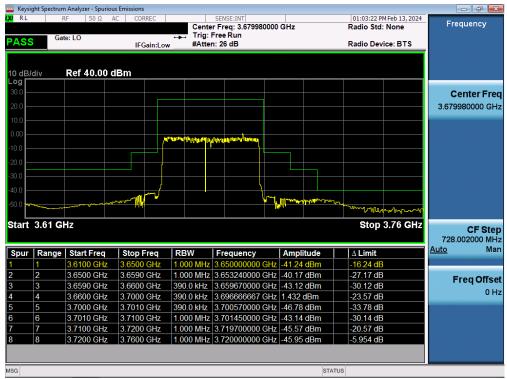


_	. .	n Analyzer - Spuriou								X
X/RL	F	KF 50Ω/	AC CORREC	Cente	SENSE:INT Freq: 3.690000	00 GHz		16 PM Feb 13, 2024 Std: None	Frequency	y
PASS	Gat	te: LO	IEC-last au		Free Run n: 26 dB		Padio	Device: BTS		
			IFGain:Low	/#Alle	n. 20 dB		Radio	Device. B13		
10 dB/ Log F	div	Ref 40.00 c	IBm							
30.0									Center F	Fred
20.0					_				3.690000000	
10.0										
0.00										
				<mark>n an an</mark>						
-10.0										
-20.0										
30.0										
40.0					_					
-50.0										
<u>L</u>	<u> </u>					THE REPORT	and the second s			
Start	3.655 C	GHz					Sto	o 3.745 GHz	CFS	Step
									728.002000	
Spur	Range	Start Freq	Stop Freq	RBW	Frequency	Amplitud	de 🛛 🗛 Lim	it	Auto	Man
1	1	3.6550 GHz	3.6600 GHz		3.656358333 G					
2	2	3.6600 GHz	3.6690 GHz		3.668985000 G				Freq Of	ffset
3	3	3.6690 GHz	3.6700 GHz		3.67000000 G					0 Hz
4	4	3.6700 GHz	3.7000 GHz		3.684400000 G					
5	5 6	3.7000 GHz 3.7010 GHz	3.7010 GHz 3.7100 GHz		3.70000000 G					
7	7	3.7010 GHZ	3.7200 GHz		3.714466667 G					
, 8	8	3.7200 GHz	3.7450 GHz		3.720750000 G					
ISG							STATUS			

Plot 7.213. Conducted Band Edge Plot (30MHz, QPSK, High Channel, ANT1)

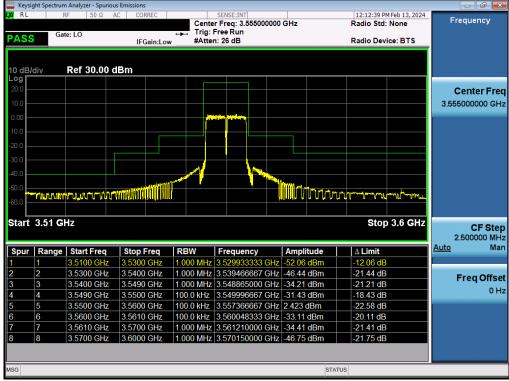
Plot 7.214. Conducted Band Edge Plot (40MHz, QPSK, Low Channel, ANT1)


FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 125 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 135 of 152
©2024 ELEMENT	-		V3.0 1/6/2022

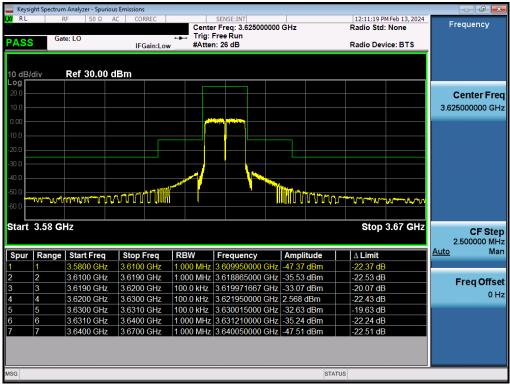
2024 ELEMENT

	m Analyzer - Spuriou RF 50 Ω 4	us Emissions		SENSE:INT			12:56:01 PM	1 Feb 13, 2024	
				r Freq: 3.62500	0000 GHz		Radio Std:	None	Frequency
PASS Ga	te: LO	IFGain:Low	-	Free Run n: 26 dB			Radio Devi	ce: BTS	
,									
10 dB/div	Ref 30.00 c	1Bm							
Log									
20.0							_		Center Fred
10.0							_		3.625000000 GHz
0.00			- the Data tanks a second	a an an an de Baldesard					
-10.0				a di nga nakatari mara					
				lí I					
-20.0									
-30.0					+				
-40.0			/	<u> </u>					
-50.0	~~~	ma - martine	<u> </u>		_ <u> </u>	ปโลการ	and a second	n	
-60.0							-	Վիվիվիսնու	
-00.0									
Start 3.55 G	Hz						Stop	3.7 GHz	05.00
									CF Step 728.002000 MH;
Spur Range	Start Freq	Stop Freq	RBW	Frequency	Ampl	itude	∆ Limit		<u>Auto</u> Mar
1 1	3.5500 GHz	3.5950 GHz	1.000 MHz	3.595000000	GHz -44.83	dBm	-19.83 dB		
2 2	3.5950 GHz	3.6040 GHz	1.000 MHz	3.603730000	GHz -40.50	dBm	-27.50 dB		Freq Offse
3 3	3.6040 GHz	3.6050 GHz	390.0 kHz	3.604830000	GHz -43.45	dBm	-30.45 dB		0 Hz
4 4	3.6050 GHz	3.6450 GHz		3.640882353			-23.03 dB		UH
5 5	3.6450 GHz	3.6460 GHz		3.645010000			-32.29 dB		
6 6	3.6460 GHz	3.6550 GHz		3.646000000			-29.56 dB		
7 7	3.6550 GHz	3.7000 GHz	1.000 MHz	3.666700000	GHz -43.38	dBm	-18.38 dB		
100						07.13	5.10		
ISG						STAT	103		

Plot 7.215. Conducted Band Edge Plot (40MHz, QPSK, Mid Channel, ANT1)

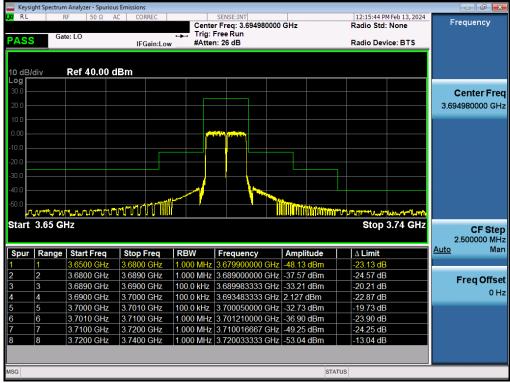


Plot 7.216. Conducted Band Edge Plot (40MHz, QPSK, High Channel, ANT1)


FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 136 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 136 01 152
©2024 ELEMENT	•		V3.0 1/6/2022

Antenna 2 Band Edge Measurements

Plot 7.217. Conducted Band Edge Plot (10MHz, QPSK, Low Channel, ANT2)

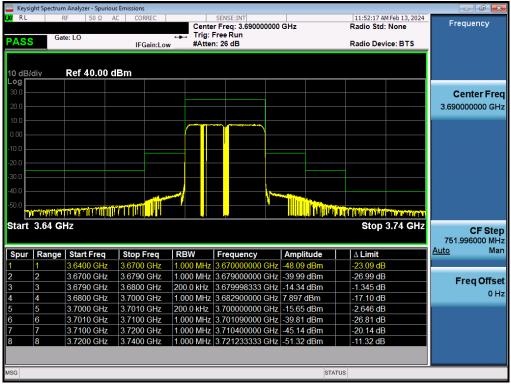

Plot 7.218. Conducted Band Edge Plot (10MHz, QPSK, Mid Channel, ANT2)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 427 of 452
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 137 of 152
©2024 ELEMENT			V3.0 1/6/2022

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

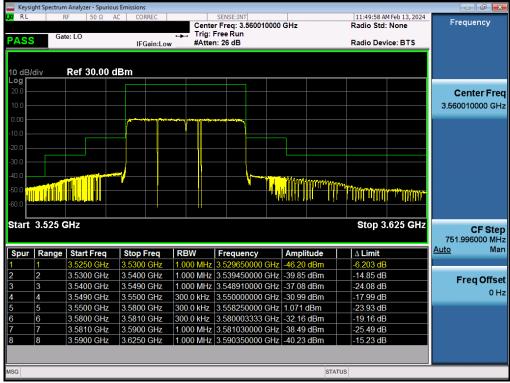
V3.0 1/6/202

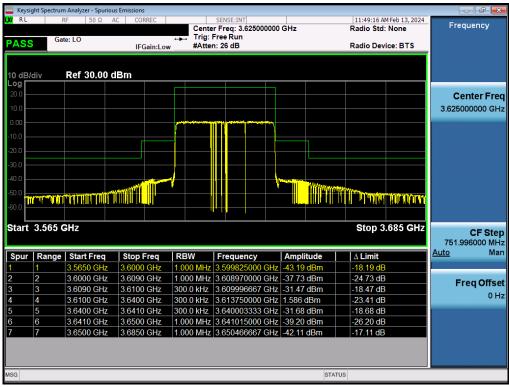
Plot 7.219. Conducted Band Edge Plot (10MHz, QPSK, High Channel, ANT2)


Plot 7.220. Conducted Band Edge Plot (20MHz, QPSK, Low Channel, ANT2)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 120 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 138 of 152
©2024 ELEMENT	•		V3.0 1/6/2022

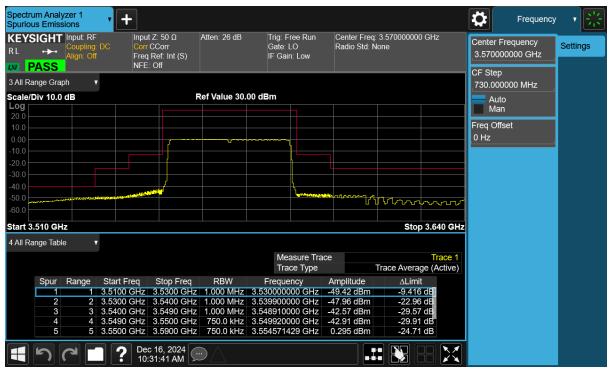
Ga	RF 50Ω A	s Emissions		SENSE:INT Freq: 3.625000000 Free Run	GHz	11:53:16 AM Feb 13, 2024 Radio Std: None	Frequency
PASS	le. LO	IFGain:Low	-	n: 26 dB		Radio Device: BTS	
10 dB/div	Ref 30.00 d	Bm					
20.0							Center Fred 3.625000000 GHz
-10.0							
-20.0							
-50.0 -60.0		r min				<mark> </mark>	r .
Start 3.575 (GHz					Stop 3.675 GHz	
otari 0.575 v							751.996000 MH
	Start Freq	Stop Freq	RBW	Frequency	Amplitude	∆ Limit	751.996000 MH
		Stop Freq 3.6050 GHz		Frequency 3.604850000 GHz		Δ Limit -21.07 dB	751.996000 MH
Spur Range	Start Freq		1.000 MHz		-46.07 dBm		751.996000 MH Auto Ma
Spur Range 1 1 2 2	Start Freq 3.5750 GHz	3.6050 GHz	1.000 MHz 1.000 MHz	3.604850000 GHz	-46.07 dBm -37.62 dBm	-21.07 dB	751.996000 MH Auto Mar Freq Offse
Spur Range 1 1 2 2 3 3	Start Freq 3.5750 GHz 3.6050 GHz	3.6050 GHz 3.6140 GHz	1.000 MHz 1.000 MHz 200.0 kHz	3.604850000 GHz 3.614000000 GHz	-46.07 dBm -37.62 dBm -14.21 dBm	-21.07 dB -24.62 dB	751.996000 MH Auto Mar Freq Offse
Spur Range 1 1 2 2 3 3 4 4	Start Freq 3.5750 GHz 3.6050 GHz 3.6140 GHz	3.6050 GHz 3.6140 GHz 3.6150 GHz	1.000 MHz 1.000 MHz 200.0 kHz 200.0 kHz	3.604850000 GHz 3.614000000 GHz 3.614998333 GHz	-46.07 dBm -37.62 dBm -14.21 dBm 1.558 dBm	-21.07 dB -24.62 dB -1.211 dB	751.996000 MH Auto Mar Freq Offse
Spur Range 1 1 2 2 3 3 4 4	Start Freq 3.5750 GHz 3.6050 GHz 3.6140 GHz 3.6150 GHz	3.6050 GHz 3.6140 GHz 3.6150 GHz 3.6350 GHz	1.000 MHz 1.000 MHz 200.0 kHz 200.0 kHz 200.0 kHz	3.604850000 GHz 3.614000000 GHz 3.614998333 GHz 3.631000000 GHz	-46.07 dBm -37.62 dBm -14.21 dBm 1.558 dBm -14.66 dBm	-21.07 dB -24.62 dB -1.211 dB -23.44 dB	751.996000 MH
Spur Range 1 1 2 2 3 3 4 4 5 5	Start Freq 3.5750 GHz 3.6050 GHz 3.6140 GHz 3.6150 GHz 3.6350 GHz	3.6050 GHz 3.6140 GHz 3.6150 GHz 3.6350 GHz 3.6360 GHz	1.000 MHz 1.000 MHz 200.0 kHz 200.0 kHz 200.0 kHz 1.000 MHz	3.604850000 GHz 3.614000000 GHz 3.614998333 GHz 3.631000000 GHz 3.635005000 GHz	-46.07 dBm -37.62 dBm -14.21 dBm 1.558 dBm -14.66 dBm -38.17 dBm	-21.07 dB -24.62 dB -1.211 dB -23.44 dB -1.660 dB	751.996000 MH Auto Mar Freq Offse
Spur Range 1 1 2 2 3 3 4 4 5 5 6 6	Start Freq 3.5750 GHz 3.6050 GHz 3.6140 GHz 3.6150 GHz 3.6350 GHz 3.6360 GHz	3.6050 GHz 3.6140 GHz 3.6150 GHz 3.6350 GHz 3.6360 GHz 3.6450 GHz	1.000 MHz 1.000 MHz 200.0 kHz 200.0 kHz 200.0 kHz 1.000 MHz	3.604850000 GHz 3.614000000 GHz 3.614998333 GHz 3.631000000 GHz 3.635005000 GHz 3.636000000 GHz	-46.07 dBm -37.62 dBm -14.21 dBm 1.558 dBm -14.66 dBm -38.17 dBm	-21.07 dB -24.62 dB -1.211 dB -23.44 dB -1.660 dB -25.17 dB	751.996000 MH Auto Ma


Plot 7.221. Conducted Band Edge Plot (20MHz, QPSK, Mid Channel, ANT2)


Plot 7.222. Conducted Band Edge Plot (20MHz, QPSK, High Channel, ANT2)

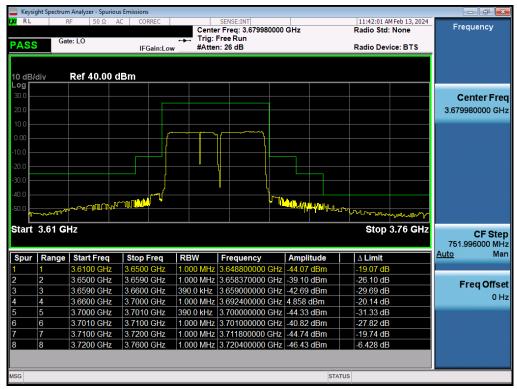
FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 139 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 159 01 152
©2024 ELEMENT	•		V3.0 1/6/2022


Plot 7.223. Conducted Band Edge Plot (30MHz, QPSK, Low Channel, ANT2)


Plot 7.224. Conducted Band Edge Plot (30MHz, QPSK, Mid Channel, ANT2)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 140 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 140 of 152
©2024 ELEMENT	•		V3.0 1/6/2022

Plot 7.225. Conducted Band Edge Plot (30MHz, QPSK, High Channel, ANT2)


Plot 7.226. Conducted Band Edge Plot (40MHz, QPSK, Low Channel, ANT2)

FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 141 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 141 of 152
©2024 ELEMENT	•		V3.0 1/6/2022

XI RL	R	a Analyzer - Spurio F 50 Ω re: LO		Trig:	SENSE:INT r Freq: 3.625000000 Free Run	GHz	11:43:36 AM Feb 13, 2024 Radio Std: None	Frequency
PASS	S Out		IFGain:Low	, #Atte	n: 26 dB		Radio Device: BTS	
								Ī
		B-6 00 00	- IP)					
10 dB/ Log F	(div	Ref 30.00	авт					
20.0								Center Free
10.0								3.625000000 GH
								3.625000000 GH
0.00				/ <u>/ / / / / / / / / / / / / / / / / / </u>				
-10.0								
-20.0								
-								
-30.0								
-40.0				/ 	<u> </u>			
-50.0 👝	<i>.</i>					. I (᠃ᡙᡙᠾᡁᡆᠳᡄᢛᡔᡇᠴᠬ᠆ᡙ᠊ᢧᠧᢇᡁ	
-60.0		1004 0						
-00.0								
Start	3.55 GI	17					Stop 3.7 GHz	
								CF Ster 751.996000 MH
Spur	Range	Start Freq	Stop Freq	RBW	Frequency	Amplitude	∆ Limit	Auto Ma
1	1	3.5500 GHz	3.5950 GHz	1.000 MHz	3.595000000 GHz	-43.88 dBm	-18.88 dB	
2	2	3.5950 GHz	3.6040 GHz	1.000 MHz	3.603820000 GHz	-39.41 dBm	-26.41 dB	Freq Offse
3	3	3.6040 GHz	3.6050 GHz	390.0 kHz	3.604980000 GHz	-42.31 dBm	-29.31 dB	
4	4	3.6050 GHz	3.6450 GHz	390.0 kHz	3.608333333 GHz	0.926 dBm	-24.07 dB	0 H
5	5	3.6450 GHz	3.6460 GHz	390.0 kHz	3.645100000 GHz	-43.31 dBm	-30.31 dB	
6	6	3.6460 GHz	3.6550 GHz	1.000 MHz	3.646360000 GHz	-40.10 dBm	-27.10 dB	
7	7	3.6550 GHz	3.7000 GHz	1.000 MHz	3.655000000 GHz	-43.00 dBm	-18.00 dB	
SG						STA		

Plot 7.227. Conducted Band Edge Plot (40MHz, QPSK, Mid Channel, ANT2)

Plot 7.228. Conducted Band Edge Plot (40MHz, QPSK, High Channel, ANT2)

FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 142 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 142 of 152
©2024 ELEMENT			V3.0 1/6/2022

7.9 Radiated Spurious Emissions Measurements

Test Overview

Radiated spurious emissions measurements are performed using the field strength conversion method described in ANSI C63.26-2015 with the EUT transmitting into a 50 ohm load. Measurements on signals operating below 1GHz are performed using hybrid (biconical/log) antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

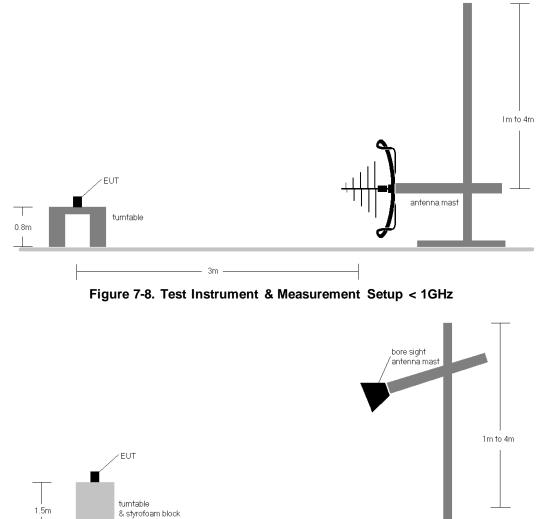
Test Procedures Used

ANSI C63.26-2015 - Section 5.5.4

Test Settings

- 1. RBW = 1MHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \ge 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points $\geq 2 \times \text{span} / \text{RBW}$
- 5. Detector = RMS
- 6. Trace mode = Max Hold (In cases where the level is within 2dB of the limit, the final measurement

is taken using triggering/gating and trace averaging.)


7. The trace was allowed to stabilize

FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	st Dates: EUT Type:		
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 143 of 152	
©2024 ELEMENT V3.0 1/6/202				

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

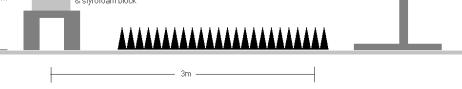
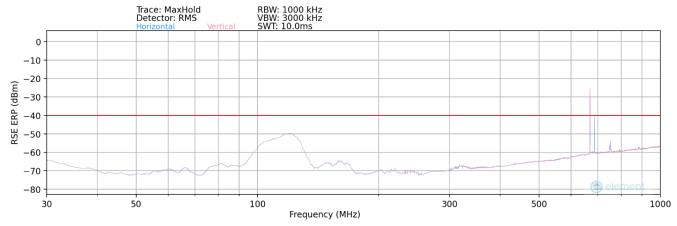


Figure 7-9. Test Instrument & Measurement Setup >1 GHz

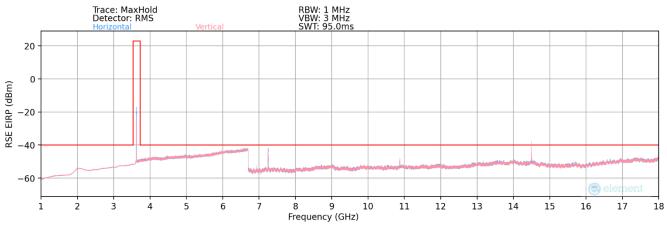
FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	Fest Dates: EUT Type:		
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 144 of 152	
©2024 ELEMENT V3.0 1/6/202				



Test Notes

- 1) Field strengths are calculated using the Measurement quantity conversions in ANSI C63.26-2015 Section 5.2.7:
 - a) $E(dB\mu V/m) =$ Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m) b) EIRP (dBm) = $E(dB\mu V/m) + 20logD - 104.8$; where D is the measurement distance in meters.
- 2) The worst case emissions are reported with the EUT modulations and channel bandwidth configurations shown in the tables below.
- 3) The spectrum is measured from 30MHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 4) Emissions below 18GHz were measured at a 3-meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 5) The "-" shown in the following RSE tables are used to denote a noise floor measurement.

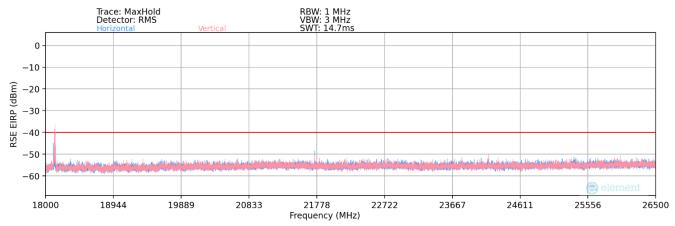
FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager			
Test Report S/N:	Test Dates: EUT Type:		Page 145 of 152		
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 145 01 152		
©2024 ELEMENT V3.0 1/6/2					

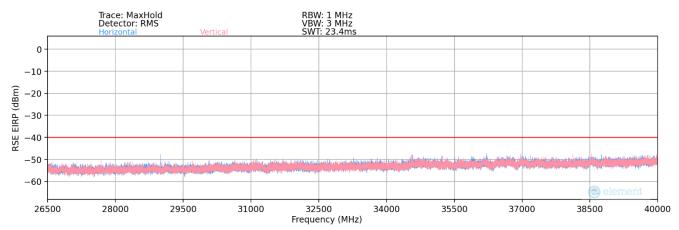


Plot 7.229. Radiated Spurious Plot 30MHz-1GHz

Bandwidth (MHz):	10
Frequency (MHz):	3625.0
Modulation Signal:	QPSK
RB Config (Size / Offset):	1/25
Detector / Trace Mode:	RMS / Max Hold
RBW / VBW:	1MHz/3MHz

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	ERP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
124.00	н	0	0	-81.98	20.54	45.56	-51.85	-40.00	-11.85
668.50	V	221	310	-78.61	28.52	56.91	-40.50	-40.00	-0.50
687.00	Н	0	0	-81.23	28.76	54.53	-42.87	-40.00	-2.87
752.00	Н	0	0	-86.61	29.16	49.55	-47.85	-40.00	-7.85


Table 7-9. Radiated Spurious Data 30MHz-1GHz - Mid Channel



FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:			
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 146 of 152		
©2024 ELEMENT V3.					

Plot 7.231. Radiated Spurious Plot 18-26.5GHz

Plot 7.232. Radiated Spurious Plot 26.5-40GHz

Bandwidth (MHz):	10
Frequency (MHz):	3555.0
Modulation Signal:	QPSK
Detector / Trace Mode:	RMS / Average
RBW / VBW:	1MHz/3MHz

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
7110.00	V	329	35	-70.57	4.66	41.09	-54.17	-40.00	-14.17
10665.00	V	310	31	-77.95	8.56	37.61	-57.65	-40.00	-17.65
14220.00	V	296	6	-63.37	11.12	54.75	-40.51	-40.00	-0.51
17775.00	V	-	-	-81.49	10.61	36.12	-59.13	-40.00	-19.13
21330.00	Н	-	12	-52.32	3.57	58.25	-46.55	-40.00	-6.55
24885.00	Н	-	-	-57.83	3.72	52.89	-51.91	-40.00	-11.91
28440.00	Н	-	-	-57.67	4.76	54.09	-50.71	-40.00	-10.71
31995.00	Н	-	-	-57.44	7.03	56.59	-48.21	-40.00	-8.21

Table 7-10. Radiated Spurious Data – Low Channel

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	Dates: EUT Type:			
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 147 of 152		
©2024 ELEMENT V3.0 1/6/20					

Bandwidth (MHz):	10
Frequency (MHz):	3625.0
Modulation Signal:	QPSK
Detector / Trace Mode:	RMS / Average
RBW / VBW:	1MHz/3MHz

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
7250.00	V	329	35	-62.89	5.09	49.20	-46.06	-40.00	-6.06
10875.00	V	204	326	-75.68	8.60	39.92	-55.34	-40.00	-15.34
14500.00	V	252	314	-62.97	10.60	54.63	-40.63	-40.00	-0.63
18125.00	V	150	282	-45.69	1.16	62.47	-42.33	-40.00	-2.33
21750.00	Н	150	262	-50.36	3.49	60.13	-44.67	-40.00	-4.67
25375.00	Н	-	-	-53.88	3.84	56.97	-47.83	-40.00	-7.83
29000.00	Н	150	57	-52.22	4.94	59.72	-45.08	-40.00	-5.08
32625.00	н	-	-	-54.07	6.28	59.21	-45.59	-40.00	-5.59

Table 7-11. Radiated Spurious Data – Mid Channel

Bandwidth (MHz):	10
Frequency (MHz):	3695.0
Modulation Signal:	QPSK
Detector / Trace Mode:	RMS / Average
RBW / VBW:	1MHz/3MHz

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
7390.00	V	308	283	-69.05	4.99	42.94	-52.31	-40.00	-12.31
11085.00	V	143	329	-75.45	8.50	40.05	-55.21	-40.00	-15.21
14780.00	V	197	31	-66.36	9.50	50.14	-45.12	-40.00	-5.12
18475.00	V	150	357	-45.78	1.30	62.52	-42.28	-40.00	-2.28
22170.00	н	150	258	-50.76	3.46	59.70	-45.10	-40.00	-5.10
25865.00	н	-	-	-55.31	4.09	55.78	-49.02	-40.00	-9.02
29560.00	н	150	60	-56.01	5.23	56.22	-48.58	-40.00	-8.58
33255.00	Н	-	-	-56.78	6.99	57.21	-47.59	-40.00	-7.59

Table 7-12. Radiated Spurious Data – High Channel

FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 148 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Fage 140 01 152
©2024 ELEMENT	•		V3.0 1/6/2022

7.10 Frequency Stability / Temperature Variation

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 96, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure Used

ANSI C63.26-2015 – Section 5.6

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes

None

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 140 of 150
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 149 of 152
©2024 ELEMENT	-		V3.0 1/6/2022

Band 48					
	Operating Fre	equency (Hz):	3,625,000,000		
	Ref. V	oltage (VAC):	120.00		
Voltage (%)	Power (VAC)	Temp (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)
		- 30	3,624,997,165	4,664	0.0001287
		- 20	3,624,990,156	-2,345	-0.0000647
		- 10	3,624,998,656	6,155	0.0001698
		0	3,625,000,007	7,506	0.0002071
100 %	120.00	+ 10	3,624,985,000	-7,501	-0.0002069
		+ 20 (Ref)	3,624,992,501	0	0.0000000
		+ 30	3,624,992,541	40	0.0000011
		+ 40	3,625,002,567	10,066	0.0002777
		+ 50	3,625,000,081	7,580	0.0002091
85 %	102.00	+ 20	3,625,001,562	9,061	0.0002500
115 %	138.00	+ 20	3,624,998,215	5,714	0.0001576

Table 7-13. Frequency Stability Data

FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 150 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 150 01 152
©2024 ELEMENT			V3.0 1/6/2022

Band 48 **Frequency Stability** 3.5 2.5 1.5 Deviation (ppm) 0.5 -0.5 -1.5 -2.5 -3.5 0 P 2 P 20 2 ŝ ŝ ŝ Temperature (°C)

Plot 7.233. Frequency Stability Chart

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 151 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 151 of 152
©2024 ELEMENT	•		V3.0 1/6/2022

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Skylark Wireless**, **LLC CBRS CPE FCC ID: 2AS22-FLCOCH2** complies with all of the Category B CBSD requirements of Part 96 of the FCC Rules for Band 48 operation only.

FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 452 of 452	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 152 of 152	
©2024 ELEMENT V3.0 1/6/20				