 1754.3 20393 21.55 22 0.1 1754.3 20393 21.55 22 0.1 1754.3 20393 20.54 22 0.1 1754.3 20393 20.54 22 0.1 1754.3 20393 20.54 22 0.1 1754.3 20393 20.60 22 0.1 1754.3 20393 20.60 22 0.1 1754.3 20393 20.60 22 0.1 1754.3 20393 20.60 22 0.1 1754.3 20393 20.60 22 0.1 1754.3 20393 20.60 22 0.1 1754.3 20393 20.60 22 0.1 1754.3 20393 20.60 22 0.1 1754.3 20393 20.60 22 0.1 1754.3 20393 20.60 22 0.1 1754.3 20393 20.60 22 0.1 1754.3 20393 20.60 22 0.1 1754.3 20393 20.60 22 0.1 1754.3 20393 20.60 22 0.1 1754.3 20393 20.60 22 0.2 1754.3 20393 20.49 22 0.2 1754.3 20393 20.49 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.63 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 1754.3 20393 20.69 22 0.2 17					1754.3	20393	21.61	22	0			
1.4 PARK OPSK O							21.57					
OPSK				5			21.64	22	-			
1.4 OPSK O												
1.4 1.4 1.4 1.4 1.6-QAM 1.6-QAM 1.6-QAM 1.6-QAM 1.6-QAM 1.6-QAM 1.784.3												
1.4 1710.7 19957 21.49 22 0-1		QPSK		0								
1.4 1.4 1.4												
1.4 1754.3 20393 21.63 22 0-1												
1.4 1.4			3 RB	2								
1.4 1.4 1.4												
1.4 1.4									_			
1.4 6RB 1710.7 19957 21.56 22 0-1 1732.5 20175 21.67 22 0-1 1754.3 20393 21.55 22 0-1 1710.7 19957 20.50 22 0-1 1732.5 20175 20.58 22 0-1 1754.3 20393 20.54 22 0-1 1754.3 20393 20.54 22 0-1 1754.3 20393 20.54 22 0-1 1710.7 19957 20.54 22 0-1 1754.3 20393 20.66 22 0-1 1754.3 20393 20.66 22 0-1 1754.3 20393 20.60 22 0-1 1754.3 20393 20.60 22 0-1 1754.3 20393 20.60 22 0-1 1754.3 20393 20.65 22 0-1 1754.3 20393 20.65 22 0-1 1754.3 20393 20.65 22 0-1 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.63 22 0-2 1710.7 19957 20.41 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.69 22 0-2 1754.3 20393 20.69 22 0-2 1754.3 20393 20.69 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2				3								
1.4 1.												
1.4 1754.3 20393 21.55 22 0-1			_									
1.4 1 RB 2 1710.7 19957 20.50 22 0-1 1732.5 20175 20.58 22 0-1 1754.3 20393 20.54 22 0-1 1754.3 20393 20.54 22 0-1 1754.3 20393 20.66 22 0-1 1754.3 20393 20.60 22 0-1 1754.3 20393 20.60 22 0-1 1754.3 20393 20.60 22 0-1 1754.3 20393 20.67 22 0-1 1754.3 20393 20.65 22 0-1 1754.3 20393 20.65 22 0-1 1754.3 20393 20.65 22 0-1 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.49 22 0-2 20.2 20			6	SRB								
1 RB 2 1732.5 20175 20.58 22 0-1 1754.3 20393 20.54 22 0-1 1710.7 19957 20.54 22 0-1 1754.3 20393 20.66 22 0-1 1754.3 20393 20.60 22 0-1 1754.3 20393 20.60 22 0-1 1754.3 20393 20.60 22 0-1 1754.3 20393 20.67 22 0-1 1754.3 20393 20.65 22 0-1 1754.3 20393 20.65 22 0-1 1754.3 20393 20.65 22 0-1 1754.3 20393 20.65 22 0-1 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 2039	1.4											
1 RB 2 1754.3 20393 20.54 22 0-1 1710.7 19957 20.54 22 0-1 1754.3 20393 20.66 22 0-1 1754.3 20393 20.60 22 0-1 1710.7 19957 20.67 22 0-1 1754.3 20393 20.65 22 0-1 1754.3 20393 20.65 22 0-1 1754.3 20393 20.65 22 0-1 1754.3 20393 20.65 22 0-1 1710.7 19957 20.41 22 0-2 1732.5 20175 20.44 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.41 22 0-2 1710.7 19957 20.47 22 0-2 1710.7 19957 20.41 22 0-2 1710.7 19957 20.41 22 0-2 1710.7 19957 20.41 22 0-2 1710.7 19957 20.41 22 0-2 1710.7 19957 20.41 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2				0								
16-QAM 1 RB 2				Ü								
1 RB 2 1732.5 20175 20.66 22 0-1 1754.3 20393 20.60 22 0-1 1710.7 19957 20.67 22 0-1 1754.3 20393 20.60 22 0-1 1732.5 20175 20.67 22 0-1 1754.3 20393 20.65 22 0-1 1754.3 20393 20.65 22 0-1 1754.3 20393 20.65 22 0-2 1754.3 20393 20.44 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.49 20 0-2 1754.3 20393 20.49 20 0-2 1754.3 20393 20.49 20 0-2 1754.3 20393 20.49 20 0-2 1754.3 20393 20.49 20 0-2 1754.3 20393 20.49 20 0-2 1754.3 20393 20.49 20 0-2 1754.3 20393 20.49 20 0-2 1754.3 20393 20.49 20 0-2 1754.3 20393 20.49 20 0-2 1754.3 20393 20.49 20 0-2 1754.3 20393 20.49 20 0-2 1754.3 20393 20.49 20 0-2 1754.3 2039									-			
1754.3 20393 20.60 22 0-1 1710.7 19957 20.67 22 0-1 1732.5 20175 20.67 22 0-1 1754.3 20393 20.65 22 0-1 1710.7 19957 20.41 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.41 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.41 22 0-2 1710.7 19957 20.47 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1710.7 19957 20.52 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.52 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.52 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2			1 DD	0								
1710.7 19957 20.67 22 0-1 1732.5 20175 20.67 22 0-1 1754.3 20393 20.65 22 0-1 1710.7 19957 20.41 22 0-2 1732.5 20175 20.44 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.47 22 0-2 1732.5 20175 20.41 22 0-2 1732.5 20175 20.47 22 0-2 1732.5 20175 20.41 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1710.7 19957 20.52 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2			IND	2								
16-QAM 3 RB 2 1732.5 20175 20.67 22 0-1 1754.3 20393 20.65 22 0-1 1710.7 19957 20.41 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.47 22 0-2 1732.5 20175 20.41 22 0-2 1710.7 19957 20.47 22 0-2 1754.3 20393 20.63 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.34 22 0-2 1710.7 19957 20.52 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2												
1754.3 20393 20.65 22 0-1 1710.7 19957 20.41 22 0-2 1732.5 20175 20.44 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.47 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.63 22 0-2 1754.3 20393 20.63 22 0-2 1710.7 19957 20.52 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2				5								
16-QAM 0 1732.5 20175 20.41 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.47 22 0-2 1710.7 19957 20.47 22 0-2 1710.7 19957 20.47 22 0-2 1732.5 20175 20.41 22 0-2 1754.3 20393 20.63 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.52 20 0-2 1710.7 19957 20.52 20 0-2 1710.7 19957 20.52 20 0-2 1710.7 19957 20.52 20 0-2 1710.7 19957 20.52 20 0-2				3					_			
16-QAM 0 1732.5 20175 20.44 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.47 22 0-2 1754.3 20393 20.63 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2												
3 RB 2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.47 22 0-2 1732.5 20175 20.41 22 0-2 1754.3 20393 20.63 22 0-2 1710.7 19957 20.52 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1732.5 20175 20.61 22 0-2		16-OAM		0								
3 RB 2 1710.7 19957 20.47 22 0-2 1732.5 20175 20.41 22 0-2 1754.3 20393 20.63 22 0-2 1710.7 19957 20.52 22 0-2 1754.3 20393 20.49 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1732.5 20175 20.61 22 0-2		10 30 1101										
3 RB 2 1732.5 20175 20.41 22 0-2 1754.3 20393 20.63 22 0-2 1710.7 19957 20.52 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1710.7 19957 20.52 22 0-2 1732.5 20175 20.61 22 0-2												
1754.3 20393 20.63 22 0-2 1710.7 19957 20.52 22 0-2 1732.5 20175 20.34 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.52 22 0-2 6RB 1732.5 20175 20.61 22 0-2			3 RB	2								
3 1710.7 19957 20.52 22 0-2 1732.5 20175 20.34 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.52 22 0-2 6RB 1732.5 20175 20.61 22 0-2			5 / 15	_								
3 1732.5 20175 20.34 22 0-2 1754.3 20393 20.49 22 0-2 1710.7 19957 20.52 22 0-2 6RB 1732.5 20175 20.61 22 0-2												
1754.3 20393 20.49 22 0-2 1710.7 19957 20.52 22 0-2 6RB 1732.5 20175 20.61 22 0-2				3								
1710.7 19957 20.52 22 0-2 6RB 1732.5 20175 20.61 22 0-2												
6RB 1732.5 20175 20.61 22 0-2												
			6RB	SRB								
1,0,0 1 20000 1 20.77 1 22 1 0-2 1			6HB		1754.3	20393	20.44	22	0-2			

Page: 25 of 294

FDD Band 5											
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)			
				829	20450	22.44	23	0			
			0	836.5	20525	22.21	23	0			
				844	20600	22.38	23	0			
				829	20450	22.39	23	0			
		1 RB	25	836.5	20525	22.36	23	0			
				844	20600	22.47	23	0			
				829	20450	22.39	23	0			
			49	836.5	20525	22.39	23	0			
				844	20600	22.55	23	0			
				829	20450	21.22	23	0-1			
	QPSK		0	836.5	20525	21.39	23	0-1			
				844	20600	21.43	23	0-1			
		25 RB		829	20450	21.3	23	0-1			
			12	836.5	20525	21.44	23	0-1			
				844	20600	21.51	23	0-1			
				829	20450	21.34	23	0-1			
			25	836.5	20525	21.42	23	0-1			
				844	20600	21.48	23	0-1			
		_		829	20450	21.39	23	0-1			
		5	0RB	836.5	20525	21.35	23	0-1			
10			1	844	20600	21.43	23	0-1			
				829	20450	20.94	22	0-1			
			0	836.5	20525	21.64	22	0-1			
				844	20600	21.29	22	0-1			
		4 00	0.5	829	20450	21.00	22	0-1			
		1 RB	25	836.5	20525	21.67	22	0-1			
				844	20600	21.61	22	0-1			
			40	829	20450	20.97	22	0-1			
			49	836.5	20525	21.71	22	0-1			
				844	20600	21.84	22	0-1			
	16-QAM		0	829	20450	20.21	22	0-2			
	10-QAIVI		0	836.5	20525	20.37	22	0-2			
				844	20600	20.42	22	0-2			
		25 RB	12	829	20450	20.2	22	0-2			
		20 ND	12	836.5	20525	20.31	22	0-2			
				844 829	20600 20450	20.29 20.24	22 22	0-2 0-2			
			25	836.5	20450	20.24	22	0-2			
			20	844	20600	20.45	22	0-2			
			829	20600	20.42	22	0-2				
		50RB	0RB	836.5	20450	20.09	22	0-2			
			U. ID	844	20600	20.38	22	0-2			
			044	20000	20.20	۷۷	0-2				

Page: 26 of 294

FDD Band 5										
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)		
				826.5	20425	22.32	23	0		
			0	836.5	20525	22.34	23	0		
				846.5	20625	22.32	23	0		
				826.5	20425	22.13	23	0		
		1 RB	12	836.5	20525	22.35	23	0		
				846.5	20625	22.50	23	0		
				826.5	20425	22.35	23	0		
			24	836.5	20525	22.33	23	0		
				846.5	20625	22.32	23	0		
			0	826.5	20425	21.26	23	0-1		
	QPSK			836.5	20525	21.47	23	0-1		
				846.5	20625	21.39	23	0-1		
				826.5	20425	21.32	23	0-1		
		12 RB	6	836.5	20525	21.51	23	0-1		
				846.5	20625	21.63	23	0-1		
				826.5	20425	21.24	23	0-1		
			13	836.5	20525	21.44	23	0-1		
				846.5	20625	21.47	23	0-1		
				826.5	20425	21.27	23	0-1		
		2	5RB	836.5	20525	21.35	23	0-1		
5			I	846.5	20625	21.38	23	0-1		
			0	826.5	20425	21.1	22	0-1		
				836.5	20525	21.63	22	0-1		
				846.5	20625	21.47	22	0-1		
				826.5	20425	21.13	22	0-1		
		1 RB	12	836.5	20525	21.6	22	0-1		
				846.5	20625	21.07	22	0-1		
			0.4	826.5	20425	21.51	22	0-1		
			24	836.5	20525	21.23	22	0-1		
				846.5	20625	21.57	22	0-1		
	10 0414			826.5	20425	20.32	22	0-2		
	16-QAM		0	836.5	20525	20.46	22	0-2		
				846.5	20625	20.6	22	0-2		
		10 00	C	826.5	20425	20.24	22	0-2		
		12 RB	6	836.5	20525	20.49	22	0-2		
				846.5	20625	20.65	22	0-2		
			10	826.5	20425	20.4	22	0-2		
			13	836.5	20525	20.39	22	0-2		
				846.5	20625	20.43	22	0-2		
		25RB	5RR	826.5	20425	20.25	22	0-2		
			836.5 846.5	20525	20.37	22	0-2			
				846.5	20625	20.34	22	0-2		

Page: 27 of 294

FDD Band 5										
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)		
				825.5	20415	22.08	23	0		
			0	836.5	20525	22.3	23	0		
				847.5	20635	22.33	23	0		
				825.5	20415	22.21	23	0		
		1 RB	7	836.5	20525	22.42	23	0		
				847.5	20635	22.4	23	0		
				825.5	20415	22.27	23	0		
			14	836.5	20525	22.45	23	0		
				847.5	20635	22.3	23	0		
			0	825.5	20415	21.35	23	0-1		
	QPSK			836.5	20525	21.43	23	0-1		
				847.5	20635	21.46	23	0-1		
		8 RB		825.5	20415	21.33	23	0-1		
			4	836.5	20525	21.44	23	0-1		
				847.5	20635	21.44	23	0-1		
				825.5	20415	21.28	23	0-1		
			7	836.5	20525	21.42	23	0-1		
				847.5	20635	21.42	23	0-1		
				825.5	20415	21.34	23	0-1		
		1:	5RB	836.5	20525	21.44	23	0-1		
3				847.5	20635	21.46	23	0-1		
3				825.5	20415	20.91	22	0-1		
			0	836.5	20525	21.01	22	0-1		
				847.5	20635	21.21	22	0-1		
				825.5	20415	21.46	22	0-1		
		1 RB	7	836.5	20525	21.58	22	0-1		
				847.5	20635	21.69	22	0-1		
				825.5	20415	21.23	22	0-1		
			14	836.5	20525	21.59	22	0-1		
				847.5	20635	21.29	22	0-1		
				825.5	20415	20.07	22	0-2		
	16-QAM		0	836.5	20525	20.22	22	0-2		
				847.5	20635	20.37	22	0-2		
				825.5	20415	20.32	22	0-2		
		8 RB	4	836.5	20525	20.51	22	0-2		
				847.5	20635	20.4	22	0-2		
				825.5	20415	20.21	22	0-2		
			7	836.5	20525	20.31	22	0-2		
				847.5	20635	20.4	22	0-2		
			825.5	20415	20.22	22	0-2			
		15RB		836.5	20525	20.4	22	0-2		
				847.5	20635	20.37	22	0-2		

Page: 28 of 294

FDD Band 5											
Target											
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)			
				824.7	20407	22.17	23	0			
			0	836.5	20525	22.39	23	0			
				848.3	20643	22.14	23	0			
				824.7	20407	22.44	23	0			
		1 RB	2	836.5	20525	22.37	23	0			
				848.3	20643	22.38	23	0			
				824.7	20407	22.21	23	0			
			5	836.5	20525	22.36	23	0			
				848.3	20643	22.36	23	0			
				824.7	20407	22.46	23	0-1			
	QPSK		0	836.5	20525	22.59	23	0-1			
				848.3	20643	22.45	23	0-1			
		3 RB	2	824.7	20407	22.25	23	0-1			
				836.5	20525	22.4	23	0-1			
				848.3	20643	22.37	23	0-1			
				824.7	20407	22.18	23	0-1			
			3	836.5	20525	22.32	23	0-1			
				848.3	20643	22.4	23	0-1			
				824.7	20407	21.44	23	0-1			
		6	SRB	836.5	20525	21.41	23	0-1			
1.4				848.3	20643	21.45	23	0-1			
1.4			824.7	20407	21.15	22	0-1				
			0	836.5	20525	21.48	22	0-1			
				848.3	20643	21.57	22	0-1			
				824.7	20407	21.25	22	0-1			
		1 RB	2	836.5	20525	21.37	22	0-1			
				848.3	20643	21.45	22	0-1			
				824.7	20407	21.27	22	0-1			
			5	836.5	20525	21.34	22	0-1			
				848.3	20643	21.67	22	0-1			
				824.7	20407	21.36	22	0-2			
	16-QAM		0	836.5	20525	21.53	22	0-2			
				848.3	20643	21.58	22	0-2			
				824.7	20407	21.27	22	0-2			
		3 RB	2	836.5	20525	21.55	22	0-2			
				848.3	20643	21.51	22	0-2			
				824.7	20407	21.5	22	0-2			
			3	836.5	20525	21.55	22	0-2			
				848.3	20643	21.55	22	0-2			
				824.7	20407	20.44	22	0-2			
		6RB	SRB	836.5	20525	20.55	22	0-2			
		5. ID	848.3	20643	20.48	22	0-2				

Page: 29 of 294

				FDD Band 1	3			
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)
			0	782	23230	22.23	23	0
		1 RB	25	782	23230	22.66	23	0
	QPSK		49	782	23230	22.18	23	0
		25 RB	0	782	23230	21.41	23	0-1
			12	782	23230	21.76	23	0-1
			25	782	23230	21.69	23	0-1
10		50	0RB	782	23230	21.43	23	0-1
10			0	782	23230	21.37	22	0-1
		1 RB	25	782	23230	21.5	22	0-1
			49	782	23230	21.3	22	0-1
	16-QAM		0	782	23230	20.31	22	0-2
		25 RB	12	782	23230	20.76	22	0-2
			25	782	23230	20.63	22	0-2
		50	0RB	782	23230	20.43	22	0-2

Page: 30 of 294

FDD Band 13											
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)			
				779.5	23205	22.26	23	0			
			0	782	23230	22.56	23	0			
				784.5	23255	22.61	23	0			
				779.5	23205	22.33	23	0			
		1 RB	12	782	23230	22.55	23	0			
				784.5	23255	22.36	23	0			
				779.5	23205	22.53	23	0			
			24	782	23230	22.42	23	0			
				784.5	23255	22.21	23	0			
				779.5	23205	21.43	23	0-1			
	QPSK		0	782	23230	21.47	23	0-1			
				784.5	23255	21.68	23	0-1			
			6	779.5	23205	21.42	23	0-1			
		12 RB		782	23230	21.58	23	0-1			
				784.5	23255	21.47	23	0-1			
				779.5	23205	21.56	23	0-1			
			13	782	23230	21.61	23	0-1			
				784.5	23255	21.27	23	0-1			
				779.5	23205	21.4	23	0-1			
		25RB		782	23230	21.61	23	0-1			
5				784.5	23255	21.49	23	0-1			
3			0	779.5	23205	21.12	22	0-1			
				782	23230	21.5	22	0-1			
				784.5	23255	21.91	22	0-1			
				779.5	23205	21.31	22	0-1			
		1 RB	12	782	23230	21.55	22	0-1			
				784.5	23255	21.37	22	0-1			
				779.5	23205	21.77	22	0-1			
			24	782	23230	21.22	22	0-1			
				784.5	23255	21.01	22	0-1			
				779.5	23205	20.41	22	0-2			
	16-QAM		0	782	23230	20.51	22	0-2			
				784.5	23255	20.69	22	0-2			
				779.5	23205	20.35	22	0-2			
		12 RB	6	782	23230	20.62	22	0-2			
				784.5	23255	20.56	22	0-2			
				779.5	23205	20.52	22	0-2			
			13	782	23230	20.54	22	0-2			
				784.5	23255	20.25	22	0-2			
		25RB		779.5	23205	20.39	22	0-2			
			782	23230	20.53	22	0-2				
			784.5	23255	20.54	22	0-2				

Page: 31 of 294

FDD Band 17										
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)		
				709	23780	22.31	23	0		
			0	710	23790	22.3	23	0		
				711	23800	22.57	23	0		
				709	23780	22.77	23	0		
		1 RB	25	710	23790	22.55	23	0		
				711	23800	22.87	23	0		
				709	23780	22.22	23	0		
			49	710	23790	22.46	23	0		
				711	23800	22.19	23	0		
				709	23780	21.61	23	0-1		
	QPSK		0	710	23790	21.62	23	0-1		
				711	23800	21.67	23	0-1		
				709	23780	21.6	23	0-1		
		25 RB	12	710	23790	21.66	23	0-1		
				711	23800	21.52	23	0-1		
				709	23780	21.57	23	0-1		
			25	710	23790	21.36	23	0-1		
				711	23800	21.55	23	0-1		
				709	23780	21.53	23	0-1		
		5	0RB	710	23790	21.43	23	0-1		
10				711	23800	21.43	23	0-1		
			•	709	23780	21.35	22	0-1		
			0	710	23790	21.79	22	0-1		
				711	23800	21.53	22	0-1		
				709	23780	21.69	22	0-1		
		1 RB	25	710	23790	21.83	22	0-1		
				711	23800	21.63	22	0-1		
			40	709	23780	21.32	22	0-1		
			49	710	23790	20.93	22	0-1		
				711	23800	21.32	22	0-1		
	16 0014		0	709	23780	20.67	22	0-2		
	16-QAM		U	710 711	23790	20.59	22 22	0-2		
					23800	20.66		0-2		
		25 RB	12	709	23780	20.59	22	0-2		
		20 ND	14	710 711	23790 23800	20.7 20.47	22 22	0-2 0-2		
				709	23780	20.47	22	0-2		
			25	710	23790	20.64	22	0-2		
			23	711	23800	20.26	22	0-2		
				709	23780	20.51	22	0-2		
		50RB	0RB	710	23790	20.44	22	0-2		
				711	23800	20.37	22	0-2		

Page: 32 of 294

FDD Band 17									
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance	MPR Allowed per 3GPP(dB)	
				706.5	23755	22.04	(dBm) 23	0	
			0	710	23790	22.63	23	0	
			-	713.5	23825	22.54	23	0	
				706.5	23755	22.51	23	0	
		1 RB	12	710	23790	22.88	23	0	
				713.5	23825	22.34	23	0	
				706.5	23755	22.9	23	0	
			24	710	23790	22.38	23	0	
				713.5	23825	22.1	23	0	
				706.5	23755	21.39	23	0-1	
	QPSK		0	710	23790	21.71	23	0-1	
				713.5	23825	21.51	23	0-1	
				706.5	23755	21.54	23	0-1	
		12 RB	6	710	23790	21.79	23	0-1	
				713.5	23825	21.51	23	0-1	
			13	706.5	23755	21.73	23	0-1	
				710	23790	21.66	23	0-1	
				713.5	23825	21.28	23	0-1	
		25RB		706.5	23755	21.5	23	0-1	
				710	23790	21.47	23	0-1	
5				713.5	23825	21.36	23	0-1	
5		1 RB		706.5	23755	21.35	22	0-1	
			0	710	23790	21.52	22	0-1	
				713.5	23825	21.59	22	0-1	
			12	706.5	23755	21.64	22	0-1	
				710	23790	21.21	22	0-1	
				713.5	23825	21.11	22	0-1	
				706.5	23755	21.5	22	0-1	
			24	710	23790	21.36	22	0-1	
				713.5	23825	21.09	22	0-1	
				706.5	23755	20.41	22	0-2	
	16-QAM		0	710	23790	20.75	22	0-2	
				713.5	23825	20.47	22	0-2	
				706.5	23755	20.52	22	0-2	
		12 RB	6	710	23790	20.55	22	0-2	
				713.5	23825	20.5	22	0-2	
				706.5	23755	20.72	22	0-2	
			13	710	23790	20.72	22	0-2	
				713.5	23825	20.2	22	0-2	
				706.5	23755	20.53	22	0-2	
		2	5RB	710	23790	20.77	22	0-2	
				713.5	23825	20.37	22	0-2	

Page: 33 of 294

FDD Band 25									
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)	
				1860	26140	21.92	22	0	
			0	1882.5	26365	21.72	22	0	
				1905	26590	21.68	22	0	
				1860	26140	21.90	22	0	
		1 RB	50	1882.5	26365	21.70	22	0	
				1905	26590	21.66	22	0	
				1860	26140	21.81	22	0	
			99	1882.5	26365	21.69	22	0	
				1905	26590	21.70	22	0	
				1860	26140	21.88	22	0-1	
	QPSK		0	1882.5	26365	21.74	22	0-1	
		50 RB		1905	26590	21.62	22	0-1	
				1860	26140	21.68	22	0-1	
			25	1882.5	26365	21.76	22	0-1	
				1905	26590	21.72	22	0-1	
			50	1860	26140	21.91	22	0-1	
				1882.5	26365	21.73	22	0-1	
				1905	26590	21.93	22	0-1	
		100RB		1860	26140	21.71	22	0-1	
				1882.5	26365	21.70	22	0-1	
20				1905	26590	21.73	22	0-1	
20				1860	26140	20.88	22	0-1	
		1 RB	0	1882.5	26365	20.63	22	0-1	
				1905	26590	20.67	22	0-1	
			50	1860	26140	20.81	22	0-1	
				1882.5	26365	20.64	22	0-1	
				1905	26590	20.62	22	0-1	
			99	1860	26140	20.78	22	0-1	
				1882.5	26365	20.66	22	0-1	
				1905	26590	20.64	22	0-1	
				1860	26140	20.83	22	0-2	
	16-QAM		0	1882.5	26365	20.68	22	0-2	
				1905	26590	20.53	22	0-2	
				1860	26140	20.59	22	0-2	
		50 RB	25	1882.5	26365	20.74	22	0-2	
				1905	26590	20.69	22	0-2	
				1860	26140	20.90	22	0-2	
			50	1882.5	26365	20.64	22	0-2	
				1905	26590	20.84	22	0-2	
		100RB		1860	26140	20.70	22	0-2	
				1882.5	26365	20.66	22	0-2	
				1905	26590	20.72	22	0-2	

Page: 34 of 294

FDD Band 25								
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)
				1857.5	26115	21.88	22	0
			0	1882.5	26365	21.70	22	0
				1907.5	26615	21.62	22	0
				1857.5	26115	21.82	22	0
		1 RB	36	1882.5	26365	21.65	22	0
				1907.5	26615	21.62	22	0
				1857.5	26115	21.79	22	0
			74	1882.5	26365	21.63	22	0
				1907.5	26615	21.63	22	0
				1857.5	26115	21.79	22	0-1
	QPSK		0	1882.5	26365	21.65	22	0-1
		36 RB		1907.5	26615	21.57	22	0-1
				1857.5	26115	21.65	22	0-1
			18	1882.5	26365	21.70	22	0-1
				1907.5	26615	21.68	22	0-1
			37	1857.5	26115	21.83	22	0-1
				1882.5	26365	21.68	22	0-1
				1907.5	26615	21.84	22	0-1
		75RB		1857.5	26115	21.64	22	0-1
				1882.5	26365	21.66	22	0-1
15			1	1907.5	26615	21.68	22	0-1
		1 RB	0	1857.5	26115	20.80	22	0-1
				1882.5	26365	20.55	22	0-1
				1907.5	26615	20.62	22	0-1
			36 74	1857.5	26115	20.78	22	0-1
				1882.5	26365	20.57	22	0-1
				1907.5	26615	20.55	22	0-1
				1857.5	26115	20.74	22	0-1
				1882.5	26365	20.63	22	0-1
				1907.5	26615	20.61	22	0-1
	40.0		0	1857.5	26115	20.77	22	0-2
	16-QAM			1882.5	26365	20.63	22	0-2
				1907.5	26615	20.43	22	0-2
		00.00	10	1857.5	26115	20.58	22	0-2
		36 RB	18	1882.5	26365	20.65	22	0-2
				1907.5	26615	20.64	22	0-2
			07	1857.5	26115	20.86	22	0-2
			37	1882.5	26365	20.63	22	0-2
				1907.5 1857.5	26615	20.76	22	0-2
		_	75RB		26115	20.66	22	0-2
		/			26365	20.60	22	0-2
				1907.5	26615	20.65	22	0-2

Page: 35 of 294

FDD Band 25									
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)	
				1855	26090	21.88	22	0	
			0	1882.5	26365	21.66	22	0	
				1910	26640	21.55	22	0	
				1855	26090	21.81	22	0	
		1 RB	25	1882.5	26365	21.55	22	0	
				1910	26640	21.60	22	0	
				1855	26090	21.78	22	0	
			49	1882.5	26365	21.55	22	0	
				1910	26640	21.55	22	0	
				1855	26090	21.69	22	0-1	
	QPSK		0	1882.5	26365	21.56	22	0-1	
		25 RB		1910	26640	21.54	22	0-1	
				1855	26090	21.62	22	0-1	
			12	1882.5	26365	21.69	22	0-1	
				1910	26640	21.59	22	0-1	
			25	1855	26090	21.80	22	0-1	
				1882.5	26365	21.60	22	0-1	
				1910	26640	21.79	22	0-1	
		50RB		1855	26090	21.58	22	0-1	
				1882.5	26365	21.63	22	0-1	
10				1910	26640	21.68	22	0-1	
10		1 RB		1855	26090	20.70	22	0-1	
			0	1882.5	26365	20.52	22	0-1	
				1910	26640	20.54	22	0-1	
			25	1855	26090	20.74	22	0-1	
				1882.5	26365	20.49	22	0-1	
				1910	26640	20.54	22	0-1	
			49	1855	26090	20.68	22	0-1	
				1882.5	26365	20.53	22	0-1	
				1910	26640	20.54	22	0-1	
				1855	26090	20.77	22	0-2	
	16-QAM		0	1882.5	26365	20.58	22	0-2	
				1910	26640	20.41	22	0-2	
				1855	26090	20.51	22	0-2	
		25 RB	12	1882.5	26365	20.60	22	0-2	
				1910	26640	20.60	22	0-2	
			25	1855	26090	20.80	22	0-2	
				1882.5	26365	20.62	22	0-2	
				1910	26640	20.74	22	0-2	
					26090	20.66	22	0-2	
		50RB		1882.5	26365	20.50	22	0-2	
				1910	26640	20.59	22	0-2	

Page: 36 of 294

FDD Band 25									
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance	MPR Allowed per 3GPP(dB)	
				1852.5	26065	21.81	(dBm)	0	
			0	1882.5	26365	21.58	22	0	
				1912.5	26665	21.50	22	0	
				1852.5	26065	21.77	22	0	
		1 RB	12	1882.5	26365	21.53	22	0	
				1912.5	26665	21.51	22	0	
				1852.5	26065	21.71	22	0	
			24	1882.5	26365	21.46	22	0	
				1912.5	26665	21.46	22	0	
				1852.5	26065	21.63	22	0-1	
	QPSK		0	1882.5	26365	21.53	22	0-1	
				1912.5	26665	21.52	22	0-1	
				1852.5	26065	21.60	22	0-1	
		12 RB	6	1882.5	26365	21.61	22	0-1	
				1912.5	26665	21.53	22	0-1	
			13	1852.5	26065	21.76	22	0-1	
				1882.5	26365	21.57	22	0-1	
				1912.5	26665	21.70	22	0-1	
		25RB		1852.5	26065	21.50	22	0-1	
				1882.5	26365	21.58	22	0-1	
5				1912.5	26665	21.63	22	0-1	
3		1 RB	0	1852.5	26065	20.66	22	0-1	
				1882.5	26365	20.46	22	0-1	
				1912.5	26665	20.46	22	0-1	
				1852.5	26065	20.72	22	0-1	
			12	1882.5	26365	20.45	22	0-1	
				1912.5	26665	20.47	22	0-1	
			24	1852.5	26065	20.63	22	0-1	
				1882.5	26365	20.45	22	0-1	
				1912.5	26665	20.47	22	0-1	
				1852.5	26065	20.68	22	0-2	
	16-QAM		0	1882.5	26365	20.50	22	0-2	
				1912.5	26665	20.32	22	0-2	
				1852.5	26065	20.45	22	0-2	
		12 RB	6	1882.5	26365	20.59	22	0-2	
				1912.5	26665	20.51	22	0-2	
				1852.5	26065	20.71	22	0-2	
			13	1882.5	26365	20.57	22	0-2	
				1912.5	26665	20.66	22	0-2	
					26065	20.65	22	0-2	
		2		1882.5	26365	20.48	22	0-2	
				1912.5	26665	20.49	22	0-2	

Page: 37 of 294

	FDD Band 25									
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)		
				1851.5	26055	21.80	22	0		
			0	1882.5	26365	21.48	22	0		
				1913.5	26675	21.48	22	0		
				1851.5	26055	21.75	22	0		
		1 RB	7	1882.5	26365	21.47	22	0		
				1913.5	26675	21.47	22	0		
				1851.5	26055	21.63	22	0		
			14	1882.5	26365	21.46	22	0		
				1913.5	26675	21.46	22	0		
				1851.5	26055	21.61	22	0-1		
	QPSK		0	1882.5	26365	21.47	22	0-1		
				1913.5	26675	21.46	22	0-1		
				1851.5	26055	21.60	22	0-1		
		8 RB	8 RB 4	1882.5	26365	21.55	22	0-1		
				1913.5	26675	21.48	22	0-1		
				1851.5	26055	21.71	22	0-1		
	-		7	1882.5	26365	21.49	22	0-1		
				1913.5	26675	21.65	22	0-1		
				1851.5	26055	21.45	22	0-1		
		1	5RB	1882.5	26365	21.53	22	0-1		
3				1913.5	26675	21.56	22	0-1		
3				1851.5	26055	20.59	22	0-1		
			0	1882.5	26365	20.39	22	0-1		
				1913.5	26675	20.44	22	0-1		
						1851.5	26055	20.66	22	0-1
		1 RB	7	1882.5	26365	20.43	22	0-1		
				1913.5	26675	20.41	22	0-1		
				1851.5	26055	20.62	22	0-1		
			14	1882.5	26365	20.42	22	0-1		
				1913.5	26675	20.43	22	0-1		
				1851.5	26055	20.59	22	0-2		
	16-QAM		0	1882.5	26365	20.45	22	0-2		
	8 RB			1913.5	26675	20.26	22	0-2		
				1851.5	26055	20.37	22	0-2		
		8 RB	4	1882.5	26365	20.57	22	0-2		
				1913.5	26675	20.49	22	0-2		
				1851.5	26055	20.62	22	0-2		
			7	1882.5	26365	20.51	22	0-2		
				1913.5	26675	20.61	22	0-2		
				1851.5	26055	20.62	22	0-2		
		1	5RB	1882.5	26365	20.42	22	0-2		
				1913.5	26675	20.42	22	0-2		

Page: 38 of 294

FDD Band 25								
BW(Mhz)	Modulation	RB Size	RB Offset	Frequency (MHz)	Channel	Conducted power (dBm)	Target Power + Max. Tolerance (dBm)	MPR Allowed per 3GPP(dB)
				1850.7	26047	21.75	22	0
			0	1882.5	26365	21.44	22	0
				1914.3	26683	21.48	22	0
				1850.7	26047	21.66	22	0
		1 RB	2	1882.5	26365	21.44	22	0
				1914.3	26683	21.46	22	0
				1850.7	26047	21.58	22	0
			5	1882.5	26365	21.36	22	0
				1914.3	26683	21.43	22	0
				1850.7	26047	21.57	22	0-1
	QPSK		0	1882.5	26365	21.46	22	0-1
				1914.3	26683	21.43	22	0-1
			3	1850.7	26047	21.58	22	0-1
		3 RB		1882.5	26365	21.54	22	0-1
				1914.3	26683	21.46	22	0-1
				1850.7	26047	21.70	22	0-1
				1882.5	26365	21.42	22	0-1
				1914.3	26683	21.63	22	0-1
				1850.7	26047	21.39	22	0-1
		6	SRB	1882.5	26365	21.51	22	0-1
1.4			1	1914.3	26683	21.48	22	0-1
			0	1850.7	26047	20.51	22	0-1
				1882.5	26365	20.34	22	0-1
				1914.3	26683	20.36	22	0-1
				1850.7	26047	20.63	22	0-1
		1 RB	RB 2	1882.5	26365	20.36	22	0-1
				1914.3	26683	20.38	22	0-1
				1850.7	26047	20.60	22	0-1
				1882.5	26365	20.36	22	0-1
				1914.3	26683	20.41	22	0-1
	40 0414		0	1850.7	26047	20.55	22	0-2
	16-QAM		0	1882.5	26365	20.44	22	0-2
				1914.3	26683	20.23	22	0-2
		0.00	0	1850.7	26047	20.27	22	0-2
		3 RB	2	1882.5	26365	20.51	22	0-2
				1914.3	26683	20.41	22	0-2
			2	1850.7	26047	20.61	22	0-2
			3	1882.5	26365	20.44	22	0-2
				1914.3	26683	20.56	22	0-2
			DD	1850.7	26047	20.59	22	0-2
			SRB	1882.5	26365	20.39	22	0-2
				1914.3	26683	20.41	22	0-2

Page: 39 of 294

CDMA conducted power table:

		•	Target			1xRTT		EV	'DO
Band Lanannell	Frequency (MHz)	Power + Max.	SO55	SO55	TDSO/SO32	TDSO/SO32	1x EvDO Rev. 0, FTAP/RTAP	1x EvDO Rev. A, FETAP/RETAP	
		,	Toleranc e (dBm)	RC1	RC3	FCH+SCH	FCH	Subtype 0/1	Subtype 2
00144	1013	824.7	23.00	22.67	22.64	22.58	22.58	22.70	22.60
CDMA (BC0)	384	836.52	23.00	22.76	22.72	22.67	22.73	22.90	22.70
(500)	777	848.31	23.00	22.50	22.45	22.28	22.29	22.60	22.50
ODAM	25	1851.25	22.00	21.94	21.93	21.91	21.93	21.97	21.94
CDMA (BC1)	600	1880	22.00	21.74	21.72	21.70	21.70	21.78	21.77
(501)	1175	1908.75	22.00	21.92	21.87	21.84	21.84	21.96	21.95
	476	817.9	23.00	22.57	22.55	22.48	22.51	22.60	22.50
CDMA (BC10)	560	820	23.00	22.57	22.57	22.50	22.52	22.60	22.50
(5010)	684	823.1	23.00	22.61	22.63	22.57	22.59	22.70	22.60

Page: 40 of 294

#. WLAN802.11 a/ b/ g/ n(20M/40M) conducted power table:

Antenna	SI	SO	MIMO
Band	Chain 0	Chain 1	Chain0+1
WLAN802.11b	V	V	
WLAN802.11g	V	V	
WLAN802.11n(20M)	V	V	V
WLAN802.11n(40M)	V	V	V
WLAN802.11a	V	V	
WLAN802.11n(20M) 5G	V	V	V
WLAN802.11n(40M) 5G	V	V	V

	1 11100111101		
8	02.11 b	Max. Rated Avg.	Average Power Output (dBm)
CLI	Frequency	Power + Max.	Data Rate (Mbps)
CH	(MHz)	Tolerance (dBm)	1
1	2412	13.5	13.50
6	2437	13.5	13.00
11	2462	13.5	12.62

8	02.11 g	Max. Rated Avg.	Average Power Output (dBm)
CLI	Frequency	Power + Max.	Data Rate (Mbps)
CH	(MHz)	Tolerance (dBm)	6
1	2412	6.77	6.04
6	2437	13	12.60
11	2462	6	5.83

Page: 41 of 294

802.	.11 n(20M)	Max. Rated Avg.	Average Power Output (dBm)
СН	Frequency	Power + Max.	Data Rate (Mbps)
СП	(MHz)	Tolerance (dBm)	6.5
1	2412	10	9.49
6	2437	10	9.30
11	2462	10	8.71

802.	.11 n(40M)	Max. Rated Avg.	Average Power Output (dBm)
СП	Frequency	Power + Max. Tolerance (dBm)	Data Rate (Mbps)
CH	(MHz)		13.5
3	2422	8	7.50
6	2437	9.5	8.65
9	2452	8	7.52

Page: 42 of 294

Main Antenna (CH0)					
02.11 a	Max. Rated	Average Power Output(dBm)			
.3/5.6/5.8G	_	/Wordgo Fower Carpar(abin)			
Frequency	Tolerance	Data Rate (Mbps)			
(MHz)	(dBm)	6			
5180	10.5	9.48			
5200	10.5	9.89			
5220	10.5	9.81			
5240	10.5	9.78			
5260	10.5	9.91			
5280	10.5	9.94			
5300	10.5	9.89			
5320	9	8.54			
5500	6	5.99			
5520	10.5	9.23			
5540	10.5	9.82			
5560	10.5	9.76			
5580	10.5	9.79			
5600	10.5	9.72			
5620	10.5	9.85			
5640	10.5	9.93			
5660	10.5	9.86			
5680	10.5	9.85			
5700	8	7.43			
5745	10.5	9.39			
5765	10.5	9.52			
5785	10.5	9.69			
5805	10.5	9.77			
5825	10.5	9.87			
	02.11 a .3/5.6/5.8G Frequency (MHz) 5180 5200 5220 5240 5260 5280 5300 5320 5500 5520 5540 5560 5580 5600 5620 5640 5660 5680 5700 5745 5765 5785 5805	02.11 a Max. Rated Avg. Power + Max. Tolerance (dBm) 5180 10.5 5200 10.5 5220 10.5 5240 10.5 5280 10.5 5300 10.5 5320 9 5500 6 5520 10.5 5540 10.5 5540 10.5 5560 10.5 5580 10.5 5600 10.5 5640 10.5 5680 10.5 5680 10.5 5700 8 5745 10.5 5785 10.5 5805 10.5			

Page: 43 of 294

802.11 n(20M) Max. Rated Avg. Power Outputs CH Frequency (MHz) Power + Max. Tolerance (dBm) Data Rate (Mbps) 36 5180 10.5 9.98 40 5200 10.5 9.85 44 5220 10.5 9.72 48 5240 10.5 9.71 56 5280 10.5 9.79 60 5300 10.5 9.85 64 5320 10.5 9.85 100 5500 9.0 8.22 104 5520 10.5 9.77 108 5540 10.5 9.82 112 5560 10.5 9.74	Main Antenna (CH0)				
CH Frequency (MHz) Avg. Tolerance (dBm) Data Rate (Mbps) 36 5180 10.5 9.98 40 5200 10.5 9.85 44 5220 10.5 9.72 48 5240 10.5 9.72 48 5240 10.5 9.71 56 5280 10.5 9.79 60 5300 10.5 9.85 64 5320 10.5 9.48 100 5500 9.0 8.22 104 5520 10.5 9.77 108 5540 10.5 9.82	(dBm)				
CH Frequency (MHz) Tolerance (dBm) Data Rate (Mbps) 36 5180 10.5 9.98 40 5200 10.5 9.85 44 5220 10.5 9.72 48 5240 10.5 9.65 52 5260 10.5 9.71 56 5280 10.5 9.85 64 5320 10.5 9.85 64 5320 10.5 9.48 100 5500 9.0 8.22 104 5520 10.5 9.77 108 5540 10.5 9.82	,				
(MHz) (dBm) 6.5 36 5180 10.5 9.98 40 5200 10.5 9.85 44 5220 10.5 9.72 48 5240 10.5 9.65 52 5260 10.5 9.71 56 5280 10.5 9.79 60 5300 10.5 9.85 64 5320 10.5 9.48 100 5500 9.0 8.22 104 5520 10.5 9.77 108 5540 10.5 9.82					
40 5200 10.5 9.85 44 5220 10.5 9.72 48 5240 10.5 9.65 52 5260 10.5 9.71 56 5280 10.5 9.79 60 5300 10.5 9.85 64 5320 10.5 9.48 100 5500 9.0 8.22 104 5520 10.5 9.77 108 5540 10.5 9.82					
44 5220 10.5 9.72 48 5240 10.5 9.65 52 5260 10.5 9.71 56 5280 10.5 9.79 60 5300 10.5 9.85 64 5320 10.5 9.48 100 5500 9.0 8.22 104 5520 10.5 9.77 108 5540 10.5 9.82					
48 5240 10.5 9.65 52 5260 10.5 9.71 56 5280 10.5 9.79 60 5300 10.5 9.85 64 5320 10.5 9.48 100 5500 9.0 8.22 104 5520 10.5 9.77 108 5540 10.5 9.82					
52 5260 10.5 9.71 56 5280 10.5 9.79 60 5300 10.5 9.85 64 5320 10.5 9.48 100 5500 9.0 8.22 104 5520 10.5 9.77 108 5540 10.5 9.82					
56 5280 10.5 9.79 60 5300 10.5 9.85 64 5320 10.5 9.48 100 5500 9.0 8.22 104 5520 10.5 9.77 108 5540 10.5 9.82					
60 5300 10.5 9.85 64 5320 10.5 9.48 100 5500 9.0 8.22 104 5520 10.5 9.77 108 5540 10.5 9.82					
64 5320 10.5 9.48 100 5500 9.0 8.22 104 5520 10.5 9.77 108 5540 10.5 9.82					
100 5500 9.0 8.22 104 5520 10.5 9.77 108 5540 10.5 9.82					
104 5520 10.5 9.77 108 5540 10.5 9.82					
108 5540 10.5 9.82					
40.5					
112 5560 10.5 9.74					
116 5580 10.5 9.73					
120 5600 10.5 9.75					
124 5620 10.5 9.69					
128 5640 10.5 9.85					
132 5660 10.5 9.79					
136 5680 10.5 9.63					
140 5700 10.5 9.57					
149 5745 10.5 9.30					
153 5765 10.5 9.38					
157 5785 10.5 9.47					
161 5805 10.5 9.61					
165 5825 10.5 9.65					

Page: 44 of 294

Main Antenna (Cho)					
802.	11 n(40M)	Max. Rated	Average Power Output(dBm)		
5.2/5.3/5.6/5.8G			Average rower Output(dbiii)		
CH	Frequency	Power + Max. Tolerance	Data Rate (Mbps)		
СП	(MHz)	(dBm)	13.5		
38	5190	9.0	8.23		
46	5230	10.5	9.61		
54	5270	10.5	9.77		
62	5310	9.0	7.23		
102	5510	7.0	5.75		
110	5550	10.0	9.58		
118	5590	10.0	9.62		
126	5630	10.0	9.71		
134	5670	10.0	9.64		
151	5755	11.0	9.21		
159	5795	11.0	9.33		

Page: 45 of 294

Aux Antenna (CH1)

Aux Antenna (OITI)					
8	02.11 b	Max. Rated Avg.	Average Power Output (dBm)		
CLI	Frequency	Power + Max.	Data Rate (Mbps)		
CH	(MHz)	Tolerance (dBm)	1		
1	2412	11	10.73		
6	2437	11.2	11.14		
11	2462	12	11.59		

8	Max. Rated Avg. Average Power Output (Average Power Output (dBm)
СН	Frequency	Power + Max.	Data Rate (Mbps)
СП	(MHz)	Tolerance (dBm)	6
1	2412	6	5.79
6	2437	11	10.97
11	2462	5	4.94

802.	802.11 n(20M) Max. Rated Av		Average Power Output (dBm)
СН	Frequency	Power + Max.	Data Rate (Mbps)
СП	(MHz)	Tolerance (dBm)	6.5
1	2412	10	9.35
6	2437	10	9.49
11	2462	10	9.41

802.	.11 n(40M)	Max. Rated Avg.	Average Power Output (dBm)
СП	Frequency	Power + Max.	Data Rate (Mbps)
CH	(MHz)	Tolerance (dBm)	13.5
3	2422	8	7.19
6	2437	9.5	8.63
9	2452	8	7.81

Page: 46 of 294

Aux Antenna (CH1)				
	02.11 a	Max. Rated Avg.	Average Power Output(dBm)	
5.2/5	.3/5.6/5.8G	Power + Max.	Data Data (Mbna)	
CH	Frequency (MHz)	Tolerance (dBm)	Data Rate (Mbps)	
00	, ,	, ,	6	
36	5180	10	9.31	
40	5200	10	9.37	
44	5220	10	9.22	
48	5240	10	9.19	
52	5260	10	9.16	
56	5280	10	9.12	
60	5300	10	9.60	
64	5320	9	8.99	
100	5500	6	5.97	
104	5520	10.5	9.39	
108	5540	10.5	9.45	
112	5560	10.5	9.41	
116	5580	10.5	9.39	
120	5600	10.5	9.51	
124	5620	10.5	9.37	
128	5640	10.5	9.44	
132	5660	10.5	9.39	
136	5680	10.5	9.31	
140	5700	8	7.62	
149	5745	10	9.32	
153	5765	10	9.44	
157	5785	10	9.47	
161	5805	10	9.52	
165	5825	10	9.50	

Page: 47 of 294

Aux Antenna (CH1)

Aux Antenna (CH1)				
	.11 n(20M)	Max. Rated	Average Power Output(dBm)	
5.2/5.3/5.6/5.8G		Avg. Power + Max.	,	
СН	Frequency	Tolerance	Data Rate (Mbps)	
0	(MHz)	z) (dBm)	6.5	
36	5180	10.0	9.31	
40	5200	10.0	9.36	
44	5220	10.0	9.27	
48	5240	10.0	9.19	
52	5260	10.5	9.13	
56	5280	10.5	9.11	
60	5300	10.5	9.57	
64	5320	10.5	9.49	
100	5500	9.0	8.44	
104	5520	10.5	9.39	
108	5540	10.5	9.41	
112	5560	10.5	9.35	
116	5580	10.5	9.47	
120	5600	10.5	9.51	
124	5620	10.5	9.48	
128	5640	10.5	9.44	
132	5660	10.5	9.33	
136	5680	10.5	9.27	
140	5700	10.5	9.26	
149	5745	10.5	9.25	
153	5765	10.5	9.42	
157	5785	10.5	9.51	
161	5805	10.5	9.49	
165	5825	10.5	9.54	

Page: 48 of 294

Aux Antenna (CH1)

<u>Aux</u>	Aux Antenna (Chi)				
802.	11 n(40M)	Max. Rated	Average Power Output(dBm)		
5.2/5	.3/5.6/5.8G		Average Fower Output(dBill)		
CH	Frequency	Power + Max. Tolerance	Data Rate (Mbps)		
СП	(MHz)	(dBm)	13.5		
38	5190	9.00	8.57		
46	5230	10.00	9.81		
54	5270	10.50	9.86		
62	5310	9.00	7.52		
102	5510	7.00	5.75		
110	5550	10.00	9.66		
118	5590	10.00	9.23		
126	5630	10.00	9.62		
134	5670	10.00	9.04		
151	5755	11.00	9.18		
159	5795	11.00	9.25		

Page: 49 of 294

MIMO (CH0 + CH1)

802	2.11 n(20M)	Max. Rated Avg.	Average Power Output (dBm)			
CLI	Frequency	Power + Max.	~			
CH	(MHz)	Tolerance (dBm)	CH0	CH1	CH0 + CH1	
1	2412	10	7.09	5.81	9.51	
6	2437	10	7.45	5.25	9.50	
11	2462	10	7.66	4.81	9.48	

802	2.11 n(40M)	Max. Rated Avg.	Average Power Output (dBm)			
СП	Frequency	Power + Max.	Power + Max. Data Rate (Mbps)			
CH	(MHz)	Tolerance (dBm)	CH0	CH1	CH0 + CH1	
3	2422	8	5.29	3.59	7.53	
6	2437	9.5	7.11	4.83	9.13	
9	2452	8	6.15	2.88	7.83	

Page: 50 of 294

MIMO (CH0 + CH1)

802.	802.11 n(20M) 802.5 3/5 6/5 8G Max. Rated Avg.		Average Power Output (dBm)		
5.2/5	.3/5.6/5.8G	Power + Max.			
СН	Frequency	Tolerance (dBm)		Data Rate (Mbp	,
	(MHz)		CH0	CH1	CH0 + CH1
36	5180	10.5	7.60	7.08	10.36
40	5200	10.5	7.51	6.77	10.17
44	5220	10.5	7.45	6.55	10.03
48	5240	10.5	7.33	6.41	9.90
52	5260	10.5	7.27	6.18	9.77
56	5280	10.5	7.88	7.05	10.50
60	5300	10.5	7.67	6.89	10.31
64	5320	10.5	6.90	6.04	9.50
100	5500	9.0	5.73	5.17	8.47
104	5520	10.5	7.46	7.06	10.27
108	5540	10.5	7.39	6.88	10.15
112	5560	10.5	7.33	6.78	10.07
116	5580	10.5	7.29	6.73	10.03
120	5600	10.5	7.21	6.80	10.02
124	5620	10.5	7.33	6.83	10.10
128	5640	10.5	7.39	6.81	10.12
132	5660	10.5	7.44	6.88	10.18
136	5680	10.5	7.42	6.99	10.22
140	5700	10.5	7.75	7.22	10.50
149	5745	10.5	7.26	6.50	9.91
153	5765	10.5	7.39	6.56	10.01
157	5785	10.5	7.21	6.69	9.97
161	5805	10.5	7.55	6.68	10.15
165	5825	10.5	7.36	6.90	10.15

Page: 51 of 294

MIMO(CH0 + CH1)

	000 44 :: (40M)				
802.	.11 n(40M)		Average Power Output (dBm)		
5.2/5	.3/5.6/5.8G	Max. Rated Avg. Power + Max.	Average rower output (abili)		
CH	Frequency			Data Rate (Mbp	os)
OH	(MHz)		CH0	CH1	CH0 + CH1
38	5190	9.0	6.33	5.63	9.00
46	5230	10.5	7.87	6.97	10.45
54	5270	10.5	7.73	6.77	10.29
62	5310	9.0	5.59	4.49	8.09
102	5510	7.0	3.93	3.50	6.73
110	5550	10.0	6.93	6.55	9.75
118	5590	10.0	6.81	6.55	9.69
126	5630	10.0	7.06	6.42	9.76
134	5670	10.0	7.13	6.63	9.90
151	5755	11.0	7.66	7.11	10.40
159	5795	11.0	7.80	7.18	10.51

Page: 52 of 294

#. Bluetooth conducted power table:

Frequency	Data	Avg.	
(MHz)	Rate	dBm	mW
2402	1	3.51	2.244
2441	1	2.48	1.770
2480	1	1.98	1.578
2402	2	-1.85	0.653
2441	2	-3.23	0.475
2480	2	-4.34	0.368
2402	3	-3.11	0.489
2441	3	-4.95	0.320
2480	3	-5.65	0.272

Frequency	Avg. (dBm)
(MHz)	BT4.0
2402	1.48
2442	0.41
2480	0.17

Page: 53 of 294

1.4 Test Environment

Ambient Temperature: 22±2° C Tissue Simulating Liquid: 22±2° C

1.5 Operation Description

1. WWAN (GPRS/ EDGE/ WCDMA/ HSDPA/ HSPA/ CDMA 1xRTT/ CDMA EVDO rev.0 & rev.A/ LTE):

The EUT is controlled by using Radio Communication Tester(R&S CMU200 and Anritsu MT8820C), and the communication between the EUT and the tester is established by air link. The EUT was tested in the following configurations confirmed via KDB inquiry. (tracking number: 781437)

Configurations: Back/ back_curve/ top/ bottom/ left/ right side_0mm.

(Testing the left_curve side is not required since the reported SAR is < 1.2 W/kg based on KDB inquiry 781437.)

2. WLAN (802.11 a/b/g/n):

Use chipset specific software to control the EUT, and makes it transmit in maximum power. The EUT was tested in the following configurations confirmed via KDB inquiry. (tracking number: 781437)

Configurations: Back/ back_curve/ top/ bottom/ left/ right side_0mm.

(Testing the right_curve side is not required since the reported SAR is < 1.2 W/kg based on KDB inquiry 781437.)

Page: 54 of 294

Bottom

Antenna position plot(back view)

Page: 55 of 294

Note:

- 1. SAR test for GPRS was performed on the maximum sourced-based time-averaged power.
- 2. SAR measurement is not required for HSDPA/HSPA/HSPA+ since its maximum output power is less than 1/4 dB higher than RMC without HSDPA/HSPA/HSPA+.
- **3.** Body SAR was measured using Subtype 0/1 Physical Layer configurations for Rev. 0. The 3G SAR test reduction procedure is applied to Rev. A, Subtype 2 Physical layer configuration, with Rev. 0 as the primary mode.
- **4.** For this Ev-Do data device that also support 1x RTT data operations, the 3G SAR test reduction procedure is applied to 1x RTT RC3 and RC1 with Ev-Do Rev. 0, Rev. A as the respective primary modes.(Since SAR is not required for Ev-Do Rev. A, only Rev. 0 need consideration as the primary mode.)
- 5. LTE modes test according to FCC KDB 941225 D05v02r03.
 - a. Per Section 5.2.1, the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation.
 - Using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
 - When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel.
 - When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.
 - b. Per Section 5.2.2, the largest channel bandwidth and measure SAR for QPSK with 50% RB allocation
 - The procedures required for 1 RB allocation in 5.2.1 are applied to measure the SAR for QPSK with 50% RB allocation.
 - c. Per Section 5.2.3, the largest channel bandwidth and measure SAR for QPSK with 100% RB allocation
 - For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 5.2.1 and 5.2.2 are ≤ 0.8 W/kg.
 - Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
 - d. Per Section 5.2.4, Higher order modulations

Page: 56 of 294

• For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in sections 5.2.1, 5.2.2 and 5.2.3 to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > 1/2 dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

- e. Per Section 5.3, other channel bandwidth standalone SAR test requirements
 - For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section 5.2 to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > ½ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.
 - The equivalent channel configuration for the RB allocation, RB offset and modulation etc. is determined for the smaller channel bandwidth according to the same number of RB allocated in the largest channel bandwidth.

802.11b DSSS SAR Test Requirements:

- **6.** SAR is measured for 2.4 GHz 802.11b DSSS mode using the highest measured maximum output power channel, when the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 7. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

802.11g/n OFDM SAR Test Exclusion Requirements:

8. SAR is not required for 802.11g/n since the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Page: 57 of 294

Initial Test Configuration:

- **9.** An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band
- **10.** SAR is measured using the highest measured maximum output power channel. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- **11.** For WLAN Main & Aux antennas, 5.2G a/n(40), 5.3G n(20)/n(40), 5.6G n(20), 5.8G n(40) are chosen to be the initial test configurations.
- **12.** For WLAN Main & Aux antennas, since the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is < 1.2 W/kg, SAR is not required for that subsequent test configuration.
- **13.** BT and WLAN Main use the same antenna path and Bluetooth can't transmit simultaneously with WLAN Main.
- **14.** Based on KDB447498D01, BT SAR measurement for back/top/right/left/bottom sides can be excluded.
 - (1) SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by:

$$\frac{\text{Max.tune up power(mW)}}{\text{Min.test separation distance(mm)}} \times \sqrt{f(\text{GHz})} \le 3$$

When the minimum test separation distance is < 5mm, 5mm is applied to determine SAR test exclusion.

- (2) For test separation distances > 50 mm, and the frequency at 100 MHz to 1500MHz, the SAR test exclusion threshold is determined according to the following, and as illustrated in Appendix B of KDB447498 D01.

 [(Threshold at 50mm in step1) + (test separation distance-50mm)x(f(MHz))](mW),
- (3) For test separation distances > 50 mm, and the frequency at > 1500MHz to 6GHz, the SAR test exclusion threshold is determined according to the following, and as illustrated in Appendix B of KDB447498 D01.

Page: 58 of 294

Mode I				Top side		R	ight side			urface (mm) over 200mm SAR testing	
	Maximum power(dBm)	Maximum power(mW)	Ant. to surface (mm)	Exclusion threshold	Require SAR testing?	Ant. to surface (mm)	Exclusion threshol d	Require SAR testing?	Ant. to surface (mm)		Require SAR testing?
ВТ	3.51	2.244	15.9	0.222	NO	less than	0.707	NO	214.2	yes	NO
			Back	/ back_cu	rve	Во	ttom side	е			
Mode	Maximum power(dBm)	Maximum power(mW)	Ant. to surface (mm)	Exclusion threshold	Require SAR testing?	Ant. to surface (mm)	Exclusion threshol d	Require SAR testing?			
ВТ	3.51	2.244	less than	0.707	NO	82.6	326.07	NO			

- **15.** For 2.4/5.2/5.3/5.6/5.8GHz WLAN Main and Aux antennas, the maximum output power of each antenna during simultaneous transmission (for 802.11n) is much less than that used in standalone transmission (802.11a/b/n), so it is more conservative to use the sum of 1-g SAR provision to exclude the SAR measurement for 802.11n MIMO.
- **16.** According to KDB447498 D01, testing of other required channels is not required when the reported 1-g SAR for the highest output channel is \leq 0.8 W/kg, when the transmission band is \leq 100 MHz.
- 17. According to KDB865664 D01, SAR measurement variability must be assessed for each frequency band. When the original highest measured SAR is ≥ 0.8 W/kg, repeated that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).

Page: 59 of 294

1.6 The SAR Measurement System

A block diagram of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY 5 professional system). The model EX3DV4 field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ ($|E|^2$)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

The DASY 5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension is for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage intissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

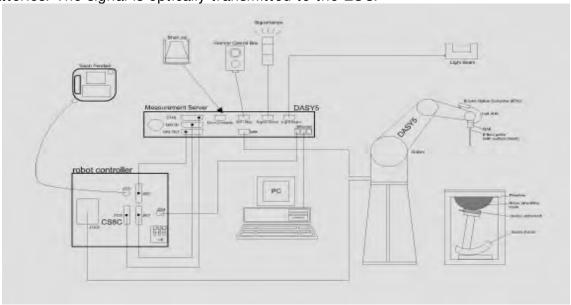


Fig. a The block diagram of SAR system

Page: 60 of 294

- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY 5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
 Validation dipole kits allowing to validate the proper functioning of the system.

Page: 61 of 294

1.7 System Components

EX3DV4 E-Field Probe

EV2DA4 F-1 IGIO	111000						
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)						
Calibration	Basic Broad Band Calibration in air Conversion Factors (CF) for HSL 750/835/ 1750/1900/2450/5200/5300/5600/5800 MHz Additional CF for other liquids and frequencies upon request						
Frequency	10 MHz to > 6 GHz						
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)						
Dynamic Range	· · · · · · · · · · · · · · · · · · ·						
Dimensions	Tip diameter: 2.5 mm						
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.						

Page: 62 of 294

SAM PHANTOM V4.0C

SAM PHANTOM	V4.0C					
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.					
Shell Thickness	2 ± 0.2 mm					
Filling Volume	Approx. 25 liters	(Wrong				
Dimensions	Height: 850 mm; Length: 1000 mm; Width: 500 mm					

DEVICE HOLDER

Construction	The device holder (Supporter) for Notebook is made by POM (polyoxymethylene resin), which is non-metal and non-conductive. The height can be adjusted to fit varies kind of notebooks.	基
		Daving Helder
		Device Holder

Page: 63 of 294

1.8 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 750/835/1750/1900/2450/5200/5300/5600/5800MHz. The tests were conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table 1 (SAR values are normalized to 1W forward power delivered to the dipole). During the tests, the ambient temperature of the laboratory was 21.7° C, the relative humidity was 62% and the liquid depth above the ear reference points was ≥ 15 cm ± 5 mm (frequency ≤ 3 GHz) or ≥ 10 cm ± 5 mm (frequency > 3 G Hz) in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

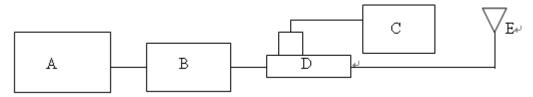


Fig. b The block diagram of system verification

- A. Signal generator
- B. Amplifier
- C. Power meter
- D. Dual directional coupling
- E. Reference dipole antenna

Photograph of the dipole Antenna

Page: 64 of 294

Validation Kit	S/N	Frequ (Mł	•	1W Target SAR-1g (mW/g)	Measured SAR-1g (mW/g)	Measured SAR-1g normalized to 1W (mW/g)	Deviation (%)	Measured Date
D750V2	1015	750	Body	8.75	2.18	8.72	-0.34%	Jun. 15, 2015
D835V2	4d063	835	Body	9.35	2.42	9.68	3.53%	Jun. 16, 2015
D1750V2	1008	1750	Body	37.5	9.43	37.72	0.59%	Jun. 17, 2015
D1900V2	5d027	1900	Body	39.3	9.87	39.48	0.46%	Jun. 18, 2015
D2450V2	727	2450	Body	51	13.8	55.2	8.24%	Jun. 19, 2015
		5200	Body	73.5	7.08	70.8	-3.67%	Jun. 20, 2015
D5GHzV2	1000	5300	Body	74.6	7.49	74.9	0.40%	Jun. 21, 2015
	1023	5600	Body	77.9	7.81	78.1	0.26%	Jun. 22, 2015
		5800	Body	75.6	7.51	75.1	-0.66%	Jun. 22, 2015

Table 1. Results of system validation

Page: 65 of 294

1.9 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this body-simulant fluid were measured by using the Agilent Model 85070E Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Network Analyzer (30 KHz-6000 MHz).

All dielectric parameters of tissue simulates were measured within 24 hours of SAR measurements. The depth of the tissue simulant in the flat section of the phantom was \geq 15 cm \pm 5 mm (Frequency \leq 3G) or \geq 10 cm \pm 5 mm (Frequency >3G) during all tests. (Fig. 2)

Tissue Type	Measured Frequency (MHz)	Target Dielectric Constant, Er	Target Conductivity , σ (S/m)	Measured Dielectric Constant, Er	Measured Conductivity, σ (S/m)	% dev ɛr	% dev σ	Measurement Date
	711	55.683	0.960	53.797	0.974	3.39%	-1.42%	
	750	55.531	0.963	53.393	0.981	3.85%	-1.83%	June,15 2015
	782	55.406	0.966	53.042	1.005	4.27%	-4.05%	
	818	55.267	0.969	56.831	0.994	-2.83%	-2.62%	
	820	55.258	0.969	56.806	0.995	-2.80%	-2.70%	
	823.1	55.246	0.969	56.773	0.999	-2.76%	-3.09%	
	824.2	55.242	0.969	56.743	0.999	-2.72%	-3.08%	
	825	55.240	0.969	56.719	1	-2.68%	-3.18%	
	826.4	55.234	0.969	56.7	1	-2.66%	-3.16%	June,16 2015
	835	55.200	0.970	56.648	1.01	-2.62%	-4.12%	
Body	836.52	55.195	0.972	56.669	1.014	-2.67%	-4.33%	
Бойу	836.6	55.195	0.972	56.669	1.014	-2.67%	-4.32%	
	844	55.172	0.981	56.606	1.02	-2.60%	-3.97%	
	848.31	55.159	0.986	56.511	1.025	-2.45%	-3.92%	
	849	55.158	0.987	56.515	1.026	-2.46%	-3.95%	
	1712.4	53.531	1.465	52.882	1.409	1.21%	3.80%	
	1720	53.511	1.469	52.85	1.414	1.23%	3.78%	
	1732.4	53.478	1.477	52.833	1.425	1.21%	3.54%	
	1732.5	53.478	1.477	52.831	1.425	1.21%	3.54%	huma 17 0015
	1732.6	53.477	1.477	52.831	1.425	1.21%	3.55%	June,17 2015
	1745	53.445	1.485	52.822	1.437	1.17%	3.25%	
	1750	53.432	1.488	52.821	1.442	1.14%	3.12%	
	1752.6	53.425	1.490	52.808	1.446	1.15%	2.96%	

Page: 66 of 294

Tissue Type	Measured Frequency (MHz)	Target Dielectric Constant, Er	Target Conductivity , σ (S/m)	Measured Dielectric Constant, Er	Measured Conductivity, σ (S/m)	% dev ɛr	% dev σ	Measurement Date		
	1850.2	53.300	1.520	53.753	1.45	-0.85%	4.61%			
	1851.25	53.300	1.520	53.749	1.453	-0.84%	4.41%			
	1852.4	53.300	1.520	53.75	1.454	-0.84%	4.34%			
	1860	53.300	1.520	53.718	1.459	-0.78%	4.01%			
	1880	53.300	1.520	53.657	1.481	-0.67%	2.57%			
	1882.5	53.300	1.520	53.678	1.482	-0.71%	2.50%	June,18 2015		
	1900	53.300	1.520	53.595	1.501	-0.55%	1.25%			
	1905	53.300	1.520	53.572	1.508	-0.51%	0.79%			
	1907.6	53.300	1.520	53.58	1.511	-0.53%	0.59%			
	1908.75	53.300	1.520	53.621	1.513	-0.60%	0.46%			
	1910	53.300	1.520	53.584	1.513	-0.53%	0.46%			
	2412	52.751	1.914	51.436	1.992	2.49%	-4.09%			
	2437	52.717	1.938	51.353	2.019	2.59%	-4.20%	L 40 0045		
	2450	52.700	1.950	51.276	2.037	2.70%	-4.46%	June,19 2015		
	2462	52.685	1.967	51.248	2.051	2.73%	-4.27%			
Body	5180	49.041	5.276	48.079	5.424	1.96%	-2.81%			
Бойу	5190	49.028	5.288	48.005	5.443	2.09%	-2.94%	hun - 00 0015		
	5200	49.014	5.299	47.93	5.462	2.21%	-3.07%			
	5220	48.987	5.323	47.853	5.492	2.32%	-3.18%	June,20 2015		
	5230	48.974	5.334	47.832	5.507	2.33%	-3.24%			
	5240	48.960	5.346	47.811	5.522	2.35%	-3.29%			
	5260	48.933	5.369	47.733	5.552	2.45%	-3.40%			
	5270	48.919	5.381	47.696	5.567	2.50%	-3.46%			
	5300	48.879	5.416	47.56	5.609	2.70%	-3.56%	June,21 2015		
	5310	48.865	5.428	47.554	5.618	2.68%	-3.51%			
	5320	48.851	5.439	47.523	5.627	2.72%	-3.45%			
	5520	48.580	5.673	46.795	5.91	3.67%	-4.18%			
	5600	48.471	5.766	46.575	6.004	3.91%	-4.12%			
	5700	48.336	5.883	46.301	6.037	4.21%	-2.61%	luna 00 0015		
	5755	48.261	5.947	46.129	6.195	4.42%	-4.16%	June,22 2015		
	5795	48.207	5.994	46.024	6.208	4.53%	-3.57%			
	5800	48.200	6.000	46.008	6.21	4.55%	-3.50%			

Table 2. Dielectric Parameters of Tissue Simulant Fluid

Page: 67 of 294

The composition of the body tissue simulating liquid:

The composition of the body tissue simulating liquid.								
F			Takal					
Frequency (MHz)	Mode	DGMBE	Water	Salt	Preventol D-7	Cellulose	Sugar	Total amount
750	Body		631.68 g	11.72 g	1.2 g		600 g	1.0L(Kg)
850	Body		631.68 g	11.72 g	1.2 g	_	600 g	1.0L(Kg)
1750	Body	300.67 g	716.56 g	4.0 g			_	1.0L(Kg)
1900	Body	300.67 g	716.56 g	4.0 g		_		1.0L(Kg)
2450	Body	301.7ml	698.3ml			_		1.0L(Kg)

Simulating Liquids for 5 GHz, Manufactured by SPEAG:

Ingredients	Water	Esters, Emulsifiers, Inhibitors	Sodium and Salt
(% by weight)	60-80	20-40	0-1.5

Table 3. Recipes for Tissue Simulating Liquid

Page: 68 of 294

1.10 Evaluation Procedures

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within –2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements.

Page: 69 of 294

The measured volume of 30x30x30mm contains about 30g of tissue.

The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.11 Probe Calibration Procedures

For the calibration of E-field probes in lossy liquids, an electric field with an accurately known field strength must be produced within the measured liquid. For standardization purposes it would be desirable if all measurements which are necessary to assess the correct field strength would be traceable to standardized measurement procedures. In the following two different calibration techniques are summarized:

1.11.1 Transfer Calibration with Temperature Probes

In lossy liquids the specific absorption rate (SAR) is related both to the electric field (E) and the temperature gradient ($\delta T / \delta t$) in the liquid.

$$SAR = \frac{\sigma}{\rho} |E|^2 = c \frac{\delta T}{\delta t}$$

whereby σ is the conductivity, ρ the density and c the heat capacity of the liquid.

Hence, the electric field in lossy liquid can be measured indirectly by measuring the temperature gradient in the liquid. Non-disturbing temperature probes (optical probes or thermistor probes with resistive lines) with high spatial resolution (<1-2 mm) and fast reaction time (<1 s) are available and can be easily calibrated with high precision [1]. The setup and the exciting source have no influence on the calibration; only the relative positioning uncertainties of the standard temperature probe and the E-field probe to be calibrated must be considered. However, several problems limit the available accuracy of probe calibrations with temperature probes:

• The temperature gradient is not directly measurable but must be evaluated from temperature measurements at different time steps. Special precaution is necessary to avoid measurement errors caused by temperature gradients due to energy equalizing effects or convection currents in the liquid. Such effects cannot be completely avoided, as the measured field itself destroys the thermal equilibrium in the liquid. With a careful setup these errors can be kept small.

Page: 70 of 294

• The measured volume around the temperature probe is not well defined. It is difficult to calculate the energy transfer from a surrounding gradient temperature field into the probe. These effects must be considered, since temperature probes are calibrated in liquid with homogeneous temperatures. There is no traceable standard for temperature rise measurements.

- The calibration depends on the assessment of the specific density, the heat capacity and the conductivity of the medium. While the specific density and heat capacity can be measured accurately with standardized procedures (~ 2% for c; much better for ρ), there is no standard for the measurement of the conductivity. Depending on the method and liquid, the error can well exceed ±5%.
- Temperature rise measurements are not very sensitive and therefore are often performed at a higher power level than the E-field measurements. The nonlinearities in the system (e.g., power measurements, different components, etc.) must be considered.

Considering these problems, the possible accuracy of the calibration of E-field probes with temperature gradient measurements in a carefully designed setup is about \pm 10% (RSS) [2]. Recently, a setup which is a combination of the waveguide techniques and the thermal measurements was presented in [3]. The estimated uncertainty of the setup is \pm 5% (RSS) when the same liquid is used for the calibration and for actual measurements and \pm 7-9% (RSS) when not, which is in good agreement with the estimates given in [2].

1.11.2 Calibration with Analytical Fields

In this method a technical setup is used in which the field can be calculated analytically from measurements of other physical magnitudes (e.g., input power). This corresponds to the standard field method for probe calibration in air; however, there is no standard defined for fields in lossy liquids.

When using calculated fields in lossy liquids for probe calibration, several points must be considered in the assessment of the uncertainty:

- The setup must enable accurate determination of the incident power.
- The accuracy of the calculated field strength will depend on the assessment of the dielectric parameters of the liquid.
- Due to the small wavelength in liquids with high permittivity, even small setups might be above the resonant cutoff frequencies. The field distribution in the setup must be carefully checked for conformity with the theoretical field distribution.

Page: 71 of 294

References

- [1] N. Kuster, Q. Balzano, and J.C. Lin, Eds., *Mobile Communications Safety*, Chapman & Hall, London, 1997.
- [2] K. Meier, M. Burkhardt, T. Schmid, and N. Kuster, \Broadband calibration of E-field probes in lossy media", *IEEE Transactions on Microwave Theory and Techniques*, vol. 44, no. 10, pp. 1954{ 1962, Oct. 1996.
- [3] K. Jokela, P. Hyysalo, and L. Puranen, \Calibration of specific absorption rate (SAR) probes in waveguide at 900 MHz", *IEEE Transactions on Instrumentation and Measurements*, vol. 47, no. 2, pp. 432{438, Apr. 1998.

Page: 72 of 294

1.12 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1, By the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

- (1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube).
- (2) Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.
- (3) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1)

Page: 73 of 294

of this section. (Table 4.)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR (Brain)	1.60 m W/g	8.00 m W/g
Spatial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g
Spatial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

Table 4. RF exposure limits

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Page: 74 of 294

2. Summary of Results

GPRS 850 MHz

Mode	Position	Distanc	CH	Freq.	Max. Rated Avg.	Measure d	Scaling	Averaged 1 (W/	g	Plot
Wode	FOSILIOII	e (mm)	5	(MHz)	Power + Max. Tolerance	Avg. Power (dBm)	Scaling	Measured	Reported	page
	Back side	0mm	128	824.2	30.8	30.78	0.46%	0.63	0.633	-
	Back side	0mm	190	836.6	30.8	30.74	1.39%	0.731	0.741	-
	Back side	0mm	251	848.8	30.8	30.80	0.00%	0.827	0.827	-
	Back side_Curve	0mm	251	848.8	30.8	30.80	0.00%	0.72	0.720	-
	Top side	0mm	251	848.8	30.8	30.80	0.00%	0.762	0.762	-
GPRS 850 (1D2UP)	Bottom	0mm	251	848.8	30.8	30.80	0.00%	0.0128	0.013	-
(12201)	Left side	0mm	128	824.2	30.8	30.78	0.46%	0.942	0.946	-
	Left side	0mm	190	836.6	30.8	30.74	1.39%	0.945	0.958	-
	Left side	0mm	251	848.8	30.8	30.80	0.00%	0.991	0.991	183
	Left side*	0mm	251	848.8	30.8	30.80	0.00%	0.988	0.988	-
	Right side	0mm	251	848.8	30.8	30.80	0.00%	0.002	0.002	-

^{* -} repeated at the highest SAR measurement according to the KDB 865664 D01

Page: 75 of 294

GPRS 1900 MHz

Mode	Position	Distanc e	СН	Freq.	Max. Rated Avg.	Measure d Avg.	Scaling	Averaged 1 (W/	g	Plot
		(mm)		(MHz)	Power + Max. Tolerance	Power (dBm)		Measured	Reported	page
	Back side	0mm	512	1850.2	28.5	28.25	5.93%	1.13	1.197	-
	Back side	0mm	661	1880	28.5	28.33	3.99%	1.12	1.165	-
	Back side	0mm	810	1909.8	28.5	28.29	4.95%	1.11	1.165	=
	Back side_Curve	0mm	512	1850.2	28.5	28.25	5.93%	1.26	1.335	184
	Back side_Curve	0mm	661	1880	28.5	28.33	3.99%	1.14	1.186	=
	Back side_Curve	0mm	810	1909.8	28.5	28.29	4.95%	1.14	1.196	-
GPRS 1900 (1Dn2UP)	Back	0mm	512	1850.2	28.5	28.25	5.93%	1.24	1.313	-
	Top side	0mm	512	1850.2	28.5	28.25	5.93%	0.985	1.043	-
	Top side	0mm	661	1880	28.5	28.33	3.99%	1.09	1.134	-
	Top side	0mm	810	1909.8	28.5	28.29	4.95%	1.09	1.144	-
	Bottom	0mm	661	1880	28.5	28.33	3.99%	0.0145	0.015	-
	Left side	0mm	661	1880	28.5	28.33	3.99%	0.287	0.298	-
	Right side	0mm	661	1880	28.5	28.33	3.99%	0.0012	0.001	-

^{* -} repeated at the highest SAR measurement according to the KDB 865664 D01

Page: 76 of 294

WCDMA Band II

Mode	Position	Distance	СН	Freq.	Max. Rated Avg.	Measure d Avg.	Scaling	Averaged 1 (W/	g	Plot
Wiode	1 dattorr	(mm)	Ol 1	(MHz)	Power + Max.	Power (dBm)	ocamig	Measured	Reported	page
	Back side	0mm	9262	1852.4	21.5	21.50	0.00%	0.903	0.903	-
	Back side	0mm	9400	1880	21.5	21.36	3.28%	0.931	0.962	-
	Back side	0mm	9538	1909.8	21.5	21.48	0.46%	0.876	0.880	-
	Back side_Curve	0mm	9262	1852.4	21.5	21.50	0.00%	1.160	1.160	185
	Back side_Curve	0mm	9400	1880	21.5	21.36	3.28%	1.04	1.074	-
	Back side_Curve	0mm	9538	1909.8	21.5	21.48	0.46%	0.956	0.960	-
WCDMA Band 2	Back	0mm	9262	1852.4	21.5	21.50	0.00%	1.02	1.020	-
	Top side	0mm	9262	1852.4	21.5	21.50	0.00%	0.974	0.974	-
	Top side	0mm	9400	1880	21.5	21.36	3.28%	1.00	1.033	-
	Top side	0mm	9538	1909.8	21.5	21.48	0.46%	1.00	1.005	-
	Bottom	0mm	9262	1852.4	21.5	21.50	0.00%	0.0162	0.016	-
	Left side	0mm	9262	1852.4	21.5	21.50	0.00%	0.299	0.299	-
	Right side	0mm	9262	1852.4	21.5	21.50	0.00%	0.0019	0.002	-

^{* -} repeated at the highest SAR measurement according to the KDB 865664 D01

Page: 77 of 294

WCDMA Band IV

W ODW	A Ballu I V									
Mode	Position	Distanc e	СН	Freq.	Max. Rated Avg. Power +	Measure d Avg.	Scaling	Averaged 1 (W/	g	Plot
iviode	i osition	(mm)	5	(MHz)	Max. Tolerance	Power (dBm)	Scaling	Measured	Reported	page
	Back side	0mm	1312	1712.4	22	21.77	5.44%	0.947	0.999	-
	Back side	0mm	1412	1732.6	22	21.75	5.93%	0.93	0.985	-
	Back side	0mm	1513	1752.6	22	21.76	5.68%	0.926	0.979	-
	Back side_Curve	0mm	1312	1712.4	22	21.77	5.44%	1.05	1.107	-
	Back side_Curve	0mm	1412	1732.6	22	21.75	5.93%	1.03	1.091	-
	Back side_Curve	0mm	1513	1752.6	22	21.76	5.68%	1.07	1.131	186
WCDMA Band 4	Back side_Curve*	0mm	1513	1752.6	22	21.76	5.68%	1.05	1.110	-
	Top side	0mm	1312	1712.4	22	21.77	5.44%	0.981	1.034	-
	Top side	0mm	1412	1732.6	22	21.75	5.93%	0.972	1.030	-
	Top side	0mm	1513	1752.6	22	21.76	5.68%	0.993	1.049	-
	Bottom	0mm	1312	1712.4	22	21.77	5.44%	0.0235	0.025	-
	Left side	0mm	1312	1712.4	22	21.77	5.44%	0.532	0.561	-
	Right side	0mm	1312	1712.4	22	21.77	5.44%	0.0042	0.004	-

^{* -} repeated at the highest SAR measurement according to the KDB 865664 D01

Page: 78 of 294

WCDMA Band V

Mode	Position	Distance	СН	Freq.	Max. Rated Avg. Power +	Measured Avg.	Scaling		SAR over g kg)	Plot
Wode	FOSITION	(mm)	СΠ	(MHz)	Max. Tolerance (dBm)	Power (dBm)	Scaling	Measured	Reported	page
	Back side	0mm	4183	836.6	23	22.63	8.89%	0.374	0.407	-
	Back	0mm	4183	836.6	23	22.63	8.89%	0.369	0.402	-
WCDMA	Top side	0mm	4183	836.6	23	22.63	8.89%	0.359	0.391	-
Band 5	Bottom	0mm	4183	836.6	23	22.63	8.89%	0.0321	0.035	-
	Left side	0mm	4183	836.6	23	22.63	8.89%	0.565	0.615	187
	Right side	0mm	4183	836.6	23	22.63	8.89%	0.0028	0.003	-

Page: 79 of 294

LTE FDD Band II

Mode	Bandwidth	Modulation	RB	RB	Position	Distance	СН	Freq.	Max. Rated Avg. Power +	Measured Avg.	Scaling		SAR over V/kg)	Plot
Wode	(MHz)	Wodulation	Size	start	Tosition	(mm)	OI 1	(MHz)	Max. Tolerance (dBm)	Power (dBm)	Ocamig	Measured	Reported	page
					Back side	0mm	18700	1860	22	21.83	3.99%	0.822	0.855	-
				0	Back side_Curve	0mm	18700	1860	22	21.83	3.99%	0.743	0.773	-
					Top side	0mm	18700	1860	22	21.83	3.99%	0.921	0.958	-
					Back side	0mm	18900	1880	22	21.76	5.68%	0.790	0.835	-
				0	Back side_Curve	0mm	18900	1880	22	21.76	5.68%	0.682	0.721	-
			1 RB		Top side	0mm	18900	1880	22	21.76	5.68%	0.931	0.984	-
			1110		Back side	0mm	19100	1900	22	21.88	2.80%	0.778	0.800	-
					Back side_Curve	0mm	19100	1900	22	21.88	2.80%	0.963	0.990	-
				99	Top side	0mm	19100	1900	22	21.88	2.80%	0.861	0.885	-
				33	Bottom side	0mm	19100	1900	22	21.88	2.80%	0.025	0.026	-
					Left side	0mm	19100	1900	22	21.88	2.80%	0.188	0.193	-
LTE	20MHz	QPSK			Right side	0mm	19100	1900	22	21.88	2.80%	0.011	0.011	-
Band 2	201011 12	QISIN			Back side	0mm	18900	1880	22	21.87	3.04%	0.905	0.932	-
					Back side_Curve	0mm	18900	1880	22	21.87	3.04%	0.761	0.784	-
				0	Top side	0mm	18900	1880	22	21.87	3.04%	1.000	1.030	-
				0	Bottom side	0mm	18900	1880	22	21.87	3.04%	0.031	0.032	-
					Left side_Curve	0mm	18900	1880	22	21.87	3.04%	0.339	0.349	-
			50 RB		Right side	0mm	18900	1880	22	21.87	3.04%	0.014	0.014	-
			30 ND		Back side	0mm	18700	1860	22	21.86	3.28%	0.860	0.888	-
				50	Back side_Curve	0mm	18700	1860	22	21.86	3.28%	0.947	0.978	-
					Top side	0mm	18700	1860	22	21.86	3.28%	0.947	0.978	-
					Back side	0mm	19100	1900	22	21.55	10.92%	0.845	0.937	-
				50	Back side_Curve	0mm	19100	1900	22	21.55	10.92%	0.925	1.026	-
					Top side	0mm	19100	1900	22	21.55	10.92%	0.983	1.090	-

Page: 80 of 294

Mada	Bandwidth (MHz)	Madulation	RB	RB	Desition	Distance	СН	Freq.	Max. Rated Avg.	Measured Avg.		_	SAR over V/kg)	Plot
Mode	(MHz)	Moduration	Size	start	Position	(mm)	5	(MHz)	Power + Max. Toleranc e (dBm)	Power (dBm)	Scaling	Measured	Reported	page
					Back side	0mm	18700	1860	22	21.77	5.44%	0.933	0.984	-
					Back side_Curve	0mm	18700	1860	22	21.77	5.44%	1.030	1.086	188
					Back side_Curve*	0mm	18700	1860	22	21.77	5.44%	0.998	1.052	-
					Top side	0mm	18700	1860	22	21.77	5.44%	0.864	0.911	-
					Bottom side	0mm	18700	1860	22	21.77	5.44%	0.039	0.041	-
					Left side	0mm	18700	1860	22	21.77	5.44%	0.221	0.233	-
LTE Band 2	20MHz	QPSK	100 RB	0	Right side	0mm	18700	1860	22	21.77	5.44%	0.026	0.027	-
Bana E					Back side	0mm	18900	1900	22	21.74	6.17%	1.000	1.062	-
					Back side_Curve	0mm	18900	1900	22	21.74	6.17%	0.929	0.986	-
					Top side	0mm	18900	1900	22	21.74	6.17%	0.997	1.059	-
					Back side	0mm	19100	1900	22	21.62	9.14%	0.948	1.035	-
					Back side_Curve	0mm	19100	1900	22	21.62	9.14%	0.892	0.974	-
					Top side	0mm	19100	1900	22	21.62	9.14%	0.998	1.089	-

^{* -} repeated at the highest SAR measurement according to the FCC KDB865664D01v01r03

Page: 81 of 294

LTE FDD Band I V

Mode	Bandwidt	Madulation	RB	RB	Position	Distance	СН	Freq.	Max. Rated Avg. Power +	Measured Avg.		Averag over 1g	ed SAR (W/kg)	Plot
wode	h (MHz)	Modulation	Size	start	FOSITION	(mm)	ОП	(MHz)	Max. Tolerance (dBm)	Power (dBm)	Scaling	Measured	Reported	page
					Back side	0mm	20175	1732.5	22	21.84	3.75%	1.150	1.193	189
				0	Back side*	0mm	20175	1732.5	22	21.84	3.75%	1.090	1.131	-
				"	Back side_Curve	0mm	20175	1732.5	22	21.84	3.75%	1.070	1.110	-
					Top side	0mm	20175	1732.5	22	21.84	3.75%	1.030	1.069	-
					Back side	0mm	20050	1720	22	21.90	2.33%	0.862	0.882	-
LTE				50	Back side_Curve	0mm	20050	1720	22	21.90	2.33%	1.050	1.074	-
Band 4	20MHz	QPSK	1 RB		Top side	0mm	20050	1720	22	21.90	2.33%	1.020	1.044	-
24.14					Back side	0mm	20300	1745	22	21.91	2.09%	0.899	0.918	-
					Back side_Curve	0mm	20300	1745	22	21.91	2.09%	1.130	1.154	-
				50	Top side	0mm	20300	1745	22	21.91	2.09%	0.967	0.987	-
				30	Bottom side	0mm	20300	1745	22	21.91	2.09%	0.034	0.035	-
					Left side	0mm	20300	1745	22	21.91	2.09%	0.460	0.470	-
					Right side	0mm	20300	1745	22	21.91	2.09%	0.0065	0.007	-

^{* -} repeated at the highest SAR measurement according to the FCC KDB865664D01v01r03

Page: 82 of 294

Mode	Bandwidth	Modulation	RB	RB	Position	Distance	CH	Freq.	Max. Rated Avg. Power +	Measured Avg.	Scaling	Averago over 1g	ed SAR (W/kg)	Plot
Wode	(MHz)	Wodulation	Size	start	Tosition	(mm)	5	(MHz)	Max. Tolerance (dBm)	Power (dBm)	ocamig	Measured	Reported	page
					Back side	0mm	20175	1732.5	22	21.79	4.95%	0.905	0.950	-
				25	Back side_Curve	0mm	20175	1732.5	22	21.79	4.95%	0.999	1.048	-
					Top side	0mm	20175	1732.5	22	21.79	4.95%	0.888	0.932	-
					Back side	0mm	20300	1745	22	21.85	3.51%	0.912	0.944	-
					Back side_Curve	0mm	20300	1745	22	21.85	3.51%	1.030	1.066	
			50 RB	50	Top side	0mm	20300	1745	22	21.85	3.51%	0.915	0.947	
			30 110	30	Bottom side	0mm	20300	1745	22	21.85	3.51%	0.029	0.030	-
					Left side	0mm	20300	1745	22	21.85	3.51%	0.432	0.447	-
					Right side	0mm	20300	1745	22	21.85	3.51%	0.0051	0.005	-
					Back side	0mm	20050	1720	22	21.75	5.93%	0.891	0.944	-
				50	Back side_Curve	0mm	20050	1720	22	21.75	5.93%	0.982	1.040	-
LTE	20MHz	QPSK			Top side	0mm	20050	1720	22	21.75	5.93%	0.878	0.930	-
Band 4	2011112	Q, O,			Back side	0mm	20050	1720	22	21.70	7.15%	0.938	1.005	-
					Back side_Curve	0mm	20050	1720	22	21.70	7.15%	0.856	0.917	-
					Top side	0mm	20050	1720	22	21.70	7.15%	0.984	1.054	-
					Back side	0mm	20175	1732.5	22	21.81	4.47%	1.060	1.107	-
					Back side_Curve	0mm	20175	1732.5	22	21.81	4.47%	0.852	0.890	-
			100 RB	0	Top side	0mm	20175	1732.5	22	21.81	4.47%	0.953	0.996	-
			100 110	ľ	Bottom side	0mm	20175	1732.5	22	21.81	4.47%	0.042	0.044	-
					Left side	0mm	20175	1732.5	22	21.81	4.47%	0.520	0.543	-
					Right side	0mm	20175	1732.5	22	21.81	4.47%	0.0045	0.005	-
					Back side	0mm	20300	1745	22	21.74	6.17%	0.944	1.002	-
					Back side_Curve	0mm	20300	1745	22	21.74	6.17%	0.847	0.899	-
					Top side	0mm	20300	1745	22	21.74	6.17%	0.960	1.019	-

Page: 83 of 294

LTE FDD Band V

<u> </u>	טט טט	alla v												
Mode	Bandwidt		RB	RB	Position	Distance	CH	Freq.	Max. Rated Avg.	Measure d	Cooling	Averag over 1g	ed SAR (W/kg)	Plot
Wode	h (MHz)	Modulation	Size	start	Position	(mm)	СП	(MHz)	Power + Max. Toleranc e (dBm)	Avg. Power (dBm)	Scaling	Measured	Reported	page
					Back side	0mm	20600	844	23	22.55	10.92%	0.326	0.362	-
					Back side_Curve	0mm	20600	844	23	22.55	10.92%	0.335	0.372	-
			1 RB	49	Top side	0mm	20600	844	23	22.55	10.92%	0.423	0.469	-
			IND	49	Bottom side	0mm	20600	844	23	22.55	10.92%	0.068	0.075	-
					Left side	0mm	20600	844	23	22.55	10.92%	0.432	0.479	190
					Right side	0mm	20600	844	23	22.55	10.92%	0.0054	0.006	-
					Back side	0mm	20600	844	23	21.51	40.93%	0.347	0.489	-
					Back side_Curve	0mm	20600	844	23	21.51	40.93%	0.411	0.579	-
LTE	10MHz	QPSK	25 RB	12	Top side	0mm	20600	844	23	21.51	40.93%	0.342	0.482	-
Band 5	TOWINZ	QFSN	20 NB	12	Bottom side	0mm	20600	844	23	21.51	40.93%	0.054	0.076	-
					Left side	0mm	20600	844	23	21.51	40.93%	0.371	0.523	-
					Right side	0mm	20600	844	23	21.51	40.93%	0.0068	0.010	-
					Back side	0mm	20600	844	23	21.43	43.55%	0.342	0.491	-
					Back side_Curve	0mm	20600	844	23	21.43	43.55%	0.404	0.580	-
			50 RB	_	Top side	0mm	20600	844	23	21.43	43.55%	0.401	0.576	-
			DU RB	0	Bottom side	0mm	20600	844	23	21.43	43.55%	0.038	0.055	-
					Left side	0mm	20600	844	23	21.43	43.55%	0.419	0.601	-
					Right side	0mm	20600	844	23	21.43	43.55%	0.0095	0.014	-

Page: 84 of 294

LTE FDD Band XIII

Mode	Bandwidt h	Modulation	RB	RB	Position	Distance	СН	Freq.	Avg.	Measured Avg.	Scaling	Averag over 1g	ed SAR (W/kg)	Plot
Widde	(MHz)	viodulation	Size	start	Tosition	(mm)	OH	(MHz)	Power + Max. Toleranc e (dBm)	Power (dBm)	Ü	Measured	Reported	page
					Back side	0mm	23200	782	23	22.66	8.14%	0.433	0.468	-
					Back side_Curve	0mm	23200	782	23	22.66	8.14%	0.449	0.486	-
			1 RB	25	Top side	0mm	23200	782	23	22.66	8.14%	0.508	0.549	-
			טחו	23	Bottom side	0mm	23200	782	23	22.66	8.14%	0.048	0.052	-
					Left side	0mm	23200	782	23	22.66	8.14%	0.594	0.642	191
					Right side	0mm	23200	782	23	22.66	8.14%	0.0052	0.006	-
					Back side	0mm	23200	782	23	21.76	33.05%	0.317	0.422	-
					Back side_Curve	0mm	23200	782	23	21.76	33.05%	0.341	0.454	-
LTE	10MHz	QPSK	25 RB	12	Top side	0mm	23200	782	23	21.76	33.05%	0.309	0.411	-
Band 13	1 OIVII 12	QFSIN	23 ND	12	Bottom side	0mm	23200	782	23	21.76	33.05%	0.026	0.035	-
					Left side	0mm	23200	782	23	21.76	33.05%	0.496	0.660	-
					Right side	0mm	23200	782	23	21.76	33.05%	0.0078	0.010	-
					Back side	0mm	23200	782	23	21.43	43.55%	0.293	0.421	-
					Back side_Curve	0mm	23200	782	23	21.43	43.55%	0.309	0.444	-
			50 RB	0	Top side	0mm	23200	782	23	21.43	43.55%	0.308	0.442	-
			30 110	"	Bottom side	0mm	23200	782	23	21.43	43.55%	0.065	0.093	-
					Left side	0mm	23200	782	23	21.43	43.55%	0.583	0.837	-
					Right side	0mm	23200	782	23	21.43	43.55%	0.0064	0.009	-

Page: 85 of 294

LTE FDD Band XVII

Mode	Bandwidt h	Modulation	RB	RB	Position	Distance	СН	Freq.	Max. Rated Avg. Power +	Measured Avg.	Scaling	Averag over 1g	ed SAR (W/kg)	Plot
Wode	(MHz)	Wodalation	Size	start	Tosition	(mm)	5	(MHz)	Max. Tolerance (dBm)	Power (dBm)	Ŭ	Measured	Reported	page
					Back side	0mm	23800	711	23	22.87	3.04%	0.190	0.196	-
					Back side_Curve	0mm	23800	711	23	22.87	3.04%	0.172	0.177	-
			1 RB	25	Top side	0mm	23800	711	23	22.87	3.04%	0.162	0.167	-
			IND	23	Bottom side	0mm	23800	711	23	22.87	3.04%	0.008	0.008	-
					Left side	0mm	23800	711	23	22.87	3.04%	0.397	0.409	192
					Right side	0mm	23800	711	23	22.87	3.04%	0.0018	0.002	-
					Back side	0mm	23800	711	23	21.67	35.83%	0.194	0.264	-
					Back side_Curve	0mm	23800	711	23	21.67	35.83%	0.218	0.296	-
LTE	10MHz	QPSK	25 RB	0	Top side	0mm	23800	711	23	21.67	35.83%	0.164	0.223	-
Band 17	TUIVITZ	QFSN	23 NB	"	Bottom side	0mm	23800	711	23	21.67	35.83%	0.005	0.006	-
					Left side	0mm	23800	711	23	21.67	35.83%	0.320	0.435	-
					Right side	0mm	23800	711	23	21.67	35.83%	0.0025	0.003	-
					Back side	0mm	23780	709	23	21.53	40.28%	0.170	0.238	-
					Back side_Curve	0mm	23780	709	23	21.53	40.28%	0.198	0.278	-
			50 RB	0	Top side	0mm	23780	709	23	21.53	40.28%	0.137	0.192	-
			JU ND	"	Bottom side	0mm	23780	709	23	21.53	40.28%	0.006	0.009	-
					Left side	0mm	23780	709	23	21.53	40.28%	0.312	0.438	-
					Right side	0mm	23780	709	23	21.53	40.28%	0.0036	0.005	-

Page: 86 of 294

LTE FDD Band XXV

		IIIU AA	•											
Mode	Bandwidth	Modulation	RB	RB	Position	Distance	СН	Freq.	Max. Rated Avg. Power +	Measured Avg.	Scaling	Averaged 1g (V		Plot
Mode	(MHz)	Modulation	Size	start	FOSITION	(mm)	OH	(MHz)	Max. Tolerance (dBm)	Power (dBm)	Scaling	Measured	Reported	page
					Back side	0mm	26140	1860	22	21.92	1.86%	1.130	1.151	-
					Back side_Curve	0mm	26140	1860	22	21.92	1.86%	0.918	0.935	-
				0	Top side	0mm	26140	1860	22	21.92	1.86%	1.070	1.090	-
				ľ	Bottom side	0mm	26140	1860	22	21.92	1.86%	0.015	0.015	-
					Left side	0mm	26140	1860	22	21.92	1.86%	0.368	0.375	-
LTE	20MHz	QPSK	1 RB		Right side	0mm	26140	1860	22	21.92	1.86%	0.0072	0.007	-
Band 25	ZUIVIITZ	QFSN	I ND		Back side	0mm	26365	1882.5	22	21.72	6.66%	0.968	1.032	-
				50	Back side_Curve	0mm	26365	1882.5	22	21.72	6.66%	0.912	0.973	-
					Top side	0mm	26365	1882.5	22	21.72	6.66%	1.060	1.131	-
					Back side	0mm	26590	1905	22	21.70	7.15%	1.030	1.104	-
				99	Back side_Curve	0mm	26590	1905	22	21.70	7.15%	0.914	0.979	-
					Top side	0mm	26590	1905	22	21.70	7.15%	1.060	1.136	-

Page: 87 of 294

Mode	Bandwidt h	Modulation	RB	RB	Position	Distance	СН	Freq.	Max. Rated Avg.	Measured Avg.	Scaling	Averag over 1g	ed SAR (W/kg)	Plot
Wiede	(MHz)	Modulation	Size	start	1 osition	(mm)	Ol 1	(MHz)	Power + Max. Tolerance (dBm)	Power (dBm)	ocamig	Measured	Reported	page
					Back side	0mm	26365	1882.5	22	21.76	5.68%	0.826	0.873	-
				25	Back side_Curve	0mm	26365	1882.5	22	21.76	5.68%	0.888	0.938	-
					Top side	0mm	26365	1882.5	22	21.76	5.68%	1.060	1.120	-
					Back side	0mm	26140	1860	22	21.91	2.09%	0.838	0.856	-
				50	Back side_Curve	0mm	26140	1860	22	21.91	2.09%	0.893	0.912	-
					Top side	0mm	26140	1860	22	21.91	2.09%	1.040	1.062	-
			50 RB		Back side	0mm	26590	1905	22	21.93	1.62%	0.888	0.902	-
					Back side_Curve	0mm	26590	1905	22	21.93	1.62%	0.903	0.918	-
					Top side	0mm	26590	1905	22	21.93	1.62%	1.140	1.159	193
				50	Top side*	0mm	26590	1905	22	21.93	1.62%	0.997	1.013	-
					Bottom side	0mm	26590	1905	22	21.93	1.62%	0.026	0.026	-
					Left side	0mm	26590	1905	22	21.93	1.62%	0.269	0.273	-
LTE Band 25	20MHz	QPSK			Right side	0mm	26590	1905	22	21.93	1.62%	0.0045	0.005	-
Bana 20					Back side	0mm	26140	1860	22	21.71	6.91%	0.904	0.966	-
					Back side_Curve	0mm	26140	1860	22	21.71	6.91%	0.857	0.916	-
					Top side	0mm	26140	1860	22	21.71	6.91%	1.010	1.080	-
					Back side	0mm	26365	1882.5	22	21.70	7.15%	0.878	0.941	-
					Back side_Curve	0mm	26365	1882.5	22	21.70	7.15%	0.830	0.889	-
			100 RB	0	Top side	0mm	26365	1882.5	22	21.70	7.15%	0.990	1.061	-
			TOU ND	U	Back side	0mm	26590	1905	22	21.73	6.41%	0.985	1.048	-
					Back side_Curve	0mm	26590	1905	22	21.73	6.41%	0.860	0.915	-
					Top side	0mm	26590	1905	22	21.73	6.41%	0.975	1.038	-
					Bottom side	0mm	26590	1905	22	21.73	6.41%	0.021	0.022	-
					Left side	0mm	26590	1905	22	21.73	6.41%	0.242	0.258	-
					Right side	0mm	26590	1905	22	21.73	6.41%	0.0056	0.006	-

^{* -} repeated at the highest SAR measurement according to the FCC KDB865664D01v01r03

Page: 88 of 294

CDMA / EVDO (BC0)

		(
Mode		Service	Position	Distance	더	Freq.	Max. Rated Avg.	Measured Avg.	Scaling	1	SAR over g 'kg)	Plot
Wode		Service	FUSILIUII	(mm)	5	(MHz)	Power + Max. Toleranc e (dBm)	Power (dBm)	o o	Measured	Reported	page
			Back side	0mm	384	836.52	23	22.9	2.33%	0.528	0.540	-
			Back side_Curve	0mm	384	836.52	23	22.9	2.33%	0.604	0.618	-
			Top side	0mm	384	836.52	23	22.9	2.33%	0.643	0.658	-
CDMA	EVDO	Rev. 0 Subtype	Bottom	0mm	384	836.52	23	22.9	2.33%	0.068	0.070	-
BC 0	EVDO	0/1	Left side	0mm	1013	824.7	23	22.7	7.15%	0.72	0.771	-
		0, .	Left side	0mm	384	836.52	23	22.9	2.33%	0.73	0.747	194
			Left side	0mm	777	848.31	23	22.6	9.65%	0.687	0.753	-
			Right side	0mm	384	836.52	23	22.9	2.33%	0.0065	0.007	-

Page: 89 of 294

CDMA / EVDO (BC1)

		Comice	Position	Distance	СН	Freq.	Max. Rated Avg.	Measured Avg.		1	SAR over g (kg)	Plot
Mode		Service	Position	(mm)	Б	(MHz)	Power + Max. Tolerance (dBm)	Power (dBm)	Scaling	Measured	Reported	page
			Back side	0mm	25	1851.25	22	21.97	0.69%	0.957	0.964	-
			Back side	0mm	600	1880	22	21.78	5.20%	0.942	0.991	-
			Back side	0mm	1175	1908.75	22	21.96	0.93%	1.000	1.009	195
			Back side*	0mm	1175	1908.75	22	21.96	0.93%	0.887	0.895	-
			Back side_Curve	0mm	25	1851.25	22	21.97	0.69%	0.966	0.973	-
ODMA		Rev. 0	Back side_Curve	0mm	600	1880	22	21.78	5.20%	0.886	0.932	-
CDMA BC 1	EVDO	Subtype	Back side_Curve	0mm	1175	1908.75	22	21.96	0.93%	0.915	0.923	-
		0/1	Top side	0mm	25	1851.25	22	21.97	0.69%	0.783	0.788	-
			Top side	0mm	600	1880	22	21.78	5.20%	0.834	0.877	-
			Top side	0mm	1175	1908.75	22	21.96	0.93%	0.895	0.903	-
			Botoom side	0mm	25	1851.25	22	21.97	0.69%	0.025	0.025	-
			Left side	0mm	25	1851.25	22	21.97	0.69%	0.339	0.341	-
			Right side	0mm	25	1851.25	22	21.97	0.69%	0.0041	0.004	1

^{* -} repeated at the highest SAR measurement according to the FCC KDB 865664

Page: 90 of 294

CDMA / EVDO (BC10)

		(-	· · · /									
Mode		Comico	Position	Distance	СН	Freq.	Avg.	Measured Avg.	Scaling	1	SAR over g (kg)	Plot
Mode		Service	Position	(mm)	СП	(MHz)	Power + Max. Tolerance (dBm)	Power (dBm)	Scaling	Measured	Reported	page
			Back side	0mm	684	823.1	23	22.7	7.15%	0.513	0.550	-
			Back side_Curve	0mm	684	823.1	23	22.7	7.15%	0.593	0.635	-
			Top side	0mm	684	823.1	23	22.7	7.15%	0.545	0.584	-
CDMA	EVDO	Rev. 0 Subtype	Bottom	0mm	684	823.1	23	22.7	7.15%	0.054	0.058	-
BC 10	EVDO	0/1	Left side	0mm	476	817.9	23	22.6	9.65%	0.65	0.713	-
		0, .	Left side	0mm	560	820	23	22.6	9.65%	0.659	0.723	-
			Left side	0mm	684	823.1	23	22.7	7.15%	0.668	0.716	196
			Right side	0mm	684	823.1	23	22.7	7.15%	0.0035	0.004	-

Page: 91 of 294

WLAN802.11 Main Antenna

Antenna	Mode	Position	Distance	СН	Freq.	Max. Rated Avg. Power +	Measured Avg.	Scaling	Averaged 1g (V		Plot
Antomia	Wode	Tosition	(mm)	Ol 1	(MHz)	Max. Tolerance (dBm)	Power (dBm)	Coaining	Measured	Reported	page
		Back side	0	1	2412	13.5	13.50	0.00%	0.261	0.261	-
		Back side_Curve	0	1	2412	13.5	13.50	0.00%	0.356	0.356	-
		Top side	0	1	2412	13.5	13.50	0.00%	0.0527	0.053	-
		Bottom side	0	1	2412	13.5	13.50	0.00%	0.00556	0.006	-
	WLAN802.11 b	Left side	0	1	2412	13.5	13.50	0.00%	0.00616	0.006	-
		Right side	0	1	2412	13.5	13.50	0.00%	0.915	0.915	197
		Right side*	0	1	2412	13.5	13.50	0.00%	0.903	0.903	-
		Right side	0	6	2437	13.5	13.00	12.20%	0.876	0.983	-
		Right side	0	11	2462	13.5	12.62	22.46%	0.825	1.010	-
		Back side	0	40	5200	10.5	9.89	15.08%	0.0501	0.058	-
		Back side_Curve	0	40	5200	10.5	9.89	15.08%	0.0522	0.060	-
	WLAN802.11 a 5.2G	Top side	0	40	5200	10.5	9.89	15.08%	0.0727	0.084	-
	WLANOUZ.11 a 5.2G	Bottom side	0	40	5200	10.5	9.89	15.08%	0.00112	0.001	-
Main		Left side	0	40	5200	10.5	9.89	15.08%	0.00011	0.000	-
		Right side	0	40	5200	10.5	9.89	15.08%	0.383	0.441	198
		Back side	0	46	5230	10.5	9.61	22.74%	0.0431	0.053	-
		Back side_Curve	0	46	5230	10.5	9.61	22.74%	0.0493	0.061	-
	WLAN802.11	Top side	0	46	5230	10.5	9.61	22.74%	0.0723	0.089	-
	n(40M) 5.2G	Bottom side	0	46	5230	10.5	9.61	22.74%	0.00245	0.003	-
		Left side	0	46	5230	10.5	9.61	22.74%	0.0016	0.002	-
		Right side	0	46	5230	10.5	9.61	22.74%	0.303	0.372	199
		Back side	0	60	5300	10.5	9.85	16.14%	0.0457	0.053	-
		Back side_Curve	0	60	5300	10.5	9.85	16.14%	0.0498	0.058	-
	WLAN802.11	Top side	0	60	5300	10.5	9.85	16.14%	0.0628	0.073	-
	n(20M) 5.3G	Bottom side	0	60	5300	10.5	9.85	16.14%	0.0019	0.002	-
		Left side	0	60	5300	10.5	9.85	16.14%	0.00012	0.000	-
		Right side	0	60	5300	10.5	9.85	16.14%	0.261	0.303	200

Page: 92 of 294

Antenna	Mode	Position	Distance	СН	Freq.	Max. Rated Avg. Power +	Measured Avg.	Scaling	Averaged 1g (V		Plot page
			(mm)		(MHz)	Max. Tolerance (dBm)	Power (dBm)	j	Measured	Reported	page
		Back side	0	54	5270	10.5	9.77	18.30%	0.0524	0.062	-
		Back side_Curve	0	54	5270	10.5	9.77	18.30%	0.0525	0.062	-
	WLAN802.11	Top side	0	54	5270	10.5	9.77	18.30%	0.0568	0.067	-
	n(40M) 5.3G	Bottom side	0	54	5270	10.5	9.77	18.30%	0.0018	0.002	-
		Left side	0	54	5270	10.5	9.77	18.30%	0.00042	0.000	-
		Right side	0	54	5270	10.5	9.77	18.30%	0.27	0.319	201
		Back side	0	104	5520	10.5	9.77	18.30%	0.0481	0.057	-
		Back side_Curve	0	104	5520	10.5	9.77	18.30%	0.0525	0.062	-
	WLAN802.11	Top side	0	104	5520	10.5	9.77	18.30%	0.0568	0.067	-
	n(20M) 5.6G	Bottom side	0	104	5520	10.5	9.77	18.30%	0.0018	0.002	-
		Left side	0	104	5520	10.5	9.77	18.30%	0.00042	0.000	-
		Right side	0	104	5520	10.5	9.77	18.30%	0.276	0.327	202
		Back side	0	120	5600	10.5	9.75	18.85%	0.0612	0.073	-
		Back side_Curve	0	120	5600	10.5	9.75	18.85%	0.0655	0.078	-
	WLAN802.11	Top side	0	120	5600	10.5	9.75	18.85%	0.0712	0.085	-
Main	n(20M) 5.6G	Bottom side	0	120	5600	10.5	9.75	18.85%	0.0011	0.001	-
		Left side	0	120	5600	10.5	9.75	18.85%	0.00034	0.000	-
		Right side	0	120	5600	10.5	9.75	18.85%	0.313	0.372	203
		Back side	0	140	5700	10.5	9.57	23.88%	0.0587	0.073	-
		Back side_Curve	0	140	5700	10.5	9.57	23.88%	0.0612	0.076	-
	WLAN802.11	Top side	0	140	5700	10.5	9.57	23.88%	0.0585	0.072	-
	n(20M) 5.6G	Bottom side	0	140	5700	10.5	9.57	23.88%	0.0015	0.002	-
		Left side	0	140	5700	10.5	9.57	23.88%	0.00038	0.000	-
		Right side	0	140	5700	10.5	9.57	23.88%	0.324	0.401	204
		Back side	0	159	5795	11	9.33	46.89%	0.0478	0.070	-
		Back side_Curve	0	159	5795	11	9.33	46.89%	0.0502	0.074	-
	WLAN802.11	Top side	0	159	5795	11	9.33	46.89%	0.0492	0.072	-
	n(40M) 5.8G	Bottom side	0	159	5795	11	9.33	46.89%	0.0017	0.002	-
		Left side	0	159	5795	11	9.33	46.89%	0.00012	0.000	-
		Right side	0	159	5795	11	9.33	46.89%	0.349	0.513	205

^{* -} repeated at the highest SAR measurement according to the KDB 865664 D01

Page: 93 of 294

WLAN802.11 Aux Antenna

			Distance		Freq.	Max. Rated Avg.	Measure d		Averaged 1g (V		Plot
Antenna	Mode	Position	(mm)	CH	(MHz)	Power + Max. Tolerance (dBm)	Avg. Power (dBm)	Scaling	Measured	Reported	page
		Back side	0	11	2462	11.2	11.14	1.39%	0.0909	0.092	-
		Top side	0	1	2412	11	10.73	6.41%	0.712	0.758	-
		Top side	0	6	2437	11.2	11.14	1.39%	0.83	0.842	206
	WLAN802.11 b	Top side	0	11	2462	12	11.59	9.90%	0.744	0.818	-
		Bottom side	0	11	2462	11.2	11.14	1.39%	0.00596	0.006	-
		Left side	0	11	2462	11.2	11.14	1.39%	0.00234	0.002	-
		Right side	0	11	2462	11.2	11.14	1.39%	0.00545	0.006	-
		Back side	0	40	5200	10	9.37	15.61%	0.169	0.195	-
		Top side	0	36	5180	10	9.31	17.22%	0.792	0.928	207
		Top side	0	40 44	5200 5220	10	9.37 9.22	15.61%	0.775 0.702	0.896 0.840	-
	WLAN802.11 a 5.2G	Top side Top side	0	48	5240	10	9.22	19.67% 20.50%	0.702	0.869	-
		Bottom side	0	40	5200	10	9.37	15.61%	0.721	0.009	-
		Left side	0	40	5200	10	9.37	15.61%	0.0012	0.001	
		Right side	0	40	5200	10	9.37	15.61%	0.0102	0.012	_
		Back side	0	46	5230	10	9.81	4.47%	0.193	0.202	-
		Top side	0	38	5190	9	8.57	10.41%	0.329	0.363	_
	WLAN802.11 n(40M)	Top side	0	46	5230	10	9.81	4.47%	0.775	0.810	208
	5.2G	Bottom side	0	46	5230	10	9.81	4.47%	0.000965	0.001	200
	0.20	Left side	0	46	5230	10	9.81	4.47%	0.000965	0.001	
		Right side	0	46	5230	10	9.81	4.47%	0.0122	0.003	
		Back side	0	60	5300	10.5	9.57	23.88%	0.157	0.194	
		Top side	0	52	5260	10.5	9.13	37.09%	0.57	0.781	_
Aux		Top side	0	60	5300	10.5	9.57	23.88%	0.69	0.855	209
Aux	WLAN802.11 n(20M)	Top side	0	64	5320	10.5	9.49	26.18%	0.642	0.810	-
	5.3G	Bottom side	0	60	5300	10.5	9.57	23.88%	0.0023	0.003	_
		Left side	0	60	5300	10.5	9.57	23.88%	0.00426	0.005	_
		Right side	0	60	5300	10.5	9.57	23.88%	0.0152	0.019	_
		Back side	0	54	5270	10.5	9.86	15.88%	0.162	0.188	-
		Top side	0	54	5270	10.5	9.86	15.88%	0.793	0.919	210
	WLAN802.11 n(40M)	Top side	0	62	5310	9	7.52	40.60%	0.397	0.558	-
	5.3G ` ´	Bottom side	0	54	5270	10.5	9.86	15.88%	0.0058	0.007	-
		Left side	0	54	5270	10.5	9.86	15.88%	0.00264	0.003	-
		Right side	0	54	5270	10.5	9.86	15.88%	0.0117	0.014	-
		Back side	0	120	5600	10.5	9.51	25.60%	0.148	0.186	-
		Top side	0	104	5520	10.5	9.39	29.12%	0.434	0.560	-
		Top side	0	120	5600	10.5	9.51	25.60%	0.654	0.821	211
	WLAN802.11 n(20M)	Top side	0	140	5700	10.5	9.26	33.05%	0.408	0.543	-
	5.6G	Bottom side	0	120	5600	10.5	9.51	25.60%	0.0049	0.006	-
		Left side	0	120	5600	10.5	9.51	25.60%	0.00375	0.005	-
		Right side	0	120	5600	10.5	9.51	25.60%	0.0231	0.029	-
		Back side	0	159	5795	11	9.25	49.62%	0.142	0.212	-
		Top side	0	151	5755	11	9.18	52.05%	0.408	0.620	-
	WLAN802.11 n(40M)	Top side	0	159	5795	11	9.25	49.62%	0.586	0.877	212
	5.8G ` ´	Bottom side	0	159	5795	11	9.25	49.62%	0.0028	0.004	-
		Left side	0	159	5795	11	9.25	49.62%	0.00428	0.006	-
		Right side	0	159	5795	11	9.25	49.62%	0.0159	0.024	-

Page: 94 of 294

3. Simultaneous Transmission Analysis

Simultaneous Transmission Scenarios:

Simultaneous Transmit Configurations	Body
GPRS850/1900 + 2.4/5GHz WLAN Main	Yes
GPRS850/1900 + 2.4/5GHz WLAN Aux	Yes
GPRS850/ 1900 + 2.4/ 5GHz WLAN MIMO	Yes
WCDMA B2/4/5 + 2.4/5GHz WLAN Main	Yes
WCDMA B2/4/5 + 2.4/5GHz WLAN Aux	Yes
WCDMA B2/4/5 + 2.4/5GHz WLAN MIMO	Yes
LTE B2/4/5/13/17/25 + 2.4/5GHz WLAN Main	Yes
LTE B2/4/5/13/17/25 + 2.4/5GHz WLAN Aux	Yes
LTE B2/ 4/ 5/ 13/ 17/ 25 + 2.4/ 5GHz WLAN MIMO	Yes
CDMA BC0/BC1/10 + 2.4/5GHz WLAN Main	Yes
CDMA BC0/BC1/10 + 2.4/5GHz WLAN Aux	Yes
CDMA BC0/ BC1/ 10 + 2.4/ 5GHz WLAN MIMO	Yes
GPRS850/1900 + 2.4/5GHz WLAN Aux + BT	Yes
WCDMA B2/4/5 + 2.4/5GHz WLAN Aux + BT	Yes
LTE B2/ 4/ 5/ 13/ 17/ 25 + 2.4/ 5GHz WLAN Aux + BT	Yes
CDMA BC0/ BC1/ BC10 + 2.4/ 5GHz WLAN Aux + BT	Yes

Note:

- 1. WWAN and WLAN may transmit simultaneously.
- 2. Bluetooth and WLAN Main share the same antenna path, and BT can't transmit with WLAN Main simultaneously.
- 3. For 2.4/5GHz WLAN Main and Aux antennas, the maximum output power of each antenna during simultaneous transmission (for 802.11n) is much less than that used in standalone transmission (for 802.11a/b/g/n), so it is more conservative to use the sum of 1-g SAR provision in KDB447498D01 to exclude the SAR measurement for 802.11n MIMO.
- 4. There are so many combination for simultaneous transmission, we choose the worst cases(all transmitters transmit simultaneously at maximum power) to do the simultaneous transmission analysis to capture the worst cases.
- 5. Based on KDB447498D01, when standalone BT test exclusion applies, BT SAR is estimated; the peak location is assumed to be at the feed-point or geometric center of the antenna. For peak SAR location separation distance, we choose the separation distances between WWAN/WLAN Aux antennas and BT antenna to be the worst cases.

Ps. For top side, the separation distance between WWAN and BT antennas is 185.8mm. For top side, the separation distance between WLAN Aux and BT antennas is 79mm.

Page: 95 of 294

3.1 Estimated SAR calculation

According to KDB447498 D01v05 – When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

Estimated SAR =
$$\frac{\text{Max.tune up power(mW)}}{\text{Min.test separation distance(mm)}} \times \frac{\sqrt{f(\text{GHz})}}{7.5}$$

If the minimum test separation distance is < 5 mm, a distance of 5 mm is used for estimated SAR calculation. When the test separation distance is > 50 mm, the 0.4 W/kg is used for SAR-1g.

Mode / Band	frequency (GHz)	Maximum power(dBm)	Test position	test separation distance(mm)	Estimated SAR(W/kg)
BT / 2.4G	2.48	3.51	top	15.9	0.03
BT / 2.4G	2.48	3.51	left / bottom	larger than 50mm	0.4
BT / 2.4G	2.48	3.51	right / back / back_curve	less than 5mm	0.094

3.2 SPLSR evaluation and analysis

Per KDB447498D01, when the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR sum to peak location separation ratio(SPLSR).

The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion.

The ratio is determined by (SAR1 + SAR2)^ 1.5/ Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

SAR1 and SAR2 are the highest reported or estimated SAR for each antenna in the pair, and Ri is the separation distance between the peak SAR locations for the antenna pair in mm.

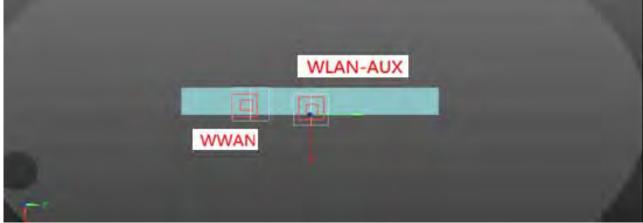
When standalone test exclusion applies, SAR is estimated; the peak location is assumed to be at the feed-point or geometric center of the antenna.

Page: 96 of 294

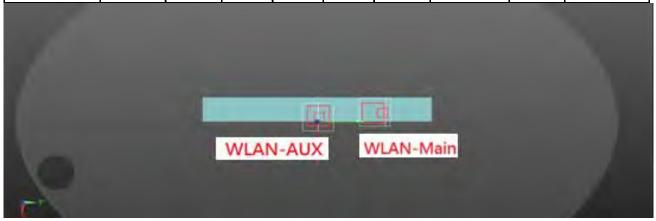
GPRS 850 + 2.4GHz WLAN MIMO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.866	0.261	0.111	1.238	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.754	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.356	-	-	ΣSAR< 1.6, Not required
1	850	Top side	0	0.762	0.0527	0.842	1.657	Analyzed as below
		Bottom side	0	0.013	0.006	0.007	0.026	ΣSAR< 1.6, Not required
		Left side	0	1.038	0.006	0.003	1.047	ΣSAR< 1.6, Not required
		Right side	0	0.002	1.01	0.007	1.019	ΣSAR< 1.6, Not required

WWAN & WI AN Main


WWAN & WLA	N Main								
Conditions	Position	SAR Value	Coo	rdinates ((cm)	ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	х	у	Z	(VV/Kg)	Distance (mm)		SAR Test
GPRS 850	Top side	0.762	-0.84	-4.83	-0.70	0.8147	115.4	0.006	SPLSR< 0.04,
WLAN Main	Top side	0.0527	-0.70	6.24	2.55	0.8147	115.4	0.000	Not required
	W	WAN		W	LAN-M	lain			
+									

Page: 97 of 294


WWAN & WLAN Aux

Conditions	Position	SAR Coordinates (cm) Value		ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission		
		(W/kg)	Х	у	Z	(W/kg)	Distance (mm)		SAR Test
GPRS 850	Top side	0.762	-0.84	-4.83	-0.70	1.604	52.4	0.039	SPLSR< 0.04,
WLAN Aux	Top side	0.842	-0.74	0.58	-0.73	1.004	52.4	0.039	Not required

WLAN Main & WLAN Aux

Conditions	Position	SAR Value	lue ` ´		ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission	
		(W/kg)	Х	у	Z	(W/kg)	Distance (mm)		SAR Test
WLAN Main	Top side	0.0527	-0.70	6.24	2.55	0.8947	67.1	0.013	SPLSR< 0.04,
WLAN Aux	rop side	0.842	-0.74	0.58	-0.73	0.0947	67.1	0.013	Not required

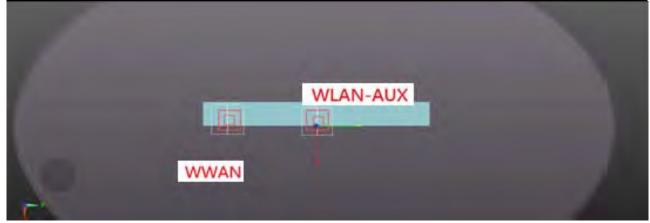
Page: 98 of 294

GPRS 1900 + 2.4GHz WLAN MI MO

	10 .000	T Z.TOLIZ W LAW WILLIO										
No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR				
		Back side	0	1.197	0.261	0.111	1.569	ΣSAR< 1.6, Not required				
		Back side_Curve(Left)	0	1.335	-	-	-	ΣSAR< 1.6, Not required				
		Back side_Curve(Right)	0	-	0.356	-	-	ΣSAR< 1.6, Not required				
2	1900	Top side	0	1.144	0.0527	0.842	2.0387	Analyzed as below				
		Bottom side	0	0.0145	0.006	0.007	0.0275	ΣSAR< 1.6, Not required				
		Left side	0	0.287	0.006	0.003	0.296	ΣSAR< 1.6, Not required				
		Right side	0	0.0012	1.01	0.007	1.0182	ΣSAR< 1.6, Not required				

WWAN & WLAN Main

Conditions Position	SAR Value	Coo	rdinates	(cm)	ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission	
		(W/kg)	Х	у	y z (W/kg)			Distance (mm)	SAR Test
GPRS 1900	Top side	1.144	-0.54	-8.59	0.45	1.1967	149.8	0.009	SPLSR< 0.04,
WLAN Main	Top side	0.0527	-0.70	6.24	2.55	1.1907	149.0	0.009	Not required



Page: 99 of 294


WWAN & WLAN Aux

Conditions	Position	SAR Value	- ,		(cm)	ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)	Distance (mm)		SAR Test
GPRS 1900	Top side	1.144	-0.54	-8.59	0.45	1.986	90.7	0.031	SPLSR< 0.04,
WLAN Aux	Top side	0.842	-0.74	0.58	-0.73	1.900	90.7	0.031	Not required

WLAN Main & WLAN Aux

	BAY MAIN & WE WYNGX											
Conditions	Position	SAR Value	Coordinates (cm) ΣSAR (W/kg)		Peak Location Separation	SPLSR	Simultaneous Transmission					
		(W/kg)	Х	у	Z	(VV/Kg)	Distance (mm)		SAR Test			
WLAN Main	Top side	0.0527	-0.70	6.24	2.55	0.8947	67.1	0.013	SPLSR< 0.04,			
WLAN Aux	Top side	0.842	-0.74	0.58	-0.73	0.8947	07.1	0.013	Not required			

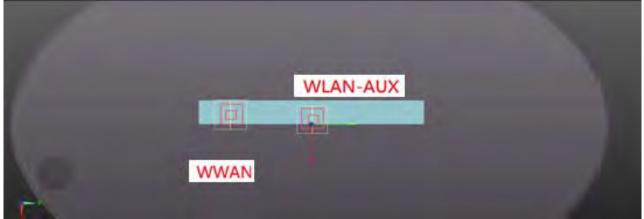
Page: 100 of 294

WCDMA Band II + 2.4GHz WLAN MIMO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.962	0.261	0.111	1.334	ΣSAR< 1.6, Not required
		Back side_Curve(Left) 0 1.16 -		-	-	ΣSAR< 1.6, Not required		
		Back side_Curve(Right)	0	-	0.356	-	-	ΣSAR< 1.6, Not required
3	WCDMA Band 2	Top side	0	1.033	0.0527	0.842	1.9277	Analyzed as below
		Bottom side	0	0.016	0.006	0.007	0.029	ΣSAR< 1.6, Not required
		Left side	0	0.299	0.006	0.003	0.308	ΣSAR< 1.6, Not required
		Right side	0	0.002	1.01	0.007	1.019	ΣSAR< 1.6, Not required

WWAN & WLAN Main

Conditions	Conditions Position		Coo	rdinates ((cm)	ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	х	у	Z	(W/kg)	Distance (mm)		SAR Test
WCDMA B2	Top side	1.033	-1.00	-8.00	0.45	1.0857	144	0.008	SPLSR< 0.04,
WLAN Main	rop side	0.0527	-0.70	6.24	2.55	1.0657	144	0.008	Not required



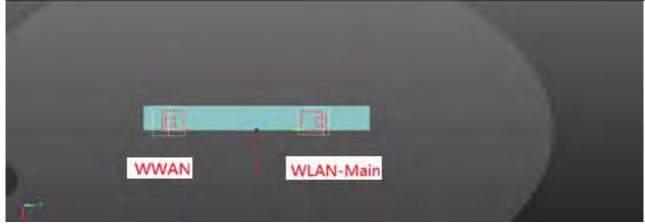
Page: 101 of 294

WWAN & WLAN Aux

Conditions	Position	SAR Value	Coo			ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)	Distance (mm)		SAR Test
WCDMA B2	Top side	1.033	-1.00	-8.00	0.45	1.875	85	0.030	SPLSR< 0.04,
WLAN Aux	Top side	0.842	-0.74	0.58	-0.73	1.075	00	0.030	Not required

WLAN Main & WLAN Aux

Conditions P	Position	SAR Value	Cool	rdinates ((cm)	ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg) x	у	Z	(W/kg)	Distance (mm)		SAR Test	
WLAN Main	Top side	0.0527	-0.70	6.24	2.55	0.8947	67.1	0.013	SPLSR< 0.04,
WLAN Aux	Top side	0.842	-0.74	0.58	-0.73	0.0947	07.1	0.013	Not required

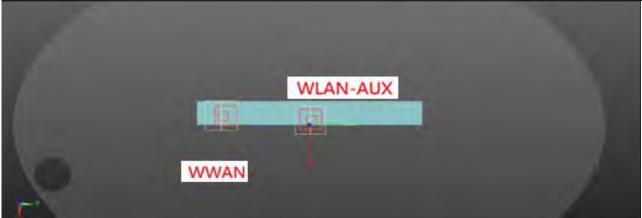

Page: 102 of 294

WCDMA Band IV + 2.4GHz WLAN MIMO

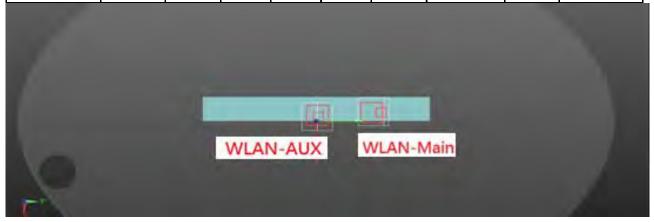
No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.999	0.261	0.111	1.371	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	1.131	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.356	-	-	ΣSAR< 1.6, Not required
4	WCDMA Band 4	Top side	0	1.049	0.0527	0.842	1.9437	Analyzed as below
		Bottom side	0	0.0235	0.006	0.007	0.0365	ΣSAR< 1.6, Not required
		Left side	0	0.532	0.006	0.003	0.541	ΣSAR< 1.6, Not required
		Right side	0	0.0042	1.01	0.007	1.0212	ΣSAR< 1.6, Not required

WWAN & WLAN Main

Conditions	Position	osition Value (W/k	ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission			
		(W/kg)	Х	у	Z	(W/kg)	Distance (mm)		SAR Test
WCDMA B4	Top side	1.049	-0.84	-8.59	-0.50	1.1017	151.4	0.008	SPLSR< 0.04,
WLAN Main	Top side	0.0527	-0.70	6.24	2.55	1.1017	131.4	0.006	Not required



Page: 103 of 294


WWAN & WLAN Aux

Conditions	Position	SAR Value	Coo	rdinates	ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission	
		(W/kg)	Х	у	Z	(vv/kg)	Distance (mm)		SAR Test
WCDMA B4	Tan aida	1.049	-0.84	-8.59	-0.50	1.891	00	0.029	SPLSR< 0.04,
WLAN Aux	Top side	0.842	-0.74	0.58	-0.73	1.091	90	0.029	Not required

WLAN Main & WLAN Aux

Conditions	Position	SAR Value	Coo	rdinates ((cm)	ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	х	у	Z	(vv/kg)	Distance (mm)		SAR Test
WLAN Main	Top side	0.0527	-0.70	6.24	2.55	0.8947	67.1	0.013	SPLSR< 0.04,
WLAN Aux	rop side	0.842	-0.74	0.58	-0.73	0.0947	67.1	0.013	Not required

Page: 104 of 294

WCDMA Band V + 2.4GHz WLAN MI MO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.407	0.261	0.111	0.779	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.402	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.356	-	-	ΣSAR< 1.6, Not required
5	WCDMA Band 5	Top side	0	0.391	0.0527	0.842	1.2857	ΣSAR< 1.6, Not required
		Bottom side	0	0.035	0.006	0.007	0.048	ΣSAR< 1.6, Not required
		Left side	0	0.615	0.006	0.003	0.624	ΣSAR< 1.6, Not required
		Right side	0	0.003	1.01	0.007	1.02	ΣSAR< 1.6, Not required

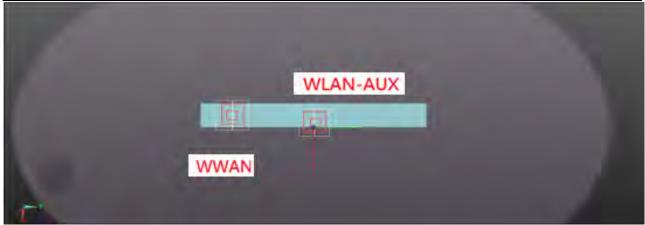
Page: 105 of 294

LTE FDD Band II + 2.4GHz WLAN MIMO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.062	0.261	0.111	1.434	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	1.086	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.356	-	-	ΣSAR< 1.6, Not required
6	LTE Band 2	Top side	0	1.09	0.0527	0.842	1.9847	Analyzed as below
		Bottom side	0	0.041	0.006	0.007	0.054	ΣSAR< 1.6, Not required
		Left side	0	0.281	0.006	0.003	0.29	ΣSAR< 1.6, Not required
		Right side	0	0.027	1.01	0.007	1.044	ΣSAR< 1.6, Not required

WWAN & WLAN Main

Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(vv/kg)	Distance (mm)		SAR Test
LTE Band 2	Top side	1.09	-1.30	-8.16	0.45	1.1427	145.6	0.008	SPLSR< 0.04,
WLAN Main	Top side	0.0527	-0.70	6.24	2.55	1.1427	145.0	0.008	Not required



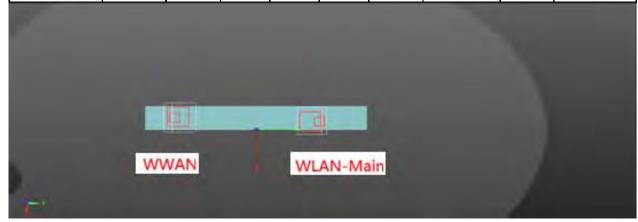
Page: 106 of 294

WWAN & WLAN Aux

Conditions	Position	ition I Value I	ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission			
			Х	у	Z	(W/kg)	Distance (mm)		SAR Test
LTE Band 2	Top side	1.09	-1.30	-8.16	0.45	1.932	86.7	0.031	SPLSR< 0.04,
WLAN Aux	Top side	0.842	-0.74	0.58	-0.73	1.932	00.7	0.031	Not required

WLAN Main & WLAN Aux

VV LI (IVI IVI AIII) A		0.71							
Conditions	Position	SAR Value	Cool	rdinates ((cm)	ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	х	у		Distance (mm)		SAR Test	
WLAN Main	Top side	0.0527	-0.70	6.24	2.55	0.8047	67.1	0.013	SPLSR< 0.04,
WLAN Aux	Top side	0.842	-0.74	74 0.58 -0.73 0.8947	0.0947	07.1	0.013	Not required	

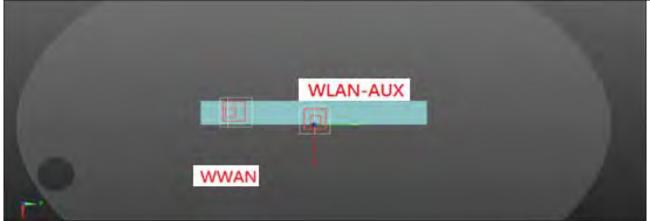

Page: 107 of 294

LTE FDD Band IV + 2.4GHz WLAN MIMO

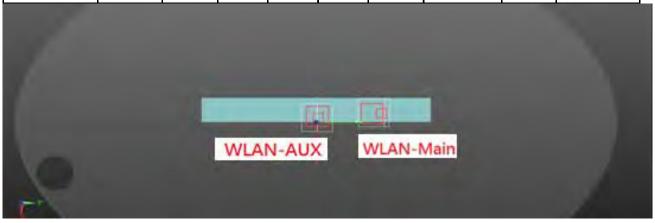
No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.193	0.261	0.111	1.565	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	1.154	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.356	-	-	ΣSAR< 1.6, Not required
7	LTE Band 4	Top side	0	1.069	0.0527	0.842	1.9637	Analyzed as below
		Bottom side	0	0.044	0.006	0.007	0.057	ΣSAR< 1.6, Not required
		Left side	0	0.543	0.006	0.003	0.552	ΣSAR< 1.6, Not required
		Right side	0	0.007	1.01	0.007	1.024	ΣSAR< 1.6, Not required

WWAN & WLAN Main

· · · · · · · · · · · · · · · · · · ·									
Conditions	Position	SAR Value	/alue ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission			
		(W/kg)		(VV/Kg)	Distance (mm)		SAR Test		
LTE Band 4	Top side	1.069	-1.35		140	0.008	SPLSR< 0.04,		
WLAN Main	rop side	0.0527	-0.70	6.24	2.55	1.1217 5	.1217 149		Not required



Page: 108 of 294


WWAN & WLAN Aux

Conditions	Position	SAR Value (W/kg)	Coo	rdinates	(cm)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission
			Х	у	Z				SAR Test
LTE Band 4	Top side	1.069	-1.35	-8.34	-0.48	1.911	87.8	0.030	SPLSR< 0.04,
WLAN Aux	Top side	0.842	-0.74	0.58	-0.73	1.911	07.0	0.030	Not required

WLAN Main & WLAN Aux

Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR (W/kg)	(W/kg) Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(VV/Kg)	Distance (mm)		SAR Test
WLAN Main	Top side	0.0527	-0.70	6.24	2.55	0.8947	67.1	0.013	SPLSR< 0.04,
WLAN Aux	Top side	0.842	-0.74	0.58	-0.73	0.0947	67.1	0.013	Not required

Page: 109 of 294

LTE FDD Band V + 2.4GHz WLAN MI MO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.491	0.261	0.111	0.863	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.58	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.356	-	-	ΣSAR< 1.6, Not required
8	LTE Band 5	Top side	0	0.576	0.0527	0.842	1.4707	ΣSAR< 1.6, Not required
		Bottom side	0	0.076	0.006	0.007	0.089	ΣSAR< 1.6, Not required
		Left side	0	0.601	0.006	0.003	0.61	ΣSAR< 1.6, Not required
		Right side	0	0.014	1.01	0.007	1.031	ΣSAR< 1.6, Not required

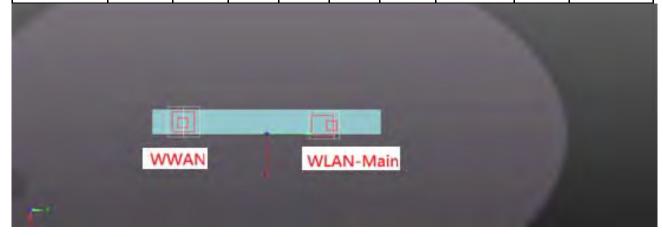
LTE FDD Band XIII + 2.4GHz WLAN MIMO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.468	0.261	0.111	0.84	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.486	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.356	-	-	ΣSAR< 1.6, Not required
9	LTE Band 13	Top side	0	0.549	0.0527	0.842	1.4437	ΣSAR< 1.6, Not required
		Bottom side	0	0.093	0.006	0.007	0.106	ΣSAR< 1.6, Not required
		Left side	0	0.837	0.006	0.003	0.846	ΣSAR< 1.6, Not required
		Right side	0	0.01	1.01	0.007	1.027	ΣSAR< 1.6, Not required

Page: 110 of 294

LTE FDD Band XVII + 2.4GHz WLAN MIMO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.264	0.261	0.111	0.636	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.296	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.356	-	-	ΣSAR< 1.6, Not required
10	LTE Band 17	Top side	0	0.223	0.0527	0.842	1.1177	ΣSAR< 1.6, Not required
		Bottom side		0.009	0.006	0.007	0.022	ΣSAR< 1.6, Not required
		Left side	0	0.438	0.006	0.003	0.447	ΣSAR< 1.6, Not required
		Right side	0	0.005	1.01	0.007	1.022	ΣSAR< 1.6, Not required

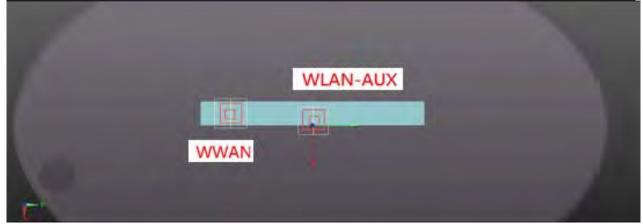


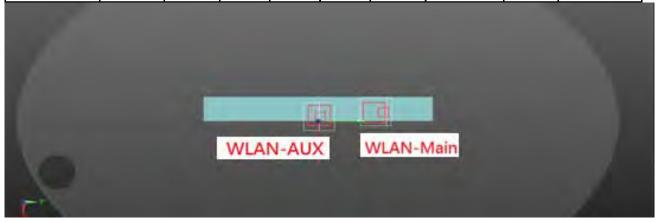
Page: 111 of 294

LTE FDD Band XXV + 2.4GHz WLAN MI MO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.151	0.261	0.111	1.523	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.979	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.356	-	-	ΣSAR< 1.6, Not required
11	LTE Band 25	Top side	0	1.159	0.0527	0.842	2.0537	Analyzed as below
		Bottom side	0	0.026	0.006	0.007	0.039	ΣSAR< 1.6, Not required
		Left side		0.375	0.006	0.003	0.384	ΣSAR< 1.6, Not required
		Right side	0	0.007	1.01	0.007	1.024	ΣSAR< 1.6, Not required

		THE TELEVISION												
	Conditions	Position	SAR Value	Cool	rdinates	(cm)	ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission				
			(W/kg)	Х	у	Z		Distance (mm)		SAR Test				
	LTE Band 25	Top side	1.159	-1.14	-8.47	0.51	1.2117	148.6	0.009	SPLSR< 0.04,				
	WLAN Main	Top side	0.0527	-0.70	6.24	2.55	1.2117	140.0	0.009	Not required				




Page: 112 of 294

WWAN & WLAN Aux

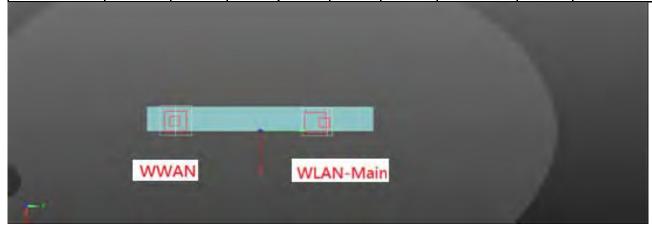
Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)			SAR Test
LTE Band 25	Top side	1.159	-1.14	-8.47	0.51	2.001	89.8	0.032	SPLSR< 0.04,
WLAN Aux	Top side -	0.842	-0.74	0.58	-0.73	2.001	09.0	0.032	Not required

Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)	Distance (mm)		SAR Test
WLAN Main	Top side	0.0527	-0.70	6.24	2.55	0.8947	67.1	0.013	SPLSR< 0.04,
WLAN Aux	Top side	0.842	-0.74	0.58	-0.73	0.0947	07.1	0.013	Not required

Page: 113 of 294

CDMA / EVDO BC0 + 2.4GHz WLAN MI MO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.54	0.261	0.111	0.912	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.618	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.356	-	-	ΣSAR< 1.6, Not required
12	EVDO BC 0	Top side	0	0.658	0.0527	0.842	1.5527	ΣSAR< 1.6, Not required
		Bottom side		0.07	0.006	0.007	0.083	ΣSAR< 1.6, Not required
		Left side	0	0.771	0.006	0.003	0.78	ΣSAR< 1.6, Not required
		Right side	0	0.007	1.01	0.007	1.024	ΣSAR< 1.6, Not required

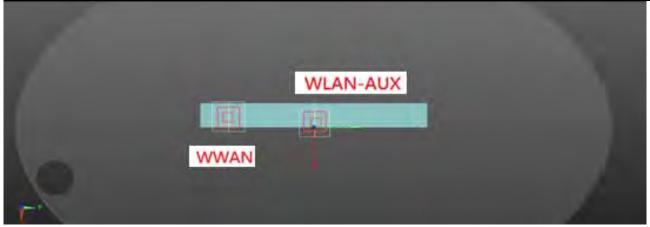


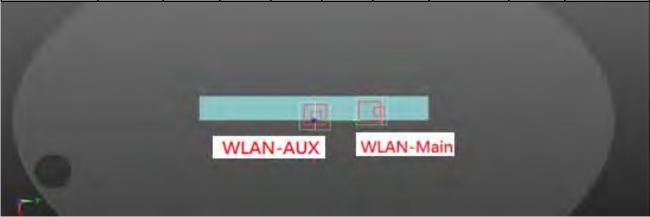
Page: 114 of 294

CDMA / EVDO BC1 + 2.4GHz WLAN MI MO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.008	0.261	0.111	1.38	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.973	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.356	-	-	ΣSAR< 1.6, Not required
13	EVDO BC 1	Top side	0	0.903	0.0527	0.842	1.7977	Analyzed as below
		Bottom side		0.025	0.006	0.007	0.038	ΣSAR< 1.6, Not required
		Left side	0	0.341	0.006	0.003	0.35	ΣSAR< 1.6, Not required
		Right side	0	0.004	1.01	0.007	1.021	ΣSAR< 1.6, Not required

	WAN & WEAN MAIN													
	Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission				
			(W/kg)	х	у	Z				SAR Test				
	EVDO BC 1	Top side	0.903	-0.99	-8.56	-0.46	1.745	89.7	0.026	SPLSR< 0.04,				
	WLAN Aux	rop side	0.842	-0.74	0.58	-0.73	1.745	09.7	0.020	Not required				




Page: 115 of 294

WWAN & WLAN Aux

Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)			SAR Test
EVDO BC 1	Top side	0.903	-0.99	-8.56	-0.46	0.0557	151.1	0.006	SPLSR< 0.04,
WLAN Main	Top side	0.0527	-0.70	6.24	2.55	0.9557	131.1	0.006	Not required

Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	х	у	Z	(W/kg)	Distance (mm)		SAR Test
WLAN Main	Top side	0.0527	-0.70	6.24	2.55	0.8947	67.1	0.013	SPLSR< 0.04,
WLAN Aux	Top side	0.842	-0.74	0.58	-0.73	0.0947	07.1	0.013	Not required

Page: 116 of 294

CDMA / EVDO BC10 + 2.4GHz WLAN MI MO

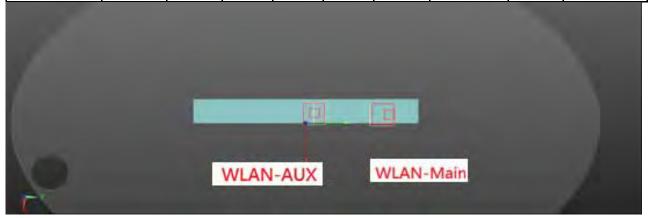
No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.55	0.261	0.111	0.922	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.635	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.356	-	-	ΣSAR< 1.6, Not required
14	EVDO BC 10	Top side	0	0.582	0.0527	0.842	1.4767	ΣSAR< 1.6, Not required
		Bottom side	0	0.058	0.006	0.007	0.071	ΣSAR< 1.6, Not required
		Left side	0	0.723	0.006	0.003	0.732	ΣSAR< 1.6, Not required
		Right side	0	0.004	1.01	0.007	1.021	ΣSAR< 1.6, Not required

Page: 117 of 294

GPRS 850 + 5GHz WLAN MI MO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.866	0.073	0.212	1.151	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.754	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.078	-	-	ΣSAR< 1.6, Not required
15	850	Top side	0	0.762	0.089	0.928	1.779	Analyzed as below
		Bottom side	0	0.013	0.003	0.007	0.023	ΣSAR< 1.6, Not required
		Left side	0	1.038	0.002	0.006	1.046	ΣSAR< 1.6, Not required
		Right side	0	0.002	0.513	0.029	0.544	ΣSAR< 1.6, Not required

WWAN & WLA	AN Main								
Conditions	Position	SAR Value	Coo	rdinates ((cm)	ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	y z (W/kg)		Distance (mm)		SAR Test
GPRS 850	Top side	0.762	-0.84	-4.83	-0.70	0.851	138.9	0.006	SPLSR< 0.04,
WLAN Main	Top side	0.089	-2.10	8.72	2.08	0.031	100.5	0.000	Not required
		-							
						-54			
	WV	VAN		W	LAN-M	ain			
T									


Page: 118 of 294

WWAN & WLAN Aux

Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)		у	Z	(vv/kg)	Distance (mm)		SAR Test
GPRS 850	Top side	0.762	-0.84	-4.83	-0.70	1.69	58	0.038	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.09	30	0.036	Not required

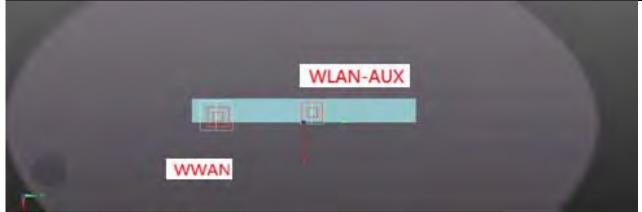
I	Conditions		SAR	Coo	rdinates	(cm)	26VD	Peak Location Separation Distance (mm)		Simultaneous
	Conditions	Position	Value (W/kg)	х	у	Z	ΣSAR (W/kg)		SPLSR	Transmission SAR Test
	WLAN Main	Top side	0.089	-2.10	8.72	2.08	1.017	83.2	0.012	SPLSR< 0.04,
	WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.017	63.2	0.012	Not required

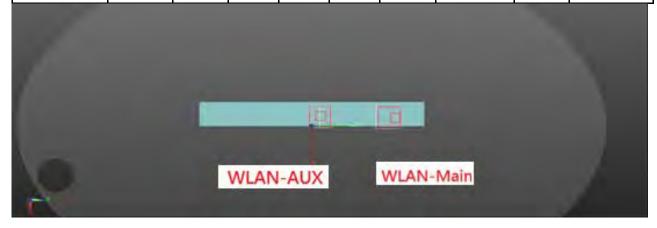
Page: 119 of 294

GPRS 1900 + 5GHz WLAN MIMO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.197	0.073	0.212	1.482	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	1.335	-	-	-	ΣSAR< 1.6, Not required
	E	Back side_Curve(Right)	0	-	0.078	-	-	ΣSAR< 1.6, Not required
16	1900	Top side	0	1.144	0.089	0.928	2.161	Analyzed as below
		Bottom side	0	0.0145	0.003	0.007	0.0245	ΣSAR< 1.6, Not required
		Left side	0	0.287	0.002	0.006	0.295	ΣSAR< 1.6, Not required
		Right side		0.0012	0.513	0.029	0.5432	ΣSAR< 1.6, Not required

VVVV/IIV C VVL	WAIN & WEAR MIGHT											
Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR - (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission			
		(W/kg)	х	у	Z		Distance (mm)		SAR Test			
GPRS 1900	Top side	1.144	-0.54	-8.59	0.45	1.233	174.6	0.008	SPLSR< 0.04,			
WLAN Main	Top side	0.089	-2.10	8.72	2.08	1.200	174.0	0.000	Not required			




Page: 120 of 294

WWAN & WLAN Aux

Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(vv/kg)	Distance (mm)		SAR Test
GPRS 1900	Top side	1.144	-0.54	-8.59	0.45	2.072	96.4	0.031	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	2.072	90.4	0.031	Not required

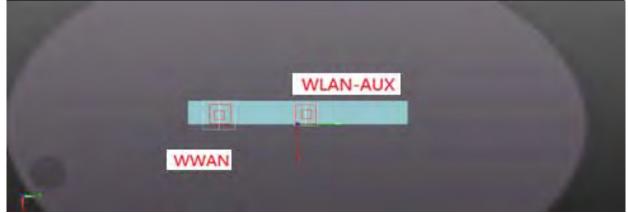
		THE WAIT OF THE WAY											
	Conditions	Position	SAR Value	Cool	rdinates	(cm)	ΣSAR — (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission			
			(W/kg)	Х	у	Z				SAR Test			
	WLAN Main	Top side	0.089	-2.10	8.72	2.08	1.017	83.2	0.012	SPLSR< 0.04,			
	WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.017	00.2	0.012	Not required			

Page: 121 of 294

WCDMA Band II + 5GHz WLAN MIMO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.962	0.073	0.212	1.247	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	1.16	-	-	-	ΣSAR< 1.6, Not required
	E	Back side_Curve(Right)	0	-	0.078	-	-	ΣSAR< 1.6, Not required
17	WCDMA Band 2	Top side	0	1.033	0.089	0.928	2.05	Analyzed as below
		Bottom side	0	0.016	0.003	0.007	0.026	ΣSAR< 1.6, Not required
		Left side	0	0.299	0.002	0.006	0.307	ΣSAR< 1.6, Not required
		Right side	0	0.002	0.513	0.029	0.544	ΣSAR< 1.6, Not required

VVVVAIV & VVL	u v iviaiii								
Conditions	Position	SAR Value	Cool	rdinates ((cm)	ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	x y z (W/kg		(VV/Kg)	Distance (mm)		SAR Test	
WCDMA B2	Top side	1.033	-1.00	-8.00	0.45	1.122	168.3	0.007	SPLSR< 0.04,
WLAN Main	Top side	0.089	-2.10	8.72	2.08	1.122	100.0	0.007	Not required



Page: 122 of 294

WWAN & WLAN Aux

Conditions	Position	SAR Value	Cool	rdinates	(cm)	ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	х	у	Z		Distance (mm)		SAR Test
WCDMA B2	Top side	1.033	-1.00	-8.00	0.45	1.961	90.4	0.030	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.961	90.4	0.030	Not required

Conditions	Position	SAR Value	Cool	rdinates	(cm)	ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	х	у	Z	(VV/Kg)	Distance (mm)		SAR Test
WLAN Main	Top side	0.089	-2.10	8.72	2.08	1.017	83.2	0.012	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.017	00.2	0.012	Not required

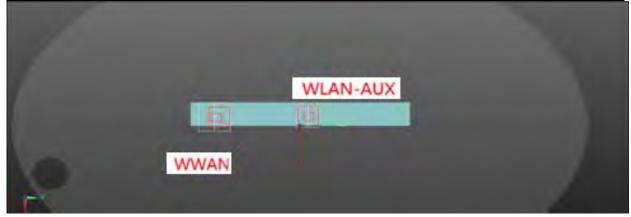
Page: 123 of 294

WCDMA Band IV + 5GHz WLAN MIMO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.999	0.073	0.212	1.284	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	1.131	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.078	-	-	ΣSAR< 1.6, Not required
18	WCDMA Band 4	Top side	0	1.049	0.089	0.928	2.066	Analyzed as below
		Bottom side	0	0.0235	0.003	0.007	0.0335	ΣSAR< 1.6, Not required
		Left side	0	0.532	0.002	0.006	0.54	ΣSAR< 1.6, Not required
	-	Right side	0	0.0042	0.513	0.029	0.5462	ΣSAR< 1.6, Not required

WWAN & WL	AN Main								
Conditions	Position	SAR Value	Cool	rdinates ((cm)	ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)	Distance (mm)		SAR Test
WCDMA B4	Top side	1.049	-0.84	-8.59	-0.50	1.138	175.5	0.007	SPLSR< 0.04,
WLAN Main	Top side	0.089	-2.10	-2.10 8.72		1.130	175.5	0.007	Not required
	(1)								

WLAN-Main


WWAN

Page: 124 of 294

WWAN & WLAN Aux

Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR (W/kg)	W/kg) Separation		Simultaneous Transmission
		(W/kg)	Х	у	Z	(vv/kg)	Distance (mm)		SAR Test
WCDMA B4	Top side	1.049	-0.84	-8.59	-0.50	1.977	95.6	0.029	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.9//	93.6	0.029	Not required

Conditions	SAR ditions Position Value		Cool	rdinates ((cm)	ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)	Distance (mm)		SAR Test
WLAN Main	Top side	0.089	-2.10	8.72	2.08	1.017	83.2	0.012	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.017	03.2	0.012	Not required

Page: 125 of 294

WCDMA Band V + 5GHz WLAN MI MO

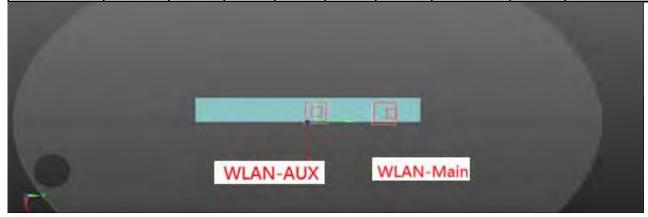
No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR		
		Back side	0	0.407	0.073	0.212	0.692	ΣSAR< 1.6, Not required		
		Back side_Curve(Left)	0	0.402	-	-	-	ΣSAR< 1.6, Not required		
		Back side_Curve(Right)	0	-	0.078	-	-	ΣSAR< 1.6, Not required		
19	WCDMA Band 5	Top side	0	0.391	0.089	0.928	1.408	ΣSAR< 1.6, Not required		
	24.74	Barra 0		Bottom side	0	0.035	0.003	0.007	0.045	ΣSAR< 1.6, Not required
		Left side	0	0.615	0.002	0.006	0.623	ΣSAR< 1.6, Not required		
		Right side	0	0.003	0.513	0.029	0.545	ΣSAR< 1.6, Not required		

Page: 126 of 294

LTE FDD Band II + 5GHz WLAN MIMO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.062	0.073	0.212	1.347	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	1.086	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.078	-	-	ΣSAR< 1.6, Not required
20	LTE Band 2	Top side	0	1.09	0.089	0.928	2.107	Analyzed as below
		Bottom side	0	0.041	0.003	0.007	0.051	ΣSAR< 1.6, Not required
		Left side	0	0.281	0.002	0.006	0.289	ΣSAR< 1.6, Not required
		Right side	0	0.027	0.513	0.029	0.569	ΣSAR< 1.6, Not required

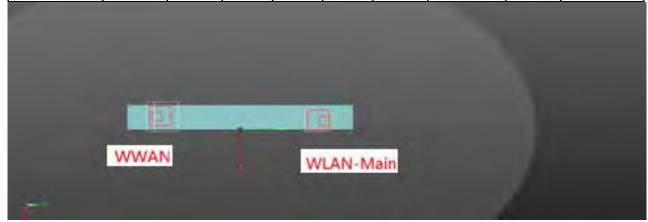
VVVVAIN & VVL	u v iviaiii								
Conditions	Position	SAR Value	Coordinates		Coordinates (cm)		Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	х	у	Z	(W/kg)	Distance (mm)		SAR Test
LTE Band 2	Top side	1.09	-1.30	-8.16	0.45	1.179	169.8	0.008	SPLSR< 0.04,
WLAN Main	Top side	0.089	-2.10	8.72	2.08	1.179	109.0	0.000	Not required


Page: 127 of 294

WWAN & WLAN Aux

Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR (W/kg)	(W/kg) Separation		Simultaneous Transmission
		(W/kg)	Х	у	Z		Distance (mm)		SAR Test
LTE Band 2	Top side	1.09	-1.30	-8.16	0.45	2.010	00	0.021	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	2.018	92	0.031	Not required

Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z				SAR Test
WLAN Main	Top side	0.089	-2.10	8.72	2.08	1.017	83.2	0.012	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.017	03.2	0.012	Not required

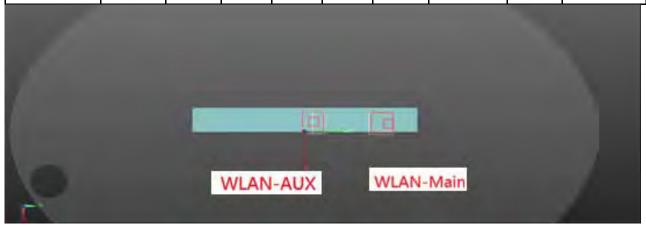


Page: 128 of 294

LTE FDD Band IV + 5GHz WLAN MIMO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.193	0.073	0.212	1.478	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	1.154	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.078	-	-	ΣSAR< 1.6, Not required
21	LTE Band 4	Top side	0	1.069	0.089	0.928	2.086	Analyzed as below
		Bottom side	0	0.044	0.003	0.007	0.054	ΣSAR< 1.6, Not required
		Left side	0	0.543	0.002	0.006	0.551	ΣSAR< 1.6, Not required
		Right side	0	0.007	0.513	0.029	0.549	ΣSAR< 1.6, Not required

Conditions	Position	SAR Value	Cool	(W/kg) ·		_	SPLSR	Simultaneous Transmission	
		(W/kg)	х	у	Z	(W/kg)	Distance (mm)		SAR Test
LTE Band 4	Top side	1.069	-1.35	-8.34	-0.48	1.158	172.7	0.007	SPLSR< 0.04,
WLAN Main	Top side	0.089	-2.10	8.72	2.08	1.156	172.7	0.007	Not required


Page: 129 of 294

WWAN & WLAN Aux

Conditions	Position	Position Value (M	ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission			
		(W/kg)	Х	y z (W/kg		(VV/Kg)	Distance (mm)		SAR Test
LTE Band 4	Tanada	1.069	-1.35	-8.34	-0.48	1.997	93.1	0.030	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.997	93.1	0.030	Not required

		Turinam a viburiax											
	Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission			
			(W/kg)	х	у	Z		Distance (mm)		SAR Test			
	WLAN Main	Top side	0.089	-2.10	8.72	2.08	1.017	83.2	0.012	SPLSR< 0.04,			
	WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.017	00.2	0.012	Not required			

Page: 130 of 294

LTE FDD Band V + 5GHz WLAN MIMO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.491	0.073	0.212	0.776	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.58	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.078	-	-	ΣSAR< 1.6, Not required
22	LTE Band 5	Top side	0	0.576	0.089	0.928	1.593	ΣSAR< 1.6, Not required
		Bottom side	0	0.076	0.003	0.007	0.086	ΣSAR< 1.6, Not required
		Left side	0	0.601	0.002	0.006	0.609	ΣSAR< 1.6, Not required
		Right side	0	0.014	0.513	0.029	0.556	ΣSAR< 1.6, Not required

LTE FDD Band XIII + 5GHz WLAN MIMO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.468	0.073	0.212	0.753	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.486	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.078	-	-	ΣSAR< 1.6, Not required
23	LTE Band 13	Top side	0	0.549	0.089	0.928	1.566	ΣSAR< 1.6, Not required
		Bottom side	0	0.093	0.003	0.007	0.103	ΣSAR< 1.6, Not required
		Left side	0	0.837	0.002	0.006	0.845	ΣSAR< 1.6, Not required
		Right side	0	0.01	0.513	0.029	0.552	ΣSAR< 1.6, Not required

Page: 131 of 294

LTE FDD Band XVII + 5GHz WLAN MIMO

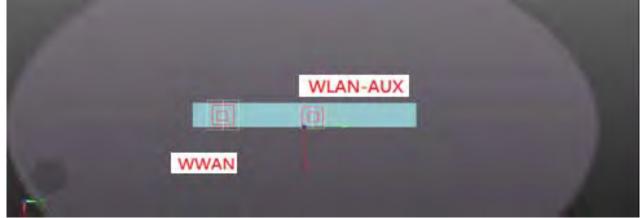
No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.264	0.073	0.212	0.549	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.296	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.078	-	-	ΣSAR< 1.6, Not required
24	LTE Band 17	Top side	0	0.223	0.089	0.928	1.24	ΣSAR< 1.6, Not required
		Bottom side	0	0.009	0.003	0.007	0.019	ΣSAR< 1.6, Not required
		Left side	0	0.438	0.002	0.006	0.446	ΣSAR< 1.6, Not required
		Right side	0	0.005	0.513	0.029	0.547	ΣSAR< 1.6, Not required

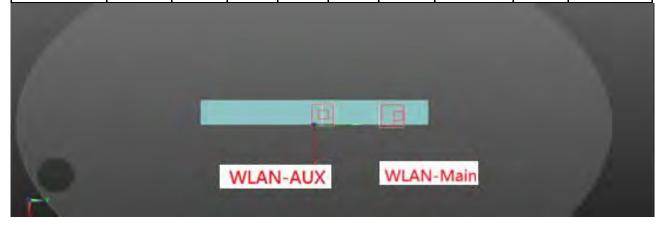
Page: 132 of 294

LTE FDD Band XXV + 5GHz WLAN MI MO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.151	0.073	0.212	1.436	ΣSAR< 1.6, Not required
		Back side_Curve(LLeft)	0	0.979	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.078	-	-	ΣSAR< 1.6, Not required
25	LTE Band 25	Top side	0	1.136	0.089	0.928	2.153	Analyzed as below
		Bottom side	0	0.026	0.003	0.007	0.036	ΣSAR< 1.6, Not required
		Left side	0	0.375	0.002	0.006	0.383	ΣSAR< 1.6, Not required
		Right side	0	0.007	0.513	0.029	0.549	ΣSAR< 1.6, Not required

Conditions	Position	SAR Value	Cool	rdinates	(cm)	ΣSAR	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)			SAR Test
LTE Band 25	Top side	1.159	-1.14	-8.47	0.51	1.248	172.9	0.008	SPLSR< 0.04,
WLAN Main	Top side	0.089	-2.10	8.72	2.08	1.240	172.9	0.008	Not required

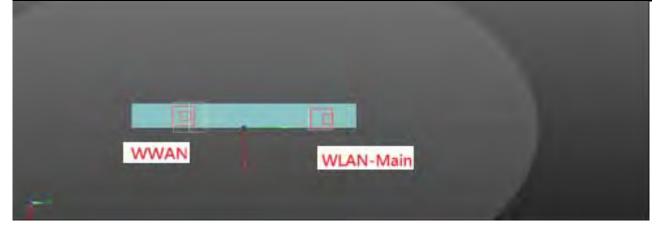



Page: 133 of 294

WWAN & WLAN Aux

Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)	Distance (mm)		SAR Test
LTE Band 25	Top side	1.159	-1.14	-8.47	0.51	2.087	95.1	0.032	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	2.007	3J. I	0.032	Not required

Conditions	Position	SAR Value	Cool	rdinates	(cm)	ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission
Conditions		(W/kg)	х	у	Z		Distance (mm)		SAR Test
WLAN Main	Tan aida	0.089	-2.10	8.72	2.08	1.017	83.2	0.012	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.017	03.2	0.012	Not required



Page: 134 of 294

CDMA / EVDO BCO + 5GHz WLAN MI MO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.54	0.073	0.212	0.825	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.618	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.078	-	-	ΣSAR< 1.6, Not required
26	EVDO BC 0	Top side	0	0.658	0.089	0.928	1.675	Analyzed as below
		Bottom side	0	0.07	0.003	0.007	0.08	ΣSAR< 1.6, Not required
		Left side	0	0.771	0.002	0.006	0.779	ΣSAR< 1.6, Not required
		Right side		0.007	0.513	0.029	0.549	ΣSAR< 1.6, Not required

Conditions	Position	SAR Value	Coo	Coordinates (cm) ΣSAF			Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)	Distance (mm)		SAR Test
EVDO BC 0	Top side	0.658	-1.15	-5.29	-0.68	0.747	143.1	0.005	SPLSR< 0.04,
WLAN Main	Top side	0.089	-2.10	8.72	2.08	0.747	143.1	0.005	Not required


Page: 135 of 294

WWAN & WLAN Aux

Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)			SAR Test
EVDO BC 0	Top side	0.658	-1.15	-5.29	-0.68	1.586	62.5	0.032	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.566	02.5	0.032	Not required

Conditions	Position	SAR Value	Coordinates (cm)			ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)	Distance (mm)		SAR Test
WLAN Main	Top side	0.089	-2.10	8.72	2.08	1.017	83.2	0.012	SPLSR< 0.04,
WLAN Aux		0.928	-1.08	0.96	-0.76	1.017	03.2	0.012	Not required

Page: 136 of 294

CDMA / EVDO BC1 + 5GHz WLAN MI MO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.008	0.073	0.212	1.293	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.973	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.078	-	-	ΣSAR< 1.6, Not required
27	EVDO BC 1	Top side	0	0.903	0.089	0.928	1.92	Analyzed as below
		Bottom side	0	0.025	0.003	0.007	0.035	ΣSAR< 1.6, Not required
		Left side	0	0.341	0.002	0.006	0.349	ΣSAR< 1.6, Not required
		Right side	0	0.004	0.513	0.029	0.546	ΣSAR< 1.6, Not required

Page: 137 of 294

WWAN & WLAN Aux

Conditions	Position	SAR Value (W/kg)	Coordinates (cm)			ΣSAR	I Separation I	SPLSR	Simultaneous Transmission
			Х	у	Z	(W/kg)	Distance (mm)		SAR Test
EVDO BC 1	Top side	0.903	-0.99	-8.56	-0.46	1.831	95.2	0.026	SPLSR< 0.04,
WLAN Aux		0.928	-1.08	0.96	-0.76	1.051	90.2	0.026	Not required

	Conditions	Position			ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission					
			(W/kg)	х	у	Z	(VV/Kg)	Distance (mm)		SAR Test			
	WLAN Main	Top side -	0.089	-2.10	8.72	2.08	1.017	83.2	0.012	SPLSR< 0.04,			
	WLAN Aux		0.928		0.96	-0.76	1.017	00.2	0.012	Not required			

Page: 138 of 294

CDMA / EVDO BC10 + 5GHz WLAN MI MO

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.55	0.073	0.212	0.835	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.635	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.078	-	-	ΣSAR< 1.6, Not required
28	EVDO BC 10	Top side	0	0.582	0.089	0.928	1.599	ΣSAR< 1.6, Not required
		Bottom side	0	0.058	0.003	0.007	0.068	ΣSAR< 1.6, Not required
		Left side	0	0.723	0.002	0.006	0.731	ΣSAR< 1.6, Not required
		Right side	0	0.004	0.513	0.029	0.546	ΣSAR< 1.6, Not required

Page: 139 of 294

GPRS 850 + BT+ 2.4GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR						
		Back side	0	0.866	0.094	0.111	1.071	ΣSAR< 1.6, Not required						
		Back side_Curve(Left)	0	0.754	-	-	-	ΣSAR< 1.6, Not required						
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required						
29	850	Top side	0	0.762	0.03	0.842	1.634	Analyzed as below						
		Bottom side	0	0.013	0.4	0.007	0.42	ΣSAR< 1.6, Not required						
									Left side	0	1.038	0.4	0.003	1.441
		Right side	0	0.002	0.094	0.007	0.103	ΣSAR< 1.6, Not required						

WWAN & BT

VVVAIN & DI									
Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test			
GPRS 850	Top side	0.762	0.792	185.8	0.004	SPLSR< 0.04,			
ВТ	Top side	0.03	0.792	165.6	0.004	Not required			

BT & WLAN Aux

Conditions	ditions Position		ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
ВТ	Top side	0.03	0.872	79	0.010	SPLSR< 0.04,
WLAN Aux	Top side	0.842	0.072	79	0.010	Not required

Page: 140 of 294

WWAN & WLAN Aux

Conditions	Position	SAR Value	Coordinates (cm)			ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)	Distance (mm)		SAR Test
GPRS 850	Top side	0.762	-0.84	-4.83	-0.70	1.604	52.4	0.039	SPLSR< 0.04,
WLAN Aux		0.842	-0.74	0.58	-0.73	1.004	32.4	0.039	Not required

Page: 141 of 294

GPRS 1900 + BT+ 2.4GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR				
		Back side	0	1.197	0.094	0.111	1.402	ΣSAR< 1.6, Not required				
		Back side_Curve(Left)	0	1.335	-	-	-	ΣSAR< 1.6, Not required				
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required				
30	1900	Top side	0	1.144	0.03	0.842	2.016	Analyzed as below				
		Bottom side	0	0.0145	0.4	0.007	0.4215	ΣSAR< 1.6, Not required				
						Left side		0.287	0.4	0.003	0.69	ΣSAR< 1.6, Not required
		Right side	0	0.0012	0.094	0.007	0.1022	ΣSAR< 1.6, Not required				

WWAN & BT

WWWAIN & DI						
Conditions	Position SAR Value (W/kg)		ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
GPRS 1900	Top side	1.144	1.174	185.8	0.007	SPLSR< 0.04,
ВТ	Top side	0.03	1.174	100.0	0.007	Not required

BT & WLAN Aux

Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
ВТ	Top side	0.03	0.872	79	0.010	SPLSR< 0.04,
WLAN Aux	Top side	0.842	0.072	79	0.010	Not required

Page: 142 of 294

WWAN & WLAN Aux

Conditions	Position	SAR Value (W/kg)	Coordinates (cm)			ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission
			Х	у	Z	(W/kg)	Distance (mm)		SAR Test
GPRS 1900	Top side	1.144	-0.54	-8.59	0.45	1.986	90.7	0.031	SPLSR< 0.04,
WLAN Aux		0.842	-0.74	0.58	-0.73		90. <i>1</i>		Not required

Page: 143 of 294

WCDMA Band II + BT+ 2.4GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.962	0.094	0.111	1.167	ΣSAR< 1.6, Not required
	31 WCDMA Band 2	Back side_Curve(Left)	0	1.16	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
31		Top side	0	1.033	0.03	0.842	1.905	Analyzed as below
		Bottom side		0.016	0.4	0.007	0.423	ΣSAR< 1.6, Not required
		Left side	0	0.299	0.4	0.003	0.702	ΣSAR< 1.6, Not required
		Right side	0	0.002	0.094	0.007	0.103	ΣSAR< 1.6, Not required

WWAN & BT

T							
Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test	
WCDMA B2	Top side	1.033	1.063	185.8	0.006	SPLSR< 0.04,	
ВТ	Top side	0.03	1.003	105.0	0.000	Not required	

BT & WLAN Aux


Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test	
ВТ	Top side	0.03	0.872	79	0.010	SPLSR< 0.04,	
WLAN Aux	Top side	0.842	0.072	79	0.010	Not required	

Page: 144 of 294

WWAN & WLAN Aux

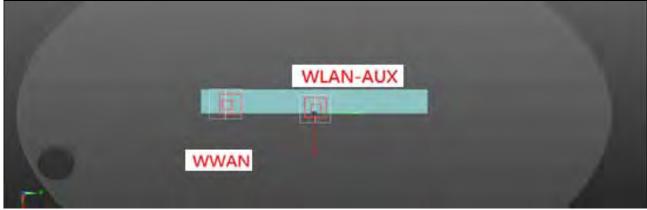
Conditions	Position	SAR Value (W/kg)	Coordinates (cm)			ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission
			Х	у	Z	(W/kg)	Distance (mm)		SAR Test
WCDMA B2	Top side	1.033	-1.00	-8.00	0.45	1.875	05	0.030	SPLSR< 0.04,
WLAN Aux		0.842	-0.74	0.58	-0.73		1.8/5	75 85	0.030

Page: 145 of 294

WCDMA Band IV + BT+ 2.4GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.999	0.094	0.111	1.204	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	1.131	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
32	WCDMA Band 4	Top side	0	1.049	0.03	0.842	1.921	Analyzed as below
		Bottom side	0	0.0235	0.4	0.007	0.4305	ΣSAR< 1.6, Not required
		Left side	0	0.532	0.4	0.003	0.935	ΣSAR< 1.6, Not required
		Right side	0	0.0042	0.094	0.007	0.1052	ΣSAR< 1.6, Not required

WWAN & BT


WWW/IIV CE DI						
Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
WCDMA B4	Top side	1.049	1.079	185.8	0.006	SPLSR< 0.04,
ВТ	Top side	0.03	1.079	165.6	0.006	Not required

Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
ВТ	Top side	0.03	0.872	79	0.010	SPLSR< 0.04,
WLAN Aux	Top side	0.842	0.672	79	0.010	Not required

Page: 146 of 294

Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)	Distance (mm)		SAR Test
WCDMA B4	Top side	1.049	-0.84	-8.59	-0.50	1.891	90	0.029	SPLSR< 0.04,
WLAN Aux	Top side	0.842	-0.74	0.58	-0.73	1.091	90	0.029	Not required

Page: 147 of 294

WCDMA Band V + BT+ 2.4GHz WLAN Aux

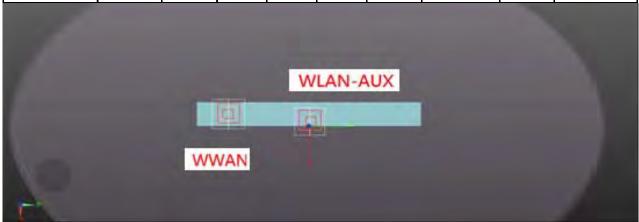
No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.407	0.094	0.111	0.612	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.402	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
33	WCDMA Band 5	Top side	0	0.391	0.03	0.842	1.263	ΣSAR< 1.6, Not required
		Bottom side	0	0.035	0.4	0.007	0.442	ΣSAR< 1.6, Not required
		Left side	0	0.615	0.4	0.003	1.018	ΣSAR< 1.6, Not required
		Right side	0	0.003	0.094	0.007	0.104	ΣSAR< 1.6, Not required

Page: 148 of 294

LTE FDD Band II + BT+ 2.4GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.062	0.094	0.111	1.267	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	1.086	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
34	LTE Band 2	Top side	0	1.09	0.03	0.842	1.962	Analyzed as below
		Bottom side	0	0.041	0.4	0.007	0.448	ΣSAR< 1.6, Not required
		Left side	0	0.281	0.4	0.003	0.684	ΣSAR< 1.6, Not required
		Right side	0	0.027	0.094	0.007	0.128	ΣSAR< 1.6, Not required

WWAN & BT


WWAIN & DI						
Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
LTE Band 2	Top side	1.09	1.12	105.0	0.006	SPLSR< 0.04,
ВТ	Top side		1.12	185.8	0.006	Not required

Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
ВТ	Top side	0.03	0.872	79	0.010	SPLSR< 0.04,
WLAN Aux	Top side	0.842	0.072	79	0.010	Not required

Page: 149 of 294

Conditions	Position	SAR Value	Cool	rdinates	(cm)	ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	х	у	Z	(W/kg)	Distance (mm)		SAR Test
LTE Band 2	Top side	1.09	-1.30	-8.16	0.45	1.932	86.7	0.031	SPLSR< 0.04,
WLAN Aux	Top side	0.842	-0.74	0.58	-0.73	1.932	00.7	0.031	Not required

Page: 150 of 294

LTE FDD Band IV + BT+ 2.4GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.193	0.094	0.111	1.398	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	1.154	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
35	LTE Band 4	Top side	0	1.069	0.03	0.842	1.941	Analyzed as below
		Bottom side	0	0.044	0.4	0.007	0.451	ΣSAR< 1.6, Not required
		Left side	0	0.543	0.4	0.003	0.946	ΣSAR< 1.6, Not required
		Right side	0	0.007	0.094	0.007	0.108	ΣSAR< 1.6, Not required

WWAN & BT

Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
LTE Band 4	Top side	1.069	1 000	185.8	0.006	SPLSR< 0.04,
ВТ	Top side	0.03	1.099	100.0	0.006	Not required

Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
ВТ	Top side	0.03	0.872	79	0.010	SPLSR< 0.04,
WLAN Aux	Top side	0.842	0.072	79	0.010	Not required

Page: 151 of 294

Conditions	Position	SAR Value (W/kg)	Cool	Coordinates (cm)			Peak Location Separation	SPLSR	Simultaneous Transmission
			х	у	Z	(W/kg)	Distance (mm)		SAR Test
LTE Band 4	Top side	1.069	-1.35	-8.34	-0.48	1.911	87.8	0.030	SPLSR< 0.04,
WLAN Aux	rop side	0.842	-0.74	0.58	-0.73	1.911	67.6	0.030	Not required

Page: 152 of 294

LTE FDD Band V + BT+ 2.4GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.491	0.094	0.111	0.696	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.58	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
36	LTE Band 5	Top side	0	0.576	0.03	0.842	1.448	ΣSAR< 1.6, Not required
		Bottom side	0	0.076	0.4	0.007	0.483	ΣSAR< 1.6, Not required
		Left side	0	0.601	0.4	0.003	1.004	ΣSAR< 1.6, Not required
		Right side	0	0.014	0.094	0.007	0.115	ΣSAR< 1.6, Not required

LTE FDD Band XIII + BT+ 2.4GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	BT	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.468	0.094	0.111	0.673	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.486	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
37	LTE Band 13	Top side	0	0.549	0.03	0.842	1.421	ΣSAR< 1.6, Not required
		Bottom side	0	0.093	0.4	0.007	0.5	ΣSAR< 1.6, Not required
		Left side	0	0.837	0.4	0.003	1.24	ΣSAR< 1.6, Not required
		Right side	0	0.01	0.094	0.007	0.111	ΣSAR< 1.6, Not required

Page: 153 of 294

LTE FDD Band XVII + BT+ 2.4GHz WLAN Aux

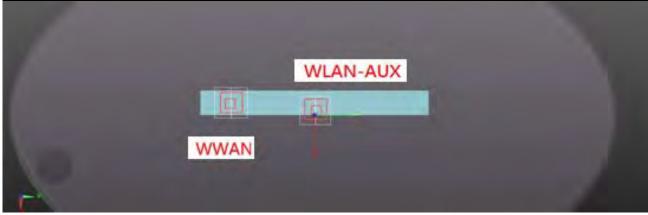
No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.264	0.094	0.111	0.469	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.296	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
38	LTE Band 17	Top side	0	0.223	0.03	0.842	1.095	ΣSAR< 1.6, Not required
		Bottom side	0	0.009	0.4	0.007	0.416	ΣSAR< 1.6, Not required
		Left side	0	0.438	0.4	0.003	0.841	ΣSAR< 1.6, Not required
		Right side	0	0.005	0.094	0.007	0.106	ΣSAR< 1.6, Not required

Page: 154 of 294

LTE FDD Band XXV + BT+ 2.4GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	BT	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.151	0.094	0.111	1.356	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.979	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
39	LTE Band 25	Top side	0	1.159	0.03	0.842	2.031	Analyzed as below
		Bottom side	0	0.026	0.4	0.007	0.433	ΣSAR< 1.6, Not required
		Left side	0	0.375	0.4	0.003	0.778	ΣSAR< 1.6, Not required
		Right side	0	0.007	0.094	0.007	0.108	ΣSAR< 1.6, Not required

WWAN & BT


Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
LTE Band 25	Top oide	1.159	1 100	185.8	0.007	SPLSR< 0.04,
ВТ	Top side	0.03	1.189	100.0	0.007	Not required

Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
ВТ	Top side	0.03	0.872	79	0.010	SPLSR< 0.04,
WLAN Aux	Top side	0.842	0.072	79	0.010	Not required

Page: 155 of 294

Conditions	Position	SAR Value	Coordinates (cm)			ΣSAR (W/kg)	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	x y z (W/kg)		(VV/Kg)	Distance (mm)		SAR Test	
LTE Band 25	Top side	1.159	-1.14	-8.47	0.51	2.001	89.8	0.032	SPLSR< 0.04,
WLAN Aux	rop side	0.842	-0.74	0.58	-0.73	2.001	09.0	0.032	Not required

Page: 156 of 294

CDMA / EVDO BC0 + BT+ 2.4GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.54	0.094	0.111	0.745	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.618	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
40	EVDO BC 0	Top side	0	0.658	0.03	0.842	1.53	ΣSAR< 1.6, Not required
		Bottom side	0	0.07	0.4	0.007	0.477	ΣSAR< 1.6, Not required
		Left side	0	0.771	0.4	0.003	1.174	ΣSAR< 1.6, Not required
		Right side	0	0.007	0.094	0.007	0.108	ΣSAR< 1.6, Not required

Page: 157 of 294

CDMA / EVDO BC1 + BT+ 2.4GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.008	0.094	0.111	1.213	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.973	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
41	EVDO BC 1	Top side	0	0.903	0.03	0.842	1.775	Analyzed as below
		Bottom side	0	0.025	0.4	0.007	0.432	ΣSAR< 1.6, Not required
		Left side	0	0.341	0.4	0.003	0.744	ΣSAR< 1.6, Not required
		Right side	0	0.004	0.094	0.007	0.105	ΣSAR< 1.6, Not required

WWAN & BT


VVVAIVADI						
Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
EVDO BC1	Top side	0.903	0.933	185.8	0.005	SPLSR< 0.04,
ВТ	Top side	0.03	0.933	100.0	0.005	Not required

Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
ВТ	Top side	0.03	0.872	79	0.010	SPLSR< 0.04,
WLAN Aux	Top side	0.842	0.072	79	0.010	Not required

Page: 158 of 294

Conditions	Position	SAR Value	Coo	rdinates	dinates (cm)		Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)	Distance (mm)		SAR Test
EVDO BC 1	Top side	0.903	-0.99	-8.56	-0.46	1.745	89.7	0.026	SPLSR< 0.04,
WLAN Aux	Top side	0.842	-0.74	0.58	-0.73	1.745	09.7	0.026	Not required

Page: 159 of 294

CDMA / EVDO BC10 + BT+ 2.4GHz WLAN Aux

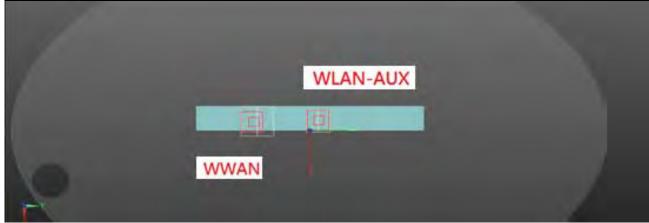
No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.55	0.094	0.111	0.755	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.635	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
42	EVDO BC 10	Top side	0	0.582	0.03	0.842	1.454	ΣSAR< 1.6, Not required
		Bottom side	0	0.058	0.4	0.007	0.465	ΣSAR< 1.6, Not required
		Left side	0	0.723	0.4	0.003	1.126	ΣSAR< 1.6, Not required
		Right side	0	0.004	0.094	0.007	0.105	ΣSAR< 1.6, Not required

Page: 160 of 294

GPRS 850 + BT+ 5GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.866	0.094	0.212	1.172	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.754	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
43	850	Top side	0	0.762	0.03	0.928	1.72	Analyzed as below
		Bottom side	0	0.013	0.4	0.007	0.42	ΣSAR< 1.6, Not required
		Left side	0	1.038	0.4	0.006	1.444	ΣSAR< 1.6, Not required
		Right side	0	0.002	0.094	0.029	0.125	ΣSAR< 1.6, Not required

WWAN & BT


Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test	
GPRS 850	Top side	0.762	0.792	185.8	0.004	SPLSR< 0.04,	
ВТ	Top side	0.03	0.792	100.0	0.004	Not required	

Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
ВТ	Top side	0.03	0.958	79	0.012	SPLSR< 0.04,
WLAN Aux	Top side	0.928	0.956	79	0.012	Not required

Page: 161 of 294

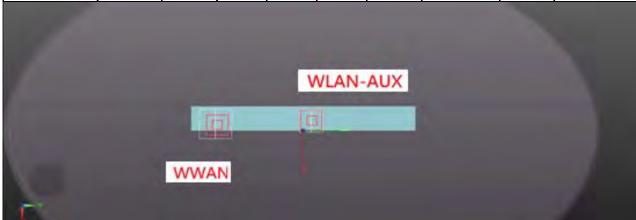
Conditions	Position	SAR Value	Coo	Coordinates (cm) ΣSAR		_	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)	Distance (mm)		SAR Test
GPRS 850	Top side	0.762	-0.84	-4.83	-0.70	1.69	58	0.038	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.09	36	0.038	Not required

Page: 162 of 294

GPRS 1900 + BT+ 5GHz WLAN Main

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.197	0.094	0.212	1.503	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	1.335	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
44	1900	Top side	0	1.144	0.03	0.928	2.102	Analyzed as below
		Bottom side	0	0.0145	0.4	0.007	0.4215	ΣSAR< 1.6, Not required
		Left side	0	0.287	0.4	0.006	0.693	ΣSAR< 1.6, Not required
		Right side	0	0.0012	0.094	0.029	0.1242	ΣSAR< 1.6, Not required

WWAN & BT


WWAIN & DI							
Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test	
GPRS 1900	Top side	1.144	1.174	185.8	0.007	SPLSR< 0.04,	
ВТ	Top side	0.03	1.174	103.0	0.007	Not required	

Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
ВТ	Top side	0.03	0.958	79	0.012	SPLSR< 0.04,
WLAN Aux	Top side	0.928	0.956	79	0.012	Not required

Page: 163 of 294

Conditions	Position	SAR Value	Cool	rdinates	(cm)	ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	х	у	Z	(W/kg)	Distance (mm)		SAR Test
GPRS 1900	Top side	1.144	-0.54	-8.59	0.45	2.072	96.4	0.031	SPLSR< 0.04,
WLAN Aux	rop side	0.928	-1.08	0.96	-0.76	2.072	90.4	0.031	Not required

Page: 164 of 294

WCDMA Band II + BT+ 5GHz WLAN Main

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.962	0.094	0.212	1.268	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	1.16	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
45	WCDMA Band 2	Top side	0	1.033	0.03	0.928	1.991	Analyzed as below
		Bottom side	0	0.016	0.4	0.007	0.423	ΣSAR< 1.6, Not required
		Left side	0	0.299	0.4	0.006	0.705	ΣSAR< 1.6, Not required
		Right side	0	0.002	0.094	0.029	0.125	ΣSAR< 1.6, Not required

WWAN & BT

WWWAIN & DI						
Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
WCDMA B2	Top side	1.033	1.063	85.8	0.013	SPLSR< 0.04,
ВТ	Top side	0.03	1.003	65.6	0.013	Not required

Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
ВТ	Top side	0.03	0.958	79	0.012	SPLSR< 0.04,
WLAN Aux	Top side	0.928	0.938	19	0.012	Not required

Page: 165 of 294

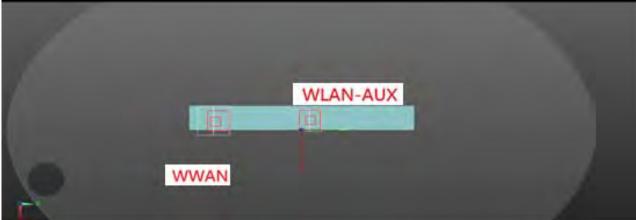
77777 W W TTE										
Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR (W/kg)	ΣSAR Separation SE		SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(VV/Kg)	Distance (mm)		SAR Test	
WCDMA B2	Top side	1.033	-1.00	-8.00	0.45	1.961	90.4	0.030	SPLSR< 0.04,	
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.901	50.4	0.030	Not required	

Page: 166 of 294

WCDMA Band IV + BT+ 5GHz WLAN Main

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.999	0.094	0.212	1.305	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	1.131	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	1	-	ΣSAR< 1.6, Not required
46	WCDMA Band 4	Top side	0	1.049	0.03	0.928	2.007	Analyzed as below
		Bottom side	0	0.0235	0.4	0.007	0.4305	ΣSAR< 1.6, Not required
		Left side	0	0.532	0.4	0.006	0.938	ΣSAR< 1.6, Not required
		Right side	0	0.0042	0.094	0.029	0.1272	ΣSAR< 1.6, Not required

WWAN & BT


ĺ					Peak			
	Conditions	Position	SAR Value (W/kg) (W/		Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test	
	WCDMA B4	Top side	1.049	1.079	185.8	0.006	SPLSR< 0.04,	
	ВТ	Top side	0.03	1.079	100.0	0.000	Not required	

Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
ВТ	Top side	0.03	0.958	79	0.012	SPLSR< 0.04,
WLAN Aux	Top side	0.928	0.956	79	0.012	Not required

Page: 167 of 294

Conditions	Position	SAR Value	Coo	rdinates	(cm)	Peak Location Separation		SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(vv/kg)	Distance (mm)		SAR Test
WCDMA B4	Top side	1.049	-0.84	-8.59	-0.50	1.977	95.6	0.029	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.977	95.0	0.029	Not required

Page: 168 of 294

WCDMA Band V + BT+ 5GHz WLAN Main

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.407	0.094	0.212	0.713	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.402	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
47	WCDMA Band 5	Top side	0	0.391	0.03	0.928	1.349	Analyzed as below
		Bottom side	0	0.035	0.4	0.007	0.442	ΣSAR< 1.6, Not required
		Left side	0	0.615	0.4	0.006	1.021	ΣSAR< 1.6, Not required
		Right side	0	0.003	0.094	0.029	0.126	ΣSAR< 1.6, Not required

Page: 169 of 294

LTE FDD Band II + BT+ 5GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.062	0.094	0.212	1.368	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	1.086	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
48	LTE Band 2	Top side	0	1.09	0.03	0.928	2.048	Analyzed as below
		Bottom side	0	0.041	0.4	0.007	0.448	ΣSAR< 1.6, Not required
		Left side	0	0.281	0.4	0.006	0.687	ΣSAR< 1.6, Not required
		Right side	0	0.027	0.094	0.029	0.15	ΣSAR< 1.6, Not required

WWAN & BT

VVVVIII Q DI						
Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
LTE Band 2	Top side	1.09	1.12	185.8	0.006	SPLSR< 0.04,
ВТ	Top side		1.12	100.0	0.000	Not required

Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
ВТ	Top side	0.03	0.958	79	0.012	SPLSR< 0.04,
WLAN Aux	Top side	0.928	0.936	79	0.012	Not required

Page: 170 of 294

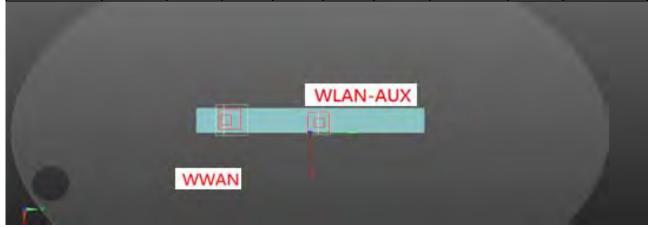
Conditions	Position	SAR Value	Coordinates (Coordinates (cm)		pordinates (cm)		Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(W/kg)	Distance (mm)		SAR Test		
LTE Band 2	Top side	1.09	-1.30	-8.16	0.45	2.018	92	0.031	SPLSR< 0.04,		
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	2.010	32	0.031	Not required		

Page: 171 of 294

LTE FDD Band IV + BT+ 5GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	Max. WLAN Main	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.193	0.094	0.212	1.499	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	1.154	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	1	ΣSAR< 1.6, Not required
49	LTE Band 4	Top side	0	1.069	0.03	0.928	2.027	Analyzed as below
		Bottom side	0	0.044	0.4	0.007	0.451	ΣSAR< 1.6, Not required
		Left side	0	0.543	0.4	0.006	0.949	ΣSAR< 1.6, Not required
		Right side	0	0.007	0.094	0.029	0.13	ΣSAR< 1.6, Not required

WWAN & BT


Conditions	Position	SAR Value (W/kg)	$A = \begin{bmatrix} \Sigma SAR \\ (W/kg) \end{bmatrix}$ Separation		SPLSR	Simultaneous Transmission SAR Test
LTE Band 4	Top side	1.069	1.099	185.8	0.006	SPLSR< 0.04,
ВТ	Top side	0.03	1.099	105.0	0.000	Not required

Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
ВТ	Top side	0.03	0.958	79	0.012	SPLSR< 0.04,
WLAN Aux	Top side	0.928	0.936	19	0.012	Not required

Page: 172 of 294

Conditions	Position	SAR Value	Coo	rdinates	(cm)	ΣSAR (W/kg) Peak Separation		SPLSR	Simultaneous Transmission
		(W/kg)	Х	у	Z	(vv/kg)	Distance (mm)		SAR Test
LTE Band 4	Top side	1.069	-1.35	-8.34	-0.48	1.997	93.1	0.030	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.997	93.1	0.030	Not required

Page: 173 of 294

LTE FDD Band V + BT+ 5GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.491	0.094	0.212	0.797	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.58	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
50	LTE Band 5	Top side	0	0.576	0.03	0.928	1.534	ΣSAR< 1.6, Not required
		Bottom side	0	0.076	0.4	0.007	0.483	ΣSAR< 1.6, Not required
		Left side	0	0.601	0.4	0.006	1.007	ΣSAR< 1.6, Not required
		Right side	0	0.014	0.094	0.029	0.137	ΣSAR< 1.6, Not required

LTE FDD Band XIII + BT+ 5GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.468	0.094	0.212	0.774	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.486	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
51	LTE Band 13	Top side	0	0.549	0.03	0.928	1.507	ΣSAR< 1.6, Not required
		Bottom side	0	0.093	0.4	0.007	0.5	ΣSAR< 1.6, Not required
		Left side	0	0.837	0.4	0.006	1.243	ΣSAR< 1.6, Not required
		Right side	0	0.01	0.094	0.029	0.133	ΣSAR< 1.6, Not required

Page: 174 of 294

LTE FDD Band XVII+ BT+ 5GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.264	0.094	0.212	0.57	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.296	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
52	LTE Band 17	Top side	0	0.223	0.03	0.928	1.181	ΣSAR< 1.6, Not required
		Bottom side	0	0.009	0.4	0.007	0.416	ΣSAR< 1.6, Not required
		Left side	0	0.438	0.4	0.006	0.844	ΣSAR< 1.6, Not required
		Right side	0	0.005	0.094	0.029	0.128	ΣSAR< 1.6, Not required

Page: 175 of 294

LTE FDD Band XXV+ BT+ 5GHz WLAN Aux

No.	Conditions	Position	Distance (mm)	Max. WWAN	BT	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	1.151	0.094	0.212	1.457	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.979	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
53	LTE Band 25	Top side	0	1.136	0.03	0.928	2.094	ΣSAR< 1.6, Not required
		Bottom side	0	0.026	0.4	0.007	0.433	ΣSAR< 1.6, Not required
		Left side	0	0.375	0.4	0.006	0.781	ΣSAR< 1.6, Not required
		Right side	0	0.007	0.094	0.029	0.13	ΣSAR< 1.6, Not required

WWAN & BT

WWAIN & DI							
Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test	
LTE Band 25	Top side	1.159	1.189	185.8	0.007	SPLSR< 0.04,	
ВТ	Top side	0.03	1.109	100.0	0.007	Not required	

Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
ВТ	Top side	0.03	0.958	79	0.012	SPLSR< 0.04,
WLAN Aux	Top side	0.928	0.936	79	0.012	Not required

Page: 176 of 294

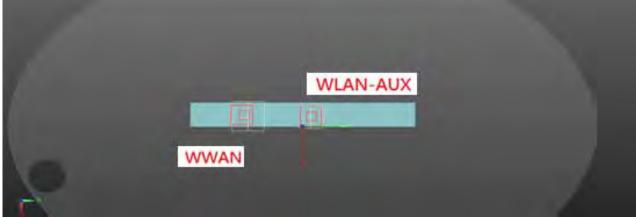
Conditions	Position	SAR Value	Cool	rdinates	(cm)	ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission
		(W/kg)	х	у	Z	(W/kg)	Distance (mm)		SAR Test
LTE Band 25	Top side	1.159	-1.14	-8.47	0.51	2.087	95.1	0.032	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	2.007	95.1	0.032	Not required

Page: 177 of 294

CDMA / EVDO BC0 + BT+ 5GHz WLAN Main

No.	Conditions	Position	Distance (mm)	Max. WWAN	BT	Max. WLAN Aux	SAR Sum	SPLSR
		Back side	0	0.54	0.094	0.212	0.846	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.618	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
54	EVDO BC 0	Top side	0	0.658	0.03	0.928	1.616	ΣSAR< 1.6, Not required
		Bottom side	0	0.07	0.4	0.007	0.477	ΣSAR< 1.6, Not required
		Left side	0	0.771	0.4	0.006	1.177	ΣSAR< 1.6, Not required
		Right side	0	0.007	0.094	0.029	0.13	ΣSAR< 1.6, Not required

WWAN & BT


Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg) Peak Location Separation Distance (mm)		SPLSR	Simultaneous Transmission SAR Test
EVDO BC 0	Top side	0.658	0.688	185.8	0.003	SPLSR< 0.04,
ВТ	Top side	0.03	0.000	103.0	0.003	Not required

Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test	
ВТ	Top side	0.03	0.050	79	0.012	SPLSR< 0.04,	
WLAN Aux	Top side	0.928	0.958	79	0.012	Not required	

Page: 178 of 294

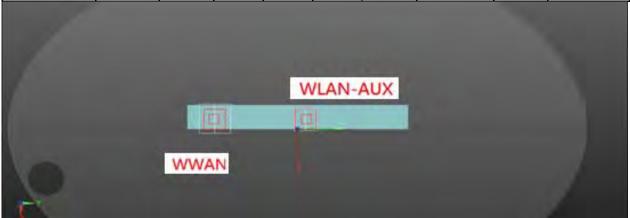
Conditions Pos	Position	SAR Value (W/kg)	Coordinates (cm)			ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission
			х	у	Z	(W/kg)	Distance (mm)		SAR Test
EVDO BC 0	Top side	0.658	-1.15	-5.29	-0.68	1.586	62.5	0.032	SPLSR< 0.04,
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76	1.360	02.5	0.032	Not required

Page: 179 of 294

CDMA / EVDO BC1 + BT+ 5GHz WLAN Main

No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR
	EVDO BC 1	Back side	0	1.008	0.094	0.212	1.314	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.973	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
55		BC 1 Top side	0	0.903	0.03	0.928	1.861	ΣSAR< 1.6, Not required
		Bottom side	0	0.025	0.4	0.007	0.432	ΣSAR< 1.6, Not required
		Left side	0	0.341	0.4	0.006	0.747	ΣSAR< 1.6, Not required
		Right side	0	0.004	0.094	0.029	0.127	ΣSAR< 1.6, Not required

WWAN & BT


Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test	
EVDO BC 1	Top side	0.903	0.933	185.8	0.005	SPLSR< 0.04,	
ВТ	Top side	0.03	0.933	100.0	0.005	Not required	

Conditions	Position	SAR Value (W/kg)	ΣSAR (W/kg)	Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test	
ВТ	Top side	0.03	0.958	79	0.012	SPLSR< 0.04,	
WLAN Aux	Top side	0.928	0.956	79	0.012	Not required	

Page: 180 of 294

7777/17 & 77E/177/6/										
Conditions	Position	SAR Value (W/kg)	Coordinates (cm)			ΣSAR	Peak Location Separation	SPLSR	Simultaneous Transmission	
			Х	у	Z	(W/kg)	Distance (mm)		SAR Test	
EVDO BC 1	Top side	0.903	-0.99	-8.56	-0.46	1.831	95.2	0.026	SPLSR< 0.04,	
WLAN Aux	Top side	0.928	-1.08	0.96	-0.76		93.2	0.020	Not required	

Page: 181 of 294

CDMA / EVDO BC10 + BT+ 5GHz WLAN Main

No.	Conditions	Position	Distance (mm)	Max. WWAN	ВТ	Max. WLAN Aux	SAR Sum	SPLSR
56	EVDO BC 10	Back side	0	0.55	0.094	0.212	0.856	ΣSAR< 1.6, Not required
		Back side_Curve(Left)	0	0.635	-	-	-	ΣSAR< 1.6, Not required
		Back side_Curve(Right)	0	-	0.094	-	-	ΣSAR< 1.6, Not required
		Top side	0	0.582	0.03	0.928	1.54	ΣSAR< 1.6, Not required
		Bottom side	0	0.058	0.4	0.007	0.465	ΣSAR< 1.6, Not required
		Left side	0	0.723	0.4	0.006	1.129	ΣSAR< 1.6, Not required
		Right side	0	0.004	0.094	0.029	0.127	ΣSAR< 1.6, Not required

Page: 182 of 294

4. Instruments List

T. HISTIUMENTS LIST											
Manufacturer	Device	Туре	Serial number	Date of last calibration	Date of next calibration						
Schmid & Partner Engineering AG	Dosimetric E-Field Probe	EX3DV4	3770	Apr.28,2015	Apr.27,2016						
		D750V2	1015	Aug.28,2014	Aug.27,2015						
		D835V2	4d063	Aug.28,2014	Aug.27,2015						
Schmid & Partner	System Validation	D1750V2	1008	Aug.28,2014	Aug.27,2015						
Engineering AG	Dipole	D1900V2	5d027	Apr.29,2015	Apr.28,2016						
		D2450V2	727	Apr.22,2015	Apr.21,2016						
		D5GHzV2	1023	Jan.29,2015	Jan.28,2016						
Schmid & Partner Engineering AG	Data acquisition Electronics	DAE4	856	Aug.27,2015	Aug.26,2016						
Schmid & Partner Engineering AG	Software	DASY 52 V52.8.8	N/A	Calibration not required	Calibration not required						
Schmid & Partner Engineering AG	Phantom	SAM	N/A	Calibration not required	Calibration not required						
HP	Network Analyzer	8753D	3410A05547	May.21,2015	May.20,2016						
Agilent	Dielectric Probe Kit	85070E	MY44300677	Calibration not required	Calibration not required						
Agilent	Dual-directional	777D	50114	Aug.07,2014	Aug.06,2015						
Agrient	coupler	778D	50313	Aug.07,2014	Aug.06,2015						
Agilent	RF Signal Generator	N5181A	MY50145142	Feb.06.2015	Feb.05.2016						
Agilent	Power Meter	E4417A	MY51410006	Oct.25,2013	Oct.24,2015						
Agilent	Power Sensor	E9301H	MY51470001	Dec.11,2014	Dec.10,2015						
TECPEL	Digital thermometer	DTM-303A	TP130078	Mar.30,2015	Mar.29,2016						
R&S	Radio Communication Test	CMU200	122498	Aug.14,2014	Aug.13,2015						
Anritsu	Radio Communication Test	MT8820C	6201061014	Aug.06,2014	Aug.05,2015						

Page: 183 of 294

5. Measurements

Date: 2015/6/16

GPRS 850 Body-worn Left side CH 251

Communication System: GPRS (1Dn2Up); Frequency: 848.8 MHz

Medium parameters used: f = 849 MHz; $\sigma = 1.026 \text{ S/m}$; $\varepsilon_r = 56.515$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(9.17, 9.17, 9.17); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2014/8/27

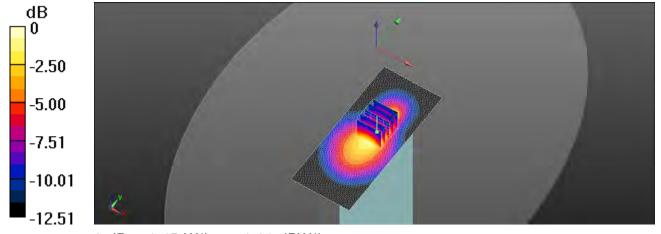
Phantom: Body;

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (51x121x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 1.42 W/kg

Configuration/ Body/ Zoom Scan (5x5x7)/ Cube 0: Measurement grid:


dx = 8mm, dy = 8mm, dz = 5mm

Reference Value = 29.58 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 0.991 W/kg; SAR(10 g) = 0.626 W/kg

Maximum value of SAR (measured) = 1.45 W/kg

0 dB = 1.45 W/kg = 1.61 dBW/kg

Page: 184 of 294

Date: 2015/6/18

GPRS 1900_Body-worn_Back(Curve)_CH 512

Communication System: GPRS (1Dn2Up); Frequency: 1850.2 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.45 \text{ S/m}$; $\epsilon_r = 53.753$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(7.59, 7.59, 7.59); Calibrated: 2015/4/28;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

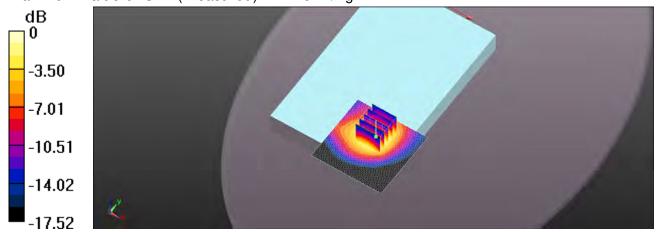
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (61x61x1): Interpolated grid: dx=15 mm,

dy=15 mm

Maximum value of SAR (interpolated) = 1.79 W/kg

Configuration/ Body/ Zoom Scan (5x5x7)/ Cube 0: Measurement grid:


dx = 8mm, dy = 8mm, dz = 5mm

Reference Value = 4.512 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 2.20 W/kg

SAR(1 g) = 1.26 W/kg; SAR(10 g) = 0.698 W/kg

Maximum value of SAR (measured) = 1.73 W/kg

0 dB = 1.73 W/kg = 2.38 dBW/kg

Page: 185 of 294

Date: 2015/6/18

WCDMA Band 2_Body-worn_Back(Curve)_CH 9262

Communication System: WCDMA; Frequency: 1852.4 MHz

Medium parameters used: f = 1852.4 MHz; $\sigma = 1.454 \text{ S/m}$; $\varepsilon_r = 53.75$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(7.59, 7.59, 7.59); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

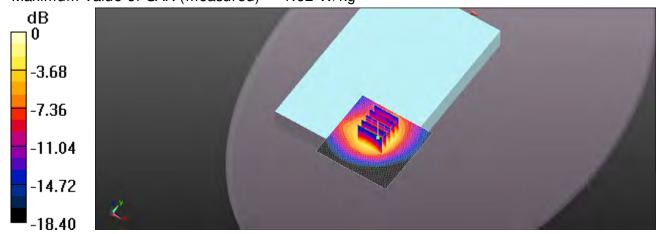
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (61x61x1): Interpolated grid: dx=15 mm,

dy=15 mm

Maximum value of SAR (interpolated) = 1.61 W/kg

Configuration/ Body/ Zoom Scan (5x5x7)/ Cube 0: Measurement grid:


dx = 8mm, dy = 8mm, dz = 5mm

Reference Value = 4.542 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 2.04 W/kg

SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.639 W/kg

Maximum value of SAR (measured) = 1.62 W/kg

0 dB = 1.62 W/kg = 2.10 dBW/kg

Page: 186 of 294

Date: 2015/6/17

WCDMA Band 4_Body-worn_Back(Curve)_CH 1513

Communication System: WCDMA; Frequency: 1752.6 MHz

Medium parameters used: f = 1753 MHz; $\sigma = 1.446$ S/m; $\epsilon_r = 52.808$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

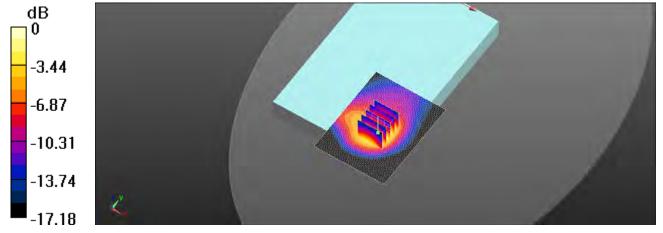
- Probe: EX3DV4 SN3770; ConvF(7.79, 7.79, 7.79); Calibrated: 2015/4/28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2014/8/27
- Phantom: Body;
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (61x81x1): Interpolated grid: dx=15 mm,

dy=15 mm

Maximum value of SAR (interpolated) = 1.50 W/kg

Configuration/ Body/ Zoom Scan (5x5x7)/ Cube 0: Measurement grid:


dx = 8mm, dy = 8mm, dz = 5mm

Reference Value = 4.935 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.86 W/kg

SAR(1 q) = 1.07 W/kq; SAR(10 q) = 0.585 W/kq

Maximum value of SAR (measured) = 1.48 W/kg

0 dB = 1.48 W/kg = 1.70 dBW/kg

Page: 187 of 294

Date: 2015/6/16

WCDMA Band 5_Body-worn_Left side_CH 4183

Communication System: WCDMA; Frequency: 836.6 MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.014 \text{ S/m}$; $\epsilon_r = 56.669$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

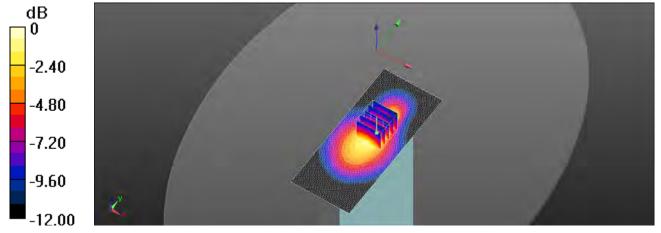
- Probe: EX3DV4 SN3770; ConvF(9.17, 9.17, 9.17); Calibrated: 2015/4/28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2014/8/27
- Phantom: Body;
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (51x121x1): Interpolated grid: dx=15mm,

dy = 15 mm

Maximum value of SAR (interpolated) = 0.718 W/kg

Configuration/ Body/ Zoom Scan (5x5x7)/ Cube 0: Measurement grid:


dx = 8mm, dy = 8mm, dz = 5mm

Reference Value = 20.85 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.932 W/kg

SAR(1 g) = 0.565 W/kg; SAR(10 g) = 0.356 W/kg

Maximum value of SAR (measured) = 0.779 W/kg

0 dB = 0.779 W/kg = -1.08 dBW/kg

Page: 188 of 294

Date: 2015/6/18

LTE Band 2_Body-worn_Back(Curve)_CH 18700_20M_100-0

Communication System: LTE; Frequency: 1860 MHz

Medium parameters used: f = 1860 MHz; $\sigma = 1.459 \text{ S/m}$; $\epsilon_r = 53.718$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(7.59, 7.59, 7.59); Calibrated: 2015/4/28;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2014/8/27

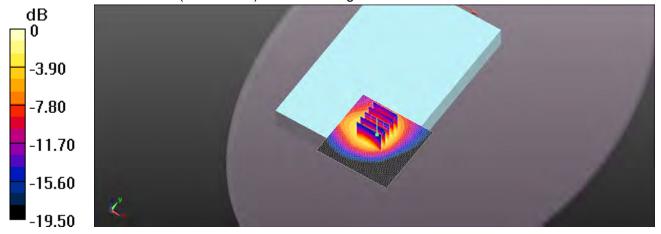
Phantom: Body:

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (61x61x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 1.44 W/kg

Configuration/ Body/ Zoom Scan (5x5x7)/ Cube 0: Measurement grid:


dx = 8mm, dy = 8mm, dz = 5mm

Reference Value = 4.320 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.84 W/kg

SAR(1 g) = 1.03 W/kg; SAR(10 g) = 0.569 W/kg

Maximum value of SAR (measured) = 1.46 W/kg

0 dB = 1.46 W/kg = 1.64 dBW/kg

Page: 189 of 294

Date: 2015/6/17

LTE Band 4_Body-worn_Back_CH 20175_20M_1-0

Communication System: LTE; Frequency: 1732.5 MHz

Medium parameters used: f = 1732.5 MHz; $\sigma = 1.425 \text{ S/m}$; $\epsilon_r = 52.831$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(7.79, 7.79, 7.79); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

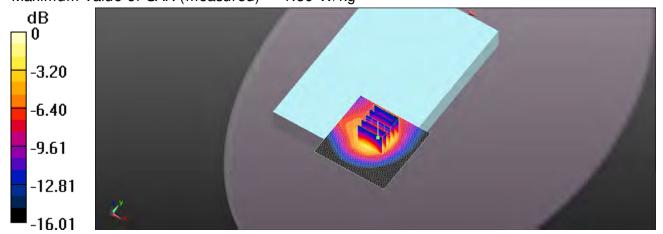
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (61x61x1): Interpolated grid: dx=15 mm,

dy=15 mm

Maximum value of SAR (interpolated) = 1.43 W/kg

Configuration/ Body/ Zoom Scan (5x5x7)/ Cube 0: Measurement grid:


dx = 8mm, dy = 8mm, dz = 5mm

Reference Value = 5.429 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 1.95 W/kg

SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.625 W/kg

Maximum value of SAR (measured) = 1.59 W/kg

0 dB = 1.59 W/kg = 2.01 dBW/kg

Page: 190 of 294

Date: 2015/6/16

LTE Band 5_Body-worn_Left side_CH 20600_10M_1-49

Communication System: LTE; Frequency: 844 MHz

Medium parameters used: f = 844 MHz; $\sigma = 1.02$ S/m; $\varepsilon_r = 56.606$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(9.17, 9.17, 9.17); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

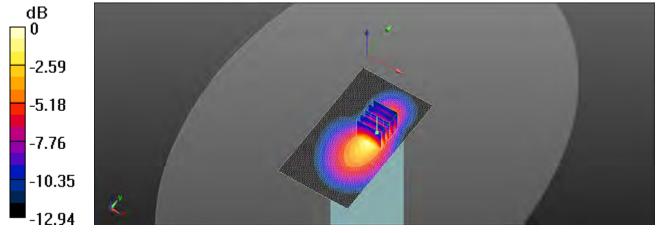
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (61x111x1): Interpolated grid: dx=15 mm,

dy=15 mm

Maximum value of SAR (interpolated) = 0.596 W/kg

Configuration/ Body/ Zoom Scan (5x5x7)/ Cube 0: Measurement grid:


dx = 8mm, dy = 8mm, dz = 5mm

Reference Value = 18.01 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.741 W/kg

SAR(1 g) = 0.432 W/kg; SAR(10 g) = 0.255 W/kg

Maximum value of SAR (measured) = 0.606 W/kg

0 dB = 0.606 W/kg = -2.18 dBW/kg

Page: 191 of 294

Date: 2015/6/15

LTE Band 13_Body-worn_Left side_CH 23230_10M_1-25

Communication System: LTE; Frequency: 782 MHz

Medium parameters used: f = 782 MHz; $\sigma = 1.005 \text{ S/m}$; $\epsilon r = 53.042$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(9.3, 9.3, 9.3); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

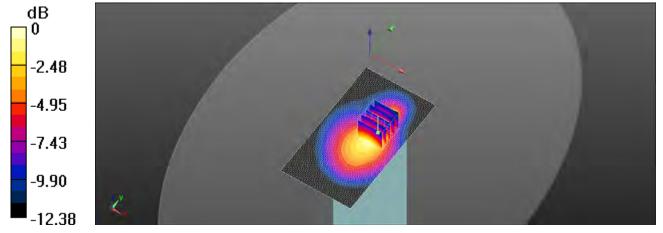
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (61x111x1): Interpolated grid: dx=15 mm,

dy=15 mm

Maximum value of SAR (interpolated) = 0.803 W/kg

Configuration/ Body/ Zoom Scan (5x5x7)/ Cube 0: Measurement grid:


dx = 8mm, dy = 8mm, dz = 5mm

Reference Value = 20.82 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.954 W/kg

SAR(1 g) = 0.594 W/kg; SAR(10 g) = 0.372 W/kg

Maximum value of SAR (measured) = 0.801 W/kg

0 dB = 0.801 W/kg = -0.96 dBW/kg

Page: 192 of 294

Date: 2015/6/15

LTE Band 17_Body-worn_Left side_CH 23800 10M 1-25

Communication System: LTE; Frequency: 711 MHz

Medium parameters used: f = 711 MHz; $\sigma = 0.974$ S/m; $\epsilon r = 53.797$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(9.3, 9.3, 9.3); Calibrated: 2015/4/28;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

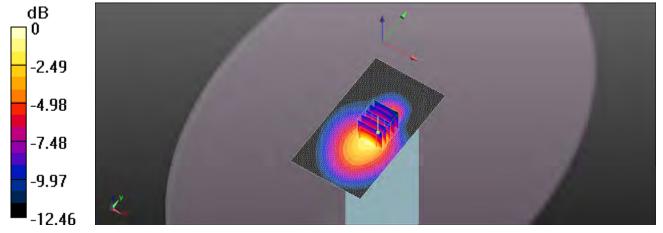
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (61x111x1): Interpolated grid: dx=15 mm,

dy=15 mm

Maximum value of SAR (interpolated) = 0.537 W/kg

Configuration/ Body/ Zoom Scan (5x5x7)/ Cube 0: Measurement grid:


dx = 8mm, dy = 8mm, dz = 5mm

Reference Value = 19.47 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.719 W/kg

SAR(1 g) = 0.397 W/kg; SAR(10 g) = 0.252 W/kg

Maximum value of SAR (measured) = 0.594 W/kg

0 dB = 0.594 W/kg = -2.26 dBW/kg

Page: 193 of 294

Date: 2015/6/18

LET Band 25_Body-worn_Top side_CH 26590_20M_50-50

Communication System: LTE; Frequency: 1905 MHz

Medium parameters used: f = 1905 MHz; $\sigma = 1.508 \text{ S/m}$; $\epsilon_r = 53.572$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(7.59, 7.59, 7.59); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

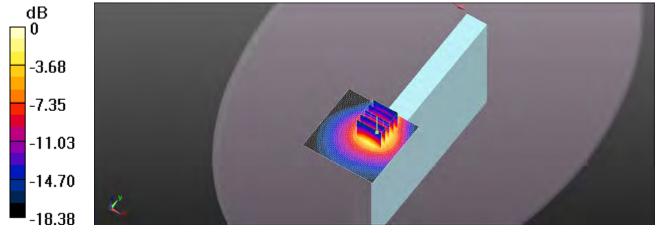
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (61x61x1): Interpolated grid: dx=15 mm,

dy=15 mm

Maximum value of SAR (interpolated) = 1.60 W/kg

Configuration/ Body/ Zoom Scan (5x5x7)/ Cube 0: Measurement grid:


dx = 8mm, dy = 8mm, dz = 5mm

Reference Value = 7.854 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 2.07 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.604 W/kg

Maximum value of SAR (measured) = 1.59 W/kg

0 dB = 1.59 W/kg = 2.01 dBW/kg

Page: 194 of 294

Date: 2015/6/16

EVDO BC0_Body-worn_Left side_CH 384

Communication System: 1xEvDO; Frequency: 836.52 MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.014 \text{ S/m}$; $\epsilon_r = 56.669$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(9.17, 9.17, 9.17); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

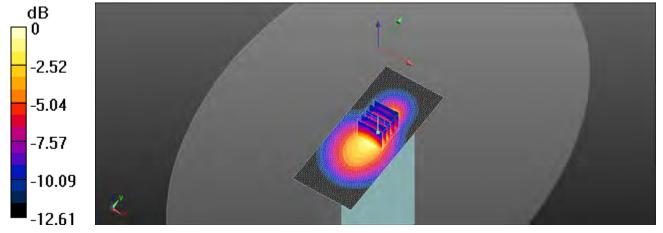
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (51x121x1): Interpolated grid: dx=15 mm,

dy=15 mm

Maximum value of SAR (interpolated) = 1.02 W/kg

Configuration/ Body/ Zoom Scan (5x5x7)/ Cube 0: Measurement grid:


dx = 8mm, dy = 8mm, dz = 5mm

Reference Value = 25.75 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.73 W/kg; SAR(10 g) = 0.44 W/kg

Maximum value of SAR (measured) = 1.04 W/kg

0 dB = 1.04 W/kg = 0.17 dBW/kg

Page: 195 of 294

Date: 2015/6/18

EVDO BC1_Body-worn_Back_CH 1175

Communication System: 1xEvDO; Frequency: 1908.75 MHz

Medium parameters used: f = 1909 MHz; $\sigma = 1.513$ S/m; $\epsilon_r = 53.621$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(7.59, 7.59, 7.59); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

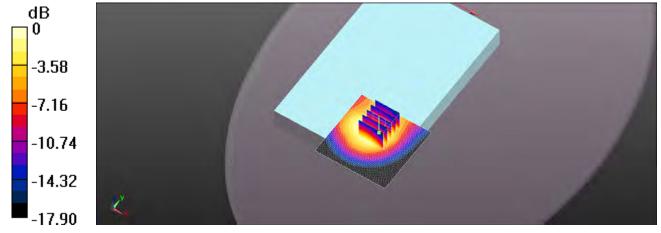
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (61x61x1): Interpolated grid: dx=15 mm,

dy=15 mm

Maximum value of SAR (interpolated) = 1.37 W/kg

Configuration/ Body/ Zoom Scan (5x5x7)/ Cube 0: Measurement grid:


dx = 8mm, dy = 8mm, dz = 5mm

Reference Value = 4.984 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 1 W/kg; SAR(10 g) = 0.563 W/kg

Maximum value of SAR (measured) = 1.36 W/kg

0 dB = 1.36 W/kg = 1.34 dBW/kg

Page: 196 of 294

Date: 2015/6/16

EVDO BC10_Body-worn Left side CH 684

Communication System: 1xEvDO; Frequency: 823.1 MHz

Medium parameters used: f = 823.1 MHz; $\sigma = 0.999 \text{ S/m}$; $\epsilon_r = 56.773$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(9.17, 9.17, 9.17); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

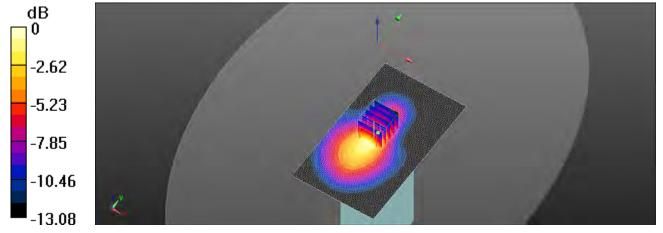
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x121x1): Interpolated grid: dx=15 mm,

dy=15 mm

Maximum value of SAR (interpolated) = 1.01 W/kg

Configuration/ Body/ Zoom Scan (5x5x7)/ Cube 0: Measurement grid:


dx = 8mm, dy = 8mm, dz = 5mm

Reference Value = 28.67 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.668 W/kg; SAR(10 g) = 0.412 W/kg

Maximum value of SAR (measured) = 0.995 W/kg

0 dB = 0.995 W/kg = -0.02 dBW/kg

Page: 197 of 294

Date: 2015/6/19

WLAN802.11 b 2.4G_Body_Right side_CH 1_Main

Communication System: WLAN 2.45G; Frequency: 2412 MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.992 \text{ S/m}$; $\epsilon_r = 51.436$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(7.21, 7.21, 7.21); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

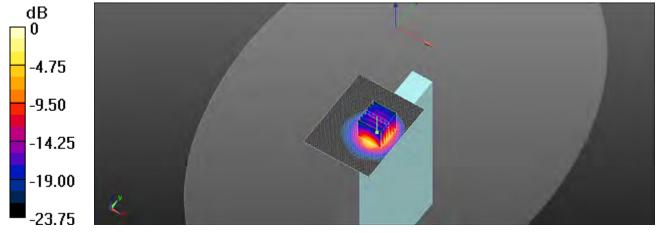
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x91x1): Interpolated grid: dx=12 mm,

dy=12 mm

Maximum value of SAR (interpolated) = 1.58 W/kg

Configuration/ Body/ Zoom Scan (7x7x7)/ Cube 0: Measurement grid:


dx = 5mm, dy = 5mm, dz = 5mm

Reference Value = 6.773 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.97 W/kg

SAR(1 g) = 0.915 W/kg; SAR(10 g) = 0.394 W/kg

Maximum value of SAR (measured) = 1.43 W/kg

0 dB = 1.43 W/kg = 1.55 dBW/kg

Page: 198 of 294

Date: 2015/6/20

WLAN802.11 a 5.2G_Body_Right side_CH 40_Main

Communication System: WLAN 5G; Frequency: 5200 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.462 \text{ S/m}$; $\varepsilon_r = 47.93$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

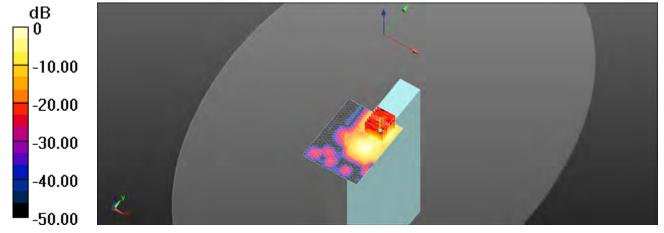
- Probe: EX3DV4 SN3770; ConvF(4.7, 4.7, 4.7); Calibrated: 2015/4/28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2014/8/27
- Phantom: Body;
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x91x1): Interpolated grid: dx=10 mm,

dy=10 mm

Maximum value of SAR (interpolated) = 0.708 W/kg

Configuration/ Body/ Zoom Scan (7x7x12)/ Cube 0: Measurement grid:


dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 11.54 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.383 W/kg; SAR(10 g) = 0.116 W/kg

Maximum value of SAR (measured) = 0.761 W/kg

0 dB = 0.761 W/kg = -1.19 dBW/kg

Page: 199 of 294

Date: 2015/6/20

WLAN802.11 n(40M) 5.2G_Body_Right side_CH 46_Main

Communication System: WLAN 5G; Frequency: 5230 MHz

Medium parameters used: f = 5230 MHz; $\sigma = 5.507 \text{ S/m}$; $\epsilon_r = 47.832$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(4.7, 4.7, 4.7); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

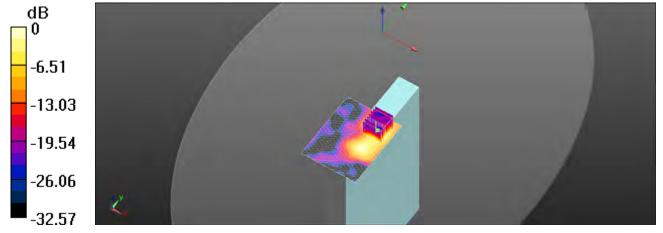
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x91x1): Interpolated grid: dx=10 mm,

dy=10 mm

Maximum value of SAR (interpolated) = 0.593 W/kg

Configuration/ Body/ Zoom Scan (7x7x12)/ Cube 0: Measurement grid:


dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 9.846 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.303 W/kg; SAR(10 g) = 0.090 W/kg

Maximum value of SAR (measured) = 0.587 W/kg

0 dB = 0.587 W/kg = -2.31 dBW/kg

Page: 200 of 294

Date: 2015/6/21

WLAN802.11 n(20M) 5.3G_Body_Right side_CH 60_Main

Communication System: WLAN 5G; Frequency: 5300 MHz

Medium parameters used: f = 5300 MHz; $\sigma = 5.609 \text{ S/m}$; $\varepsilon_r = 47.56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(4.7, 4.7, 4.7); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

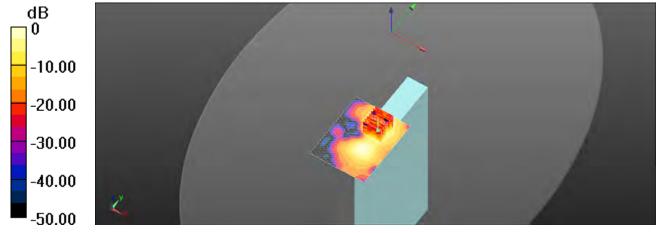
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x91x1): Interpolated grid: dx=10 mm,

dy=10 mm

Maximum value of SAR (interpolated) = 0.498 W/kg

Configuration/ Body/ Zoom Scan (7x7x12)/ Cube 0: Measurement grid:


dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 4.687 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.261 W/kg; SAR(10 g) = 0.078 W/kg.

Maximum value of SAR (measured) = 0.522 W/kg

0 dB = 0.522 W/kg = -2.82 dBW/kg

Page: 201 of 294

Date: 2015/6/21

WLAN802.11 n(40M) 5.3G_Body_Right side_CH 54_Main

Communication System: WLAN 5G; Frequency: 5270 MHz

Medium parameters used: f = 5270 MHz; $\sigma = 5.567 \text{ S/m}$; $\epsilon_r = 47.696$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(4.7, 4.7, 4.7); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

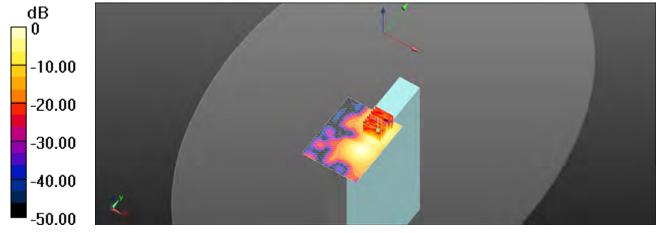
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x91x1): Interpolated grid: dx=10 mm,

dy=10 mm

Maximum value of SAR (interpolated) = 0.534 W/kg

Configuration/ Body/ Zoom Scan (7x7x12)/ Cube 0: Measurement grid:


dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 8.546 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.270 W/kg; SAR(10 g) = 0.082 W/kg

Maximum value of SAR (measured) = 0.519 W/kg

0 dB = 0.519 W/kg = -2.85 dBW/kg

Page: 202 of 294

Date: 2015/6/22

WLAN802.11 n(20M) 5.6G_Body_Right side_CH 104_Main

Communication System: WLAN 5G; Frequency: 5520 MHz

Medium parameters used: f = 5520 MHz; $\sigma = 5.91 \text{ S/m}$; $\varepsilon_r = 46.795$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

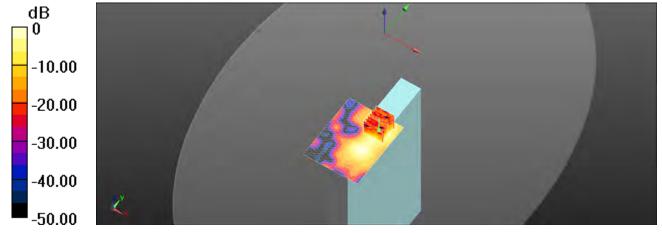
- Probe: EX3DV4 SN3770; ConvF(4.03, 4.03, 4.03); Calibrated: 2015/4/28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2014/8/27
- Phantom: Body;
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x91x1): Interpolated grid: dx=10 mm,

dy=10 mm

Maximum value of SAR (interpolated) = 0.549 W/kg

Configuration/ Body/ Zoom Scan (7x7x12)/ Cube 0: Measurement grid:


dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 8.736 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.276 W/kg; SAR(10 g) = 0.085 W/kg

Maximum value of SAR (measured) = 0.539 W/kg

0 dB = 0.539 W/kg = -2.68 dBW/kg

Page: 203 of 294

Date: 2015/6/22

WLAN802.11 n(20M) 5.6G_Body_Right side_CH 120_Main

Communication System: WLAN 5G; Frequency: 5600 MHz

Medium parameters used: f = 5600 MHz; $\sigma = 6.004 \text{ S/m}$; $\epsilon_r = 46.575$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3770; ConvF(4.03, 4.03, 4.03); Calibrated: 2015/4/28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2014/8/27
- Phantom: Body;
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.598 W/kg

Configuration/ Body/ Zoom Scan (7x7x12)/ Cube 0: Measurement grid:

dx = 4mm, dy = 4mm, dz = 2mm

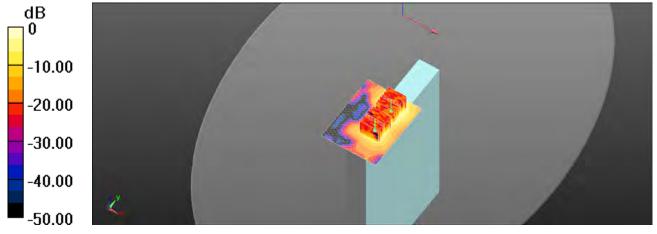
Reference Value = 5.764 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.313 W/kg; SAR(10 g) = 0.098 W/kg.

Maximum value of SAR (measured) = 0.632 W/kg

Configuration/ Body/ Zoom Scan (7x7x12)/ Cube 1: Measurement grid:


dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 5.764 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.19 W/kg

SAR(1 g) = 0.251 W/kg; SAR(10 g) = 0.065 W/kg

Maximum value of SAR (measured) = 0.546 W/kg

0 dB = 0.546 W/kg = -2.63 dBW/kg

Page: 204 of 294

Date: 2015/6/22

WLAN802.11 n(20M) 5.6G_Body_Right side_CH 140_Main

Communication System: WLAN 5G; Frequency: 5700 MHz

Medium parameters used: f = 5700 MHz; $\sigma = 6.037 \text{ S/m}$; $\epsilon_r = 46.301$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3770; ConvF(4.03, 4.03, 4.03); Calibrated: 2015/4/28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2014/8/27
- Phantom: Body;
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.624 W/kg

Configuration/ Body/ Zoom Scan (7x7x12)/ Cube 0: Measurement grid:

dx = 4mm, dy = 4mm, dz = 2mm

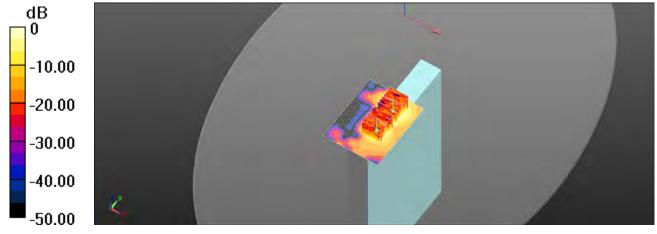
Reference Value = 6.024 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.324 W/kg; SAR(10 g) = 0.102 W/kg

Maximum value of SAR (measured) = 0.655 W/kg

Configuration/ Body/ Zoom Scan (7x7x12)/ Cube 1: Measurement grid:


dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 6.024 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.263 W/kg; SAR(10 g) = 0.069 W/kg

Maximum value of SAR (measured) = 0.565 W/kg

0 dB = 0.565 W/kg = -2.48 dBW/kg

Page: 205 of 294

Date: 2015/6/22

WLAN802.11 n(40M) 5.8G_Body_Right side_CH 159_Main

Communication System: WLAN 5G; Frequency: 5795 MHz

Medium parameters used: f = 5795 MHz; $\sigma = 6.208 \text{ S/m}$; $\epsilon_r = 46.024$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

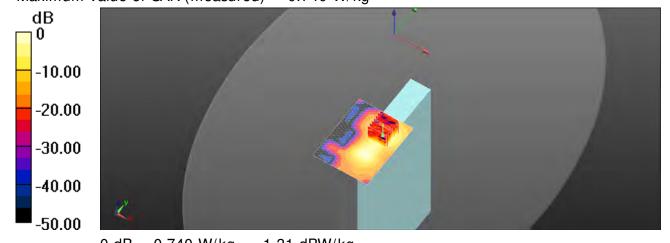
DASY5 Configuration:

- Probe: EX3DV4 SN3770; ConvF(4.33, 4.33, 4.33); Calibrated: 2015/4/28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2014/8/27
- Phantom: Body;
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x91x1): Interpolated grid: dx=10 mm, dy=10 mm.

Maximum value of SAR (interpolated) = 0.733 W/kg

Configuration/ Body/ Zoom Scan (7x7x12)/ Cube 0: Measurement grid:


dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 6.559 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 0.349 W/kg; SAR(10 g) = 0.099 W/kg

Maximum value of SAR (measured) = 0.740 W/kg

0 dB = 0.740 W/kg = -1.31 dBW/kg

Page: 206 of 294

Date: 2015/6/19

WLAN802.11 b 2.4G_Body_Top side_CH 6_Aux

Communication System: WLAN 2.45G; Frequency: 2437 MHz

Medium parameters used: f = 2437 MHz; $\sigma = 2.019$ S/m; $\epsilon_r = 51.353$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(7.21, 7.21, 7.21); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

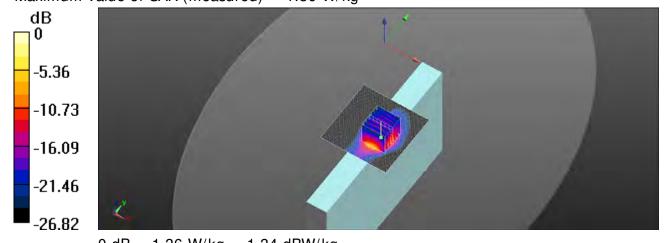
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x71x1): Interpolated grid: dx=12 mm,

dy=12 mm

Maximum value of SAR (interpolated) = 1.60 W/kg

Configuration/ Body/ Zoom Scan (7x7x7)/ Cube 0: Measurement grid:


dx = 5mm, dy = 5mm, dz = 5mm

Reference Value = 23.52 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 2.20 W/kg

SAR(1 g) = 0.830 W/kg; SAR(10 g) = 0.315 W/kg

Maximum value of SAR (measured) = 1.36 W/kg

0 dB = 1.36 W/kg = 1.34 dBW/kg

Page: 207 of 294

Date: 2015/6/20

WLAN802.11 a 5.2G_Body_Top side_CH 36_Aux

Communication System: WLAN 5G; Frequency: 5180 MHz

Medium parameters used: f = 5180 MHz; $\sigma = 5.424 \text{ S/m}$; $\epsilon_r = 48.079$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

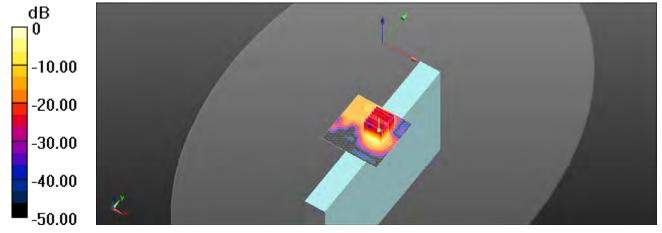
- Probe: EX3DV4 SN3770; ConvF(4.7, 4.7, 4.7); Calibrated: 2015/4/28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2014/8/27
- Phantom: Body;
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x71x1): Interpolated grid: dx=10 mm,

dy=10 mm

Maximum value of SAR (interpolated) = 1.53 W/kg

Configuration/ Body/ Zoom Scan (7x7x12)/ Cube 0: Measurement grid:


dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 7.653 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 4.05 W/kg

SAR(1 g) = 0.792 W/kg; SAR(10 g) = 0.197 W/kg

Maximum value of SAR (measured) = 1.72 W/kg

0 dB = 1.72 W/kg = 2.36 dBW/kg

Page: 208 of 294

Date: 2015/6/21

WLAN802.11 n(40M) 5.2G_Body_Top side_CH 46_Aux

Communication System: WLAN 5G; Frequency: 5230 MHz

Medium parameters used: f = 5230 MHz; $\sigma = 5.507 \text{ S/m}$; $\epsilon_r = 47.832$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

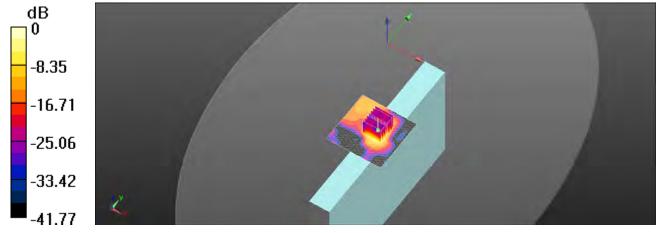
- Probe: EX3DV4 SN3770; ConvF(4.7, 4.7, 4.7); Calibrated: 2015/4/28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2014/8/27
- Phantom: Body;
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x71x1): Interpolated grid: dx=10 mm,

dy=10 mm

Maximum value of SAR (interpolated) = 1.62 W/kg

Configuration/ Body/ Zoom Scan (7x7x12)/ Cube 0: Measurement grid:


dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 4.568 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 4.17 W/kg

SAR(1 g) = 0.775 W/kg; SAR(10 g) = 0.194 W/kg

Maximum value of SAR (measured) = 1.64 W/kg

0 dB = 1.64 W/kg = 2.15 dBW/kg

Page: 209 of 294

Date: 2015/6/21

WLAN802.11 n(20M) 5.3G_Body_Top side_CH 60_Aux

Communication System: WLAN 5G; Frequency: 5300 MHz

Medium parameters used: f = 5300 MHz; $\sigma = 5.609 \text{ S/m}$; $\varepsilon_r = 47.56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

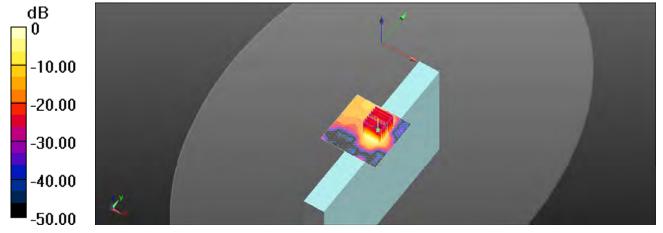
- Probe: EX3DV4 SN3770; ConvF(4.7, 4.7, 4.7); Calibrated: 2015/4/28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2014/8/27
- Phantom: Body;
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x71x1): Interpolated grid: dx=10 mm,

dy=10 mm

Maximum value of SAR (interpolated) = 1.40 W/kg

Configuration/ Body/ Zoom Scan (7x7x12)/ Cube 0: Measurement grid:


dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 6.878 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 3.68 W/kg

SAR(1 g) = 0.690 W/kg; SAR(10 g) = 0.177 W/kg

Maximum value of SAR (measured) = 1.52 W/kg

0 dB = 1.52 W/kg = 1.82 dBW/kg

Page: 210 of 294

Date: 2015/6/21

WLAN802.11 n(40M) 5.3G_Body_Top side_CH 54_Aux

Communication System: WLAN 5G; Frequency: 5270 MHz

Medium parameters used: f = 5270 MHz; $\sigma = 5.567 \text{ S/m}$; $\epsilon_r = 47.696$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

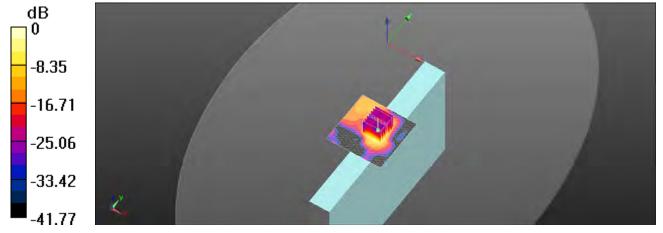
- Probe: EX3DV4 SN3770; ConvF(4.7, 4.7, 4.7); Calibrated: 2015/4/28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2014/8/27
- Phantom: Body;
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x71x1): Interpolated grid: dx=10 mm,

dy=10 mm

Maximum value of SAR (interpolated) = 1.65 W/kg

Configuration/ Body/ Zoom Scan (7x7x12)/ Cube 0: Measurement grid:


dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 4.598 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 4.27 W/kg

SAR(1 g) = 0.793 W/kg; SAR(10 g) = 0.199 W/kg

Maximum value of SAR (measured) = 1.68 W/kg

0 dB = 1.68 W/kg = 2.25 dBW/kg

Page: 211 of 294

Date: 2015/6/22

WLAN802.11 n(20M) 5.6G_Body_Top side_CH 120_Aux

Communication System: WLAN 5G; Frequency: 5600 MHz

Medium parameters used: f = 5600 MHz; $\sigma = 6.004 \text{ S/m}$; $\epsilon_r = 46.575$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(4.03, 4.03, 4.03); Calibrated: 2015/4/28;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

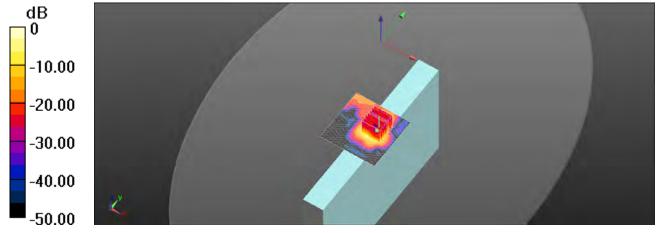
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x71x1): Interpolated grid: dx=10 mm,

dy=10 mm

Maximum value of SAR (interpolated) = 1.28 W/kg

Configuration/ Body/ Zoom Scan (7x7x12)/ Cube 0: Measurement grid:


dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 5.503 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 4.00 W/kg

SAR(1 g) = 0.654 W/kg; SAR(10 g) = 0.149 W/kg

Maximum value of SAR (measured) = 1.51 W/kg

0 dB = 1.51 W/kg = 1.79 dBW/kg

Page: 212 of 294

Date: 2015/6/22

WLAN802.11 n(40M) 5.8G_Body_Top side_CH 159_Aux

Communication System: WLAN 5G; Frequency: 5795 MHz

Medium parameters used: f = 5795 MHz; $\sigma = 6.208$ S/m; $\epsilon_r = 46.024$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

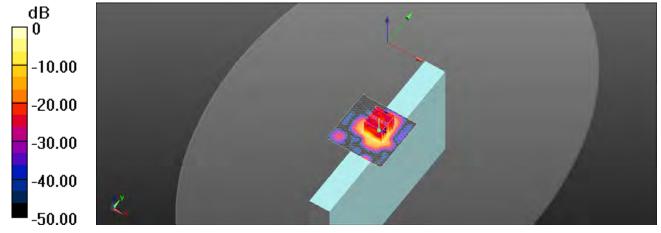
- Probe: EX3DV4 SN3770; ConvF(4.33, 4.33, 4.33); Calibrated: 2015/4/28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2014/8/27
- Phantom: Body;
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Body/ Area Scan (71x71x1): Interpolated grid: dx=10 mm,

dy=10 mm

Maximum value of SAR (interpolated) = 1.33 W/kg

Configuration/ Body/ Zoom Scan (7x7x12)/ Cube 0: Measurement grid:


dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 3.611 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 3.61 W/kg

SAR(1 g) = 0.586 W/kg; SAR(10 g) = 0.126 W/kg

Maximum value of SAR (measured) = 1.38 W/kg

0 dB = 1.38 W/kg = 1.40 dBW/kg

Page: 213 of 294

6. SAR System Performance Verification

Date: 2015/6/15

Dipole 750 MHz SN:1015 Body

Communication System: CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.981$ S/m; $\epsilon_r = 52.393$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(9.3, 9.3, 9.3); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

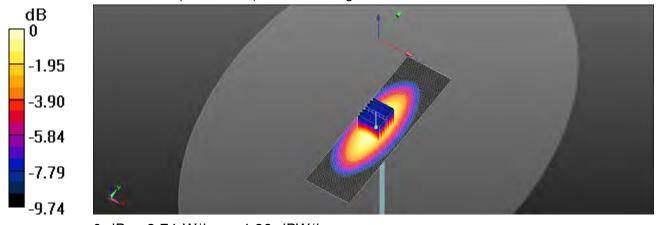
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Pin= 250mW/ Area Scan (41x141x1): Interpolated grid:

dx = 15 mm, dy = 15 mm

Maximum value of SAR (interpolated) = 2.69 W/kg

Configuration/ Pin= 250mW/ Zoom Scan (7x7x7)/ Cube 0: Measurement


grid: dx = 5mm, dy = 5mm, dz = 5mm

Reference Value = 52.19 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.17 W/kg

SAR(1 g) = 2.18 W/kg; SAR(10 g) = 1.46 W/kg

Maximum value of SAR (measured) = 2.74 W/kg

0 dB = 2.74 W/kg = 4.38 dBW/kg

Page: 214 of 294

Date: 2015/6/16

Dipole 835 MHz_SN:4d063_Body

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01 \text{ S/m}$; $\epsilon_r = 56.648$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(9.17, 9.17, 9.17); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

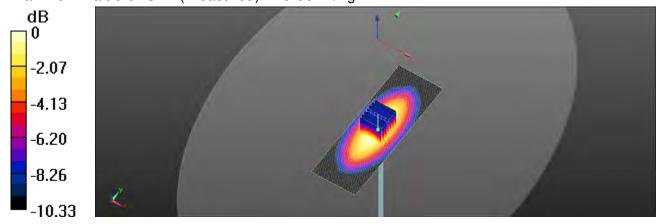
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Pin= 250mW/ Area Scan (41x121x1): Interpolated grid:

dx = 15 mm, dy = 15 mm

Maximum value of SAR (interpolated) = 3.10 W/kg

Configuration/ Pin= 250mW/ Zoom Scan (7x7x7)/ Cube 0: Measurement


grid: dx = 5mm, dy = 5mm, dz = 5mm

Reference Value = 56.93 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (measured) = 3.06 W/kg

0 dB = 3.06 W/kg = 4.86 dBW/kg

Page: 215 of 294

Date: 2015/6/17

Dipole 1750 MHz_SN:1008_Body

Communication System: CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.442 \text{ S/m}$; $\epsilon_r = 52.821$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(7.79, 7.79, 7.79); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

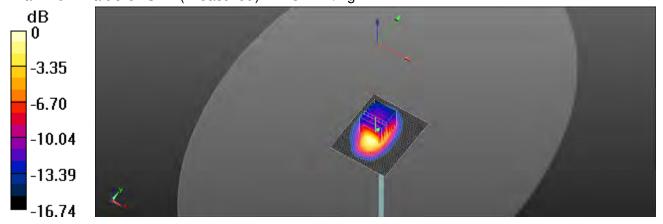
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Pin= 250mW/ Area Scan (41x71x1): Interpolated grid: dx= 15

mm, dy = 15 mm

Maximum value of SAR (interpolated) = 14.0 W/kg

Configuration/ Pin= 250mW/ Zoom Scan (7x7x7)/ Cube 0: Measurement


grid: dx = 5mm, dy = 5mm, dz = 5mm

Reference Value = 97.78 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9.43 W/kg; SAR(10 g) = 5.02 W/kg

Maximum value of SAR (measured) = 13.4 W/kg

0 dB = 13.4 W/kg = 11.27 dBW/kg

Page: 216 of 294

Date: 2015/6/18

Dipole 1900 MHz_SN:5d027_Body

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.501 \text{ S/m}$; $\epsilon_r = 53.595$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(7.59, 7.59, 7.59); Calibrated: 2015/4/28;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

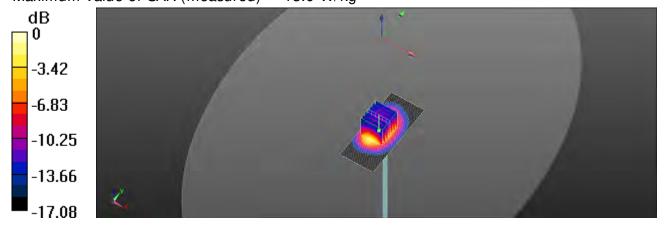
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Pin= 250mW/ Area Scan (31x71x1): Interpolated grid: dx=15

mm, dy = 15 mm

Maximum value of SAR (interpolated) = 15.0 W/kg

Configuration/ Pin= 250mW/ Zoom Scan (7x7x7)/ Cube 0: Measurement


grid: dx = 5mm, dy = 5mm, dz = 5mm

Reference Value = 96.67 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 17.7 W/kg

SAR(1 g) = 9.87 W/kg; SAR(10 g) = 5.19 W/kg

Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.43 dBW/kg

Page: 217 of 294

Date: 2015/6/19

Dipole 2450 MHz_SN:727_Body

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.037 \text{ S/m}$; $\epsilon_r = 51.276$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(7.21, 7.21, 7.21); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

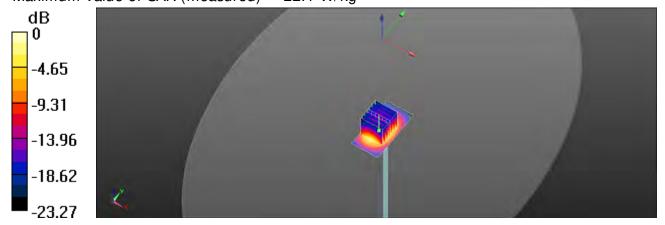
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Pin= 250mW/ Area Scan (31x61x1): Interpolated grid: dx= 12

mm, dy=12 mm

Maximum value of SAR (interpolated) = 22.5 W/kg

Configuration/ Pin= 250mW/ Zoom Scan (7x7x7)/ Cube 0: Measurement


grid: dx = 5mm, dy = 5mm, dz = 5mm

Reference Value = 103.9 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 30.8 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.21 W/kg

Maximum value of SAR (measured) = 22.1 W/kg

0 dB = 22.1 W/kg = 13.44 dBW/kg

Page: 218 of 294

Date: 2015/6/20

Dipole 5200 MHz_SN:1023_Body

Communication System: CW; Frequency: 5200 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.462 \text{ S/m}$; $\varepsilon_r = 47.93$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(4.7, 4.7, 4.7); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

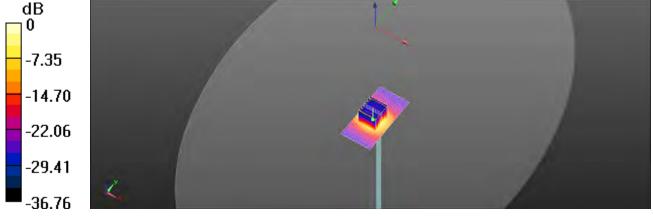
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Pin= 100mW/ Area Scan (41x81x1): Interpolated grid: dx= 10

mm, dy = 10 mm

Maximum value of SAR (interpolated) = 15.2 W/kg

Configuration/ Pin= 100mW/ Zoom Scan (7x7x12)/ Cube 0: Measurement


grid: dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 53.89 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 31.7 W/kg

SAR(1 g) = 7.08 W/kg; SAR(10 g) = 1.99 W/kg

Maximum value of SAR (measured) = 14.8 W/kg

0 dB = 14.8 W/kg = 11.70 dBW/kg

Page: 219 of 294

Date: 2015/6/21

Dipole 5300 MHz_SN:1023_Body

Communication System: CW; Frequency: 5300 MHz

Medium parameters used: f = 5300 MHz; $\sigma = 5.609 \text{ S/m}$; $\varepsilon_r = 47.56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(4.7, 4.7, 4.7); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

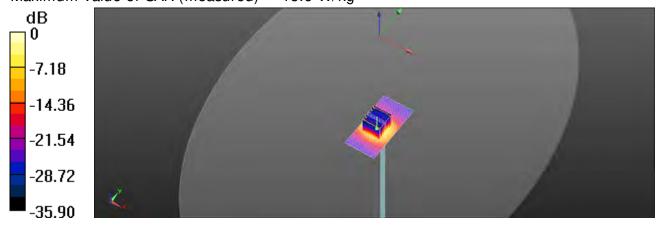
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Pin= 100mW/ Area Scan (41x81x1): Interpolated grid: dx=10

mm, dy = 10 mm

Maximum value of SAR (interpolated) = 16.1 W/kg

Configuration/ Pin= 100mW/ Zoom Scan (7x7x12)/ Cube 0: Measurement


grid: dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 54.74 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 7.49 W/kg; SAR(10 g) = 2.11 W/kg

Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dBW/kg

Page: 220 of 294

Date: 2015/6/22

Dipole 5600 MHz_SN:1023_Body

Communication System: CW; Frequency: 5600 MHz

Medium parameters used: f = 5600 MHz; $\sigma = 6.004 \text{ S/m}$; $\epsilon_r = 46.575$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(4.03, 4.03, 4.03); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2014/8/27

Phantom: Body;

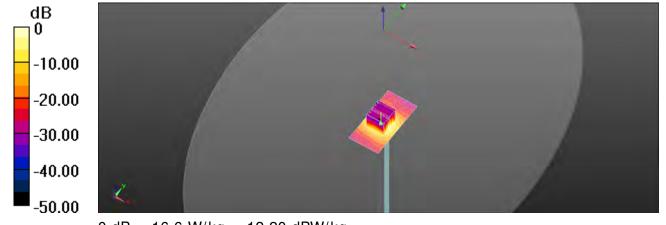
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Pin= 100mW/ Area Scan (41x81x1): Interpolated grid: dx=10

mm, dy=10 mm

Maximum value of SAR (interpolated) = 17.4 W/kg

Configuration/ Pin= 100mW/ Zoom Scan (7x7x12)/ Cube 0: Measurement


grid: dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 55.83 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 37.4 W/kg

SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.16 W/kg

Maximum value of SAR (measured) = 16.6 W/kg

0 dB = 16.6 W/kg = 12.20 dBW/kg

Page: 221 of 294

Date: 2015/6/22

Dipole 5800 MHz_SN:1023_Body

Communication System: CW; Frequency: 5800 MHz

Medium parameters used: f = 5800 MHz; $\sigma = 6.21 \text{ S/m}$; $\epsilon_r = 46.008$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

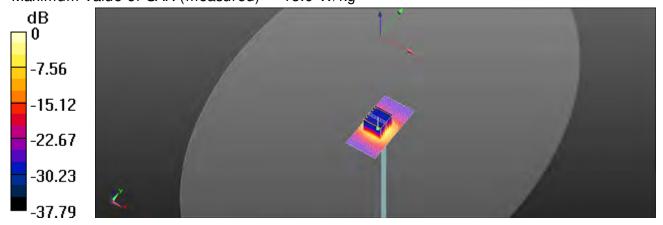
- Probe: EX3DV4 SN3770; ConvF(4.33, 4.33, 4.33); Calibrated: 2015/4/28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2014/8/27
- Phantom: Body;
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/ Pin= 100mW/ Area Scan (41x81x1): Interpolated grid: dx=10

mm, dy = 10 mm

Maximum value of SAR (interpolated) = 16.5 W/kg

Configuration/ Pin= 100mW/ Zoom Scan (7x7x12)/ Cube 0: Measurement


grid: dx = 4mm, dy = 4mm, dz = 2mm

Reference Value = 54.44 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 34.8 W/kg

SAR(1 g) = 7.51 W/kg; SAR(10 g) = 2.08 W/kg

Maximum value of SAR (measured) = 15.9 W/kg

0 dB = 15.9 W/kg = 12.01 dBW/kg

Page: 222 of 294

7. DAE & Probe Calibration Certificate

Calibration Laboratory of Schweizerischer Kalibrierdinest S Schmid & Partner Service suisse d'étalonnage C Engineering AG S Zeughausstrasse 43, 8004 Zurich, Switzerland Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accorditation No.: SCS 108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates SGS - TW (Auden) Certificate No. DAE4-856_Aug14 CALIBRATION CERTIFICATE Ottent DAE4 - SD 000 D04 BM - SN: 856 Calibration procedure(s) QA CAL-06.v26 Calibration procedure for the data acquisition electronics (DAE) August 27, 2014 Clastication date: This collibration conflicate documents the transability to netional standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) % and humidity = 70%. Califination Equipment used (M&TE critical for pastiration) Primary Standards IDL# Car Date (Certificase No.) Scheduled Calibration Keithley Maximeler Type 2001 5N 0810278 (71-Oct-13 (No. 13978) Oct-14 Scheduled Check Auto DAE Calibration Unit SE LW/S 053 AA 1001 07-Jan-14 (In house check) SE LW/S 005 AA 1002 07-Jan-14 (In house check) In house chick, Jan-15 Calibrator Box V2.1 In house check: Jan-15 Function Californied by: Tectvicien Approved by: En Bonneir Deputy Technical Manager Isound: August 27, 2014

Certificate No: DAE#-856_Aug14

Page 1 of 5

This collaration certificate shall not be reproduced except in full without written approval of the lappratory

Page: 223 of 294

Calibration Laboratory of

Schmid & Partner Engineering AG drasso 43, 9004 Zurich, Switze

Service suisse d'étalormage C Servicio evizzaro di taratura Swice Calibration Service

Accreditation No.: SCS 108

According by the Seiss Addingsation Service (SAS)

The Swiss Accreditation Service is one of the algustories to the EA Multiplicated Agreement for the recognition of calibration certificates

Glossary

data acquisition electronics DAE

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: influence of a voltage on the neighbor channels not subject to an
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-956_Aug 14

Fage 2 of 5

Page: 224 of 294

DC Voltage Measurement A/D - Converter Resolution nominal

High Renge: 1LSB = 6.1µV . full range = 100. +300 mV ... Low Range: 1LSB = 61nV , full range = 1. +3mV ... DASY measurement parameters: Auto Zero Time 3 sec; Measuring time 3 sec

Calibration Factors	×	Υ	7
High Range	403,468 ± 0.02% (k=2)	404.581 ± 0.02% ((s+2))	403.903 ± 0.02% (k=2)
Low Range	3.97681 ± 1.50% (k-2)	3.97783 ± 1.50% (1=2)	3.97815 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	52.5 "±1"
Connector Angle to be used in Crist against	2000

Certificate No. DAE4-856_Aug14

Page 3 of 6

Page: 225 of 294

Appendix (Additional assessments outside the scope of SCS108)

DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	#9999B33	0.84	0.00
Channel X + Input	19990.00	32.25	+0,01
Channel X - Input	20000.45	0.34	-0,00
Channel Y + Input	199999.95	0.96	0.00
Channel Y + Input	19997.51	-3.82	-0,02
Channal Y Input	-20000.77	0.07	÷0,00
Channel Z + Input	199997.26	0.19	-0,00
Channel Z + Input	19997.65	-3.57	-0.02
Channel Z - Input	-20002.47	1.55	0.01

Low Bange	Heading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.05	-0.09	-0,00
Channel X + Input	202,34	0.60	0.40
Channel X - Input	-198.01	0.26	-0.13
Channel Y + Input	2001.39	0:26	0.01
Channel Y + Input	201.08	-0,36	0.18
Channel Y - Input	-199.24	-0.78	0,39
Channel Z # Input	2000.92	-0.18	-0.01
Channel Z + Input	200,26	-1.22	-0.60
Channel Z - Input	-199,91	+1,47	0.74

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 9 sec: Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	-14,76	-16.42
	-200	17,19	15,88
Channel Y	500	+2.17	2.25
	+200	0.39	.0.01
Channel Z	200	10.27	10,05
	-300	-13.06	-13.03

3. Channel separation

DASY messurement parameters: Auto Zero Time: 3 sac, Messuring time: 5 sec.

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	~2	2.81	-1.15
Channel Y	200	7.99	-	3:07
Channel Z	200	8.55	5.24	-

Cardillaste No: DAE4-856_Aug14

Page # of 5

Page: 226 of 294

4. AD-Converter Values with inputs shorted

	High Range (LSB)	Low Range (LSB)
Channel X	16226	16620
Channel Y	15942	18803
Channel Z	15875	16811

Input Offset Measurement
 DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

-			

	Average (μV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.72	+0.77	1.89	0.38
Channel Y	-0.24	-1.07	1.09	0,42
Channel Z	-0.98	-2.01	0.07	0.40

6. Input Offset Current

Nominal input circuitry offset current on all cliennels s25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.0

9. Power Consumption (Typical values for information):

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vee)	+0.01	+6.	+14
Supply (- Vcc)	-0.01	-8	-9

Page: 227 of 294

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client SGS-TW (Auden)

Certificate No: EX3-3770_Apr15

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3770

Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: April 28, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Name Function Signature

Calibrated by: Jeton Kastrati Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: April 30, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3770_Apr15 Page 1 of 11

Page: 228 of 294

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization ip ip rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices; Measurement Techniques", June 2013.
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax.y,z; Bx.y,z; Cx.y,z; Dx.y,z; VRx.y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Page: 229 of 294

April 28, 2015 EX3DV4 - SN:3770

Probe EX3DV4

SN:3770

Manufactured: July 6, 2010 April 28, 2015 Calibrated:

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3770_Apr15

Page 3 of 11

Page: 230 of 294

April 28, 2015 EX3DV4-SN:3770

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3770

Basic Calibration Parameters

Dasic Calibration Fara	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.31	0.62	0.40	± 10.1 %
DCP (mV) ^B	105.3	100.7	101.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	145.1	±3.8 %
		Y	0.0	0.0	1.0		129.4	
	· · · · · · · · · · · · · · · · · · ·	Z	0.0	0.0	1.0		138.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page: 231 of 294

April 28, 2015 EX3DV4-SN:3770

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3770

Calibration Parameter Determined in Head Tissue Simulating Media

u	inblation i alameter betermined in riedu 1133de Ginidiating incula							
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.53	9.53	9.53	0.26	1.28	± 12.0 %
835	41.5	0.90	9.13	9.13	9.13	0.21	1.53	± 12.0 %
900	41.5	0.97	8.89	8.89	8.89	0.23	1.38	± 12.0 %
1450	40.5	1.20	8.19	8.19	8.19	0.18	1.59	± 12.0 %
1750	40.1	1.37	8.04	8.04	8.04	0.38	0.80	± 12.0 %
1900	40.0	1.40	7.82	7.82	7.82	0.36	0.80	± 12.0 %
2000	40.0	1.40	7.81	7.81	7.81	0.36	0.80	± 12.0 %
2300	39.5	1.67	7.47	7.47	7.47	0.27	0.96	± 12.0 %
2450	39.2	1.80	7.16	7.16	7.16	0.34	0.80	± 12.0 %
2600	39.0	1.96	6.85	6.85	6.85	0.34	0.92	± 12.0 %
5250	35.9	4.71	5.27	5.27	5.27	0.30_	1.80	± 13.1 %
5600	35.5	5.07	4.65	4.65	4.65	0.35	1.80	± 13.1 %
5750	35.4	5.22	4.92	4.92	4.92	0.40	1.80	± 13.1 %

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

**A frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

**Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Page: 232 of 294

EX3DV4-SN:3770 April 28, 2015

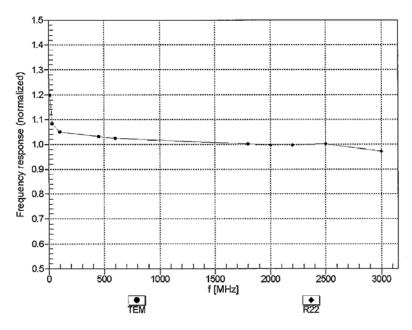
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3770

Calibration Parameter Determined in Body Tissue Simulating Media

and attori	ibiation Falameter Determined in Body 1155de Chindating Media							
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.30	9.30	9.30	0.25	1.38	± 12.0 %
835	55.2	0.97	9.17	9.17	9.17	0.34	1.05	± 12.0 %
900	55.0	1.05	8.91	8.91	8.91	0.30	1.20	± 12.0 %
1450	54.0	1.30	8.12	8.12	8.12	0.18	1.62	± 12.0 %
1750	53.4	1.49	7.79	7.79	7.79	0.44	0.80	± 12.0 %
1900	53.3	1.52	7.59	7.59	7.59	0.44	0.80	± 12.0 %
2000	53.3	1.52	7.73	7.73	7.73	0.42	0.80	± 12.0 %
2300	52.9	1.81	7.32	7.32	7.32	0.41	0.80	± 12.0 %
2450	52.7	1.95	7.21	7.21	7.21	0.31	0.80	± 12.0 %
2600	52.5	2.16	6.96	6.96	6.96	0.27	0.80	± 12.0 %
5250	48.9	5.36	4.70	4.70	4.70	0.35	1.90	± 13.1 %
5600	48.5	5.77	4.03	4.03	4.03	0.45	1.90	± 13.1 %
5750	48.3	5.94	4.33	4.33	4.33	0.50	1.90	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

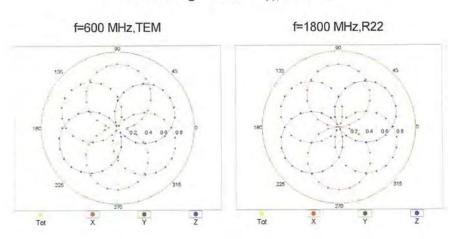
**At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

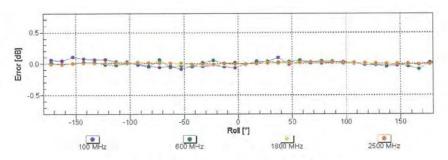

**Alphat/Pepth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Page: 233 of 294

EX3DV4-SN:3770 April 28, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

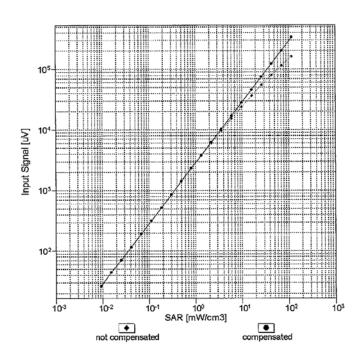


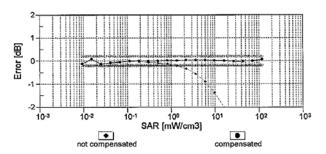
Page: 234 of 294

EX3DV4- SN:3770 April 28, 2015

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)




Page: 235 of 294

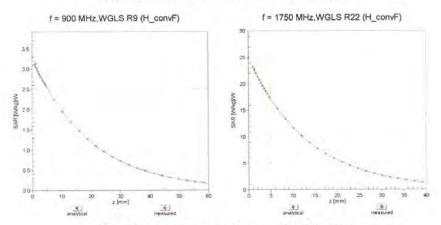
EX3DV4-SN:3770

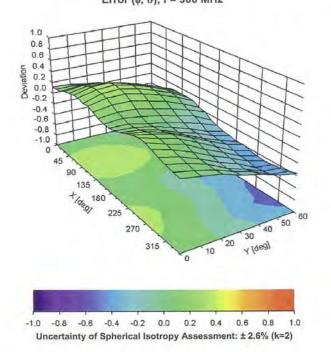
April 28, 2015

$\begin{array}{c} \textbf{Dynamic Range f(SAR}_{head}\textbf{)} \\ \textbf{(TEM cell , f}_{eval} = 1900 \text{ MHz)} \end{array}$

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3770_Apr15


Page 9 of 11


Page: 236 of 294

EX3DV4- SN:3770 April 28, 2015

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

Certificate No: EX3-3770_Apr15

Page 10 of 11

Page: 237 of 294

EX3DV4- SN:3770 April 28, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3770

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-32.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Page: 238 of 294

8. Uncertainty Budget

Measurement Uncertainty evaluation template for DUT SAR test

IEEE 1528									
A	С	D	е		f	g	h=c * f / e	i=c * g / e	k
Source of Uncertainty	Tolerance/ Uncertainty	Probability Distributioi	Div	Div Value	ci (1g)	ci (10g)	Standard uncertainty	Standard uncertainty	vi, or Veff
Measurement system									
Probe calibration	6.55%	N	1	1	1	1	6.55%	6.55%	∞
I sotropy , Axial	3.50%	R	√3	1.732	1	1	2.02%	2.02%	∞
Isotropy, Hemispherical	9.60%	R	√3	1.732	1	1	5.54%	5.54%	∞
Boundary Effect	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Linearity	4.70%	R	√3	1.732	1	1	2.71%	2.71%	∞
Detection Limits	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Readout Electronics	0.30%	N	1	1	1	1	0.30%	0.30%	∞
Response time	0.80%	R	√3	1.732	1	1	0.46%	0.46%	∞
Integration Time	2.60%	R	√3	1.732	1	1	1.50%	1.50%	∞
Measurement drift (class A evaluation)	1.75%	R	√3	1.732	1	1	1.01%	1.01%	∞
RF ambient condition - noise	3.00%	R	√3	1.732	1	1	1.73%	1.73%	∞
RF ambient conditions - reflections	3.00%	R	√3	1.732	1	1	1.73%	1.73%	∞
Probe positioner Mechanical restrictions	0.40%	R	√3	1.732	1	1	0.23%	0.23%	∞
Probe Positioning with respect to phantom shell	2.90%	R	√3	1.732	1	1	1.67%	1.67%	∞
Post-processing	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Max SAR Eval	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Test Sample related									
Test sample positioning	2.90%	N	1	1	1	1	2.90%	2.90%	M-1
Device Holder Uncertainty	3.60%	N	1	1	1	1	3.60%	3.60%	M-1
Drift of output power	5.00%	R	√3	1.732	1	1	2.89%	2.89%	∞
Phantom and Setup									
Phantom Uncertainty	4.00%	R	√3	1.732	1	1	2.31%	2.31%	∞
Deviation from reference liquid target ε 'r(Body)	3.04%	N	1	1	0.64	0.43	1.95%	1.31%	М
Deviation from reference liquid target σ (Body)	3.74%	N	1	1	0.6	0.49	2.24%	1.83%	М
Liquid conductivity σ — temperature uncertainty	2.20%	R	√3	1.732	0.78	0.71	0.99%	0.90%	∞
Liquid permittivity ε — temperature uncertainty	0.20%	R	√3	1.732	0.23	0.26	0.03%	0.03%	∞
Combined standard uncertainty		RSS					11.99%	11.82%	
Expant uncertainty (95% confidence interval), K= 2							23.97%	23.64%	

Page: 239 of 294

9. Phantom Description

Schmid & Parmer Engineering AG Zeughausstrases 42, 8004 Zurich, Switzerland. Phone +41 1 245 9700, Fax +41 1 245 9779 Info@spang.com. http://www.apeag.com

Certificate of Conformity / First Article Inspection

ttem	SAM Twin Phentom V4.0	
Type No.	QD 000 P40 C	
Series No	TP-1150 and higher	
Manufacturer	SPEAG Zeughausstrasse 43 CH-8004 Zürich Switzerfand	

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA. Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series items (called samples) or are tested at each item.

Test	Requirement	Details	Units tested
Dimensions	Compliant with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness of shell	Compliant with the requirements according to the standards	2mm +/- 0.2mm in flat and specific areas of head section	First article, Samples, TP-1314 ff,
Material thickness at ERP	Compliant with the requirements according to the standards	6mm +/- 0.2mm at ERP	First article, All items
Material parameters	Dielectric parameters for required frequencies	300 MHz = 6 GHz: Relative permittivity < 5. Loss tangent < 0.05	Material samples
Material resistivity The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions. Observe technical Note for material compatibility.		DEGMBE based simulating liquids	Pre-saries, First article, Material samples
Sagging	Compliant with the requirements according to the standards. Sagging of the flat section when filled with itssue simulating liquid.	< 1% typical < 0.8% if Slied with 155mm of HSL900 and without OUT below	Prototypes, Sample testing

- Standards [1] CENELEC EN 50361 [2] IEEE Std 1528-2003 [3] IEO 62209 Part I

- ISC 62209 Part 1
 FCC OET Builetin 65, Supplement C, Edition 01-01
 The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents.

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standards [1] to [4]

Signature / Stamp

07.07.2005

Signify & Parsin'r Engineering AQ Zyfyllausgigses 43, 8094 Zwich, Switzerland Phone yd 1, 365 9790/rzwist of 245 9779 Into Papag, com, http://www.apag.com

Doc He Mit - QO 000 P40 C - =

Page

T(I)

Page: 240 of 294

10. System Validation from Original Equipment Supplier

Calibration Laboratory of S Schmid & Partner Service suisse d'étalonnage C ST BRATE Engineering AG Servizio evizzero di taratura S Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (BAS) The Swiss Accreditation Service is one of the signatures to the EA Multilateral Agreement for the recognition of calibration certificates SGS-TW (Auden) Certificate No: D750V3-1015 Aug 14 CALIBRATION CERTIFICATE D750V3 - SN 1015 Calibration procedurate) Calibration procedure for dipole validation kits above 700 MHz Castration date: August 28, 2014 This contraction certificate documents the traceasisty to national identifiers. Which cause the physical units of magazinements (Ei). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. Africations have been conducted in the closed laboratory facility environment temperature (12 ± 37°C and humidity < 70% Californian Equipment used IMATE critical for established Cal Date (Cardicate No.) Scheduled Calibration Piwer meter EPM-492A GB374H0704 00-Det-13 (No. 217-01827) Dct-14 US37292783 09-Oct-13 (No. 217-01827) Oct-11 Power sensor HP 8481A Power sensor HP 8481 A MY41092317 09-Oct-13 (No. 217 01828) DEE-14 Neterice 20 dB Attenuator SN. 5058 (20k) 03-Apr-14 (No. 217-01916) Apr-15 Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 30-Dec-13 (No. E53-3205, Dec13) Returence Probe ES3DV3 BN: 3205 Dec 14 DAEA SN: 601 (8-Aug-14 (No. DAE4-63) Aug 14) Aug-16 Secondary Standards RF generator RAS SMT-06 Check Date (in house) Scheduled Check in house check. Oct-16 100006 04-Aug-99 (in house check Oct-13) Network Analyzer HP 8753E US37390585 S4276 18-Oct-01 (in house check Oct-13) in house chack: Oct-1a Function Michael Wirter Laboratory Technician Californial by M. Webes Approved by Katju Pólicivio Technical Numeyer Issued August 26, 2014 This calibration partitiose shall not be reproduced biologic in full without written approval of the laboratory

Certificate No: D750V3-1015_Aug14

Page 7 of 8

Page: 241 of 294

Calibration Laboratory of Schmid & Partner Engineering AG Zeughauesträsse 43, 8004 Zurich, Switzerland

S Schwegeriecher Kalibnerdien d

C Service suisse d'élainmage Servizie evizzere di coratura

Accorditation No.: SCS 108

S Syring Calibration Service

According by the Swiss, According to Service (SAS)
The Swiss According to Service in one of the regulatories to the EA
Muditatoral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x;y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1. "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phentom section, with the arms oriented parallel to the body axis;
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate Nov (1750/3-1015, Aug 14

Fage 2 of B

Page: 242 of 294

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.5
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx dy, dz = 5 mm	
Frequency	750 MHz = 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41,9	0.89 mhp/m
Measured Head TSL parameters	(22.0 ± 0.2) 10	#2.2 ± 6 %	0,91 mho/m ± 6 %
Head TSL temperature change during lest	< 0.5 °C	1 1-	

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW Input power	2.11 W/kg
SAR for pominal Head TSL parameters	normalized to 1W	8.31 W/kg ± 17.0 % (kn2)

5AR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	.250 mW input prover	1.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.45 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	55'0.c	55,5	0,96 mho/m
Measured Body TSL parameters	(22.0±0.2) °C	55,4 ± 8 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	1,600	(Marie)

SAR result with Body TSL

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR measured	950 mW input power	2,24 W/kg
SAR for nominal Body TSL parameters	nermalized to 1W	8.75 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm2 (10 g) of Body TSL	condition	
SAR measured	250 mW Input power	1.49 W/kg
SAFI for nominal Body TSL parameters	normalized to 1W	5.85 W/kg ± 16.5 % (k=2)

Centicate No: D750V3-1015_Aug14

Page 3 of 8

Page: 243 of 294

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.1 Ω - 0.4 jΩ	
Return Loss	- 30.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.3 Ω = 2.9 <u>j</u> Ω	
Return Loss	- 29.5 dB	

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	March 22, 2010	

Certificate No: D750V3-1015_Aug14

Page 4 of 8

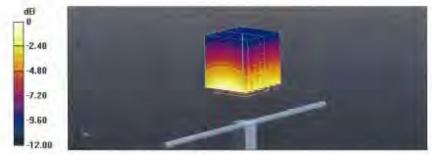
Page: 244 of 294

DASY5 Validation Report for Head TSL

Date: 28.08.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1015


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91$ S/m; $\varepsilon_c = 42.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

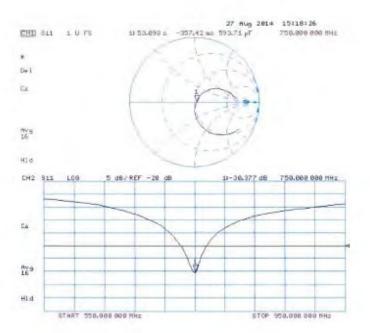
DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.37, 6.37, 6.37); Calibrated: 30.12,2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid; dx≈5mm, dy=5mm, dz=5mm Reference Value = 53.68 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.13 W/kg SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.46 W/kg

0 dB = 2.46 W/kg = 3.91 dBW/kg


Cartificate No: D750V3-1015_Aug14

Page 5 of 8

Page: 245 of 294

Impedance Measurement Plot for Head TSL

Certificate No: D750V3-1015_Aug14

Page 6 of 8

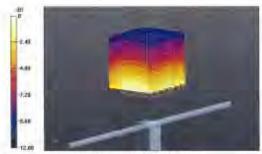
Page: 246 of 294

DASY5 Validation Report for Body TSL

Date: 27.08:2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1015


Communication System: UID 0 - CW; Frequency: 750 MHz
Medium parameters used: f = 750 MHz; σ = 0.99 S/m; ε_e = 55.4; ρ = 1000 kg/m³
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2011)

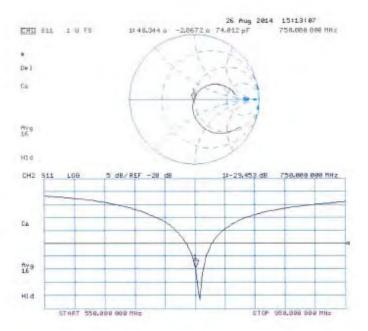
DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.13, 6.13, 6.13); Calibrated: 30.12.2013;
- · Sensor-Surface; 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52,8,8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0;

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.06 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.26 W/kg SAR(1 g) = 2.24 W/kg; SAR(10 g) = 1.49 W/kg Maximum value of SAR (measured) = 2.60 W/kg

I) dB = 2.60 W/kg = 4.15 dBW/kg


Certificate No D750V3-1015_Aug14

Page 7 of 6

Page: 247 of 294

Impedance Measurement Plot for Body TSL

Certificate No: D750V3-1015_Aug14

Page 8 of 8

Page: 248 of 294

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlecher Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzoro di taratura S Swiss Calibration Service

According by the Swas According to Service (SAS) The Swine Accreditation Service is one of the aignatories to the EA Multilateral Agreement for the recognition of calibration certificates

SGS-TW (Auden)

Accreditation No.: SCS 108

Certificate No. D835V2-4d063_Aug14 CALIBRATION CERTIFICATE D835V2 - SN: 4d063 **DA CAL-05.v9** Clarevation procedure(b) Calibration procedure for dipole validation kits above 700 MHz Owntrution date: August 28, 2014 This calibration certificate obcurrents the transability to national standards, which realize the physical units of measurements (Sri. The measurements and the uncestainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the slosed boomsby lability; envelopment temperature (22 ± 3)°C and handly < 70%. Calbration Equipment used (M&TE critical for calbration) Primary Standards ID: # Cal Date (Certificate No.) Scheduled Calibration Power meller EPM-442A 8837480704 09-Oct-13 (No. 217-01627) Gez-18 Power sensor HP 8461A US37292783 09-Oct-13 (No. 217-31827) Power sensor HP 8481A MY41092317 09-Oct-13 (No. 217-01828) Oct-14 Reference 20 dB Attenuator SN: 5058 (20K) 03-Apr-14 (No. 217-01916) Apr-15 Type-N mismatch combination SN: 5047.2 / 08327 03-Apr-14 (No. 217-01921) Apr-15 noe Prope ES30Va SN: 3206 30-Dec-13 (No. ES3-3206_Dec13) DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 10.0 Secondary Standards Creck Date (in house) Schoolaied Chack RF generator R&S SMT-ce 100006 04-Aug-99 (in house theck Oct-13) in house check: Oct 18 US37390585 54206 Network Arksyzer HP 8753E 18-Cici-01 (in house cheek Cici-15) In house churs, Oct-14 Calibrated by: Michael Walner Lateratory Technician Krija Pokova: Approved by: Technical Manager Issued: August 25, 2014 The calibration perflicate shall not be reproduced except or full withour written approval of the laboratory

Certificate No: D835V2-4d063_Aug14

Page 1 of 6

Page: 249 of 294

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 9004 Zurich, Switzerland

S Service suisse d'étalonnage C Servizio evizzero di terratura **Swine Calibration Service**

Azorecomico No. 5CS 108

Accreciant to the Sweet Application Service (BAS).

The Swiss Accreditation Service is one of the signatures to the EA Mulfilabe of Agreement for the recognition of calibration cartific

Glossary:

TSL

tissue simulating liquid sensitivity in TSL / NORM x,y,z

ConvE NVA not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013.
- b) IEC 62209-1, "Procedure to measure the Specific Apsorption Rate (SAR) for hand-hald devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Weasurement Conditions: Further details are available from the Validation Report at the end. of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed. point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required
- SAR measured: SAR measured at the stated antenna input power,
- SAR normalized SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%

Certificate No: D835V2-4df60LAug14

Page 2 of 8

Page: 250 of 294

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.0 ± 6 %	0.94 mha/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.24 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.05 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.2 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.35 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.21 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d063_Aug14

Page 3 of 8

Page: 251 of 294

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedanca: transformed to fined point	51,7 12 - 3,6 jt1	
Return Loss	-28.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.1 II - 5.8 j.i
Raturn Loss	-23.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	Tuterns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard samingiti cooxel cable. This center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-diculted for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the

"Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length to still according to the Standars.

No excessive large must be applied to the dipole arms, because they might bend or the soldered connections near the leadpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 27, 2006

Certificate No: D835V2-4J065_Aug14

Page 4 of B

Page: 252 of 294

DASY5 Validation Report for Head TSL

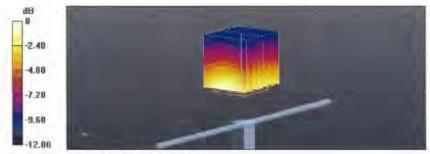
Date: 28.08.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d063

Communication System: UID 0 - CW; Frequency: 835 MHz. Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³ Phantom section; Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2011)


DASY52 Configuration:

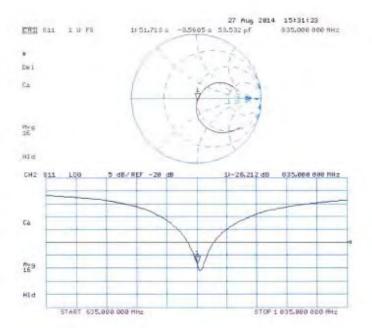
- Probe: ES3DV3 SN3205; ConvF(6.22, 6.22, 6.22); Calibrated: 30.12,2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.23 V/m; Power Drift = -0,02 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 2.78 W/kg

0 dB = 2.78 W/kg = 4.44 dBW/kg


Certificate No: D835V2-4c083_Aug14

Page 5 of 8

Page: 253 of 294

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-4d063_Aug14

Page 6 of 8

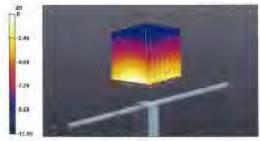
Page: 254 of 294

DASY5 Validation Report for Body TSL

Date: 27.08.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d063


Communication System: UID 0 – CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 1.01 S/m; ε_c = 55.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

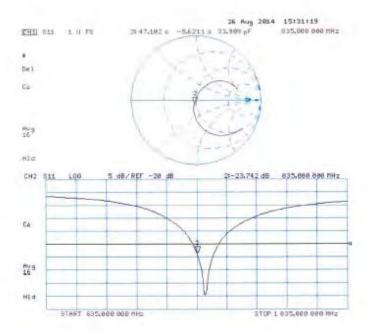
DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.09, 6.09, 6.09). Calibrated: 30.12.2013;
- Sensor-Surface; 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type; QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0;

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.65 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg


Certificate No: D835V2-4d863_Aug14

Page 7 of 8

Page: 255 of 294

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d063_Aug14

Page 8 of 8

Page: 256 of 294

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdinnst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swes Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multitaleral Agreement for the recognition of calibration partificates

SGS-TW (Auden)

Accreditation No.: SCS 108

Certificate No: D1750V2-1008_Aug14 CALIBRATION CERTIFICATE D1750V2 - SN: 1008 **DA CAL-05.v9** Californian procedum(s) Calibration procedure for dipole validation kits above 700 MHz August 26, 2014 Galteration mater This curbonion certificate documents the tracevolity to retional scandards, which results the physical units of measurements (Sit. The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All collarations neve bear conducted in the closed laboratory lacetty enformment, emperature (22 ± 3)°C and individual > 70% Calbrision Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Caleration 0507480704 Fower meter EPM-942A Rii-Oct-13 (No. 217-01827) Oct-14 Power sensor HF 8481A UB37292783 09-0d-13 (No. 217-01827) Power sensor HP 8481A MY41002317 09-Ott-13 (No. 217-01828) Dep 14 Fleierence 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Apr-15 Type-N mamatch combination BN: 5047-2 / 06327 03-Apr-14 (No. 217-01921) Apr 15 Reference Probe ES3CV3 SN: 3205 30-Dec-13 (No. ES3-3206_Dec13) Dec-14 DAE4 SW. 601 18-Aug-14 (No. DAE4-601_Aug14) Aug/15 10.4 Check Late (in house) Scheduled Check Securitary Standards HF generator FAS EMT-06 04-Aug-99 (in house check Oct-13) in house creck: Oct-18 Nelwork Analyzer HP 8753E U537390585 84208 18-Oct-01 (in house check Oct-13) in house check: Dct-14 Laboratory Technician Californian by: Kapa Postovici Tuchnical Manager Approved by: Issuert: August 28: 2014 This calibration partitioate shall not be reproduced except in full without written approval of the ispository

Certificase No: D1750V2-1008_Aug14

Page 1 of 8

Page: 257 of 294

Calibration Laboratory of

Schmid & Parmer Engineering AG Zaughanselvesse 43, 8004 Zurich, Switzerla

Schweizerischer Kalibrierdienut

Service suitage d'étalonnage C Servizio svizzero ili faratum

Accorditation No.: SCS 108

Swiss Calibration Service

Accordance by the Swing Accompliation Stervico (SAS):

The Sales Accreditation Service is one of the signalistics to the EA. Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Flate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865864, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end. of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required,
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of I W at the entenna
- SAR for nominal TSL parameters. The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a goverage probability of approximately 95%.

Combatte No: D1760V2-1008_Aug14

Page 2 m 8

Page: 258 of 294

Measurement Conditions

DASY system configuration, as lar as not given on page 1.

DASY Version	DASY5	V52.6.8
Extrapolation	Advanced Extrapolation	
Phentom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Space
Zoom Scan Resolution	dx. dy, dz – 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and palgulations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	55.0 C	40.1	1.57 m/m/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	392=5%	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		-

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm² (10 g) of Head TSL	roctionop	
SAR measured	250 mW input power	4,91 W/kg
SAR for nominal Heed TSL parameters	normalized to fW	19.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied:

	Tamperature	Permittivity	Conductivity
Nominal Body TSL parameters	22,0 °C	£3,A	1.49 introlm
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.0 ± 5 %	1.49 mbo/m ± 6%
Body TSL temperature change during test	< 0.5 "C		

SAR result with Body TSL

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.44 W/kg
SAR for nominal Body TSL parameters	nomelized to 1W	37.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ² (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.2 W/kp ± 16.5 % (k=2)

Certificate No: D1750V2-1068_Aug1/

Page 3 of 8

Page: 259 of 294

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.4 Ω + 0.3 jΩ	
Return Loss	-46.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$46.4 \Omega + 0.3 j\Omega$	
Return Loss	- 28.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.222 ns
	77211000000

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The entenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	February 11, 2009

Certificate No: D1750V2-1008_Aug14

Page 4 of 8

Page: 260 of 294

DASY5 Validation Report for Head TSL

Date: 28.08.2014

Test Laboratory: SPEAG, Zurich, Switzerland

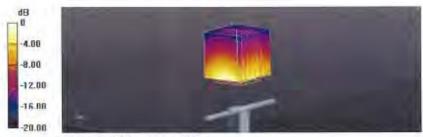
DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1008

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.37$ S/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

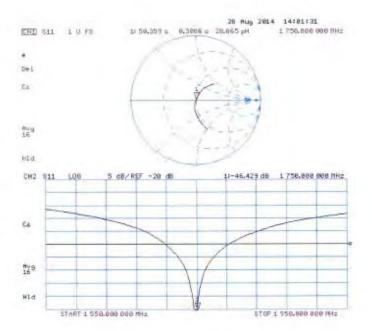
- Probe: ES3DV3 SN3205; ConyF(5.23, 5.23, 5.23); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.53 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.26 W/kg; SAR(10 g) = 4.91 W/kg

Maximum value of SAR (measured) = 11.6 W/kg

0 dB = 11.6 W/kg = 10.64 dBW/kg


Certificate No: D1750V2-1008_Aug14

Page 5 of 8

Page: 261 of 294

Impedance Measurement Plot for Head TSL

Certificate No: D1750V2-1008_Aug14

Page 6 of 8

Page: 262 of 294

DASY5 Validation Report for Body TSL

Date: 28.08.2014

Test Laboratory: SPEAG, Zurich, Switzerland

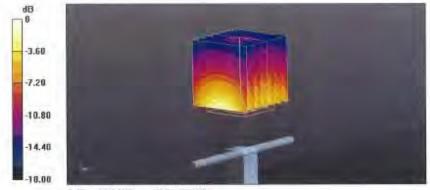
DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1008

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.49 \text{ S/m}$; $\epsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

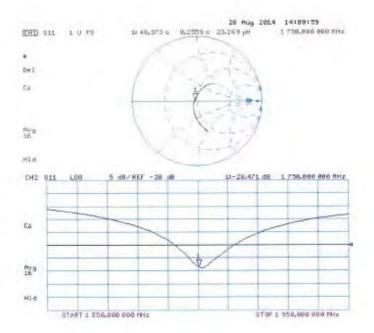
- Probe: ES3DV3 SN3205; ConvF(4.89, 4.89, 4.89); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18:08:2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93,44 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 16.3 W/kg SAR(1 e) = 9.44 W/ke: SAR(10 e) = 5.07 W/ke

SAR(1 g) = 9.44 W/kg; SAR(10 g) = 5.07 W/kg Maximum value of SAR (measured) = 11.9 W/kg

0 dB = 11.9 W/kg = 10.76 dBW/kg


Certificate No: D1750V2-1008_Aug14

Page 7 of 8

Page: 263 of 294

Impedance Measurement Plot for Body TSL

Certificate No: D1750V2-1008_Aug14

Page 8 of 8

Page: 264 of 294

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SGS-TW (Auden)

Accreditation No.: SCS 0108

Certificate No: D1900V2-5d027_Apr15

CALIBRATION CERTIFICATE D1900V2 - SN:5d027 Object QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration date: April 29, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Oct-15 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) SN: 5058 (20k) 01-Apr-15 (No. 217-02131) Mar-16 Reference 20 dB Attenuator Type-N mismatch combination SN: 5047.2 / 06327 01-Apr-15 (No. 217-02134) Mar-16 Reference Probe ES3DV3 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-15 Name Function Calibrated by: Claudio Leubler Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: April 29, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D1900V2-5d027_Apr15

Page 1 of 8

Page: 265 of 294

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst.
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d027_Apr15

Page 2 of 8

Page: 266 of 294

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

ng parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.78 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d027_Apr15

Page: 267 of 294

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.2 Ω + 2.5 jΩ
Return Loss	- 32.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$46.5 \Omega + 2.5 j\Omega$
Return Loss	- 27.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 17, 2002

Certificate No: D1900V2-5d027_Apr15

Page 4 of 8

Page: 268 of 294

DASY5 Validation Report for Head TSL

Date: 29.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d027

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ S/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

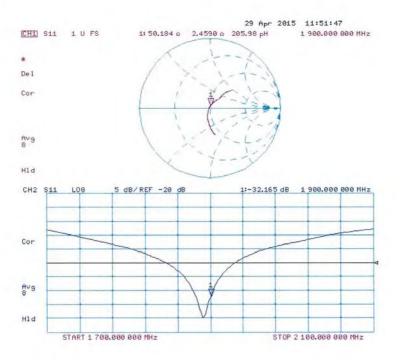
DASY52 Configuration:

- Probe; ES3DV3 SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.71 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.3 W/kg

Maximum value of SAR (measured) = 12.3 W/kg


0 dB = 12.3 W/kg = 10.90 dBW/kg

-15.00

Page: 269 of 294

Impedance Measurement Plot for Head TSL

Page: 270 of 294

DASY5 Validation Report for Body TSL

Date: 29.04.2015

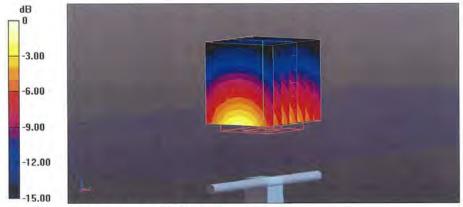
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d027

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.5 \text{ S/m}$; $\varepsilon_r = 52.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

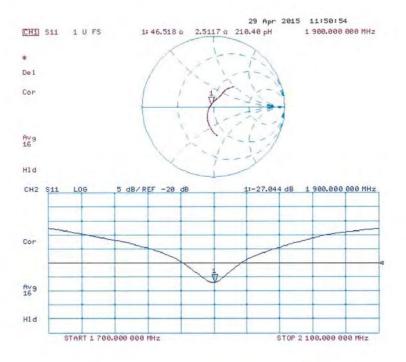
DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.63 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.78 W/kg; SAR(10 g) = 5.2 W/kg Maximum value of SAR (measured) = 12.4 W/kg

0 dB = 12.4 W/kg = 10.93 dBW/kg


Certificate No: D1900V2-5d027_Apr15

Page 7 of 8

Page: 271 of 294

Impedance Measurement Plot for Body TSL

Page: 272 of 294

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CALIBRATION C	ERTIFICATE		
object .	D2450V2 - SN: 7	27	
Calibration procedure(s)	QA CAL-05.v9 Calibration proces	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	April 22, 2015		
		y facility: environment temperature (22 ± 3)°(C and humidity < 70%.
alibration Equipment used (M&	TE critical for calibration)		
rimary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
rimary Standards ower meter EPM-442A	ID # GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
rimary Standards ower meter EPM-442A ower sensor HP 8481A	ID # GB37480704 US37292783	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Oct-15 Oct-15
rimary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	ID # GB37480704 US37292783 MY41092317	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	Oct-15 Oct-15 Oct-15
rrimary Standards lower meter EPM-442A lower sensor HP 8481A lower sensor HP 8481A leference 20 dB Attenuator	ID # GB37480704 US37292783 MY41092317 SN; 5058 (20k)	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131)	Oct-15 Oct-15 Oct-15 Mar-16
rimary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A leference 20 dB Attenuator ype-N mismatch combination	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16
rrimary Standards rower meter EPM-442A rower sensor HP 8481A rower sensor HP 8481A reference 20 dB Attenuator rype-N mismatch combination reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN; 5058 (20k)	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131)	Oct-15 Oct-15 Oct-15 Mar-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15
rrimary Standards rower meter EPM-442A rower sensor HP 8481A rower sensor HP 8481A reference 20 dB Attenuator ype-N mismatch combination reference Probe ES3DV3 reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-801_Aug14) Check Date (in house)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15
Primary Standards Prower meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Proper Standards Reference Probe ES3DV3 Reference	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-801_Aug14) Check Date (in house)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
rimary Standards rower meter EPM-442A rower sensor HP 8481A rower sensor HP 8481A reference 20 dB Attenuator rype-N mismatch combination reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-801_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN; 5058 (20k) SN; 5047.2 / 06327 SN; 3205 SN; 601 ID # 100005 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. E53-3205_Dec14) 18-Aug-14 (No. DAE4-801_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Pelerence 20 dB Attenuator Fupe-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards AF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	ID # GB37480704 US37292783 MY41092317 SN; 5058 (20k) SN; 5047.2 / 06327 SN; 3205 SN; 601 ID # 100005 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-801_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name Michael Weber	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 07-Apr-15 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function Laboratory Technician	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-10 In house check: Oct-10 Signature

Certificate No: D2450V2-727_Apr15

Page 1 of 8

Page: 273 of 294

Calibration Laboratory of Schmid & Partner

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The Impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-727_Apr15

Page 2 of 8

Page: 274 of 294

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.6 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Rody TSI parameters	normalized to 1W	24.0 W/kg + 16.5 % (k=2)

Certificate No: D2450V2-727_Apr15

Page: 275 of 294

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.2 Ω + 1.3 jΩ
Return Loss	- 24.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.8 Ω + 3.3 jΩ
Return Loss	- 28.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.149 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 09, 2003

Certificate No: D2450V2-727_Apr15

Page 4 of 8

Page: 276 of 294

DASY5 Validation Report for Head TSL

Date: 22.04.2015

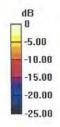
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 727

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.82$ S/m; $\epsilon_r = 37.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.54, 4.54, 4.54); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.5 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.1 W/kg Maximum value of SAR (measured) = 17.5 W/kg

0 dB = 17.5 W/kg = 12.43 dBW/kg

Certificate No: D2450V2-727_Apr15

Page 5 of 8

Page: 277 of 294

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-727_Apr15

Page 6 of 8

Page: 278 of 294

DASY5 Validation Report for Body TSL

Date: 22.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 727

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\varepsilon_r = 50.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

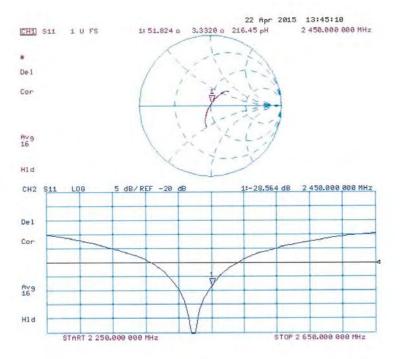
Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.54 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.2 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.1 W/kgMaximum value of SAR (measured) = 17.4 W/kg



0 dB = 17.4 W/kg = 12.41 dBW/kg

Page: 279 of 294

Impedance Measurement Plot for Body TSL

Page: 280 of 294

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierflanst Service suisse d'étalonnage C Servizio svizzero di tarature S Swiss Calibration Service

Appreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signaturies to the EA Multilateral Agreement for the recognition of celibration certificates

CALIBRATION (CERTIFICATE		
Object	D5GHzV2 - SNt1	023	
Calbration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits bet	ween 3-6 GHz
Calibration date:	January 29, 2015	5	
The measurements and the uno	ertaintiva with confidence p	ional Mandards, which realize the physical un rebubility are given on the following pages ar ry facility environment temperature (22 ± 3)*	ed are part of the certificate.
Calibration Equipment used (M&	TE official for californium)		
		Cali Direa (Carrillesia No.)	Separation Contractor
Calibration Equipment used (M& Pennary Standercle Power mater EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Polerence 20 dB Attanuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ID A QBS7480704 USS7292783 MY41092317 BN: 5058 (20M) SN: 5057 2 / 06327 SN: 3503 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01916) 03-Apr-14 (No. 217-01921) 30-Oct-14 (No. EX3-3503_Osc14) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Celbranon Oct-15 Oct-15 Oct-10 Apr-15 Apr-15 Doc-15 Aug-15
Primary Standards Power restor EPM-442A Power sensor HP 9481A Power sensor HP 8481A Relevence 20 dB Attanuator Type-N mismatch combination Reference Probe EX30V4	ID A GBS7480704 USS7292783 MY41092317 SN: 5058 (204) SN: 5047 2 / 06327 SN: 3503	07-Dct-14 (No. 217-02020) 07-Dct-14 (No. 217-02020) 07-Dct-14 (No. 217-02021) 09-Apr-14 (No. 217-01916) 13-Apr-14 (No. 217-01921) 30-Dec-14 (No. EX3-3903_Dcc14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15
Primary Standerds Plower meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attanuator Type-N mismatch combination Reference Printe EX3DV4 DAE8	ID A GB37480704 UB37292783 MY41062317 SN: 5058 (204) SN: 5058 (204) SN: 5053 SN: 601	07-Dd-14 (No. 217-02026) 07-Dd-14 (No. 217-02020) 07-Dd-14 (No. 217-02021) 03-Apr-14 (No. 217-02021) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. EX3-3503 Dec14) 18-Aug-14 (No. DAE4-601 Aug/14)	Out-15 Out-15 Out-10 Apr-15 Apr-15 Dec-15 Aug-16
Primary Standerds Power neses EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attanuator Type-N mismatch combination Reference Prime EX3DV4 CIAE4 Securitary Standards RF generator R&S SMT 06	ID # GB37480794 US37292783 MY41092317 BH: 5058 (20M) SN: 8047 2 / 06327 SN: 3503 SN: 601 ID #	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01916) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. EX3-3903 Dec14) 18-Aug-14 (No. DAE4-601 Aug/14) Direct Linte (in house) 04-Aug-88 (in house sheek Out-13)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Schedued Check In house check: Oct-16

Certificate No: D5GHzV2-1023_Jan15

Page 1 of 15

Page: 281 of 294

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstresse 43, 8004 Zurich, Switzerland

S Senvinieriecem Kallorimoteriel
C Service suisse d'étationnage
Service evizaire d'étationnage
S Service evizaire d'étationnage
S Service evizaire d'étationne

Accomplisation No.: SCS 0108

According by the Swiss Accordington Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Mullitational Agreement for the recognition of calibration certificates

Glossary:

TSL fissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures" Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificant No: 05GHzV2-1023_Jun15

Page 2 of 15

Page: 282 of 294

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASYS	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5600 MHz ± 1 MHz 5600 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mhorm
Measured Head TSL parameters	[22,0±02).℃	36.3±0 %	4.56 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm² (1 g) of Head TSL	Condition	
SAR measured	100 mW Input power	7.78 W/kg
SAR for nominal Head TSL parameters	normanized to 1W	77.9 W/kg = 19.9 % (k=2)

SAR averaged over 10 cm ² (10 g) o/ Head TSL	condition	
SAR measured	100 mW Input power	2:32 W/kg
SAR for nominel Head TSL parameters	normalized to 1W	22.2 W/kg = 19.5 % (k=2)

Carilliane No. 05GHzV2-1023 Jan 15

Particular to

Page: 283 of 294

Head TSL parameters at 5300 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35,9	4.78 mhaam
Measured Head TSL parameters	(22.0 ± 0.2) °C	361 + 6 %	4.66 mho/m = 6 %
Head TSL temperature change during lest	<0.5 °C		-

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm² (1 g) of Heart TSL	Condition	
BAR measured	100 mW inpul power	6.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.7 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm² (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2,34 W/kg
SAH for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ± 19.5 % (ka/2)

Head TSL parameters at 5600 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	S5'0, C	35.5	5.07 mha/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6.%	4.97 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	-

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Hoad TSL parameters	WI of bestamon	81.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Page: 284 of 294

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Naminal Head TSL parameters	22.0 C	35.3	5.27 mholm
Measured Head TSL parameters	(22,0 ± 0.2) °C	35.4 = 6.16	5.16 mho/m = 6 %
Head TSL temperature change during test	€ 0.5/°C	_	_

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ⁵ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.82 W/kg
SAR for pominal Head TSL parameters	Wt at bestemon	78.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2-23 W/kg
SAR for nominal Flead TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (ks/2)

Certificate No. D9GHzV2-1023_Jan 15

Page 5 til 15

Page: 285 of 294

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49,0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.4 ± 6 %	5.42 mho/m ± 6 %
Body TSL temperature change during test	<0.5°C		-

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7,33 W/kg
SAR for nominal Body TSL parameters.	normalized to 1W	73.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm² (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2,04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg = 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were explied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	550.0	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	492=6%	5.55 mho/m = 6.%
Body TSL temperature change during test	< 0.5°C		1400

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm² (1 g) of Body TSL	Condition	
SAR massurija	100 mW input power	7.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ² (10 g) of Body TSL	gondition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Flody TSL parameters	normalized to 1W	20.8 W/kg = 19.5 % (k=2)

Certificate No: D5GHzV2-1023 Jan 15

Page 5 of 15

Page: 286 of 294

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Numinal Body TSL parameters	.82,0 °C	48.5	5.77 mholm
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.7 ± 6 %.	5.96 mho/m ± 6 %
Body TSL temperature change during test	≤05°C	-	

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW irgul power	2.77 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.9 W/kg = 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 inv input power	2.15 W/kg
SAFI for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0°C	48.2	6,00 mno/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.4 ± 6.%	6.25 mhg/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	-	

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.54 W/kg
SAFI for nominal Body TSL parameters	normalized to tW	75,5 W/kg ± 19,9 % (k=2)

SAR averaged over 10 cm2 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	30.7 W/kg = 19.5 % (k=2)

Page: 287 of 294

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to leed point	49.2 (2 - 8.5 (4)
Return Loss	-21.4 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to leed point	51.0 ii - 1.8 jii
Raum Loss	- 2H, 2 mB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to lead point	53.4 CI - 2.7 JCI
Fleturi Loss	-27.5 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	55.5 D + 1.0 JO
Return Loss	- 25.4 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.0 Q - 7.1 (A)
Relam Lass	- 22.8 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	51.5 D - 2.2 JU
Return Loss	-31.7 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	54.6 Ω - 1.5 μT
Return Loss	-26.8 dB

Dertrigate No. D5GHzV2-1023_Jan (4)

Page 6 of 15

Page: 288 of 294

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed paint	55.6.0 + 2.8 (1)	
Retirm Loss	+ 24.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 hs

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable: The center conductor of the feeding line is directly connected to the second arm of the dipole. The ansense is therefore short-circulated for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactimed by	SPEAG
Manufactured on	February 05, 2004

Certificate No. D9GHzV2-1023_Jan 15

Paye 9 of 15

Page: 289 of 294

DASY5 Validation Report for Head TSL

Date: 28,01-2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type; D5GHzV2; Serial: D5GHzV2 - SN:1023

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.56 \text{ S/m}$; $\epsilon_r = 36.3$; $\rho = 1000 \text{ kg/m}^3$. Medium parameters used: f = 5300 MHz; $\sigma = 4.66$ S/m; $\epsilon_r = 36.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5000 MHz; $\sigma = 1000$ kg/m³, Medium parameters used: $\sigma = 1000$ MHz; $\sigma = 10000$ MHz; $\sigma = 10000$ MHz; $\sigma = 10000$ MHz 1.97 S/m, $\epsilon_r = 35.7$; $\rho = 1000 \text{ kg/m}^3$. Medium parameters used: l = 5800 MHz; n = 5.18 S/m; $\epsilon_r = 35.4$; $\rho = 1000 \text{ kg/m}^3$. 1000 kg/m

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2011)

DASY52 Configuration.

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30,12,2014, ConvF(5.21, 5.21, 5.21); Calibrated: 30.12.2014, ConvF(4.92, 4.92, 4.92); Calibrated: 30.12.2014, ConvF(4.9, 4.9, 4.9).
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64:14 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan.

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.47 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 30.7 W/kg

SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.34 W/kg

Maximum value of SAR (measured) = 18.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan.

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.68 V/m, Power Drift = 0.08 dB

Peak 5AR (extrapolated) = 32.2 W/kg

SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.31 W/kg

Maximum value of SAR (measured) = 18.9 W/kg

Cintificate No: D5GHzV2-1023_Jan 15 Page 10 or 15

Page: 290 of 294

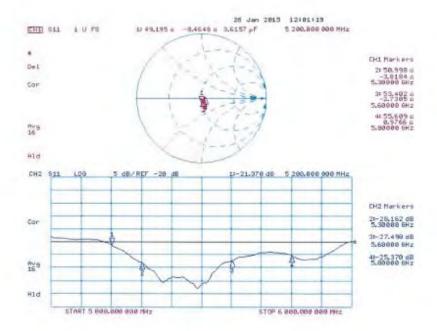
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.76 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 32.0 W/kg SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 18,4 W/kg



0 dB = 17.8 W/kg = 12.50 dBW/kg.

Page: 291 of 294

Impedance Measurement Plot for Head TSL

Page: 292 of 294

DASY5 Validation Report for Body TSL

Date: 29,01.2015

Test Laboratory SPEAG, Zorich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1023

Communication System: UID 0 - CW: Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: l = 5200 MHz; $\sigma = 5.42 \text{ S/m}$; $v_s = 49.4$; $\rho = 1000 \text{ kg/m}^3$. Medium parameters used: t = 5300 MHz; $\alpha = 5.55$ S/m; $\kappa = 49.2$; $\rho = 1000$ kg/m $^{\circ}$, Medium parameters used: t = 5600 MHz; $\alpha = 1000$ kg/m $^{\circ}$, $\alpha = 10000$ kg/m $^{\circ}$, $\alpha = 10000$ 5.96 S/m; $\epsilon_r = 48.7$; $\rho = 1000$ kg/m². Medium parameters used: f = 5800 MHz; $\sigma = 6.25$ S/m; $\epsilon_r = 48.4$; $\rho = 1000$ kg/m².

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY 52 Configuration:

- Probe: EX3DV4 5N3503; ConvF(4.95, 4.95, 4.95); Calibrated: 30.12.2014, ConvF(4.76, 4.78. 4.78); Calibrated: 30.12.2014, ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2014, ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014.
- Sensor-Surface: L4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601, Calibrated 18:08:2014
- Planton: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8 8(1222); SEMCAD X 14.6 (0(7331)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 57.97 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 28.6 W/kg

SAR(1 g) = 7.33 W/kg; SAR(10 g) = 2.04 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 57.58 V/m. Power Drift = -0.06 dB

Peak SAR (extrapolated) = 30.0 W/kg

SAR(I g) = 7.45 W/kg; SAR(10 g) = 2.07 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 56.88 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 34.4 W/kg

SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.15 W/kg

Maximum value of SAR (measured) = 19.3 W/kg

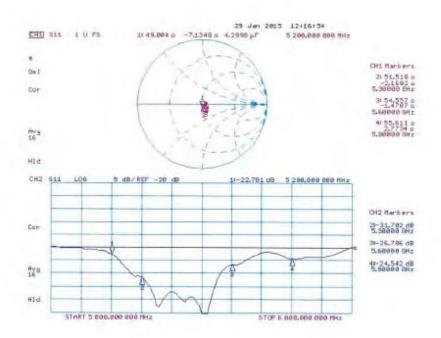
Certificate No. D6GHzV2-1023_Jan15 Page 18 of 15

Page: 293 of 294

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 55.10 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 35.2 W/kg

SAR(1 g) = 7.54 W/kg; SAR(10 g) = 2.07 W/kg Maximum value of SAR (measured) = 19.1 W/kg



0 dB = 17.3 W/kg = 12.38 dBW/kg

Page: 294 of 294

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1023_Jan15

Page 15 of 15

- End of 1st part of report -