

FCC RF Test Report

APPLICANT	: TAG Heuer, branch of LVMH Swiss		
	Manufactures SA		
EQUIPMENT	: Smart watch		
BRAND NAME	: TAG HEUER		
MODEL NAME	: SBG8A		
FCC ID	: 2AUP8SBG8A		
STANDARD	: FCC Part 15 Subpart C §15.247		
CLASSIFICATION	: (DSS) Spread Spectrum Transmitter		

The product was received on Sep. 19, 2019 and testing was completed on Sep. 27, 2019. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

Journes, Huang

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	VISION	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	6
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	Number of Channel Measurement	12
	3.2	Hopping Channel Separation Measurement	
	3.3	Dwell Time Measurement	21
	3.4	20dB and 99% Bandwidth Measurement	23
	3.5	Output Power Measurement	36
	3.6	Conducted Band Edges Measurement	38
	3.7	Conducted Spurious Emission Measurement	45
	3.8	Radiated Band Edges and Spurious Emission Measurement	55
	3.9	AC Conducted Emission Measurement	59
	3.10	Antenna Requirements	61
4	LIST	OF MEASURING EQUIPMENT	62
5	UNCE	ERTAINTY OF EVALUATION	63
AP	PENDI	IX A. AC CONDUCTED EMISSION TEST RESULT	
AP	PENDI	IX B. RADIATED SPURIOUS EMISSION	
AP	PENDI	IX C. DUTY CYCLE PLOTS	
AP	PENDI	IX D. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR991902A	Rev. 01	Initial issue of report	Oct. 16, 2019

SUMMARY OF TEST RESU	JLT
----------------------	-----

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	NA	Pass	-
3.4	-	99% Bandwidth	-	Pass	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	3.7 15.247(d) Conducted Spur Emission		≤ 20dBc	Pass	-
3.8	3.8 15.247(d) Radiated Band Edges Emission		15.209(a) & 15.247(d)	Pass	Under limit 12.47 dB at 46.490 MHz
3.9	3.9 15.207 AC Conducted Emission		15.207(a)	Pass	Under limit 10.08 dB at 0.484 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: 2AUP8SBG8A

1 General Description

1.1 Applicant

TAG Heuer, branch of LVMH Swiss Manufactures SA

6A rue Louis-Joseph Chevrolet, 2300 La Chaux-de-Fonds, Switzerland

1.2 Manufacturer

TAG Heuer, branch of LVMH Swiss Manufactures SA

6A rue Louis-Joseph Chevrolet, 2300 La Chaux-de-Fonds, Switzerland

1.3 Product Feature of Equipment Under Test

Product Feature					
Equipment	Smart watch				
Brand Name	TAG HEUER				
Model Name	SBG8A				
FCC ID	2AUP8SBG8A				
	WLAN 2.4GHz 802.11b/g/n HT20				
EUT supports Radios application	Bluetooth BR/EDR/LE				
	GNSS/NFC				
HW Version	LLWM810C1-3				
SW Version	LLDQ9001				
EUT Stage	Identical Prototype				

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 11.13 dBm (0.0130 W) Bluetooth EDR (2Mbps) : 11.25 dBm (0.0133 W) Bluetooth EDR (3Mbps) : 11.59 dBm (0.0144 W)			
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.912MHz Bluetooth EDR (2Mbps) : 1.164MHz Bluetooth EDR (3Mbps) : 1.149MHz			
Antenna Type / Gain	FPC Antenna type with gain -9.70 dBi			
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (Kunshan) Inc.				
	No. 1098, Pengxi North	n Road, Kunshan Econom	ic Development Zone		
Test Site Location	Jiangsu Province 215300 People's Republic of China				
Test one Location	TEL : +86-512-57900158				
	FAX : +86-512-57900958				
	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.		
Test Site No.	CO01-KS 03CH06-KS TH01-KS	CN1257	314309		

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

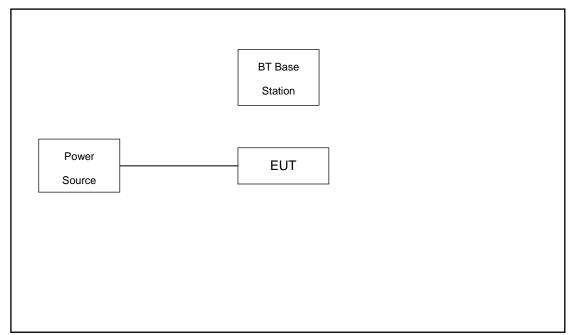
2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

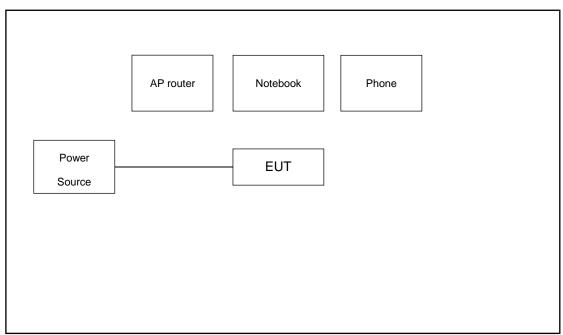
2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases						
	Data Rate / Modulation						
Т	est Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps			
		GFSK	π /4-DQPSK	8-DPSK			
		Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
	onducted	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
Ie	st Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
		B	luetooth EDR 3Mbps 8-DPS	K			
R	adiated		Mode 1: CH00_2402 MHz				
Те	st Cases	Mode 2: CH39_2441 MHz					
			Mode 3: CH78_2480 MHz				
		Mode 1 : Bluetooth Link + W	/LAN Link(2.4G) + USB Cable	1(Charging from Adapter) +			
	AC	Metal wristband + Cradle					
	onducted	Mode 2 : Bluetooth Link + WLAN Link(2.4G) + USB Cable 1(Charging from Adapter) +					
	mission	Rubber wristband +	Cradle				
Rer	Remark:						
1.	The worst	he worst case of conducted emission is mode 1; only the test data of it was reported.					
2.	For radiate	d test cases, the worst mode	data rate 3Mbps was reported	only, because this data rate			
	has the hig	hest RF output power at prelir	ninary tests, and no other sign	ificantly frequencies found in			
	conducted spurious emission.						


The following summary table is showing all test modes to demonstrate in compliance with the standard.

3. For Radiated Test Cases, The tests were performed with Adapter, Cradle and USB Cable 1.



2.3 Connection Diagram of Test System

For Radiation

For Conducted Emission

2.4	Support Unit	used in test	configuration	and system
-----	--------------	--------------	---------------	------------

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	BT Base Station	R&S	СВТ	N/A	N/A	Unshielded, 1.8m
2.	WLAN AP	D-Link	DIR-655	KA21R655B1	N/A	Unshielded, 1.8m
3.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
4.	Phone	мото	N/A	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 6.0 dB.

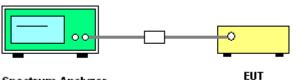
 $Offset(dB) = RF \ cable \ loss(dB)$. = 6.0 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

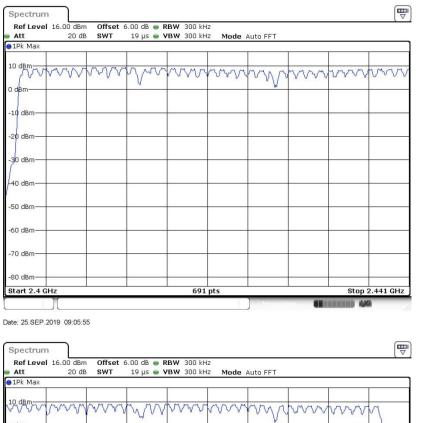

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

Test Mode :	3Mbps T		Temperature :	21~25 ℃
Test Engineer :	Aly Cao F		Relative Humidity :	51~54%
Number of Hopping (Channel)		Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79		20	> 15	Pass

Number of Hopping Channel Plot on Channel 00 - 78

Ref Level Att	20 dB	SWT	19 µs 👄	VBW 300 ki	Hz Mode	Auto FFT			
1Pk Max									
	mm	h	mm	www	ww	ma	www	vvvv	M
) dBm						ĥ			
-10 dBm									
-20 dBm				-					
-30 dBm									4
-40 dBm									
50 dBm						-			ł
-60 dBm									
-70 dBm									
-80 dBm	011								1005.011
Start 2.441	GHZ			693	L pts			stop 2	.4835 GH

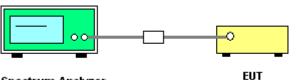
Date: 25.SEP.2019 09:06:49

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: 2AUP8SBG8A Page Number : 13 of 63 Report Issued Date : Oct. 16, 2019 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT Version 2.0

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

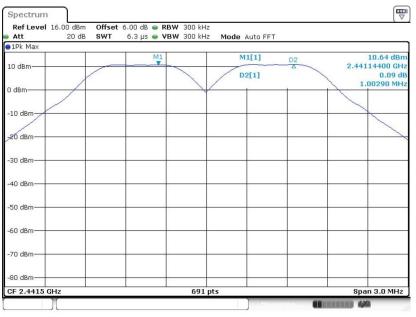
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

Spectrum Analyzer

3.2.5 Test Result of Hopping Channel Separation

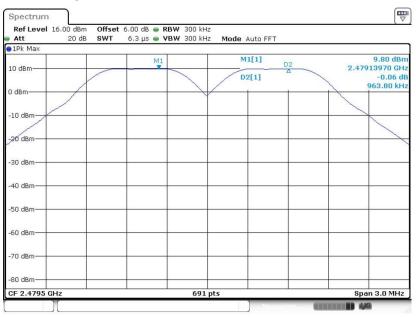
Test Mode :	1Mbps ·		Temperature :	Temperature :		21~25℃	
Test Engineer :	Aly Cao	Relativ		Relative Humidity : 51~54			
Channel	Frequency (MHz)	Frequency Separation (MHz)		(2/3 of 20dB BW) Limits (MHz)		Pass/Fail	
00	2402	(0.9986		0.6734	Pass	
39	2441		1.0029		0.6676	Pass	
78	2480	(0.9638		0.6676	Pass	


<1Mbps>

Channel Separation Plot on Channel 00 - 01

1Pk Max				
10 dBm	M1	M1[1] D2[1]	D2 A	10.78 dBn 2.40214400 GH 0.10 dl 998.60 kH
) dBm				
10 dBm				
30 dBm				
40 dBm				
50 dBm				
50 dBm			_	
70 dBm-				
80 dBm				

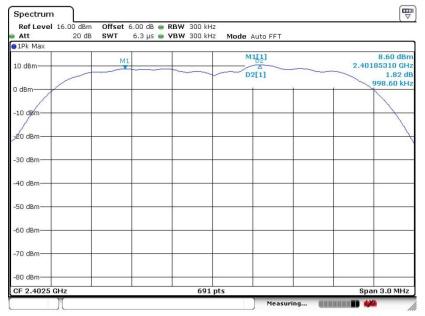
Date: 25.SEP.2019 06:01:45



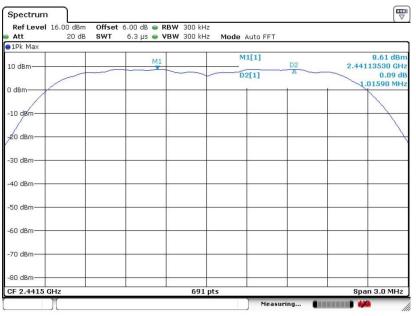
Channel Separation Plot on Channel 39 - 40

Date: 25.SEP.2019 06:13:59

Channel Separation Plot on Channel 77 - 78

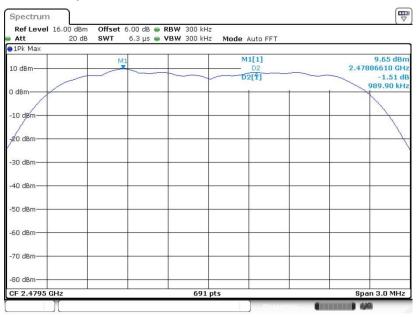

Date: 25.SEP.2019 06:34:06

Test Mode :	2Mbps	2Mbps			21~25℃	
Test Engineer :	Aly Cao		Relative Humi	dity :	51~54%	
Channel	Frequency (MHz)	Frequency Separation (MHz)		(2/3 of 20dB BW) Limits (MHz)		Pass/Fail
00	2402	0	.9986		0.8451	Pass
39	2441	1	.0159		0.8451	Pass
78	2480	2480 0		.9899		Pass


<2Mbps>

Channel Separation Plot on Channel 00 - 01

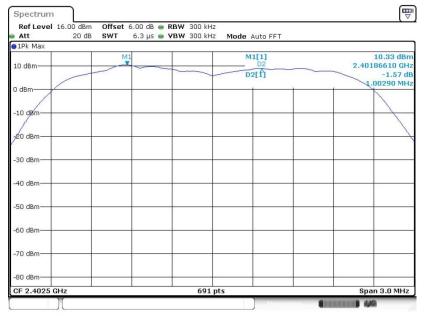
Date: 25.SEP.2019 08:24:48



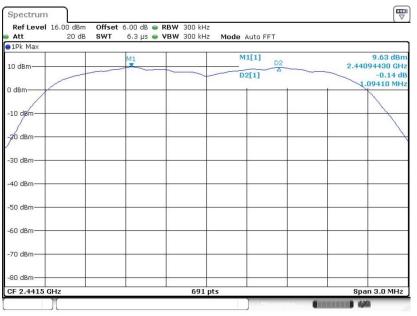
Channel Separation Plot on Channel 39 - 40

Date: 25.SEP.2019 08:34:36

Channel Separation Plot on Channel 77 - 78

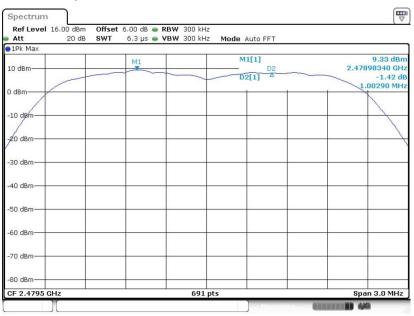

Date: 25.SEP.2019 08:42:01

Test Mode :	3Mbps		Temperature :		21~25 ℃	
Test Engineer :	Aly Cao		Relative Humi	dity :	51~54%	
Channel	Frequency (MHz)	Frequency Separation (MHz)		(2/3 of 20dB BW) Limits (MHz)		Pass/Fail
00	2402	1	.0029		0.8220	Pass
39	2441	1	.0941		0.8220	Pass
78	2480	1	.0029		0.8220	Pass


<3Mbps>

Channel Separation Plot on Channel 00 - 01

Date: 25.SEP.2019 08:49:11



Channel Separation Plot on Channel 39 - 40

Date: 25.SEP.2019 08:53:44

Channel Separation Plot on Channel 77 - 78

Date: 25.SEP.2019 09:01:07

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

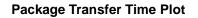
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

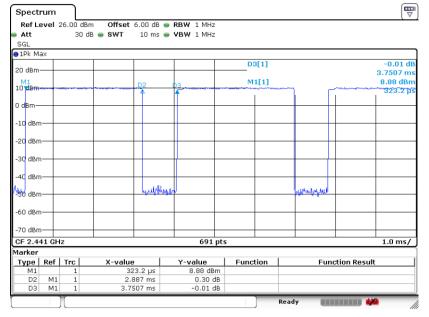

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.


3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Test Mode :	Test Mode : 3DH5			Tem	emperature : 21~25°C		
Test Engineer : Aly Cao			Relative Humidity : 51~		51~54%	51~54%	
Mode	Hoppin Chann Numb	el Occupancy	Transfe Time	Package Transfer Dwell Time Time (sec) (msec)		Limits (sec)	Pass/Fail
Normal	79	106.67	2.887	,	0.31	0.4	Pass
AFH	20	53.34	2.887	,	0.15	0.4	Pass

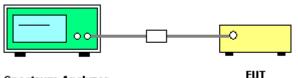
Remark:

- In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only


3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

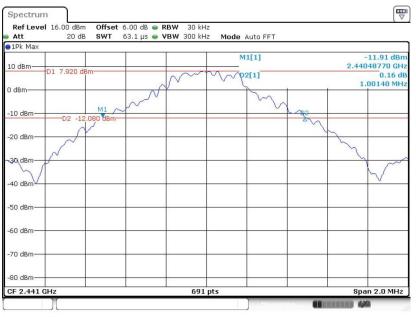
- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 99% bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = sample;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

Spectrum Analyzer

3.4.5 Test Result of 20dB Bandwidth

Test Mode :	1Mbps		Ter	nperature :	21~25 ℃
Test Engineer :	Aly Cao		Relative Humidity :		51~54%
Channel		Frequency (MHz))	20dB	Bandwidth (MHz)
00		2402			1.010
39		2441			1.001
78		2480			1.001


<1Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 25.SEP.2019 05:56:58



20 dB Bandwidth Plot on Channel 39

Date: 25.SEP.2019 06:05:36

20 dB Bandwidth Plot on Channel 78

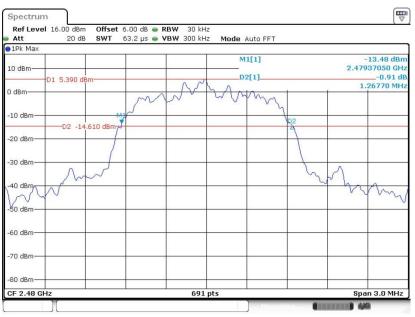
Date: 25.SEP.2019 06:30:51

Test Mode :	2Mbps	2Mbps		nperature :	21~25 ℃
Test Engineer :	Aly Cao		Rel	ative Humidity :	51~54%
Channel		Frequency (MHz))	20dB	Bandwidth (MHz)
00		2402			1.268
39		2441			1.268
78		2480			1.268

<2Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 25.SEP.2019 06:38:38



20 dB Bandwidth Plot on Channel 39

Date: 25.SEP.2019 08:29:03

20 dB Bandwidth Plot on Channel 78

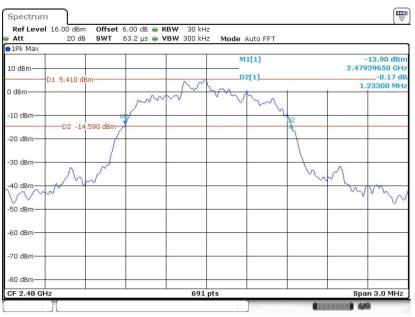
Date: 25.SEP.2019 08:38:55

Test Mode :	3Mbps	3Mbps		nperature :	21~25 ℃
Test Engineer :	Aly Cao		Rel	ative Humidity :	51~54%
Channel		Frequency (MHz))	20dB	Bandwidth (MHz)
00		2402			1.233
39		2441			1.233
78		2480			1.233

<3Mbps>

20 dB Bandwidth Plot on Channel 00

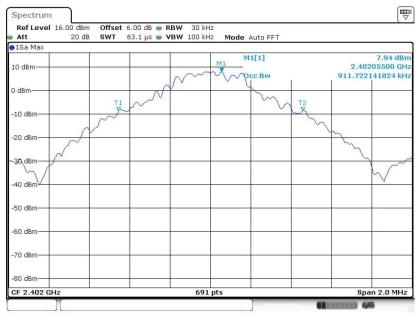
Date: 25.SEP.2019 08:45:12



20 dB Bandwidth Plot on Channel 39

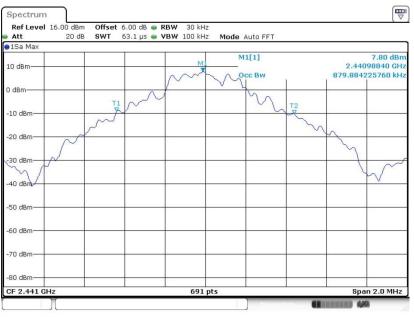
Date: 25.SEP.2019 08:52:11

20 dB Bandwidth Plot on Channel 78


Date: 25.SEP.2019 08:56:46

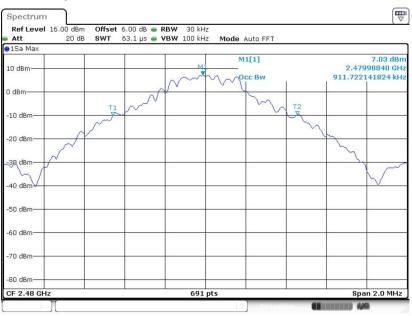
3.4.6 Test Result of 99% Occupied Bandwidth

Test Mode :	1Mbps		Temperature :	21~25℃
Test Engineer :	Aly Cao		Relative Humidity :	51~54%
Channel		Frequency (MHz)) 99% Occı	pied Bandwidth (MHz)
00		2402		0.912
39		2441		0.880
78		2480		0.912


<1Mbps>

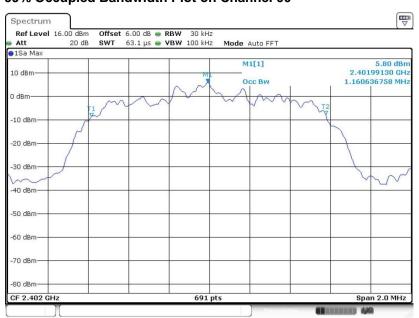
99% Occupied Bandwidth Plot on Channel 00

Date: 25.SEP.2019 06:02:31



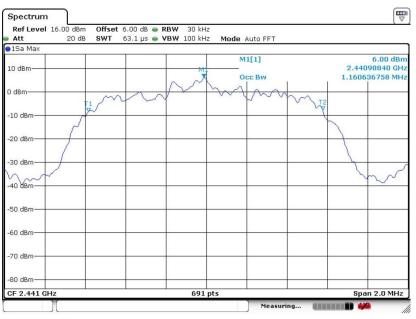
99% Occupied Bandwidth Plot on Channel 39

Date: 25.SEP.2019 06:16:57



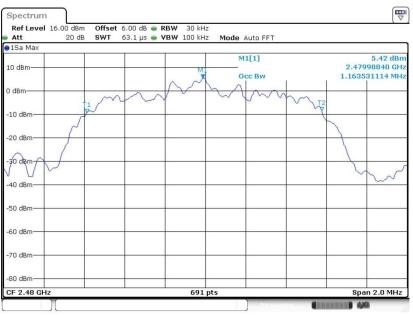
Date: 25.SEP.2019 06:35:38

Test Mode :	2Mbps	2Mbps		nperature :	21~25 ℃
Test Engineer :	Aly Cao		Rel	ative Humidity :	51~54%
Channel		Frequency (MHz))	99% Occu	pied Bandwidth (MHz)
00		2402			1.161
39		2441			1.161
78		2480			1.164


<2Mbps>

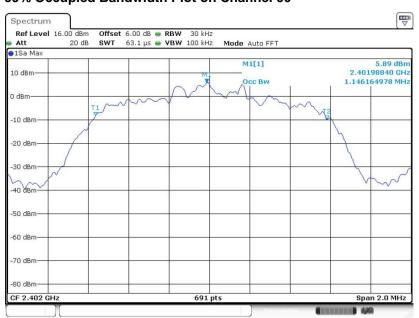
99% Occupied Bandwidth Plot on Channel 00

Date: 25.SEP.2019 08:26:27



99% Occupied Bandwidth Plot on Channel 39

Date: 25.SEP.2019 08:36:02



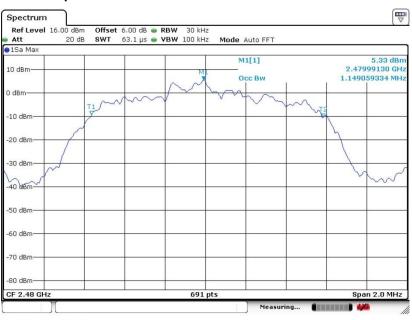
Date: 25.SEP.2019 08:42:45

Test Mode : 3Mbps		Те		nperature :	21~25 ℃
Test Engineer :	Aly Cao		Relative Humidity :		51~54%
Channel		Frequency (MHz)		99% Occupied Bandwidth (MHz)	
00		2402			1.146
39		2441		1.149	
78		2480		1.149	

<3Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 25.SEP.2019 08:49:59



99% Occupied Bandwidth Plot on Channel 39

Date: 25.SEP.2019 08:54:44

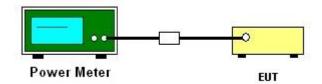
Date: 25.SEP.2019 08:59:32

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Test Mode :	1Mbps		Temperature	:	21~25 ℃	
Test Engineer :	Aly Cao		Relative Humidity :		51~54%	
	F	_ RF Power (dBm)				
Channel	Frequency	(GFSK	м	ax. Limits	Pass/Fail
	(MHz)		Mbps		(dBm)	Fd55/Fall
00	2402		11.07		20.97	Pass
39	2441		11.13		20.97	Pass
78	2480		10.61		20.97	Pass

Test Mode :	2Mbps	Temperature :	21~25 ℃
Test Engineer :	Aly Cao	Relative Humidity :	51~54%

	Frequency	RF Power (dBm)			
Channel	Frequency (MHz)	π /4-DQPSK	Max. Limits	Pass/Fail	
	(11172)	2 Mbps	(dBm)	Fass/Fall	
00	2402	11.13	20.97	Pass	
39	2441	11.25	20.97	Pass	
78	2480	10.69	20.97	Pass	

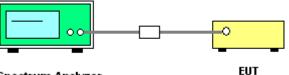
Test Mode :	3Mbps	Temperature :	21~25 ℃
Test Engineer :	Aly Cao	Relative Humidity :	51~54%

	Frequency	RF Power (dBm)			
Channel	Frequency (MHz)	8-DPSK	Max. Limits	Pass/Fail	
		3 Mbps	(dBm)	Pass/Fall	
00	2402	11.52	20.97	Pass	
39	2441	11.59	20.97	Pass	
78	2480	11.09	20.97	Pass	

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

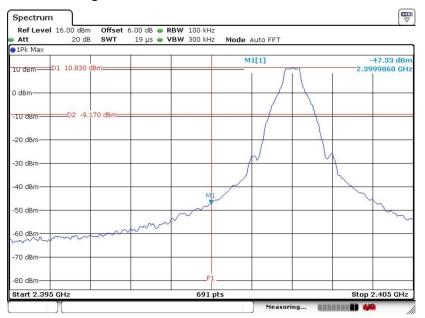
The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

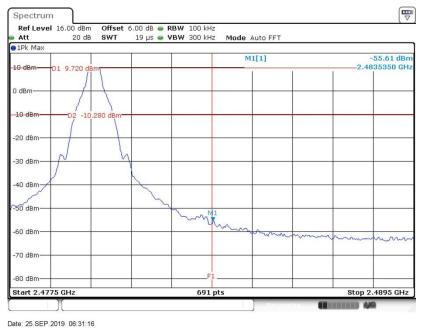
3.6.4 Test Setup

Spectrum Analyzer



3.6.5 Test Result of Conducted Band Edges

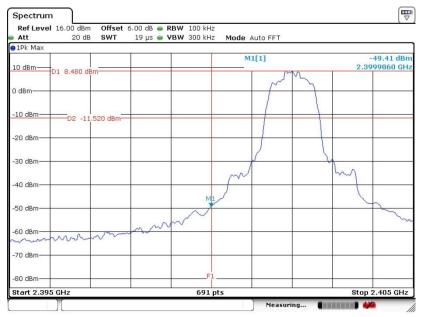
Test Mode :	1Mbps	Temperature :	21~25 ℃
Test Channel :	00 and 78	Relative Humidity :	51~54%
		Test Engineer :	Aly Cao


<1Mbps>

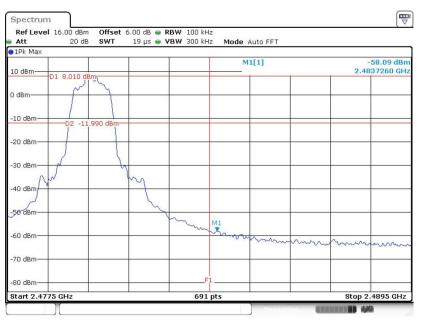
Low Band Edge Plot on Channel 00

Date: 25.SEP.2019 05:57:53

High Band Edge Plot on Channel 78


Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: 2AUP8SBG8A Page Number: 39 of 63Report Issued Date: Oct. 16, 2019Report Version: Rev. 01Report Template No.: BU5-FR15CBT Version 2.0

Test Mode :	2Mbps	Temperature :	21~25 ℃
Test Channel :	00 and 78	Relative Humidity :	51~54%
		Test Engineer :	Aly Cao

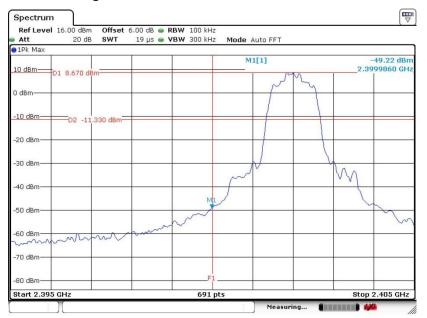

<2Mbps>

Low Band Edge Plot on Channel 00

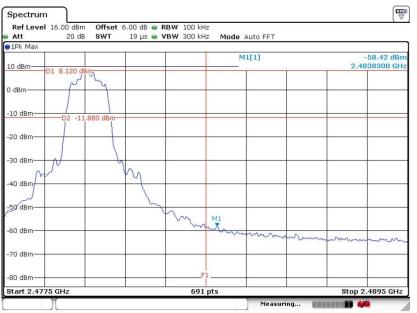
Date: 25.SEP.2019 06:39:09

High Band Edge Plot on Channel 78

Date: 25.SEP.2019 08:39:38


Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: 2AUP8SBG8A

Test Mode :	3Mbps	Temperature :	21~25 ℃
Test Channel :	00 and 78	Relative Humidity :	51~54%
		Test Engineer :	Aly Cao

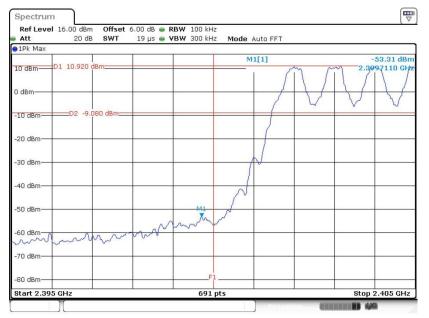

<3Mbps>

Low Band Edge Plot on Channel 00

Date: 25.SEP.2019 08:45:47

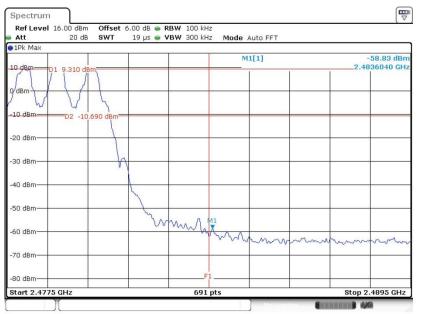
High Band Edge Plot on Channel 78

Date: 25.SEP.2019 08:57:46


Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: 2AUP8SBG8A

3.6.6 Test Result of Conducted Hopping Mode Band Edges

Test Mode :	1Mbps	Temperature :	21~25 ℃
Test Engineer :	Aly Cao	Relative Humidity :	51~54%


<1Mbps>

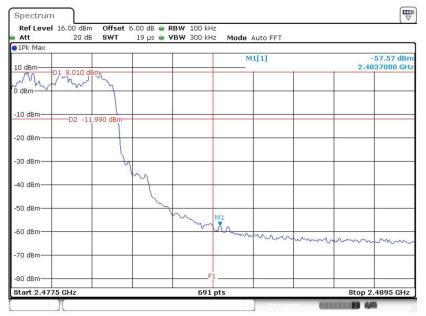
Hopping Mode Low Band Edge Plot

Date: 25.SEP.2019 05:58:59

Hopping Mode High Band Edge Plot


Date: 25.SEP.2019 06:31:52

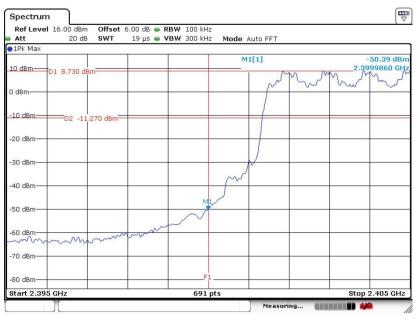
Test Mode :	2Mbps	Temperature :	21~25 ℃
Test Engineer :	Aly Cao	Relative Humidity :	51~54%


<2Mbps>

Hopping Mode Low Band Edge Plot

Date: 25.SEP.2019 06:39:37

Hopping Mode High Band Edge Plot


Date: 25.SEP.2019 08:39:58

Test Mode :	3Mbps	Temperature :	21~25℃
Test Engineer :	Aly Cao	Relative Humidity :	51~54%

<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 25.SEP.2019 08:48:04

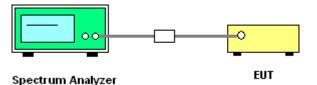
Hopping Mode High Band Edge Plot

Date: 25.SEP.2019 08:57:58

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

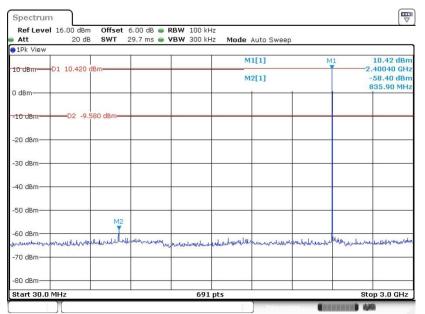

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup


Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: 2AUP8SBG8A

3.7.5 Test Result of Conducted Spurious Emission

Test Mode :	1Mbps	Temperature :	21~25 ℃
Test Channel :	00	Relative Humidity :	51~54%
		Test Engineer :	Aly Cao

<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 25.SEP.2019 06:03:07

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Ref Level 16.00 dBm Offs Att 20 dB SWT	et 6.00 dB RBW 100 kH 230 ms VBW 300 kH		
1Pk View	230 IIIS 🖶 VBW 300 KH	2 Mode Auto Sweep	
1 10 dBm D1 10.370 dBm		M1[1]	10.37 dBn 2.4160 GH:
) dBm		M2[1]	-49.47 dBn 4.8130 GH
asm			
10 dBm D2 -9.630 dBm			
20 dBm			
30 dBm			
40 dBm			
\$0 dBm			
60 dBm	muranmanturt	www.ormalulus.com	wood duran and more
70 dBm			
80 dBm			
Start 2.0 GHz	691	pts	Stop 25.0 GHz

Date: 25.SEP.2019 06:03:34

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: 2AUP8SBG8A

Ref Level 16.00 dBm Offs Att 20 dB SWT	et 6.00 dB 👄 RBW 100 kl 29.7 ms 👄 VBW 300 kl		e.	
1Pk View	29.7 IIIS - VBW 300 K	nz Moue Auto Sweep	U.	
10 dBm-D1 10.330 dBm-		M2[1]	M1	-61.76 dBm -2.10810 GHz
0 dBm		M1[1]		10.33 dBm 2.43910 GHz
-10 dBm-D2 -9.670 dBm				
-20 dBm-				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm		N	12	
and block of a subject of the subjec	more many property	and the hold were to an address to a second south some	henrichthere	how have been adored the
-70 dBm				
-80 dBm				
Start 30.0 MHz	691	pts		Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 25.SEP.2019 06:18:08

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att 20 1Pk View) dB SWT 23	0 ms 👄 VBW 300	kHz Mode Auto	Sweep	
M1 B dBm D1 9.35	i0 dBm		M2[1]		-52.35 dBr 4.8790 GH
) dBm			M1[1]	1 1	9.35 dBr 2.4490 GH
10 dBmD2	-10.650 dBm				
20 dBm					
30 dBm					
40 dBm					
50 dBm					
60 dBm	when when what	unnum	wanter want mound	have been a the the	whentherefly adver
70 dBm					

Date: 25.SEP.2019 06:23:19

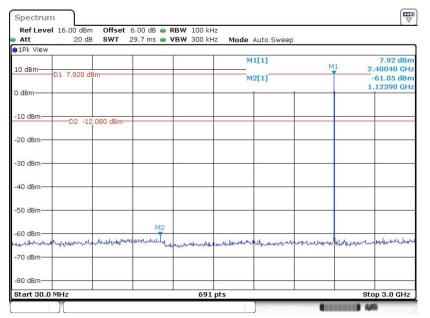
Ref Level 16 Att	20 dB SW	et 6.00 dB 👄	VBW 300 kH		Auto Sweep		
1Pk View			1	I			
	9.670 dBm			M	1[1]	M1	9.67 dBn 2.48210 GH
	Sid of dom			M	2[1]		-61.16 dBn
0 dBm							986.30 MH;
10 dBm	-D2 -10.330 dB	m					
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm		M2		. J. Jan Make	have and being	- And a harden	marshlanmoundurides
-70 dBm	We carbon the Association		and the second of the	Normal - C	and a strain of a star of	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
80 dBm							
Start 30.0 MH	z		691	pts			Stop 3.0 GHz

CSE Plot on Ch 78 between $30MHz \sim 3 GHz$

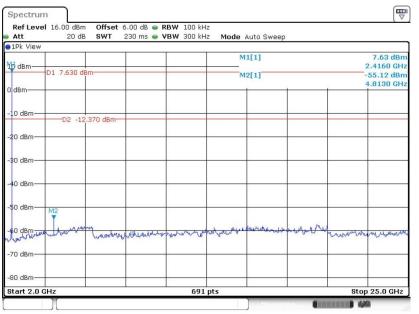
Date: 25.SEP.2019 06:36:39

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Att 20 1Pk View	dB SWT 23	10 ms 👄 VBW 1	300 kHz Mode	Auto Sweep			
M1			M	11[1]		9.33	
D1 9.55	D dBm		M	12[1]		-53.54	dB
dBm							
10_d8mD2	-10.670 dBm						
20 dBm	_						
30 dBm							
40 dBm							
0 dBm M2							
0 dBm	and hunder up	huberto	warman	- Matter Courter	wwwwww	the ale have been and	linne
70 dBm							


Date: 25.SEP.2019 06:37:18

Test Mode :	2Mbps	Temperature :	21~25 ℃
Test Channel :	00	Relative Humidity :	51~54%
		Test Engineer :	Aly Cao


<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 25.SEP.2019 08:27:26

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 25.SEP.2019 08:27:53

Ref Level 16.00 dBn Att 20 dB		dB RBW 100 ms VBW 300		an	
1Pk View			inter mode nato ovid	·P	
10 dBm-D1 8.410 d	Bm		M1[1]	M1	8.41 dBm 2.43910 GHz
D dBm			M2[1]		-61.30 dBm 2.88180 GHz
-10 dBm D2 -11	1.590 dBm				
-20 dBm					
-30 dBm					
-40 dBm		1.1			
50 dBm					
-60 dBm			8		M2
u. hourself a descended	an warmen	with my provision	the solution and the second second	pherone have been	municipaliticity
-70 dBm					
-80 dBm					
Start 30.0 MHz		69	1 pts		Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 25.SEP.2019 08:37:02

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Level 16 Att	20 dBm Off 20 dB SW	set 6.00 dB 👄 T 230 ms 👄	VBW 300 kH		uto Sweep			
1Pk View								
dBm-				M1	[1]			7.52 dBr 2.4490 GH
D1	7.520 dBm			M2	[1]			-53.84 dBr
0 dBm				1			1	4.8790 GH
-10 dBm	-D2 -12.480 d	300						
-20 dBm							-	
30 dBm								
40 dBm							-	
50 dBm M2	-							
60 dBm	herrithank	with a way which	mound	www.	March	- Martine Ma	Murymannew	Montheast
70 dBm								
80 dBm			-					
Start 2.0 GHz		I	691	pts			Sto	25.0 GHz

Date: 25.SEP.2019 08:37:29

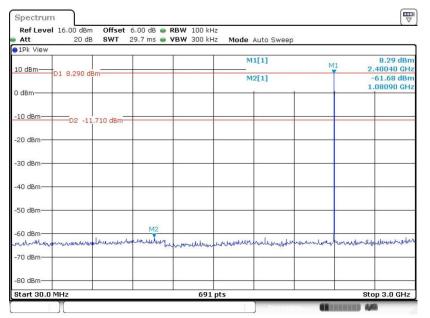
Ref Leve Att	el 16.00 dBn 20 dB			RBW 100 kH VBW 300 kH		Auto Sweep			
1Pk View	0.171.104.1407				in moue	Hato oncop	0		
10 dBm	-D1 7.760 d	Bro				1[1]			7.76 dBm .48210 GHz
0 dBm	D1 7.700 G				M	2[1]			-60.24 dBm 835.90 MHz
-10 dBm—									2
-20 dBm—	D2 -12	2.240 dBm-							
-30 dBm—									
40 dBm—				1 2 2					
50 dBm—									
-60 dBm		M2	a muchan and	and a contraction of the		and the second second	l tata barda sa	. It	Larra La Dialda
70 dBm—	n parti provinsi parti parti provinsi provinsi provinsi provinsi provinsi provinsi provinsi provinsi provinsi p	providence and		variation had be	handerout	production	manhippenautendel	and profession	
80 dBm—									
Start 30.0	D MHz			691	pts			St	op 3.0 GHz

CSE Plot on Ch 78 between $30MHz \sim 3 GHz$

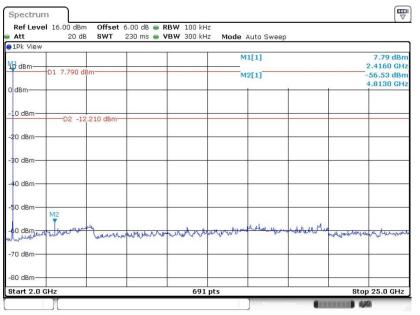
Date: 25.SEP.2019 08:43:17

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Ref Level Att	16.00 dBm 20 dB		_	RBW 100 kH VBW 300 kH		Auto Sweep			
1Pk View									
	01 7.330 di	Bm				11[1]			7.33 dBr 2.4830 GH -56.58 dBr
) dBm									9.7910 GH
10 dBm		.670 dBm-							
20 dBm									
30 dBm				-					
40 dBm									
50 dBm							M2		
CO dBm	n hand white	her with the second	orwalner	A when the second	mon	- all all all all all all all all all al	- wellow the	martonewas	when when
70 dBm									
80 dBm									
Start 2.0 GH	Ηz			691	pts			Stop	25.0 GHz


Date: 25.SEP.2019 08:43:45

Test Mode :	3Mbps	Temperature :	21~25 ℃
Test Channel :	00	Relative Humidity :	51~54%
		Test Engineer :	Aly Cao


<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 25.SEP.2019 08:50:31

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 25.SEP.2019 08:50:58

Ref Level 16.00 dBm Offset Att 20 dB SWT	6.00 dB RBW 100 kl 29.7 ms VBW 300 kl		
1Pk View			
0 dBm01 0 540 dBm		M1[1]	M1 8.54 dBm
D1 8.540 dBm		M2[1]	-61.02 dBn
dBm			827.30 MHz
10 dBmD2 -11,460 dBm-			
20 dBm			
30 dBm			
40 dBm			
50 dBm			
50 dBm M2	ughendere	- B. march & M. marth and marth	arreway and have readed and the second
70 dBm	and here had been a	and an an and and a construction	
30 dBm			

CSE Plot on Ch 39 between $30MHz \sim 3 GHz$

Date: 25.SEP.2019 08:55:17

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

	20 dB SWT 2	30 ms 👄 VBW 3	00 kHz Mode A	Auto Sweep		
1Pk View				1[1]		8.69 dBr
	590 dBm		IVI.	1[1]		2.4490 GH
DI 6.			M	2[1]		-56.04 dBr
) dBm						4.8790 GF
10 dBmD	2 -11.310 dBm					_
20 dBm						
30 dBm						
40 dBm						
50 dBm						
60 dBm	the rate towel we get a	whenter	When had and produced	M. Mullis Age way .	manung	whomen
70 dBm						-
80 dBm						
Start 2.0 GHz			691 pts		Str	op 25.0 GHz

Date: 25.SEP.2019 08:55:44

Ref Leve	el 16.00 dBm 20 dB		6.00 dB 👄 29.7 ms 👄			5	
1Pk View	(-	
10 dBm	-D1 7.380 d	200			M1[1]	M1	LITOLLO GIT
0 dBm	DI 7.380 u	5111			M2[1]	1 I	-61.72 dBm 887.50 MHz
-10 dBm—	D2 -12	.620 dBm-					
-20 dBm—							
-30 dBm—				-			
-40 dBm—							
-50 dBm—							
-60 dBm-	homemonite	Manushan		and market and	with market and the	retmontonically	permentation
-70 dBm—							
-80 dBm—	D MHz				1 pts		2

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 25.SEP.2019 09:04:14

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Att	20 dB SWT	230 ms 🥃 🕻	/BW 300 kH	z Mode	Auto Sweep	h.		
1Pk View				M	1[1]			7.25 dBr
D1 7	.250 dBm	_		M	2[1]			2.4830 GH
dBm		_						9.7910 GH
10 dBm	02 -12.750 dBm							
20 dBm								
30 dBm							-	
40 dBm								
50 dBm			-			M2		
ED dBm	warmy	and the Mar	methotal	and to the second	- www.w.	M.	alter production	human
70 dBm								
80 dBm								
Start 2.0 GHz			691	nts			Stor	25.0 GF

Date: 25.SEP.2019 09:04:43

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

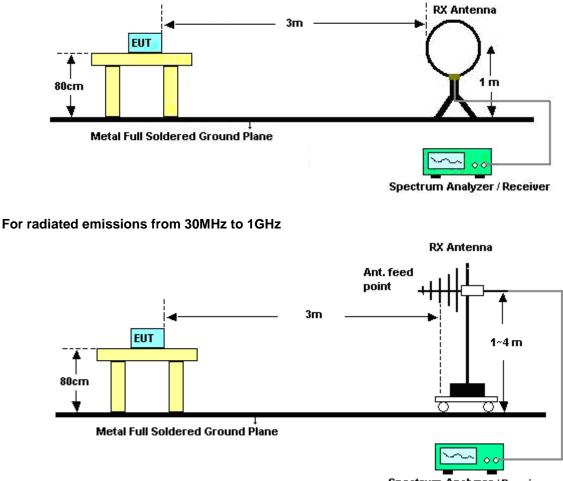
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

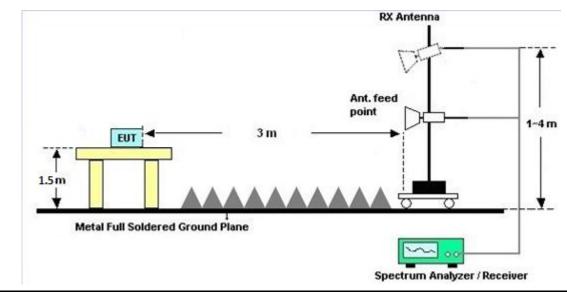
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup

For radiated emissions below 30MHz

Spectrum Analyzer / Receiver

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: 2AUP8SBG8A Page Number: 57 of 63Report Issued Date: Oct. 16, 2019Report Version: Rev. 01Report Template No.: BU5-FR15CBT Version 2.0

For radiated emissions above 1GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix C.

3.9 AC Conducted Emission Measurement

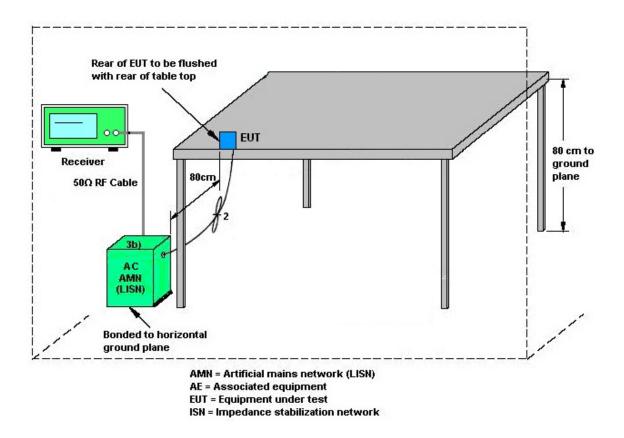
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Aug. 07, 2019	Sep. 18, 2019~ Sep. 25, 2019	Aug. 06, 2020	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 14, 2019	Sep. 18, 2019~ Sep. 25, 2019	Jan. 13, 2020	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 14, 2019	Sep. 18, 2019~ Sep. 25, 2019	Jan. 13, 2020	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY56400023	3Hz~8.5GHz;M ax 30dBm	Oct. 12, 2018	Sep. 25, 2019	Oct. 11, 2019	Radiation (03CH06-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY55150208	10Hz-44GHz	Apr. 16, 2019	Sep. 25, 2019	Apr. 15, 2020	Radiation (03CH06-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 19, 2018	Sep. 25, 2019	Oct. 18, 2019	Radiation (03CH06-KS)
Bilog Antenna	TeseQ	CBL6111D	44483	30MHz-1GHz	Dec. 28, 2018	Sep. 25, 2019	Dec. 27, 2019	Radiation (03CH06-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75957	1GHz~18GHz	Oct. 20, 2018	Sep. 25, 2019	Oct. 19, 2019	Radiation (03CH06-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 05, 2019	Sep. 25, 2019	Jan. 04, 2020	Radiation (03CH06-KS)
Amplifier	SONOMA	310N	187289	9KHz ~1GHZ	Aug. 06, 2019	Sep. 25, 2019	Aug. 05, 2020	Radiation (03CH06-KS)
Amplifier	Keysight	83017A	MY53270203	500MHz~26.5G Hz	Apr. 15, 2019	Sep. 25, 2019	Apr. 14, 2020	Radiation (03CH06-KS)
Amplifier	MITEQ	TTA1840-35-H G	2014749	18~40GHz	Jan. 14, 2019	Sep. 25, 2019	Jan. 13, 2020	Radiation (03CH06-KS)
AC Power Source	Chroma	61601	F104090004	N/A	NCR	Sep. 25, 2019	NCR	Radiation (03CH06-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Sep. 25, 2019	NCR	Radiation (03CH06-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Sep. 25, 2019	NCR	Radiation (03CH06-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 16, 2019	Sep. 27, 2019	Apr. 15, 2020	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 12, 2018	Sep. 27, 2019	Oct. 11, 2019	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Nov. 19, 2018	Sep. 27, 2019	Nov. 18, 2019	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP000008 11	AC 0V~300V, 45Hz~1000Hz	Oct. 12, 2018	Sep. 27, 2019	Oct. 11, 2019	Conduction (CO01-KS)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

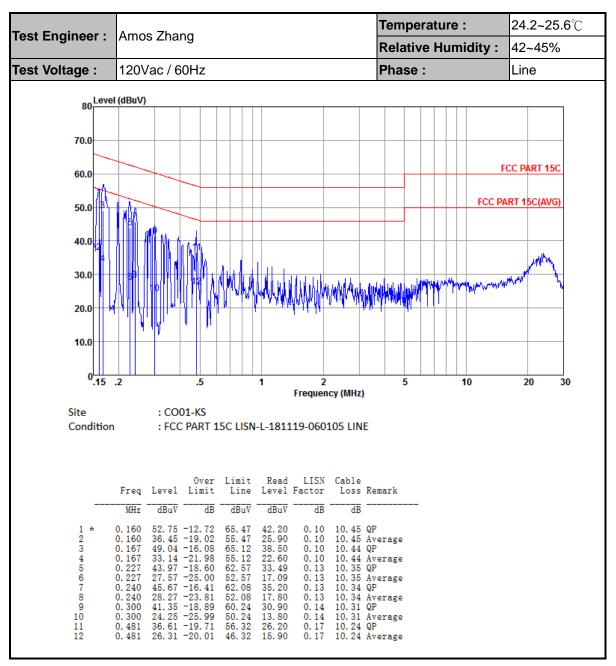
Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.9dB
of 95% (U = 2Uc(y))	2.908

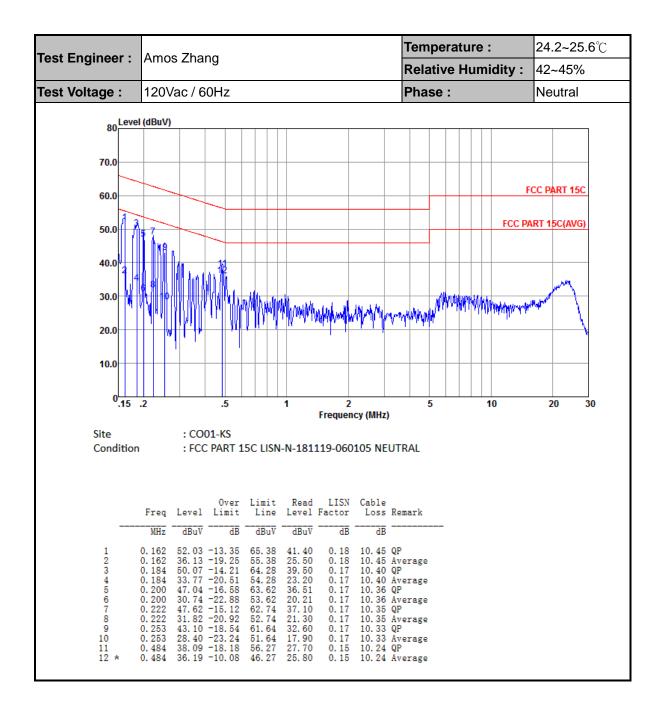
Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.006

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)


Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)


Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Appendix A. AC Conducted Emission Test Results

