FCC & ISED TEST REPORT Product Name: True wireless headphones Trade Mark: PHILIPS or PHILIPS Model No./HVIN: TAT1209 Add. Model No.: TAT1209xx/yy (xx=AA-ZZ or blank denoted different color; yy=00-99 denoted different Report No.: 2308286618RFC-1 country destination) **Report Number:** 2308286618RFC-1 Test Standards: FCC 47 CFR Part 15 Subpart C RSS-247 Issue 2 RSS-Gen Issue 5 FCC ID: 2AR2STAT1209 IC: 24589-TAT1209 Test Result: PASS Date of Issue: January 10, 2024 ### Prepared for: MMD Hong Kong Holding Limited Units 1208-11,12th Floor,C-Bons International Center, 108 Wai Yip Street, Kwun Tong, Kowloon,Hong Kong Prepared by: Shenzhen UnionTrust Quality and Technology Co., Ltd. Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China TEL: +86-755-2823 0888 FAX: +86-755-2823 0886 | Prepared by: | Parid Chen | Reviewed by: | Ang h | |--------------|--------------------------|--------------|------------------| | | Devio Chen | | Henry Lu | | | Service Project Engineer | | Team Leader | | | UnionTrust DEA | | | | Approved by: | *Certified* | Date: | January 10, 2024 | | | Robben Chen | | · | Assistant Manager **Version** | Version No. | Date | Description | |-------------|------------------|-------------| | V1.0 | January 10, 2024 | Original | ## **CONTENTS** | 1. | GENE | RAL INFORMATION | 4 | |----------|------------|--|----| | | 1.1 | CLIENT INFORMATION | 4 | | | 1.2 | EUT INFORMATION | | | | | 1.2.1 GENERAL DESCRIPTION OF EUT | | | | | 1.2.2 DESCRIPTION OF ACCESSORIES | | | | 1.3 | PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD | { | | | 1.4 | OTHER INFORMATION | | | | 1.5 | DESCRIPTION OF SUPPORT UNITS | | | | 1.6 | TEST LOCATION | | | | 1.7 | TEST FACILITY | | | | 1.8 | DEVIATION FROM STANDARDS | (| | | 1.9 | ABNORMALITIES FROM STANDARD CONDITIONS | | | | 1.10 | OTHER INFORMATION REQUESTED BY THE CUSTOMER | | | | 1.11 | MEASUREMENT UNCERTAINTY | | | 2. | TEST | SUMMARY | | | 2.
3. | | PMENT LIST | | | 3.
4. | | CONFIGURATION | | | 4. | | | | | | 4.1 | ENVIRONMENTAL CONDITIONS FOR TESTING | 10 | | | | 4.1.1 NORMAL OR EXTREME TEST CONDITIONS | | | | | 4.1.2 RECORD OF NORMAL ENVIRONMENT AND TEST SAMPLE | | | | 4.2 | TEST CHANNELS | | | | 4.3 | EUT TEST STATUS | | | | 4.4 | PRE-SCAN | | | | | PRE-SCAN UNDER ALL PACKETS AT MIDDLE CHANNEL | | | | | 4.4.1 WORST-CASE DATA PACKETS | | | | | 4.4.2 TESTED CHANNEL DETAIL | | | | 4.5 | TEST SETUP | | | | | 4.5.1 FOR RADIATED EMISSIONS TEST SETUP | | | | | 4.5.2 FOR CONDUCTED EMISSIONS TEST SETUP | | | | 4.0 | 4.5.3 FOR CONDUCTED RF TEST SETUP | | | | 4.6 | SYSTEM TEST CONFIGURATION | | | | 4.7 | DUTY CYCLE | | | 5. | RADI | O TECHNICAL REQUIREMENTS SPECIFICATION | 17 | | | 5.1 | REFERENCE DOCUMENTS FOR TESTING | | | | 5.2 | ANTENNA REQUIREMENT | | | | 5.3 | CONDUCTED PEAK OUTPUT POWER | | | | 5.4 | 20 DB BANDWIDTH & OCCUPIED BANDWIDTH | | | | 5.5 | CARRIER FREQUENCIES SEPARATION | | | | 5.6 | NUMBER OF HOPPING CHANNEL | | | | 5.7 | DWELL TIME | | | | 5.8 | CONDUCTED OUT OF BAND EMISSION | 24 | | | 5.9 | RADIATED SPURIOUS EMISSIONS | 2 | | | 5.10 | BAND EDGE MEASUREMENTS (RADIATED) | | | c | A DDE | NDIX A RF TEST DATA | 2- | | о. | APPE | | | | | A.1 | 99% BANDWIDTH | 37 | | | A.2 | 20DB BANDWIDTH | | | | A.3 | CARRIER FREQUENCIES SEPARATION | | | | A.4 | CONDUCTED OUT OF BAND EMISSION | | | | A.5 | DWELL TIME | | | | A.6 | NUMBER OF HOPPING CHANNEL | 5 | | ΔРΙ | PENDI | X 1 PHOTOS OF TEST SETUP | 51 | | | | X 2 PHOTOS OF FUT CONSTRUCTIONAL DETAILS | 52 | ## 1. GENERAL INFORMATION 1.1 CLIENT INFORMATION | Applicant: | MMD Hong Kong Holding Limited | |--------------------------|---| | Address of Applicant: | Units 1208-11,12th Floor,C-Bons International Center, 108 Wai Yip Street, Kwun Tong, Kowloon,Hong Kong | | Manufacturer: | MMD Hong Kong Holding Limited | | Address of Manufacturer: | Units 1208-11,12th Floor,C-Bons International Center, 108 Wai Yip Street,
Kwun Tong, Kowloon,Hong Kong | ## 1.2 EUT INFORMATION 1.2.1 General Description of EUT | 1.2.1 Ceneral Bescription of Eo1 | | | | | |---|--|--|--|--| | Product Name: | True wireless headphones | | | | | Model No. /HVIN: | TAT1209 | | | | | Add. Model No.: TAT1209xx/yy (xx=AA-ZZ or blank denoted different color; yy=00-99 | | | | | | Trade Mark: | or PHILIPS | | | | | DUT Stage: | Production Unit | | | | | EUT Supports Function: (Provided by the customer) | 2.4 GHz ISM Band: Bluetooth 5.3(Only support BR+EDR) | | | | | Software Version: | Earphone: V01
Charging Box:V1.2 | | | | | Hardware Version: | Earphone: V04
Charging Box: V05 | | | | | Sample Received Date: | August 10, 2023 | | | | | Sample Tested Date: | August 28, 2023 to September 11, 2023 | | | | | Note: The additional model TAT1209xx/yy (xx=AA-ZZ or blank denoted different color; yy=00-99 denoted different country destination) is identical with the test model TAT1209 except the model number and color for marketing purpose. | | | | | 1.2.2 **Description of Accessories** | · | Cable | |--------------|----------------------------| | Description: | USB Type-C Plug Cable | | Cable Type: | Unshielded without ferrite | | Length: | 0.3 Meter | | Battery (Charging Box) | | | | | |--|---------|--|--|--| | Model No.: | 751235 | | | | | Battery Type: Lithium-ion Rechargeable Battery | | | | | | Rated Voltage: | 3.7 Vdc | | | | | Limited Charge Voltage: | 4.2 Vdc | | | | | Rated Capacity: | 300 mAh | | | | | Battery (Earbuds) | | | | |--|------------|--|--| | Model No.: | WEL 501012 | | | | Battery Type: Lithium-ion Rechargeable Battery | | | | | Rated Voltage: 3.7 Vdc | | | | | Limited Charge Voltage: | 4.2 Vdc | | | Rated Capacity: 40 mAh Report No.: 2308286618RFC-1 ## 1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD | Frequency Band: | 2400 MHz to 2483.5 MHz | | | |-------------------------------|---|--|--| | Frequency Range: | 2402 MHz to 2480 MHz | | | | Bluetooth Version: | Bluetooth BR + EDR | | | | Modulation Technique: | Frequency Hopping Spread Spectrum(FHSS) | | | | Type of Modulation: | GFSK, π/4DQPSK, 8DPSK | | | | Number of Channels: | 79 | | | | Channel Separation: | 1 MHz | | | | Hopping Channel Type: | Adaptive Frequency Hopping Systems | | | | Antenna Type: | FPCB Antenna | | | | Antenna Gain: | Left earbud -3.39dBi | | | | (Provided by the customer) | Right earbud -3.07dBi | | | | Maximum Conducted Peak Power: | 9.566 dBm | | | | Normal Test Voltage: | 3.7 Vdc | | | ## 1.4 OTHER INFORMATION **Operation Frequency Each of Channel** f = 2402 + k MHz, k = 0,...,78 Note: f is the operating frequency (MHz); **k** is the operating channel. | Modulation Configure | | | | | | |----------------------|--------|-------------|-------------|--|--| | Modulation | Packet | Packet Type | Packet Size | | | | | 1-DH1 | 4 | 27 | | | | GFSK | 1-DH3 | 11 | 183 | | | | | 1-DH5 | 15 | 339 | | | | | 2-DH1 | 20 | 54 | | | | π/4 DQPSK | 2-DH3 | 26 | 367 | | | | | 2-DH5 | 30 | 679 | | | | | 3-DH1 | 24 | 83 | | | | 8DPSK | 3-DH3 | 27 | 552 | | | | | 3-DH5 | 31 | 1021 | | | Page 6 of 52 Report No.: 2308286618RFC-1 ### 1.5 DESCRIPTION OF SUPPORT UNITS The EUT has been tested with associated equipment below. 1) Support Equipment | Description | Manufacturer | Model No. | Serial Number | Supplied by | |-------------|--------------|--------------|---------------|-------------| | Notebook | DELL | Latitude3400 | 16238087894 | UnionTrust | | Mouse | DELL | MS111 | CN-011D3V-738 | UnionTrust | ### 2) Support Cable | Cable No. | Description | Connector | Length | Supplied by | |-----------|---------------|-----------|------------|-------------| | 1 | Antenna Cable | SMA | 0.10 Meter | UnionTrust | ## 1.6 TEST LOCATION ### Shenzhen UnionTrust Quality and Technology Co., Ltd. Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886 ### 1.7 TEST FACILITY The test facility is recognized, certified, or accredited by the following organizations: ### CNAS-Lab Code: L9069 The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories. #### A2LA-Lab Certificate No.: 4312.01 Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. #### ISED Wireless Device Testing Laboratories CAB identifier: CN0032 ### FCC Accredited Lab. Designation Number: CN1194 Test Firm Registration Number: 259480 ### 1.8 DEVIATION FROM STANDARDS None. ## 1.9 ABNORMALITIES FROM STANDARD CONDITIONS None. ### 1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER ## Shenzhen UnionTrust Quality and Technology Co., Ltd. None. ## 1.11 MEASUREMENT UNCERTAINTY Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2 | No. | Item | Measurement Uncertainty | |-----|-----------------------------------|--------------------------| | 1 | Conducted emission 9KHz-150KHz | ±3.2 dB | | 2 | Conducted emission 150KHz-30MHz | ±2.7 dB | | 3 | Radiated emission 9KHz-30MHz | ± 4.7 dB | | 4 | Radiated emission 30MHz-1GHz | ± 4.6 dB | | 5 | Radiated emission 1GHz-18GHz | ± 4.4 dB | | 6 | Radiated emission 18GHz-26GHz | ± 4.6 dB | | 7 | Radiated emission 26GHz-40GHz | ± 4.6 dB | | 8 | RF Power, Conducted | ± 0.69 dB | | 9 | Transmission Time | ± 0.19 % | | 10 | Occupied Bandwidth | ± 1.86 % | | 11 | Power Spectral Density, conducted | ± 0.6 dB | | 12 | Radio Frequency | ± 6.5 x 10 ⁻⁸ | | 13 | Conducted out of band emission | ± 2.7 dB | ## 2. TEST SUMMARY | FCC 47 CFR Part 15 Subpart C Test Cases | | | | | | | | |---|--|---|------------------------|--|--|--|--| | Test Item | Test Requirement | Test Method | Result | | | | | | Antenna Requirement | FCC 47 CFR Part 15 Subpart C Section
15.203/15.247 (c)
RSS-Gen Issue 5, Section 6.8 | N/A | PASS | | | | | | AC Power Line
Conducted Emission | FCC 47 CFR Part 15 Subpart C Section
15.207
RSS-Gen Issue 5, Section 8.8 | ANSI C63.10-2013
Section 6.2 | N/A ^(Note2) | | | | | | Conducted Peak
Output Power | FCC 47 CFR Part 15 Subpart C Section
15.247 (b)(1)
RSS-247 Issue 2, Section 5.4(b) | ANSI C63.10-2013
Section 7.8.5 | PASS | | | | | | 20 dB Bandwidth | FCC 47 CFR Part 15 Subpart C Section
15.247 (a)(1) RSS-247 Issue 2, Section 5.1(a) ANSI C63.10-2013
Section 6.9.2 | | PASS | | | | | | Occupied Bandwidth | RSS-Gen section 6.7 | RSS-Gen section 6.7 | PASS | | | | | | Carrier Frequencies
Separation | FCC 47 CFR Part 15 Subpart C Section
15.247 (a)(1)
RSS-247 Issue 2, Section 5.1(b) | ANSI C63.10-2013
Section 7.8.2 | PASS | | | | | | Number of Hopping
Channel | FCC 47 CFR Part 15 Subpart C Section
15.247 (b)(1)
RSS-247 Issue 2, Section 5.1(d) | ANSI C63.10-2013
Section 7.8.3 | PASS | | | | | | Dwell Time | FCC 47 CFR Part 15 Subpart C Section
15.247 (a)(1)
RSS-247 Issue 2, Section 5.1(d) | ANSI C63.10-2013
Section 7.8.4 | PASS | | | | | | Conducted Out of
Band Emission | FCC 47 CFR Part 15 Subpart C Section
15.247(d)
RSS-247 Issue 2, Section 5.5 | ANSI C63.10-2013
Section 6.10.4 & Section
7.8.8 | PASS | | | | | | Radiated Emissions | FCC 47 CFR Part 15 Subpart C Section
15.205/15.209
RSS-Gen Issue 5, Section 6.13/8.9/8.10 | ANSI C63.10-2013
Section 6.3 & 6.5 & 6.6 | PASS | | | | | ### Note: - 1) N/A: In this whole report not applicable. - 2) This EUT is charged by AC adapter to the battery, when charging, it doesn't transmitting while charging. ## 3. EQUIPMENT LIST | | Radiated Emission Test Equipment List | | | | | | | | | | |-------------|--|---------------------------------|----------------|-------------------------------|----------------------|---------------|--|--|--|--| | Used | Equipment | Manufacturer | Model No. | Serial
Number | Cal. date | Cal. Due date | | | | | | \boxtimes | 3m SAC | ETS-Lindgren | 3m | Euroshiedpn-C
T001270-1317 | 22-Jan-2021 | 21-Jan-2024 | | | | | | \boxtimes | Loop Antenna | ETS-Lindgren | 6502 | 00202525 | 11-Nov-2021 | 10-Nov-2023 | | | | | | \boxtimes | Receiver | ROHDE &
SCHWARZ | ESIB26 | 100114 | 3-Nov-2022 | 2-Nov-2023 | | | | | | | EXA Spectrum
Analyzer | KEYSIGHT | N9010A | MY51440197 | 14-Apr-2023 | 13-Apr-2024 | | | | | | \boxtimes | Broadband Antenna (Pre-amplifier) | ETS-LINGGREN 3147E 00701566 | | 11-Nov-2021 | 10-Nov-2023 | | | | | | | \boxtimes | Pre-amplifier | HP | 8447F | 2805A02960 | 1-Nov-2022 | 31-Oct-2023 | | | | | | \boxtimes | 6dB Attenuator | Talent | RA6A5-N-
18 | 18103001 | 11-Nov-2021 | 10-Nov-2023 | | | | | | | Double-Ridged
Waveguide Horn
Antenna
(Pre-amplifier) | ETS-Lindgren | 3117-PA | 00201541 | 17-Apr-2022 | 16-Apr-2024 | | | | | | \boxtimes | Pre-amplifier | ETS-Lindgren | 00118385 | 00201874 | 1-Nov-2022 | 31-Oct-2023 | | | | | | | Double-Ridged Waveguide Horn Antenna (Pre-amplifier) ETS-Lindgren | | 3116C-PA | 00202652 | 21-Nov-2022 | 20-Nov-2023 | | | | | | \boxtimes | Pre-amplifier | ETS-Lindgren | 00118384 | 202652 | 21-Nov-2022 | 20-Nov-2023 | | | | | | \boxtimes | Multi device
Controller | ice ETS-LINDGREN | | 00160105 | N/A | N/A | | | | | | \boxtimes | Test Software | Audix | e3 | Soft | tware Version: 9.160 | 0323 | | | | | | | | Conducted RF test Equipment List | | | | | | | | | | |---|----------------|---|--------------------------|---------|-------------------|----------------------------------|---------------|--|--|--|--| | | Used Equipment | | Manufacturer Model No. | | Serial
Number | Cal. date | Cal. Due date | | | | | | Ī | \boxtimes | EXA Spectrum
Analyzer | KEYSIGHT | N9010A | N9010A MY51440197 | | 13-Apr-2024 | | | | | | ١ | \boxtimes | USB Wideband
Power Sensor | KEYSIGHT | U2021XA | MY55430035 | 3-Nov-2022 | 2-Nov-2023 | | | | | | | \boxtimes | MXG X-Series RF
Vector Signal
Generator | KEYSIGHT | N5182B | MY51350267 | 1-Nov-2022 | 31-Oct-2023 | | | | | | | | Wideband Radio
Communication
Tester | R&S | CMW500 | 120932 | 14-Apr-2023 | 13-Apr-2024 | | | | | | | | Test Software | AutomationTes
tSystem | ECIT | Softwa | Software Version: 1.0.7515.16529 | | | | | | ## 4. TEST CONFIGURATION ## 4.1 ENVIRONMENTAL CONDITIONS FOR TESTING ## 4.1.1 Normal or Extreme Test Conditions | Environment Parameter | Selected Values During Tests | | | | | | | | |--|------------------------------|--------------------|-----------------------|--|--|--|--|--| | Test Condition | Ambient | | | | | | | | | rest Condition | Temperature (°C) | Voltage (V) | Relative Humidity (%) | | | | | | | NT/NV | +15 to +35 | 3.7Vdc and or 5Vdc | 20 to 75 | | | | | | | Remark: 1) NV: Normal Voltage; NT: Normal Temperature | | | | | | | | | 4.1.2 Record of Normal Environment and Test Sample | Test Item | Temperature (°C) | Relative
Humidity
(%) | Pressure
(kPa) | Sample No. | Tested by | | |--|------------------|-----------------------------|-------------------|------------------------|-------------|--| | Conducted Peak Output Power | 26.9 | 66.9 | 99.2 | S202308101964-ZJA14/14 | Rain Wang | | | 20 dB Bandwidth
& Occupied
Bandwidth | 26.9 | 66.9 | 99.2 | S202308101964-ZJA14/14 | Rain Wang | | | Carrier
Frequencies
Separation | | | 99.2 | S202308101964-ZJA14/14 | Rain Wang | | | Number of
Hopping Channel | 26.9 | 66.9 | 99.2 | S202308101964-ZJA14/14 | Rain Wang | | | Dwell Time | 26.9 | 66.9 | 99.2 | S202308101964-ZJA14/14 | Rain Wang | | | Conducted Out of
Band Emission | 26.9 | 66.9 | 99.2 | S202308101964-ZJA14/14 | Rain Wang | | | Radiated
Emissions | 24.5 | 60.3 | 99.2 | S202308101964-ZJA14/14 | Bowie Zhang | | | Band Edge
Measurement | 24.5 | 60.3 | 99.2 | S202308101964-ZJA14/14 | Bowie Zhang | | ## **4.2 TEST CHANNELS** | Mode | Tx/Rx Frequency | Test RF Channel Lists | | | | | |-----------------|------------------------|-----------------------|------------|------------|--|--| | Wiode | 1 x/Kx Frequency | Lowest(L) | Middle(M) | Highest(H) | | | | GFSK | 2402 MHz to 2480 MHz | Channel 0 | Channel 39 | Channel 78 | | | | (DH1, DH3, DH5) | 2402 WITZ 10 2400 WITZ | 2402 MHz | 2441 MHz | 2480 MHz | | | | π/4DQPSK | 2402 MHz to 2480 MHz | Channel 0 | Channel 39 | Channel 78 | | | | (DH1, DH3, DH5) | 2402 WITZ 10 2460 WITZ | 2402 MHz | 2441 MHz | 2480 MHz | | | | 8DPSK | 2402 MHz to 2480 MHz | Channel 0 | Channel 39 | Channel 78 | | | | (DH1, DH3, DH5) | 2402 NITZ 10 2480 NITZ | 2402 MHz | 2441 MHz | 2480 MHz | | | Page 11 of 52 Report No.: 2308286618RFC-1 ## **4.3 EUT TEST STATUS** | Type of Modulation | Tx Function | Description | |-------------------------|-------------|--| | GFSK/π/4DQPSK/
8DPSK | 1Tx | Keep the EUT in continuously transmitting with Modulation test single Keep the EUT in continuously transmitting with Modulation test Hopping Frequency. | | | Power Setting | | |-----------------|---------------|--| | Left earbud: 7 | | | | Right earbud: 7 | | | | | Test Software | |--|---------------| | Test software name: bt_tool_v1.1.2.exe | | ## 4.4 PRE-SCAN ## Pre-scan under all packets at middle channel ### Left earbud | Conducted Average Power (dBm) for packets | | | | | | | | | | |---|-------|-------|----------|-------|-------|-------|-------|-------|-------| | Type of Modulation GFSK | | | π/4DQPSK | | | 8DPSK | | | | | Packets | 1-DH1 | 1-DH3 | 1-DH5 | 2-DH1 | 2-DH3 | 2-DH5 | 3-DH1 | 3-DH3 | 3-DH5 | | Power (dBm) | -1.23 | 1.81 | 2.43 | -1.33 | 1.60 | 2.23 | -1.34 | 1.60 | 2.24 | ### Right earbud | Conducted Average Power (dBm) for packets | | | | | | | | | | |---|-------|-------|----------|-------|-------|-------|-------|-------|-------| | Type of Modulation GFSK | | | π/4DQPSK | | | 8DPSK | | | | | Packets | 1-DH1 | 1-DH3 | 1-DH5 | 2-DH1 | 2-DH3 | 2-DH5 | 3-DH1 | 3-DH3 | 3-DH5 | | Power (dBm) | 1.32 | 4.34 | 5.15 | 1.28 | 4.11 | 4.67 | 1.18 | 4.07 | 4.68 | ### 4.4.1 Worst-case data packets | Type of Modulation | Worst-case data rates | | | | | |--------------------|-----------------------|--|--|--|--| | GFSK | 1-DH5 | | | | | | π/4DQPSK | 2-DH5 | | | | | | 8DPSK | 3-DH5 | | | | | #### 4.4.2 Tested channel detail Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data packets and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below Report No.: 2308286618RFC-1 | channel(s) was (were) selected for the final test as listed below. | | | | | | | | | | |--|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | Type of Modulation | | GFSK | | | /4DQPS | | | 8DPSK | | | Data Packets | 1-DH | 1-DH | 1-DH | 2-DH | 2-DH | 2-DH | 3-DH | 3-DH | 3-DH | | | 1 | 3 | 5 | 1 | 3 | 5 | 1 | 3 | 5 | | Available Channel | | | | | 0 to 78 | | | | | | Test Item | Test channel and choose of data packets | | | | | | | | | | AC Power Line Conducted | | | Freq | uency Ho | opping Ch | nannel 0 | to 78 | | | | Emission | | | | | ☐ Link | | | | | | Conducted Peak Output | | | | Chani | nel 0 & 39 | 9 & 78 | | | | | Power | | | \boxtimes | | | \boxtimes | | | \boxtimes | | 20 dB Bandwidth | | | | Chan | nel 0 & 39 | 9 & 78 | | | | | 20 db Balldwidill | | | \boxtimes | | | \boxtimes | | | \boxtimes | | Carrier Frequencies | Frequency Hopping Channel 0 to 78 | | | | | | | | | | Separation | | | \boxtimes | | | \boxtimes | | | \boxtimes | | Number of Henning Channel | Frequency Hopping Channel 0 to 78 | | | | | | | | | | Number of Hopping Channel | | | \boxtimes | | | | | | \boxtimes | | Dwell Time | Channel 39 | | | | | | | | | | Dweii Time | \boxtimes | Conducted Out of Band | Channel 0 & 39 & 78 | | | | | | | | | | Emission | | | \boxtimes | | | | | | \boxtimes | | Radiated Emissions | | | | Chan | nel 0 & 39 | 9 & 78 | | | | | Radiated Emissions | | | | | | | | | \boxtimes | | Band Edge Measurements | | | | Cha | annel 0 & | 78 | | | | | (Radiated) | | | | | | | | | \boxtimes | | Remark:
1. The mark "⊠" means is chos | en for tes | stina. | | | | | | | | The mark "□" means is not chosen for testing. ## **4.5 TEST SETUP** 4.5.1 For Radiated Emissions test setup 4.5.2 For Conducted Emissions test setup 4.5.3 For Conducted RF test setup ## **4.6 SYSTEM TEST CONFIGURATION** For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.7V battery. Only the worst case data were recorded in this test report. The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation. | Frequency | Mode | Antenna Port | Worst-case axis positioning | | |------------|------|--------------|-----------------------------|--| | Above 1GHz | 1TX | Chain 0 | Y axis | | All readings are extrapolated back to the equivalent three-meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported. Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. ## **4.7 DUTY CYCLE** Test Procedure: ANSI C63.10-2013 Clause 11.6. **Test Results** | Modulation | On Time
(msec) | Period
(msec) | Duty Cycle
(linear) | Duty Cycle
(%) | Duty Cycle
Factor
(dB) | 1/T
Minimum
VBW (kHz) | |------------|-------------------|------------------|------------------------|-------------------|------------------------------|-----------------------------| | GFSK | 2.904 | 3.750 | 0.7744 | 77.44 | 1.11 | 0.34 | #### Remark: - 1) Duty cycle= On Time/ Period; - 2) Duty Cycle factor = 10 * log(1/ Duty cycle); - 3) Average factor = 20 log₁₀ Duty Cycle. ### The test plot as follows Page 17 of 52 Report No.: 2308286618RFC-1 ## 5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING | No. | Identity | Document Title | | | | | | |-----|---|---|--|--|--|--|--| | 1 | FCC 47 CFR Part 2 | Frequency allocations and radio treaty matters; general rules and regulations | | | | | | | 2 | FCC 47 CFR Part 15 | Radio Frequency Devices | | | | | | | 3 | RSS-247 Issue 2 | Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices | | | | | | | 4 | RSS-Gen Issue 5 | General Requirements for Compliance of Radio Apparatus | | | | | | | 5 | ANSI C63.10-2013 | American National Standard for Testing Unlicesed Wireless Devices | | | | | | | 6 | KDB 558074 D01 15.247 Meas
Guidance v05r02 | Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules | | | | | | ## 5.2 ANTENNA REQUIREMENT ### **Standard Requirement** ### 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. #### 15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. ## RSS-Gen Issue 5, Section 6.8 requirement: According to RSS-Gen Issue 5, section 6.8, a transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. #### **EUT Antenna:** Antenna in the interior of the equipment and no consideration of replacement. The gain of the max antenna is -3.07 dBi Page 18 of 52 Report No.: 2308286618RFC-1 ### **5.3 CONDUCTED PEAK OUTPUT POWER** Test Requirement: FCC 47 CFR Part 15 Subpart C Section15.247 (b)(1) RSS-247 Issue 2, Section 5.4(b) **Test Method:**ANSI C63.10-2013 Section 7.8.5 Limit: For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e). FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W. Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. a) Use the following spectrum analyzer settings: 1) Span: Approximately 5 x 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. VBW ≥ RBW. Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. A plot of the test results and setup description shall be included in the test report. **Test Setup:** Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details Test Results: Pass #### Left earbud | Modulation | Frequency | Max. Peak
Power | Peak
Power
Limit | ISED EIRP | ISED EIRP
Limit | Max. Avg.
Power | Result | |------------|-----------|--------------------|------------------------|-----------|--------------------|--------------------|--------| | | (MHz) | (dBm) | (dBm) | (dBm) | (dBm) | (dBm) | | | | 2402 | 5.535 | 20.97 | 2.145 | 36.02 | 4.11 | Pass | | GFSK | 2441 | 3.706 | 20.97 | 0.316 | 36.02 | 2.43 | Pass | | | 2480 | 1.818 | 20.97 | -1.572 | 36.02 | 0.31 | Pass | | | 2402 | 7.620 | 20.97 | 4.23 | 36.02 | 3.92 | Pass | | π/4DQPSK | 2441 | 5.953 | 20.97 | 2.563 | 36.02 | 2.23 | Pass | | | 2480 | 3.938 | 20.97 | 0.548 | 36.02 | 0.18 | Pass | | | 2402 | 8.041 | 20.97 | 4.651 | 36.02 | 3.94 | Pass | | 8DPSK | 2441 | 6.366 | 20.97 | 2.976 | 36.02 | 2.24 | Pass | | | 2480 | 4.437 | 20.97 | 1.047 | 36.02 | 0.19 | Pass | ### Right earbud | Modulation | Frequency | Max. Peak
Power | Peak
Power
Limit | ISED EIRP | ISED EIRP
Limit | Max. Avg.
Power | Result | |------------|-----------|--------------------|------------------------|-----------|--------------------|--------------------|--------| | | (MHz) | (dBm) | (dBm) | (dBm) | (dBm) | (dBm) | | | | 2402 | 7.552 | 20.97 | 4.482 | 36.02 | 4.98 | Pass | | GFSK | 2441 | 7.089 | 20.97 | 4.019 | 36.02 | 5.15 | Pass | | | 2480 | 5.265 | 20.97 | 2.195 | 36.02 | 3.15 | Pass | | | 2402 | 8.973 | 20.97 | 5.903 | 36.02 | 4.86 | Pass | | π/4DQPSK | 2441 | 8.765 | 20.97 | 5.695 | 36.02 | 4.67 | Pass | | | 2480 | 7.039 | 20.97 | 3.969 | 36.02 | 2.99 | Pass | | | 2402 | 9.566 | 20.97 | 6.496 | 36.02 | 4.85 | Pass | | 8DPSK | 2441 | 9.142 | 20.97 | 6.072 | 36.02 | 4.68 | Pass | | | 2480 | 7.398 | 20.97 | 4.328 | 36.02 | 2.98 | Pass | Note: The maximum antenna gain is -3.07 dBi less than 6dBi maximum permission antenna gain value based on 125 mW peak output power limit. Page 20 of 52 Report No.: 2308286618RFC-1 ## 5.4 20 DB BANDWIDTH & OCCUPIED BANDWIDTH FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) **Test Requirement:** RSS-247 Issue 2, Section 5.1(a) RSS-Gen section 6.7 ANSI C63.10-2013 Section 6.9.2 Test Method: ANSI Cos. 10-2013 Se RSS-Gen section 6.7 **Limit:** None; for reporting purposes only. Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings: a) Span = approximately 2 to 5 times the OBW, centered on a hopping channel. b) RBW = 1% to 5% of the OBW. c) VBW ≥ 3 x RBW d) Sweep = auto; e) Detector function = peak f) Trace = max hold g) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission. Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset. **Test Setup:** Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details Test Mode: Link mode Page 21 of 52 Report No.: 2308286618RFC-1 ### 5.5 CARRIER FREQUENCIES SEPARATION Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) RSS-247 Issue 2, Section 5.1(b) **Test Method:**ANSI C63.10-2013 Section 7.8.2 Limit: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. h) Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset. **Test Setup:** Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details Test Mode: Link mode Page 22 of 52 Report No.: 2308286618RFC-1 ## 5.6 NUMBER OF HOPPING CHANNEL Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(b)(1) RSS-247 Issue 2, Section 5.1(d) **Test Method:**ANSI C63.10-2013 Section 7.8.3 Limit: Frequency hopping systems in the 2400 - 2483.5 MHz band shall use at least 15 non-overlapping channels. Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW < 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset. **Test Setup:** Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details Test Mode: Link mode | Type of Modulation | Number of Hopping Channel | | | | | |--------------------|---------------------------|--|--|--|--| | GFSK | 79 | | | | | | π/4 DQPSK | 79 | | | | | | 8DPSK | 79 | | | | | Page 23 of 52 Report No.: 2308286618RFC-1 ### 5.7 DWELL TIME Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(a)(1) RSS-247 Issue 2, Section 5.1(d) ANSI C63.10-2013 Section 7.8.4 Limit: Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings: a) Span = zero span, centered on a hopping channel b) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep = As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function = peak e) Trace = max hold f) Use the marker-delta function to determine the dwell time Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset. **Test Setup:** Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details Test Mode: Link mode Page 24 of 52 Report No.: 2308286618RFC-1 ### 5.8 CONDUCTED OUT OF BAND EMISSION **Test Requirement:** FCC 47 CFR Part 15 Subpart C Section 15.247(d) RSS-247 Issue 2, Section 5.5 **Test Method:** ANSI C63.10-2013 Section 6.10.4 & Section 7.8.8 Limit: In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power. Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings: ### **Step 1: Measurement Procedure REF** a) Set instrument center frequency to 2400 MHz or 2483.5 MHz. - b) Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products that fall outside of the authorized band of operation. - c) Set the RBW = 100 kHz. - d) Set the VBW \geq 3 x RBW. - e) Detector = peak. - f) Sweep time = auto couple. - g) Sweep points ≥ 2 x Span/RBW - h) Trace mode = max hold. - i) Allow the trace to stabilize. - j) Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission. #### Step 2:Measurement Procedure OOBE - a) Set RBW = 100 kHz. - b) Set VBW ≥ 300 kHz. - c) Detector = peak. - d) Sweep = auto couple. - e) Trace Mode = max hold. - f) Allow trace to fully stabilize. - g) Use the peak marker function to determine the maximum amplitude level. Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset. **Test Setup:** Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details Test Mode: Hopping Frequencies Transmitter mode Page 25 of 52 Report No.: 2308286618RFC-1 ## 5.9 RADIATED SPURIOUS EMISSIONS Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.205/15.209 RSS-Gen Issue 5, Section 6.13/8.9/8.10 **Test Method:**ANSI C63.10-2013 Section 6.3 & 6.5 & 6.6 **Receiver Setup:** | Frequency | RBW | |---------------------|-------------| | 0.009 MHz-0.150 MHz | 200/300 kHz | | 0.150 MHz -30 MHz | 9/10 kHz | | 30 MHz-1 GHz | 100/120 kHz | | Above 1 GHz | 1 MHz | #### Limits: #### **Spurious Emissions** | Frequency | Field strength (microvolt/meter) | Limit (dBµV/m) | Remark | Measurement distance (m) | |---------------------|----------------------------------|-----------------|------------|--------------------------| | 0.009 MHz-0.490 MHz | 2400/F(kHz) | - | - | 300 | | 0.490 MHz-1.705 MHz | 24000/F(kHz) | | | 30 | | 1.705 MHz-30 MHz | 30 | | | 30 | | 30 MHz-88 MHz | 100 | 40.0 | Quasi-peak | 3 | | 88 MHz-216 MHz | 150 | 43.5 | Quasi-peak | 3 | | 216 MHz-960 MHz | 200 | 46.0 | Quasi-peak | 3 | | 960MHz-1GHz | 500 | 54.0 | Quasi-peak | 3 | | Above 1 GHz | 500 | 54.0 | Average | 3 | #### Remark: - 1. The lower limit shall apply at the transition frequencies. - Emission level (dBuV/m) = 20 log Emission level (uV/m). - 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation. **Test Setup:** Refer to section 4.5.1 for details. ### **Test Procedures:** - From 30 MHz to 1GHz test procedure as below: - The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. - 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading. - The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - 6) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. - 2. Above 1GHz test procedure as below: - 1) Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter). ### Shenzhen UnionTrust Quality and Technology Co., Ltd. Page 26 of 52 Report No.: 2308286618RFC-1 - Test the EUT in the lowest channel ,middle channel, the Highest channel - The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the Y axis positioning which it is worse case. - Repeat above procedures until all frequencies measured was complete. **Equipment Used:** Refer to section 3 for details. **Test Result: Pass** The measurement data as follows: ### Radiated Emission Test Data (9 KHz ~ 30 MHz): The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report. #### Left earbud 6 #### Radiated Emission Test Data (30 MHz ~ 1 GHz): **Worst-Case Configuration** Horizontal 80 Level (dBuV/m) 70 60 FCC PART 15C 30MHz-1GHz 50 40 30 20 10 0 -10 -20 30 50 100 200 500 1000 Frequency (MHz) Correction Frequency Reading Result Limit Margin No. factor **Detector** (MHz) (dB_µV/m) $(dB\mu V/m)$ (dB_µV/m) (dB) (dB/m)58.898 48.30 40.00 -8.85 QΡ 1 -17.1531.15 85.477 2 44.55 -16.48 40.00 -11.93 QΡ 28.07 3 168.997 40.06 -11.95 28.11 43.50 -15.39QP 4 46.00 QΡ 240.144 45.06 -9.09 35.97 -10.03 5 421.329 40.50 -4.0836.42 46.00 -9.58 QP 881.184 27.91 3.72 31.63 46.00 -14.37 QΡ Right earbud Left earbud | | Radiated Emission Test Data (Above 1GHz): | | | | | | | | | |------|---|-------------------|--------------------------------|--------------------|-------------------|----------------|----------|--------------------|--| | | est Channel: | ii iosi bali | 2 (ABOVE 1011 | - /- | | | | | | | No. | Frequency
(MHz) | Reading
(dBµV) | Correction
factor
(dB/m) | Result
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Detector | Antenna
Polaxis | | | 1 | 4804.00 | 39.74 | -2.42 | 37.32 | 74.00 | -36.68 | Peak | Horizontal | | | 2 | 4804.00 | 27.23 | -2.42 | 24.81 | 54.00 | -29.19 | Average | Horizontal | | | 3 | 7206.00 | 35.79 | 1.62 | 37.41 | 74.00 | -36.59 | Peak | Horizontal | | | 4 | 7206.00 | 25.16 | 1.62 | 26.78 | 54.00 | -27.22 | Average | Horizontal | | | 5 | 4804.00 | 36.87 | -2.42 | 34.45 | 74.00 | -39.55 | Peak | Vertical | | | 6 | 4804.00 | 27.63 | -2.42 | 25.21 | 54.00 | -28.79 | Average | Vertical | | | 7 | 7206.00 | 39.15 | 1.62 | 40.77 | 74.00 | -33.23 | Peak | Vertical | | | 8 | 7206.00 | 25.65 | 1.62 | 27.27 | 54.00 | -26.73 | Average | Vertical | | | Midd | lle Channel: | | | | | | | | | | 1 | 4882.000 | 39.79 | -2.35 | 37.44 | 74.00 | -36.56 | Peak | Horizontal | | | 2 | 4882.000 | 26.73 | -2.35 | 24.38 | 54.00 | -29.62 | Average | Horizontal | | | 3 | 7323.000 | 42.95 | 1.69 | 44.64 | 74.00 | -29.36 | Peak | Horizontal | | | 4 | 7323.00 | 25.12 | 1.69 | 26.81 | 54.00 | -27.19 | Average | Horizontal | | | 5 | 4882.000 | 38.30 | -2.35 | 35.95 | 74.00 | -38.05 | Peak | Vertical | | | 6 | 4882.00 | 26.67 | -2.35 | 24.32 | 54.00 | -29.68 | Average | Vertical | | | 7 | 7323.000 | 38.02 | 1.69 | 39.71 | 74.00 | -34.29 | Peak | Vertical | | | 8 | 7323.00 | 25.16 | 1.69 | 26.85 | 54.00 | -27.15 | Average | Vertical | | | High | est Channel: | | | | | | | | | | 1 | 4960.000 | 40.16 | -2.27 | 37.89 | 74.00 | -36.11 | Peak | Horizontal | | | 2 | 4960.00 | 25.63 | -2.27 | 23.36 | 54.00 | -30.64 | Average | Horizontal | | | 3 | 7440.000 | 38.75 | 1.77 | 40.52 | 74.00 | -33.48 | Peak | Horizontal | | | 4 | 7440.00 | 26.17 | 1.77 | 27.94 | 54.00 | -26.06 | Average | Horizontal | | | 5 | 4960.000 | 34.54 | -2.27 | 32.27 | 74.00 | -41.73 | Peak | Vertical | | | 6 | 4960.00 | 25.78 | -2.27 | 23.51 | 54.00 | -30.49 | Average | Vertical | | | 7 | 7440.000 | 39.17 | 1.77 | 40.94 | 74.00 | -33.06 | Peak | Vertical | | | 8 | 7440.00 | 26.39 | 1.77 | 28.16 | 54.00 | -25.84 | Average | Vertical | |