

Shenzhen GUOREN Certification Technology Service Co., Ltd.

101#, Building K & Building T, The Second Industrial Zone, Jiazitang Community, Fenghuang Street, Guangming District, Shenzhen, China

FCC PAR	15 SUBPART C TEST I	REPORT
	FCC PART 15.247	
Report Reference No	GRCTR250302032-02	
FCC ID	2BOLJ-CT01	
Compiled by (position+printed name+signature):	Testing Engineer Jimmy Wang	Jony May Kolley Zhang
Supervised by		1
(position+printed name+signature):	Project Engineer Kelley Zhang	Colley 20mm
Approved by		
(position+printed name+signature):	Manager Sam Wang	Son. Wong
Date of issue	Apr. 02, 2025	
Testing Laboratory Name	Shenzhen GUOREN Certification	n Technology Service Co., Ltd.
Address:		e Second Industrial Zone, Jiazitang uangming District, Shenzhen, China
Applicant's name:	Hygiene Insight, Inc.	
Address:	79 Michael Way, Santa Clara, CA	95051 USA
Test specification:		
Standard	FCC Part 15.247	
Shenzhen GUOREN Certification Te	chnology Service Co., Ltd. All rig	ghts reserved.
This publication may be reproduced in GUOREN Certification Technology Ser material. Shenzhen GUOREN Certifica not assume liability for damages result placement and context.	vice Co., Ltd. is acknowledged as o tion Technology Service Co., Ltd. ta	copyright owner and source of the akes no responsibility for and will
Test item description	Visual otoscope	
Trade Mark	1	
Manufacturer	Hygiene Insight, Inc.	
Model/Type reference:	CT01	
Listed Models	1	
Firmware Version	V1.0	
Hardware Version:	V1.0	
Modulation Type	DSSS/ OFDM	
Operation Frequency	From 2412 - 2462MHz	
Rating:	5.0V2.0A(charged by Power A 3.7V600mAh(By Li-ion recharg	
Result	PASS	

TEST REPORT

Test Result:		PASS
Audress	·	Park,Phung Xa Commune,Thach That District, Hanoi City,Vietnam
Address	:	Factory No.6, Lot CN8, Thach That-Quoc Oai Industrial
Factory	:	GIANTSUN POWER ELECTRONICS (VIETNAM) CO.,LTD
Address	:	79 Michael Way, Santa Clara, CA 95051 USAn
Manufacturer	:	Hygiene Insight, Inc.
Address	:	79 Michael Way, Santa Clara, CA 95051 USAn
Applicant	:	Hygiene Insight, Inc.
Listed Models	:	1
Model /Type	:	CT01
Equipment under Test	:	Visual otoscope

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1 TEST STANDARDS	4
2 SUMMARY	5
2.1 General Remarks	5
2.2 Product Description	5
2.3 Equipment Under Test	
2.4 Short description of the Equipment under Test (EUT)	
2.5 EUT operation mode	
2.6 Block Diagram of Test Setup	
2.7 Related Submittal(s) / Grant (s)	
2.8 EUT configuration	
2.9 Modifications	6
	-
3 TEST ENVIRONMENT	
3.1 Address of the test laboratory	7
3.2 Test Facility	
3.3 Environmental conditions	
3.4 Test Description	
3.5 Statement of the measurement uncertainty	8
3.6 Equipments Used during the Test	9
4 TEST CONDITIONS AND RESULTS	10
4.1 AC Power Conducted Emission	10
4.2 Radiated Emission	13
4.3 Maximum Conducted Output Power	
4.4 Power Spectral Density	20
4.5 6dB Bandwidth	
4.6 Out-of-band Emissions	
4.7 Antenna Requirement	33
5 TEST SETUP PHOTOS OF THE EUT	34
6 PHOTOS OF THE EUT	35

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2020</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB558074 D01 v05r02</u>: Guidance for Compliance Measurements on Digital Transmission Systems (DTS) ,Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under §15.247 of The FCC rules.

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	:	Mar. 19, 2025
Testing commenced on	:	Mar. 19, 2025
Testing concluded on	:	Apr. 02, 2025

2.2 Product Description

Product Name:	Visual otoscope
Model/Type reference:	CT01
Listed Models:	1
Power supply:	5.0V2.0A(charged by Power Adapter)or 3.7V600mAh(By Li-ion rechargeable battery)
testing sample ID:	GRCTR250302032-1# (Engineer sample), GRCTR250302032-2# (Normal sample)
WIFI:	
Supported type:	802.11b/802.11g /802.11n(H20)
Modulation:	802.11b: DSSS 802.11g /802.11n(H20) : OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11
Channel separation:	5MHz
Antenna type:	Chip antenna
Antenna gain*(Supplied by the customer):	2.58 dBi
	ation provided by the customer was used to calculate test results, if the information s not accurate, shenzhen GUOREN Certification Technology Service Co., Ltd. onsibility.

2.3 Equipment Under Test

Power supply system utilised

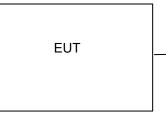
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	Ο	24 V DC
			Other (specified in blank bel	ow)

5.0V --- 2.0A(charged by Power Adapter)

2.4 Short description of the Equipment under Test (EUT)

This is a Visual otoscope.

For more details, refer to the user's manual of the EUT.


2.5 EUT operation mode

The Applicant provides communication tools software(SecureCRT) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) for testing meet KDB558074 test requirement.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

IEEE 802.11b/g/n H20: Thirteen channels are provided to the EUT.

2.6 Block Diagram of Test Setup

5.0V---2.0A(charged by Power Adapter)

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

Item	Manufacturer	Description	Model	Certificate	Note
1 ^{Note1}	Tianyin	Adapter	TPA- 83A050200CU01	/	/
2 ^{Note1}	/	/	/	/	1

Note1: This Auxiliary used during the test is provided by the test laboratory.

2.9 Modifications

No modifications were implemented to meet testing criteria.

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen GUOREN Certification Technology Service Co., Ltd.

101#, Building K & Building T, The Second Industrial Zone, Jiazitang Community, Fenghuang Street, Guangming District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 920798 Designation Number: CN1304

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6202.01

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

ISED#: 27264 CAB identifier: CN0115

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

CNAS-Lab Code: L15631

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories for the Competence of Testing and Calibration Laboratories.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	15-35 ℃
Relative Humidity	30-60 %
Air Pressure	950-1050mbar

3.4 Test Description

FCC PART 15.247		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Conducted Output Power	PASS
FCC Part 15.247(e)	Power Spectral Density	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Peak Conducted Output Power Power Spectral Density	11b/DSSS	1 Mbps	1/6/11
6dB Bandwidth	11g/OFDM	6 Mbps	1/6/11
Spurious RF conducted emission Radiated Emission 9KHz~1GHz& Radiated Emission 1GHz~10th Harmonic	11n(20MHz)/OFDM	6.5Mbps	1/6/11
	11b/DSSS	1 Mbps	1/11
Band Edge	11g/OFDM	6 Mbps	1/11
	11n(20MHz)/OFDM	6.5Mbps	1/11

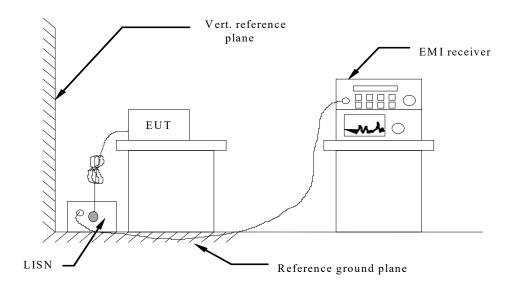
3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen GUOREN Certification Technology Service Co., Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GUOREN Certification Technology Service Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Max output power	30MHz~18GHz	0.54 dB	(1)
Power spectral density	/	0.56 dB	(1)
Spectrum bandwidth	/	1.2%	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.


3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	GRCTEE009	2024/09/19	2025/09/18
LISN	R&S	ENV216	GRCTEE010	2024/09/19	2025/09/18
EMI Test Receiver	R&S	ESPI	GRCTEE017	2024/09/19	2025/09/18
EMI Test Receiver	R&S	ESCI	GRCTEE008	2024/09/19	2025/09/18
Spectrum Analyzer	Agilent	N9020A	GRCTEE002	2024/09/19	2025/09/18
Spectrum Analyzer	R&S	FSP	GRCTEE003	2024/09/20	2025/09/19
Vector Signal generator	Agilent	N5181A	GRCTEE007	2024/09/19	2025/09/18
Analog Signal Generator	R&S	SML03	GRCTEE006	2024/09/19	2025/09/18
Climate Chamber	QIYA	LCD-9530	GRCTES016	2024/09/19	2025/09/18
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	GRCTEE018	2023/09/28	2026/09/27
Horn Antenna	Schwarzbeck	BBHA 9120D	GRCTEE019	2023/09/28	2026/09/27
Loop Antenna	Zhinan	ZN30900C	GRCTEE020	2023/10/15	2026/10/14
Horn Antenna	Beijing Hangwei Dayang	OBH100400	GRCTEE049	2023/09/28	2026/09/27
Amplifier	Schwarzbeck	BBV 9745	GRCTEE021	2024/09/19	2025/09/18
Amplifier	Taiwan chengyi	EMC051845B	GRCTEE022	2024/09/19	2025/09/18
Temperature/Humi dity Meter	Huaguan	HG-308	GRCTES037	2024/09/19	2025/09/18
Directional coupler	NARDA	4226-10	GRCTEE004	2024/09/19	2025/09/18
High-Pass Filter	XingBo	XBLBQ-GTA18	GRCTEE053	2024/09/19	2025/09/18
High-Pass Filter	XingBo	XBLBQ-GTA27	GRCTEE054	2024/09/19	2025/09/18
Automated filter bank	Tonscend	JS0806-F	GRCTEE055	2024/09/19	2025/09/18
Power Sensor	Agilent	U2021XA	GRCTEE070	2024/09/19	2025/09/18
Cable	Times	Cable-CE	GRCTEE086	2024/09/19	2025/09/18
Cable	Times	Cable-RE-1	GRCTEE087	2024/09/19	2025/09/18
Cable	Times	Cable-RE-2	GRCTEE088	2024/09/19	2025/09/18
EMI Test Software	ROHDE & SCHWARZ	ESK1-V1.71	GRCTEE060	N/A	N/A
EMI Test Software	Fera	EZ-EMC	GRCTEE061	N/A	N/A

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2020.

2 Support equipment, if needed, was placed as per ANSI C63.10-2020

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2020

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

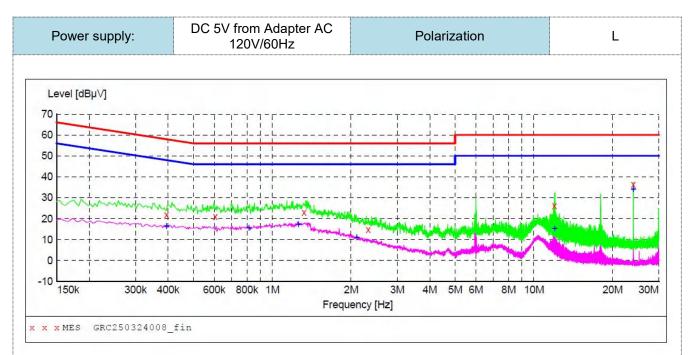
8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) and RSS-Gen Issue 5 AC Power Conducted Emission Limits
is as following:

Frequency range (MHz)	Limit (dBuV)					
Frequency range (Miriz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the frequency						

* Decreases with the logarithm of the frequency.


TEST RESULTS

Remark:

1. All three channels (lowest/middle/highest) of each mode were measured and recorded worst case at 802.11b low channel.

Report No.: GRCTR250302032-02

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

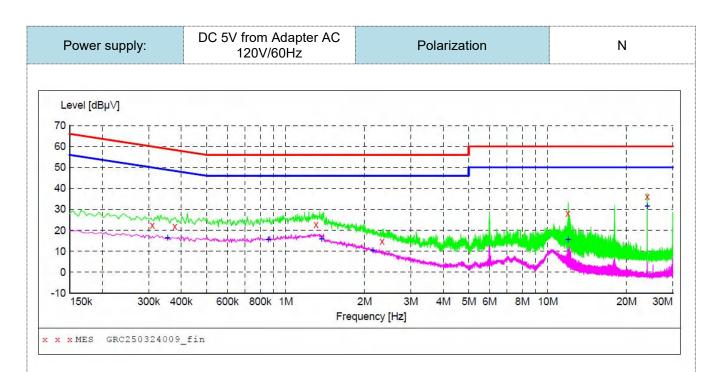
MEASUREMENT RESULT: "GRC250324008_fin"

3/24/2025 3:43PM

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.394000	21.90	9.8	58	36.1	QP	L1	GND
0.606000	21.10	9.6	56	34.9	QP	L1	GND
1.322000	22.90	10.0	56	33.1	QP	L1	GND
2.326000	14.70	10.0	56	41.3	QP	L1	GND
11.982000	26.20	10.0	60	33.8	QP	L1	GND
23.998000	36.30	10.2	60	23.7	QP	L1	GND

MEASUREMENT RESULT: "GRC250324008 fin2"

3/24/2025 3:43PM Frequency Level Transd Limit Margin Detector Line PE MHz dBµV dB dBµV dB 0.394000 16.50 48 9.8 31.5 AV L1 GND 0.814000 15.70 9.8 46 30.3 L1 GND AV 1.258000 10.0 17.20 46 28.8 AV L1 GND 11.00 10.0 35.0 2.102000 46 L1 AV GND 12.014000 15.30 10.0 50 34.7 L1 GND AV 23.998000 34.00 10.2 50 16.0 AV L1 GND


Note:1).Level (dBµV)= Reading (dBµV)+ Transducer (dB)

2). Transducer (dB)=insertion loss of LISN (dB) + Cable loss (dB)

3). Margin(dB) = Limit (dB μ V) - Level (dB μ V)

Report No.: GRCTR250302032-02

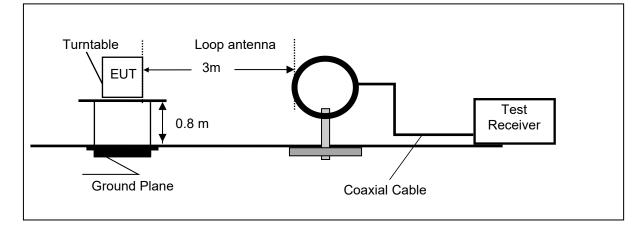
MEASUREMENT RESULT: "GRC250324009 fin"

3/24/2025 3:46PM PE Level Transd Limit Margin Detector Line Frequency MHz dBµV dB dBµV dB 0.310000 22.40 9.5 60 37.6 QP GND Ν 0.378000 21.80 9.7 58 36.5 QP GND N 1.306000 22.70 10.0 56 33.3 QP N GND 2.334000 14.80 10.0 56 41.2 QP N GND QP 11.954000 32.0 28.00 10.0 60 GND N 23.998000 36.10 10.2 60 23.9 QP Ν GND

MEASUREMENT RESULT: "GRC250324009_fin2"

3:46PM						
-			Margin dB	Detector	Line	PE
00 16	.40 9.5	49	32.5	AV	N	GND
00 15	.60 9.7	46	30.4	AV	N	GND
00 16	.00 10.0	46	30.0	AV	N	GND
00 10	.50 10.0	46	35.5	AV	N	GND
00 15	.50 10.0	50	34.5	AV	N	GND
00 31	.50 10.2	50	18.5	AV	Ν	GND
	HZ d 00 16 00 15 00 16 00 10 00 15	cy Level Transd Hz dBµV dB 00 16.40 9.5 00 15.60 9.7 00 16.00 10.0 00 10.50 10.0 00 15.50 10.0	cyLevelTransdLimitHzdBµVdBdBµV0016.409.5490015.609.7460016.0010.0460010.5010.0460015.5010.050	cyLevelTransdLimitMarginHzdBµVdBdBµVdB0016.409.54932.50015.609.74630.40016.0010.04630.00010.5010.04635.50015.5010.05034.5	cyLevelTransdLimitMargin dBDetectorHzdBµVdBdBµVdB0016.409.54932.5AV0015.609.74630.4AV0016.0010.04630.0AV0010.5010.04635.5AV0015.5010.05034.5AV	cyLevelTransdLimitMargin dBDetectorLineHzdBµVdBdBµVdBdBN0016.409.54932.5AVN0015.609.74630.4AVN0016.0010.04630.0AVN0010.5010.04635.5AVN0015.5010.05034.5AVN

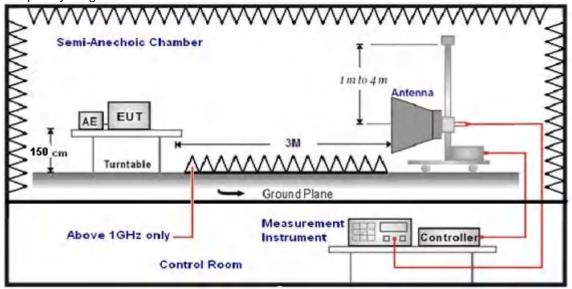
Note:1).Level (dBµV)= Reading (dBµV)+ Transducer (dB)


2). Transducer (dB)=insertion loss of LISN (dB) + Cable loss (dB)

3). Margin(dB) = Limit (dB μ V) - Level (dB μ V)

4.2 Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz, the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-40GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range Test Receiver/Spectrum Setting		Detector			
9KHz-150KHz	9KHz-150KHz RBW=200Hz/VBW=3KHz,Sweep time=Auto				
150KHz-30MHz	150KHz-30MHz RBW=9KHz/VBW=100KHz,Sweep time=Auto				
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP			
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak			

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

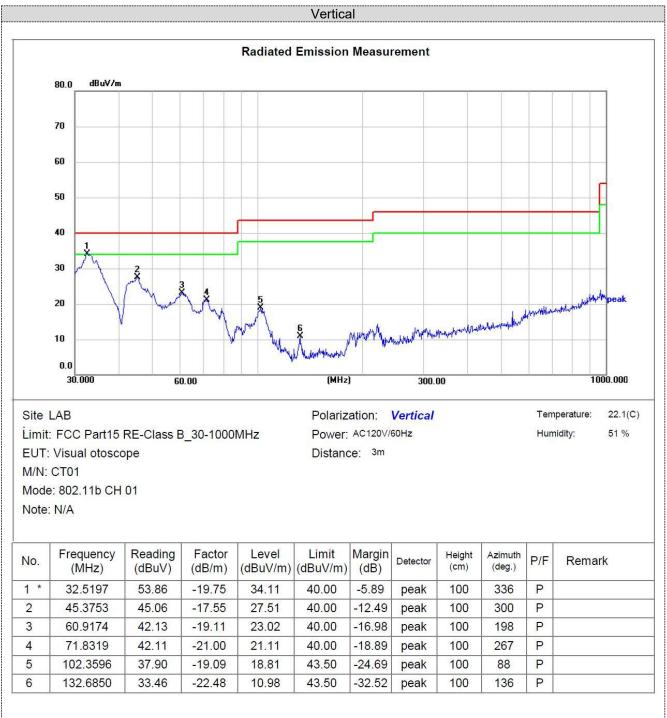
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:


- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X 1. position.
- All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst 2. case at 802.11b low channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 3. except system noise floor in 9 KHz to 30MHz and not recorded in this report.

Horizontal **Radiated Emission Measurement** dBuV/m 80.0 70 60 50 40 30 LA. 20 10 0.0 (MHz) 30.000 1000.000 60.00 300.00 Site LAB Polarization: Horizontal Temperature: 22.1(C) Power: AC120V/60Hz Humidity: 51 % Limit: FCC Part15 RE-Class B 30-1000MHz EUT: Visual otoscope Distance: 3m M/N: CT01 Mode: 802.11b CH 01 Note: N/A Factor Frequency Reading Level Limit Margin Height Azimuth P/F No. Remark Detector (dB) (cm) (deg.) (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) 1 32.8635 36.63 -19.73 16.90 40.00 -23.10 peak 100 189 P Ρ 2 45.5347 38.02 -17.55 20.47 40.00 -19.53 100 120 peak P 3 77.5926 -22.29 15.90 40.00 -24.10 100 265 38.19 peak Ρ 4 97.4557 36.68 -19.49 17.19 43.50 -26.31 peak 100 33 5 132.6850 37.00 -22.48 14.52 43.50 -28.98 peak 100 348 P 185,1377 36,92 -20.40 16.52 43.50 -26.98 Ρ 6 peak 100 4 Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m) 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

For 30MHz-1GHz

- - 3). Margin(dB) = Level (dB μ V/m) Limit (dB μ V/m)

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Level (dB μ V/m) - Limit (dB μ V/m)

For 1GHz to 25GHz

Note: 802.11b/802.11g/802.11n (H20) Mode all have been tested, only worse case 802.11b mode is reported. (above 1GHz)

Frequency(MHz): 2412			12	Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4824.00	54.05	PK	74	19.95	75.28	28.37	5.10	54.70	-21.23
4824.00	42.12	AV	54	11.88	63.35	28.37	5.10	54.70	-21.23
7236.00	52.20	PK	74	21.80	66.69	34.10	6.42	55.01	-14.49
7236.00	40.38	AV	54	13.62	54.87	34.10	6.42	55.01	-14.49

Frequency(MHz):		2412		Polarity:		VERTICAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4824.00	53.54	PK	74	20.46	74.77	28.37	5.10	54.70	-21.23
4824.00	42.08	AV	54	11.92	63.31	28.37	5.10	54.70	-21.23
7236.00	52.35	PK	74	21.65	66.84	34.10	6.42	55.01	-14.49
7236.00	40.27	AV	54	13.73	54.76	34.10	6.42	55.01	-14.49

Frequency(MHz):		2437		Polarity:		HORIZONTAL			
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	54.76	PK	74	19.24	75.03	28.76	5.35	54.38	-20.27
4874.00	42.50	AV	54	11.50	62.77	28.76	5.35	54.38	-20.27
7311.00	52.25	PK	74	21.75	65.88	34.40	6.83	54.86	-13.63
7311.00	39.93	AV	54	14.07	53.56	34.40	6.83	54.86	-13.63

Frequency(MHz):		2437		Polarity:		VERTICAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	55.68	PK	74	18.32	75.95	28.76	5.35	54.38	-20.27
4874.00	41.25	AV	54	12.75	61.52	28.76	5.35	54.38	-20.27
7311.00	54.05	PK	74	19.95	67.68	34.40	6.83	54.86	-13.63
7311.00	42.62	AV	54	11.38	56.25	34.40	6.83	54.86	-13.63

Frequency(MHz):		2462		Polarity:		HORIZONTAL			
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	55.32	PK	74	18.68	74.77	29.54	5.66	54.65	-19.45
4924.00	43.54	AV	54	10.46	62.99	29.54	5.66	54.65	-19.45
7386.00	52.45	PK	74	21.55	65.59	34.51	7.25	54.9	-13.14
7386.00	40.51	AV	54	13.49	53.65	34.51	7.25	54.9	-13.14

Frequency(MHz):		2462		Polarity:		VERTICAL			
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	55.85	PK	74	18.15	75.30	29.54	5.66	54.65	-19.45
4924.00	42.62	AV	54	11.38	62.07	29.54	5.66	54.65	-19.45
7386.00	51.71	PK	74	22.29	64.85	34.51	7.25	54.9	-13.14
7386.00	41.67	AV	54	12.33	54.81	34.51	7.25	54.9	-13.14

Report No.: GRCTR250302032-02

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- 4) The other emission levels were very low against the limit.
- 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Results of Band Edges Test (Radiated)

Note: 802.11b/802.11g/802.11n (H20) Mode all have been tested, only worse case 802.11b mode is reported.

Frequency(MHz):		2412		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	55.23	PK	74	18.77	79.95	25.72	4.32	54.76	-24.72
2390.00	39.20	AV	54	14.80	63.92	25.72	4.32	54.76	-24.72
2400.00	56.58	PK	74	17.42	80.84	25.73	4.33	54.75	-24.26
2400.00	41.40	AV	54	12.60	65.66	25.73	4.33	54.75	-24.26
Freque	ncy(MHz)	:	24	12	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	55.52	PK	74	18.48	80.24	25.72	4.32	54.76	-24.72
2390.00	38.86	AV	54	15.14	63.58	25.72	4.32	54.76	-24.72
2400.00	56.97	PK	74	17.03	81.23	25.73	4.33	54.75	-24.26
2400.00	41.49	AV	54	12.51	65.75	25.73	4.33	54.75	-24.26
Freque	ncy(MHz)	:	24	62	Polarity:		HORIZONTAL		۱L
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	54.66	PK	74	19.34	79.23	25.78	4.48	54.83	-24.57
2483.50	39.44	AV	54	14.56	64.01	25.78	4.48	54.83	-24.57
Freque	ncy(MHz)	:	24	62	Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	54.90	ΡK	74	19.10	79.47	25.78	4.48	54.83	-24.57
2483.50	38.00	AV	54	16.00	62.57	25.78	4.48	54.83	-24.57

Note:

1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.

2) Margin value = Limits-Emission level.

3) -- Mean the PK detector measured value is below average limit.

4) The other emission levels were very low against the limit.

5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

4.3 Maximum Conducted Output Power


<u>Limit</u>

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Туре	Channel	Output power PK (dBm)	Limit (dBm)	Result	
	01	7.85			
802.11b	06	7.57	30.00	Pass	
	11	7.90			
	01	7.83		Pass	
802.11g	06	7.87	30.00		
	11	7.30			
	01	7.52			
802.11n(HT20)	06	7.65	30.00	Pass	
	11	7.83			

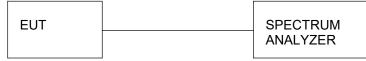
Note:

1) Measured output power at difference data rate for each mode and recorded worst case for each mode.

Test results including cable loss.
Worst case data at 1Mbps at IEEI

3) Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20.

4.4 Power Spectral Density


<u>Limit</u>

The resulting peak PSD level shall not be greater than 8 dBm/3KHz.

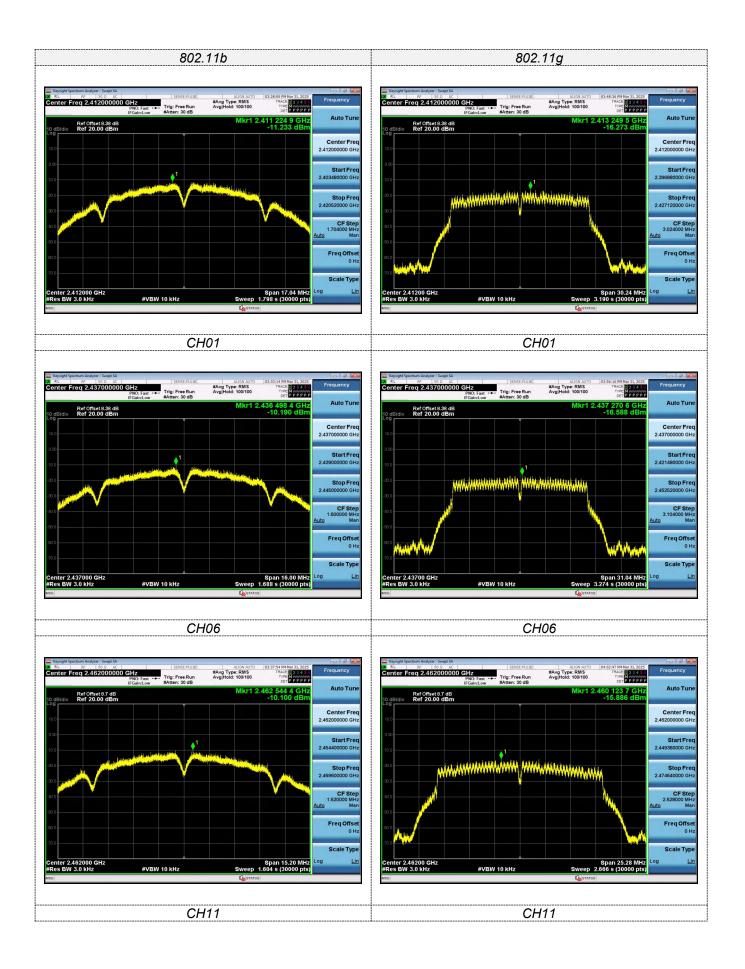
Test Procedure

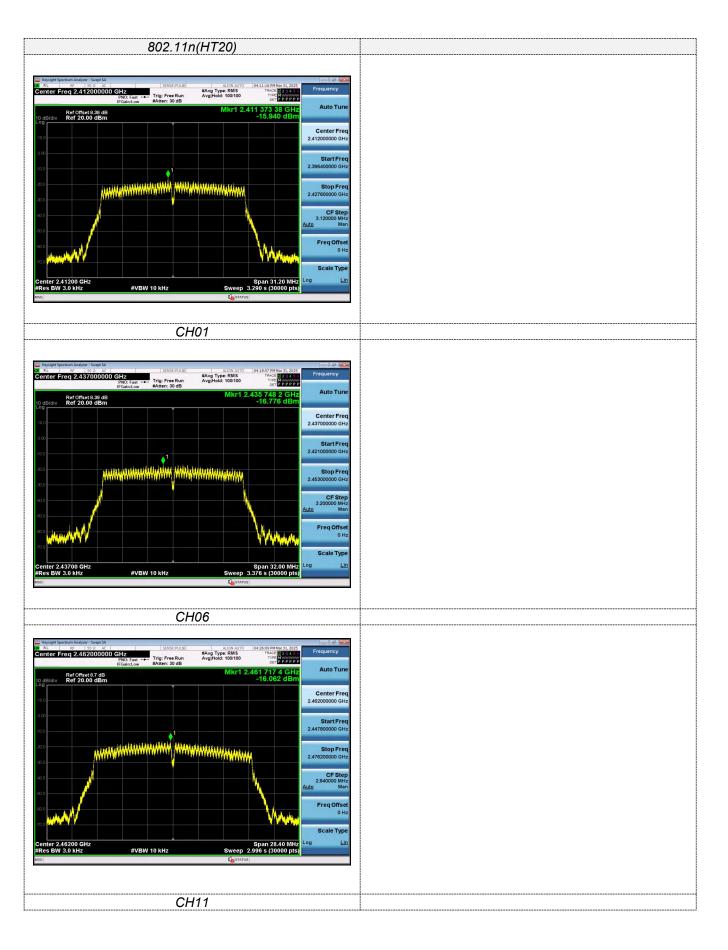
- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \ge 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level shall not be greater than 8 dBm/3KHz.

Test Configuration

Test Results

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result	
	01	-11.23			
802.11b	06	-10.19	8.00	Pass	
	11	-10.10			
	01	-16.27			
802.11g	06	-16.59	8.00	Pass	
	11	-15.89			
	01	-15.94			
802.11n(HT20)	06	-16.78	8.00	Pass	
	11	-16.06]		


Note:


1) Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode.

2) Test results including cable loss;

3) Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20.

Please refer to following plots;

4.5 6dB Bandwidth

<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

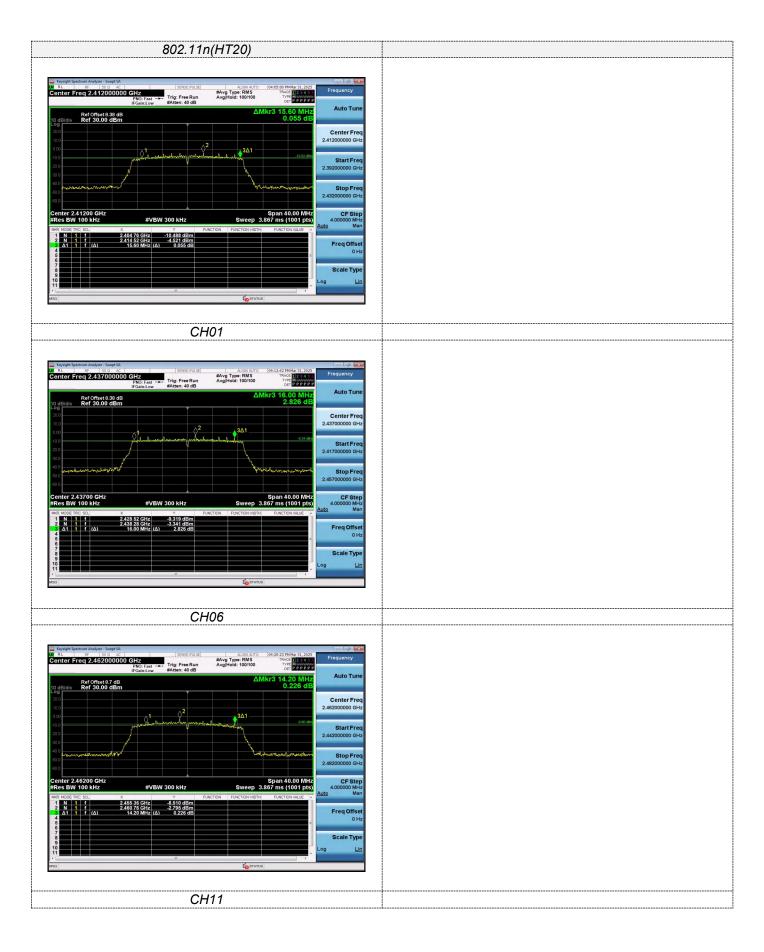
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result	
	01	8.520			
802.11b	06	8.000	≥500	Pass	
	11	7.600			
	01	15.120			
802.11g	06	15.520	≥500	Pass	
	11	14.680			
	01	15.600			
802.11n(HT20)	06	16.000	≥500	Pass	
	11	14.200			

Note:

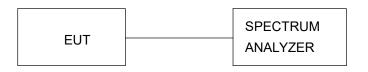

1) Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode.

2) Test results including cable loss;

3) Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20.

Please refer to following plots;

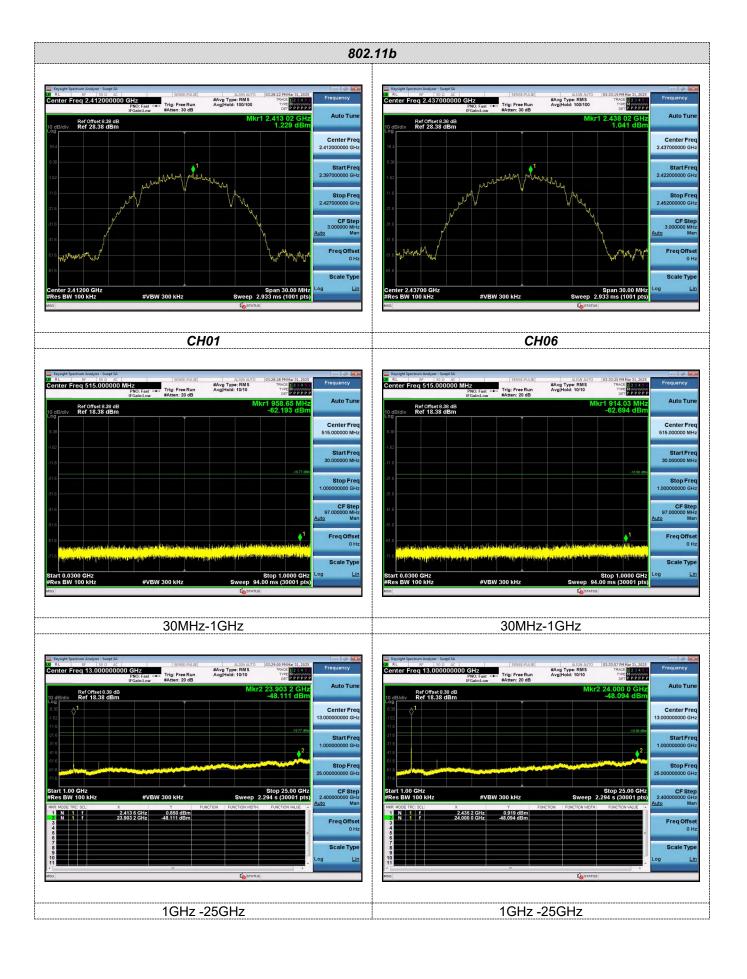
4.6 Out-of-band Emissions

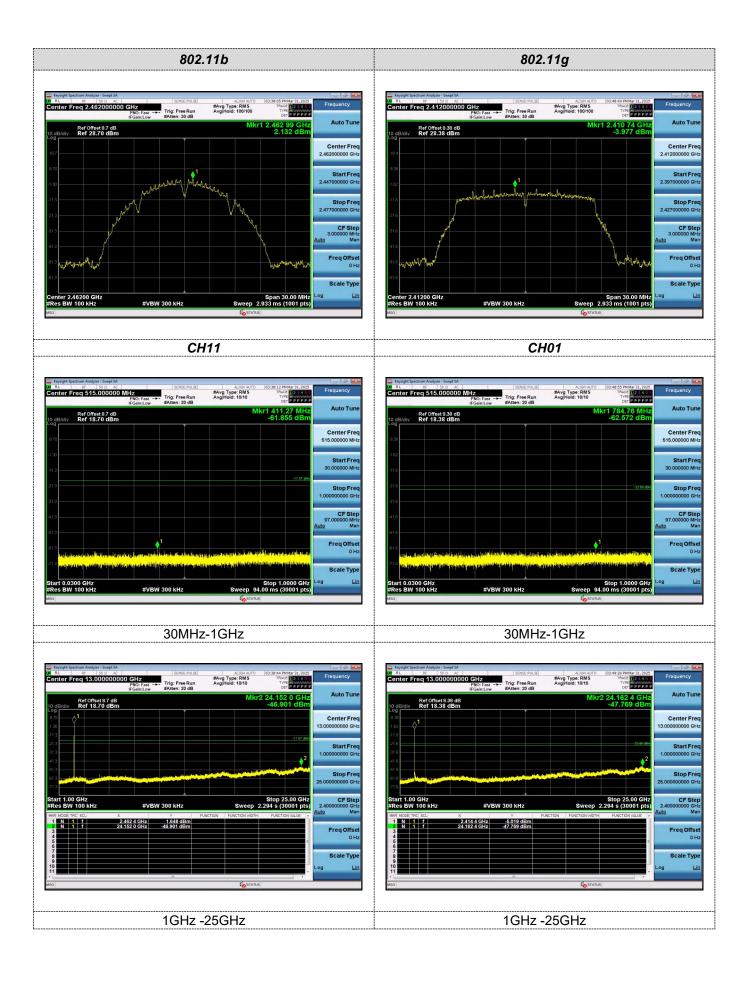

<u>Limit</u>

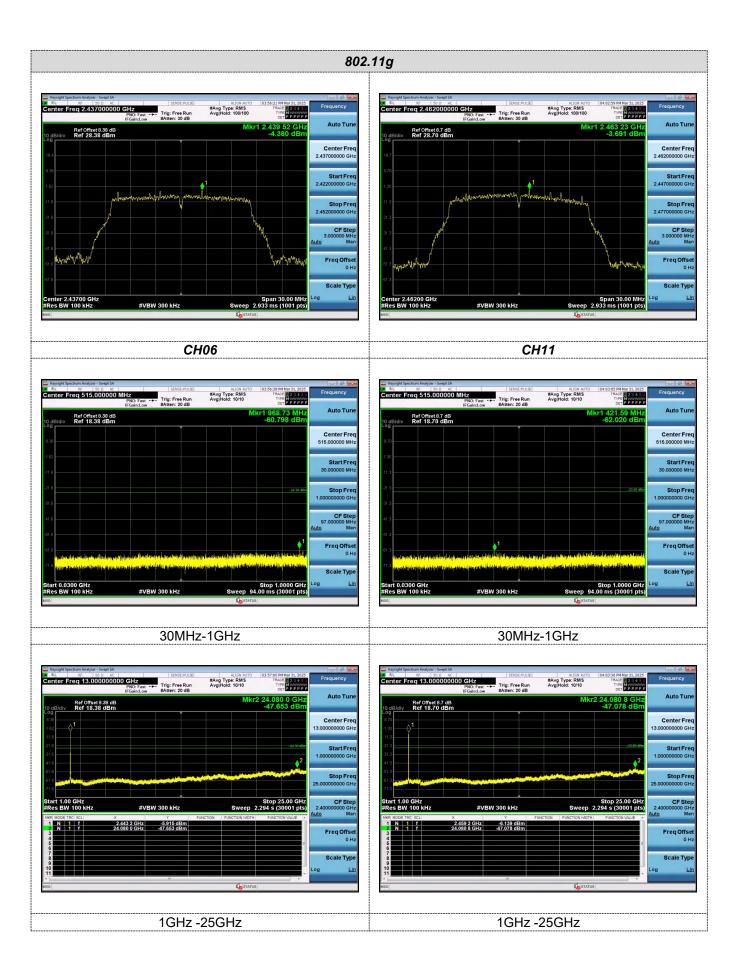
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

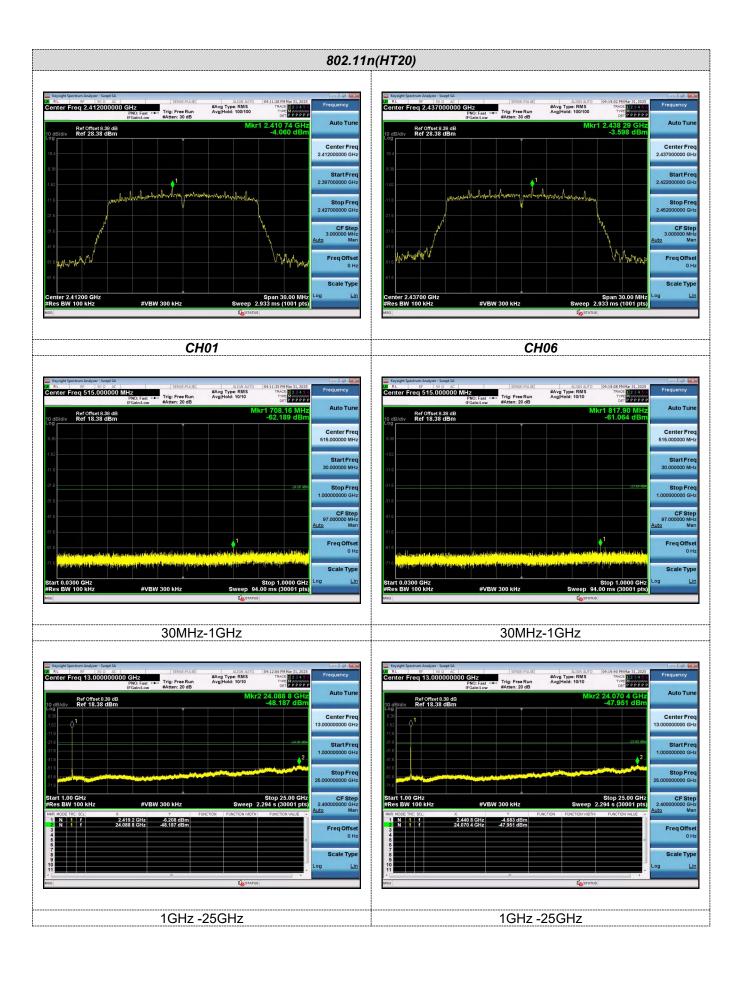
Test Procedure

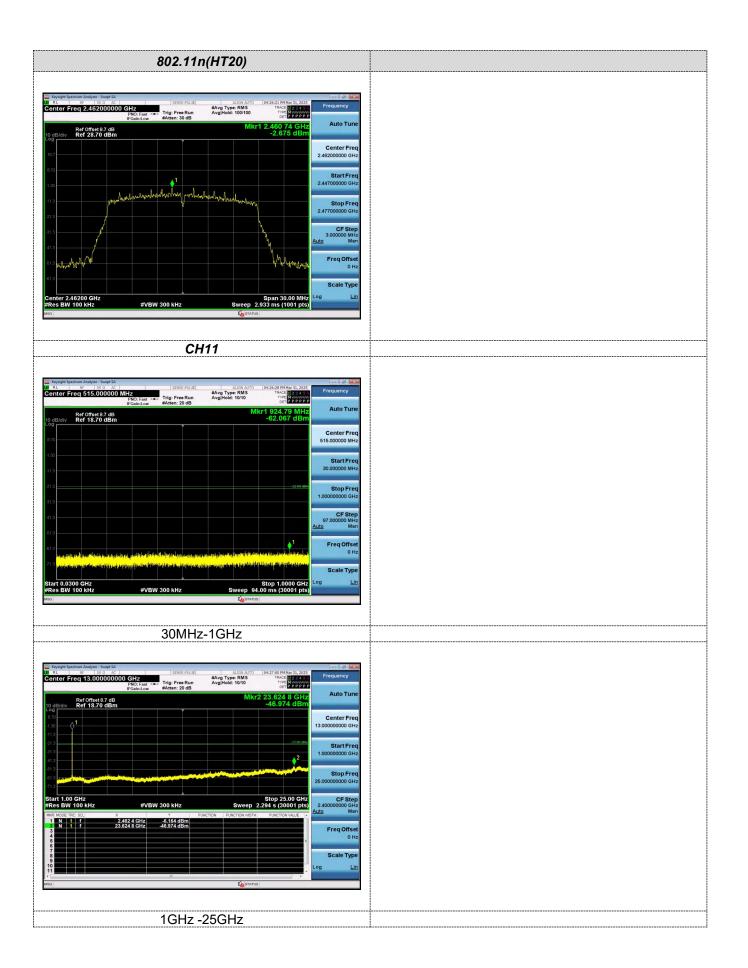
Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector , and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

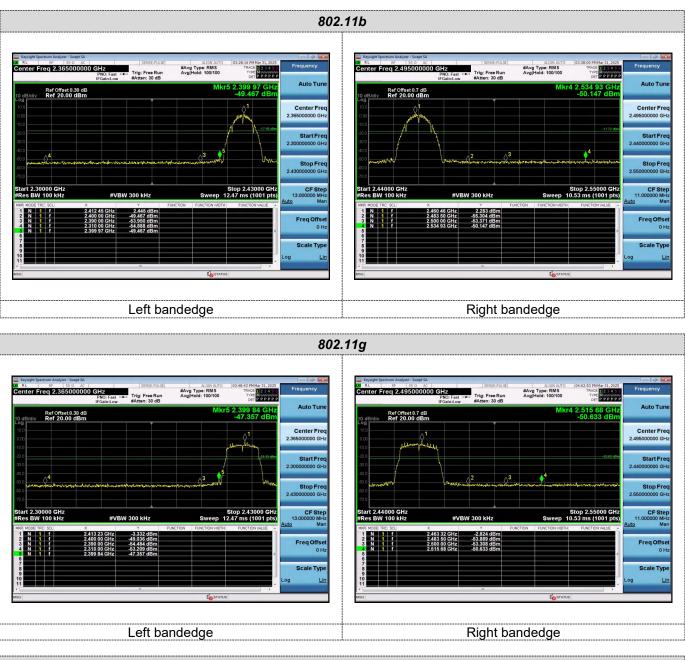

Test Configuration

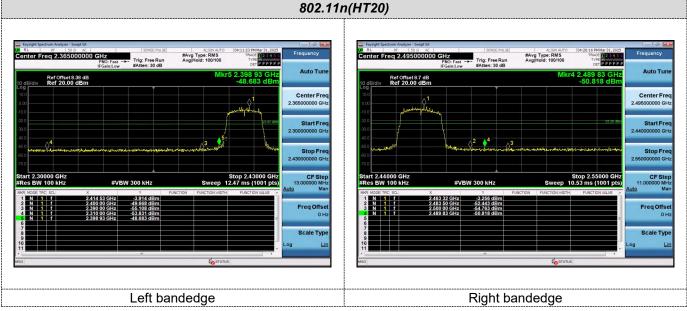



Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data. And record the worst data in the report.


Test plot as follows:





Report No.: GRCTR250302032-02

Band-edge Measurements for RF Conducted Emissions:

4.7 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result:

The maximum gain of antenna was 2.58 dBi.

Remark:The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen GUOREN Certification Technology Service Co., Ltd. does not assume any responsibility.

5 Test Setup Photos of the EUT

6 Photos of the EUT

Reference to the test report No. GRCTR250302032-02.