

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... CTA22011400601 FCC ID.....: : HLEMS836BGM

(position+printed name+signature)..: File administrators Kevin Liu

Kerm. Lin

CTATESTIN

Supervised by

Project Engineer Kevin Liu (position+printed name+signature)...

(position+printed name+signature)... RF Manager Eric Wang

Testing Laboratory NameShenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Address......Fuhai Street, Bao'an District, Shenzhen, China

5F,No. 136,Lane 235,Pao-Chiao Rd.,Hsin-Tien Dist.,New Taipei City, Address

Taiwan

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Equipment description...... 2.4G Wireless Laser Barcode Scanner

Trade MarkUnitech

Manufacturer Unitech electronics co., ltd.

Model/Type reference......MS836B

Listed ModelsN/A

Modulation: GFSK

Frequency...... From 2402MHz to 2480MHz

Ratings DC 3.70V from battery and DC 5V from external circuit

Result.....: **PASS**

Report No.: CTA22011400601 Page 2 of 37

TEST REPORT

CTA TESTING **Equipment under Test** 2.4G Wireless Laser Barcode Scanner

Model /Type MS836B

Listed Models N/A

Applicant Unitech electronics co., ltd.

5F,No. 136,Lane 235,Pao-Chiao Rd.,Hsin-Tien Dist.,New Taipei City, Address

Taiwan

Manufacturer Unitech electronics co., ltd.

5F,No. 136,Lane 235,Pao-Chiao Rd.,Hsin-Tien Dist.,New Taipei City, Address

Taiwan

Test Result: **PASS**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: CTA22011400601 Page 3 of 37

Contents

		Cont	tents	
		TES!"		
	1 C	TEST STANDARDS	<u> </u>	<u> 4</u>
	2	SUMMARY		5
	_		TES!"	
	2.1	General Remarks	CTATES CTATES	5
	2.2	Product Description		5
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment under 1	Test (FUT)	5
	2.5	EUT operation mode	. 551 (251)	6
	2.6	Block Diagram of Test Setup		6
	2.7	Related Submittal(s) / Grant (s)		6
	2.8	Modifications		6
		TES!"		
	_			_
	<u>3</u>	TEST ENVIRONMENT		<u> 7</u>
			ATES	
	3.1	Address of the test laboratory	C/L	7
	3.2	Test Facility		7
	3.3	Environmental conditions		7
	3.4	Summary of measurement results	TATE!	8
	3.5	Statement of the measurement uncertainty		8
	3.6	Equipments Used during the Test		9
		and and an area of the second and area of the second area of the second and area of the second and area of the second area of the second and area of the second and area of the second area of the second and area of the second area of the second and area of the second area		_
		cil		
	<u>4</u>	TEST CONDITIONS AND RESUL	<u>TS</u>	10
	4.1	AC Power Conducted Emission		10
	4.2	Radiated Emissions and Band Edge		13
	4.3	Maximum Peak Output Power	ESTIN	20
	4.4	Power Spectral Density		21
	4.5	6dB Bandwidth	CI	23
	4.6	Out-of-band Emissions	CTATESTING	25
	4.7	Antenna Requirement		29
		•		
	-ING	TEAT AETUR RUATAA AE TUE 1		No. 123 manifesta
	<u> </u>	TEST SETUP PHOTOS OF THE E	<u> </u>	30
CTAIL				
CTATE	6	PHOTOS OF THE EUT		31
	_	ATE	· Ca	
				5111
			CTATESTING CTATES	

Page 4 of 37 Report No.: CTA22011400601

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 CTATESTING

Report No.: CTA22011400601 Page 5 of 37

SUMMARY

General Remarks

CIATES			
2.1 General Remarks			
Date of receipt of test sample		Jan. 06, 2022	TESTING
Testing commenced on		Jan. 06, 2022	CTA
Testing concluded on	:	Jan. 19, 2022	

2.2 Product Description

Testing commenced on	: Jan. 06, 2022					
Testing concluded on	: Jan. 19, 2022					
2.2 Product Descrip	tion					
Product Description:	2.4G Wireless Laser Barcode Scanner					
Model/Type reference:	MS836B					
Power supply:	DC 3.70V from battery and DC 5V from external circuit					
Adapter information (Auxiliary test supplied by testing Lab):	Model: EP-TA20CBC Input:AC 100-240V 50/60Hz Output:DC 5V 2A					
Testing sample ID: CTA220114006-1# (Engineer sample), CTA220114006-2# (Normal sample)						
Bluetooth BLE						
Supported type:	Bluetooth low Energy					
Modulation:	GFSK					
Operation frequency:	2402MHz to 2480MHz					
Channel number:	40					
Channel separation:	2 MHz					
Antenna type:	PCB antenna					
Antenna gain:	0.00 dBi					

2.3 Equipment Under Test

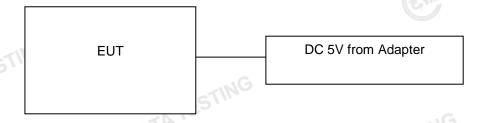
Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz		120V / 60Hz
(EVI)		0	12 V DC	0	24 V DC
		0	Other (specified in blank be	low	ING
DC 3.70	V fro	om	battery and DC 5V from exte	rnal	circuit
2.4 Short description of the	E	qui	pment under Test (EU	T)	
This is a 2.4G Wireless Laser Barcon	de S	Scar	ner		

Short description of the Equipment under Test (EUT)

This is a 2.4G Wireless Laser Barcode Scanner. For more details, refer to the user's manual of the EUT. CTATEST

Report No.: CTA22011400601 **Page 6 of 37**


2.5 **EUT** operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

	- 1	
	Channel	Frequency (MHz)
	00	2402
	01	2404
	02	2406
TATES	16	i i
CIL	19	2440
j	TATES	.s.iG
	37	2476
	38	2478
	39	2480

2.6 Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

Report No.: CTA22011400601 **Page 7 of 37**

3 TEST ENVIRONMENT

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: CTATESTING

Radiated Emission:

Temperature:	23 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

Temperature:	24 ° C		
- 1			
Humidity:	47 %		
TES			
Atmospheric pressure:	950-1050mbar		

Conducted testina:

oonaaotoa tooting.	
Temperature:	24 ° C
Humidity:	46 %
Atmospheric pressure:	950-1050mbar
CTATESTING	TATESTING

Report No.: CTA22011400601 **Page 8 of 37**

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
§15.247(e)	Power spectral density	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs	☑ Lowest☑ Highest	complies
§15.205	Band edge compliance radiated	BLE 1Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs	☑ Lowest☑ Highest	complies
§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	'ING -/-	BLE 1Mpbs	-/-	complies

Remark:

- The measurement uncertainty is not included in the test result. 1.
- 2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

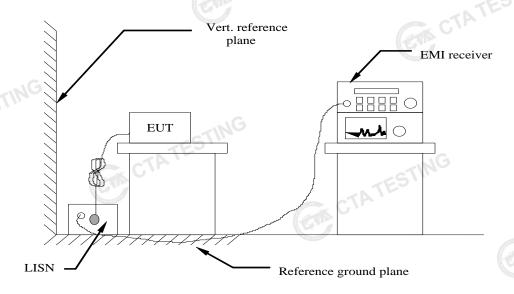
Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: CTA22011400601 Page 9 of 37

3.6 Equipments Used during the Test


	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
-	LISN	R&S	ENV216	CTA-308	2021/08/06	2022/08/0
	LISN	R&S	ENV216	CTA-314	2021/08/06	2022/08/0
	EMI Test Receiver	R&S	ESPI	CTA-307	2021/08/06	2022/08/0
TE	EMI Test Receiver	R&S	ESCI	CTA-306	2021/08/06	2022/08/0
b.,	Spectrum Analyzer	Agilent	N9020A	CTA-301	2021/08/06	2022/08/0
	Spectrum Analyzer	R&S	FSP	CTA-337	2021/08/06	2022/08/0
	Vector Signal generator	Agilent	N5182A	CTA-305	2021/08/06	2022/08/0
	Analog Signal Generator	R&S	SML03	CTA-304	2021/08/06	2022/08/0
	Universal Radio Communication	CMW500	R&S	CTA-302	2021/08/06	2022/08/0
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2021/08/06	2022/08/0
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2022/08/0
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2022/08/0
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2022/08/
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/06	2022/08/
•	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2021/08/06	2022/08/0
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2021/08/06	2022/08/0
	Directional coupler	NARDA	4226-10	CTA-303	2021/08/06	2022/08/0
75	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2021/08/06	2022/08/
1	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2021/08/06	2022/08/
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2021/08/06	2022/08/
	Power Sensor	Agilent	U2021XA	CTA-405	2021/08/06	2022/08/0
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2021/08/06	2022/08/0
					CTAN CT	ATES

Report No.: CTA22011400601 Page 10 of 37

TEST CONDITIONS AND RESULTS

AC Power Conducted Emission

TEST CONFIGURATION

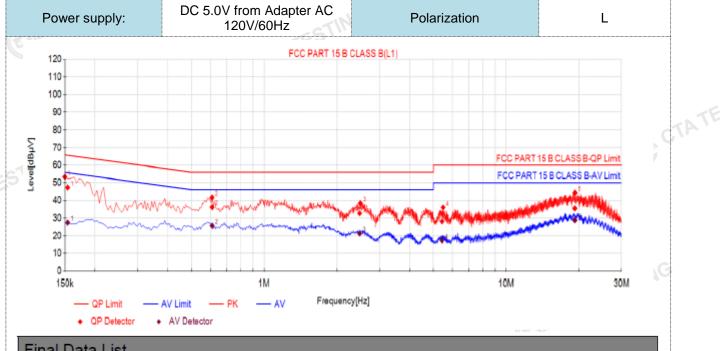
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Eroguenov ronge	o (M∐→)	Limit ((dBuV)	
Frequency range	e (IVITZ)	Quasi-peak	Average	
0.15-0.5		66 to 56*	56 to 46*	
0.5-5		56	46	
5-30		60	50	
* Decreases with the logar	rithm of the frequency.	STINE		
TEST RESULTS Remark:	CTAT	Es	ESTING	

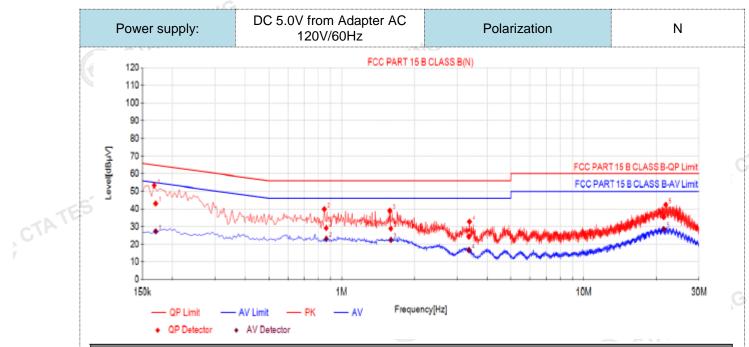

TEST RESULTS

Remark:

1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel was reported as below:

Report No.: CTA22011400601 Page 11 of 37

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



Fin	al Data Lis	st									
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.1542	10.50	36.78	47.28	65.77	18.49	16.99	27.49	55.77	28.28	PASS
2	0.6096	10.50	25.79	36.29	56.00	19.71	15.16	25.66	46.00	20.34	PASS
3	2.4828	10.50	22.18	32.68	56.00	23.32	10.77	21.27	46.00	24.73	PASS
4	5.4371	10.50	17.68	28.18	60.00	31.82	6.92	17.42	50.00	32.58	PASS
5	19.2422	10.50	25.08	35.58	60.00	24.42	18.36	28.86	50.00	21.14	PASS

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV)

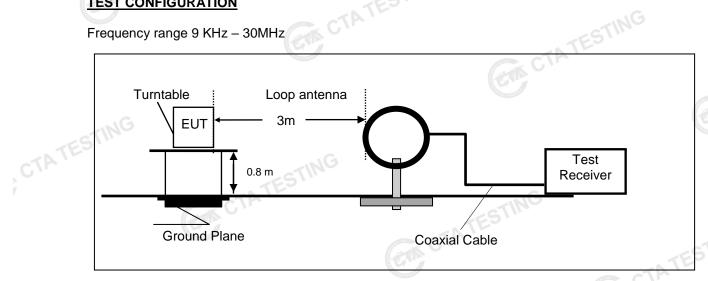
CTA TESTING

Report No.: CTA22011400601 Page 12 of 37

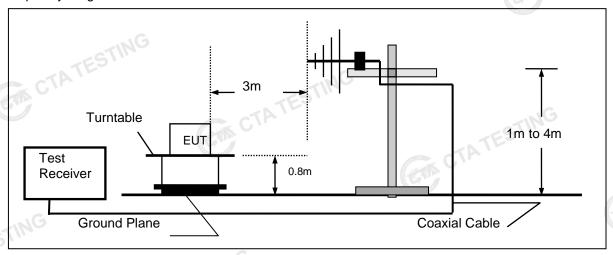
	Final	Data Lis	st									
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict
	1	0.1705	10.50	32.66	43.16	64.93	21.77	16.84	27.34	54.93	27.59	PASS
	2	0.8635	10.50	18.73	29.23	56.00	26.77	12.53	23.03	46.00	22.97	PASS
	3	1.5962	10.50	18.45	28.95	56.00	27.05	12.00	22.50	46.00	23.50	PASS
	4	3.3586	10.50	13.90	24.40	56.00	31.60	6.22	16.72	46.00	29.28	PASS
	5	21.4099	10.50	24.90	35.40	60.00	24.60	18.18	28.68	50.00	21.32	PASS
1	5 21.4099 10.50 24.90 35.40 60.00 24.60 18.18 28.68 50.00 21.32 PASS Note:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)											

CTATE

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

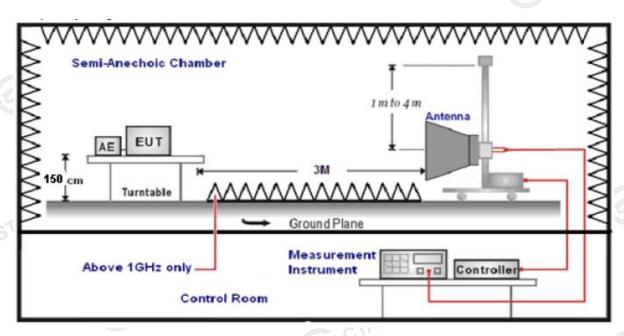

CTA TESTING

Report No.: CTA22011400601 Page 13 of 37


Radiated Emissions and Band Edge

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Page 14 of 37 Report No.: CTA22011400601

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	Control
30MHz-1GHz	Ultra-Broadband Antenna	3	A TA
1GHz-18GHz	Double Ridged Horn Antenna	3	The state of the s
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
D L L L L L L L L L L L L L L L L L L L	Peak Value: RBW=1MHz/VBW=3MHz,	TING
1GHz-40GHz	Sweep time=Auto	Peak
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,	reak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Report No.: CTA22011400601 Page 15 of 37

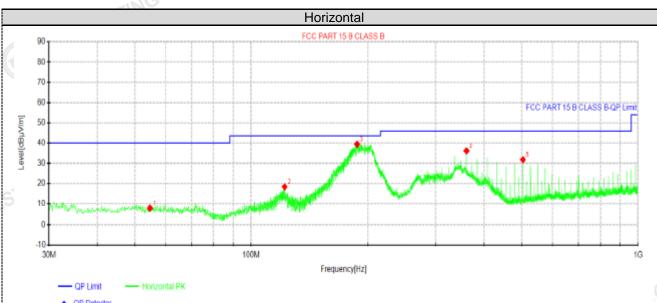
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

TATE	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
CIL	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
,	1.705-30	3	20log(30)+ 40log(30/3)	30
	30-88	3	40.0	100
	88-216	3	43.5	150
	216-960	3	46.0	200
	Above 960	3	54.0	500


TEST RESULTS

Remark:

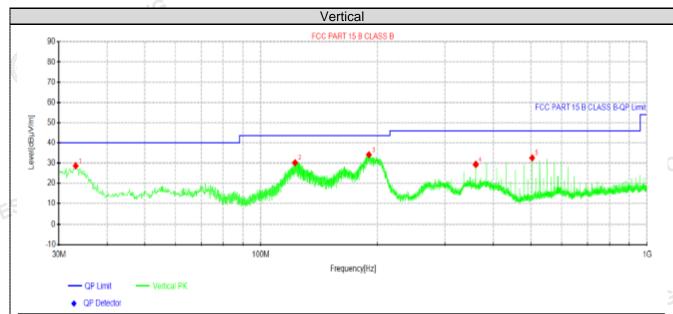
- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTATESTING

For 30MHz-1GHz

Report No.: CTA22011400601 Page 16 of 37

٠	OP	Det	ledk	Y

CTATESTING


Suspe	Suspected Data List													
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolorite					
NO.	[MHz]	[dBµ∨]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity					
1	54.735	24.90	7.82	-17.08	40.00	32.18	100	47	Horizontal					
2	122.028	38.88	18.38	-20.50	43.50	25.12	100	156	Horizontal					
3	187.746	59.46	39.41	-20.05	43.50	4.09	100	172	Horizontal					
4	360.042	52.09	36.15	-15.94	46.00	9.85	100	360	Horizontal					
5	503.966	46.03	31.79	-14.24	46.00	14.21	100	210	Horizontal					

TATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA22011400601 Page 17 of 37

Suspe	Suspected Data List													
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolorit					
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity					
1	33.1525	46.79	28.60	-18.19	40.00	11.40	100	204	Vertical					
2	122.635	50.74	30.18	-20.56	43.50	13.32	100	227	Vertical					
3	190.413	53.99	34.11	-19.88	43.50	9.39	100	196	Vertical					
4	360.042	45.24	29.30	-15.94	46.00	16.70	100	158	Vertical					
5	503.966	46.79	32.55	-14.24	46.00	13.45	100	142	Vertical					

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATESTING

Page 18 of 37 Report No.: CTA22011400601

For 1GHz to 25GHz

GFSK (above 1GHz)

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	57.49	PK	74	16.51	61.76	32.33	5.12	41.72	-4.27	
4804.00	42.98	AV	54	11.02	47.25	32.33	5.12	41.72	-4.27	
7206.00	52.66	PK	74	21.34	53.18	36.6	6.49	43.61	-0.52	
7206.00	40.79	AV	54	13.21	41.31	36.6	6.49	43.61	-0.52	

Freque	ncy(MHz)	:	2402		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	56.96	PK	74	17.04	61.23	32.33	5.12	41.72	-4.27
4804.00	43.15	AV	54	10.85	47.42	32.33	5.12	41.72	-4.27
7206.00	52.35	PK	74	21.65	52.87	36.6	6.49	43.61	-0.52
7206.00	40.67	AV	54	13.33	41.19	36.6	6.49	43.61	-0.52

Freque	ncy(MHz)	:	2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	56.33	PK	74	17.67	60.21	32.6	5.34	41.82	-3.88
4880.00	42.68	AV	54	11.32	46.56	32.6	5.34	41.82	-3.88
7320.00	51.38 PK		74	22.62	51.49	36.8	6.81	43.72	-0.11
7320.00	39.96	AV	54	14.04	40.07	36.8	6.81	43.72	-0.11

Name of the last o			C	P			-IN	G	
Frequency(MHz):		2440		Polarity:		VERTICAL		•	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	56.84	PK	74	17.16	60.72	32.6	5.34	41.82	-3.88
4880.00	42.80	AV	54	11.20	46.68	32.6	5.34	41.82	-3.88
7320.00	51.40	PK	74	22.60	51.51	36.8	6.81	43.72	-0.11
7320.00	40.05	ΑV	54	13.95	40.16	36.8	6.81	43.72	-0.11
			STIN						

Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	57.19	PK	74	16.81	60.27	32.73	5.66	41.47	-3.08
4960.00	42.24	AV	54	11.76	45.32	32.73	5.66	41.47	-3.08
7440.00	51.09	PK	74	22.91	50.64	37.04	7.25	43.84	0.45
7440.00	40.60	PK	54	13.40	40.15	37.04	7.25	43.84	0.45

Frequency(MHz):		2480		Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	57.61	PK	74	16.39	60.69	32.73	5.66	3 41.47	-3.08
4960.00	42.66	AV	54	11.34	45.74	32.73	5.66	41.47	-3.08
7440.00	50.71	PK	74	23.29	50.26	37.04	7.25	43.84	0.45
7440.00	40.40	PK	54	13.60	39.95	37.04	7.25	43.84	0.45

Report No.: CTA22011400601 Page 19 of 37

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Frequency(MHz):		24	02	Pola	Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	57.60	PK	74	16.40	68.02	27.42	4.31	42.15	-10.42	
2390.00	41.33	AV	54	12.67	51.75	27.42	4.31	42.15	-10.42	
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	-	
Frequency (MHz)	100	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	57.00	PK	74	17.00	67.42	27.42	4.31	42.15	-10.42	
2390.00	41.49	AV	54	12.51	51.91	27.42	4.31	42.15	-10.42	
Freque	Frequency(MHz):		2480		P olarity:		HORIZONTAL			
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	57.73	PK	74	16.27	67.84	27.7	4.47	42.28	-10.11	
2483.50	40.08	AV	54	13.92	50.19	27.7	4.47	42.28	-10.11	
Freque	ncy(MHz)	:	2480		Polarity:		VERTICAL		•	
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	57.92	PK	74	16.08	68.03	27.7	4.47	42.28	-10.11	
2483.50	40.71	AV	54	13.29	50.82	27.7	4.47	42.28	-10.11	
 Correction Margin v 	n level (dB on Factor (alue = Lin	(dB/m) = / nit value-	Raw Value (dE Antenna Fact Emission leve	or (dB/m)+Ca el.	able Factor		nplifier		CTP CTP	

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Report No.: CTA22011400601 Page 20 of 37

Maximum Peak Output Power 4.3

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Test Results		CTATES!		A TESTING
Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-1.21		
GFSK 1Mbps	19	-1.78	30.00	Pass
TATEST	39	-2.63		

Note: 1.The test results including the cable lose.S

Report No.: CTA22011400601 Page 21 of 37

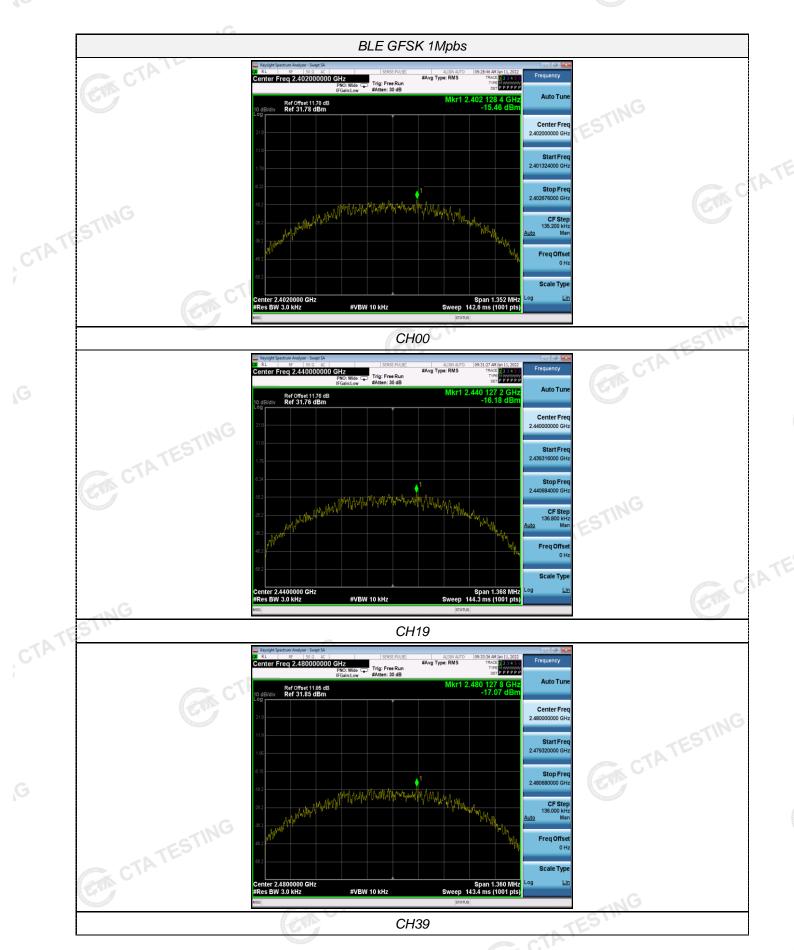
Power Spectral Density

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.


Test Configuration

Test Results

	Type	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	STIM	00	-15.46		12000
CTATE	GFSK 1Mbps	19	-16.18	8.00	Pass
C		39	-17.07		
1	Test plot as follows	SI- CTATES			
					CTATES

Report No.: CTA22011400601 Page 22 of 37

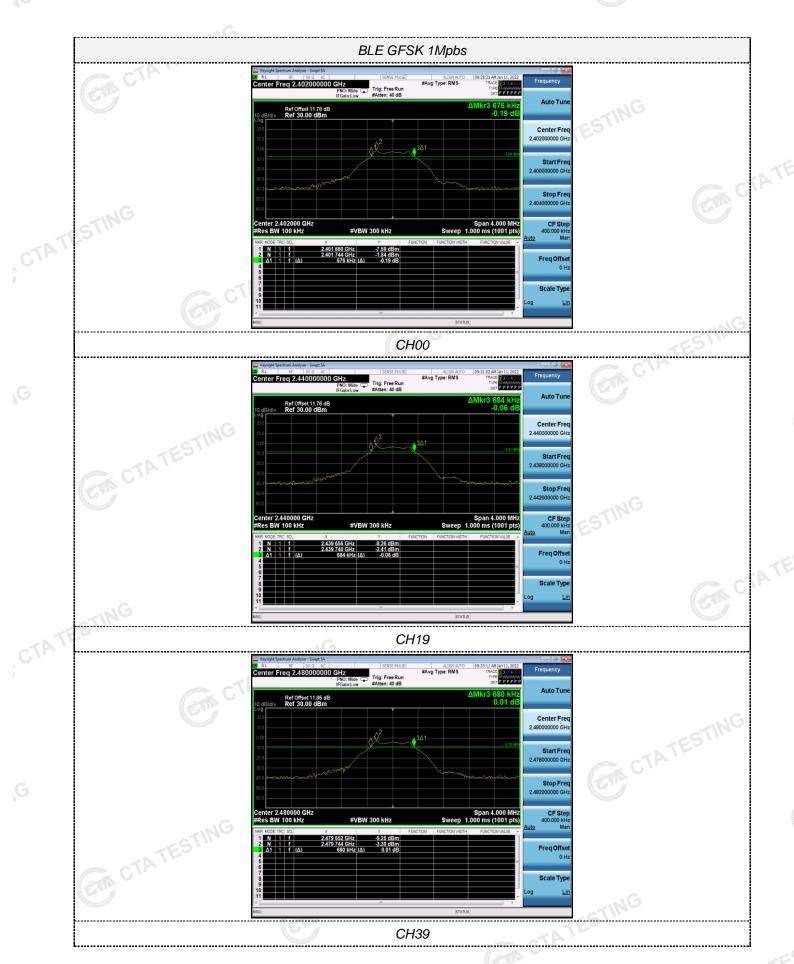
Report No.: CTA22011400601 Page 23 of 37

4.5 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure


The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

CAN		ANALYZI	ER	
Test Results				CTATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	00	0.676		
GFSK 1Mbps	19	0.684	≥500	Pass
TATES	39	0.680		
Test plot as follows:	Com C	TATESTING	CTATESTIN	G

Report No.: CTA22011400601 Page 25 of 37

Out-of-band Emissions 4.6

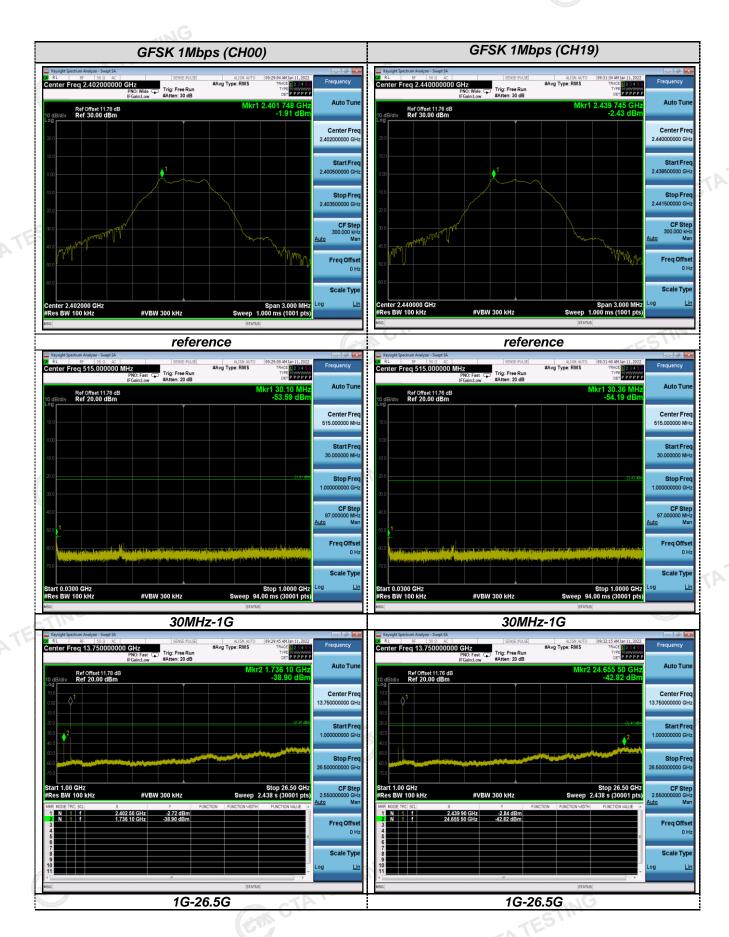
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

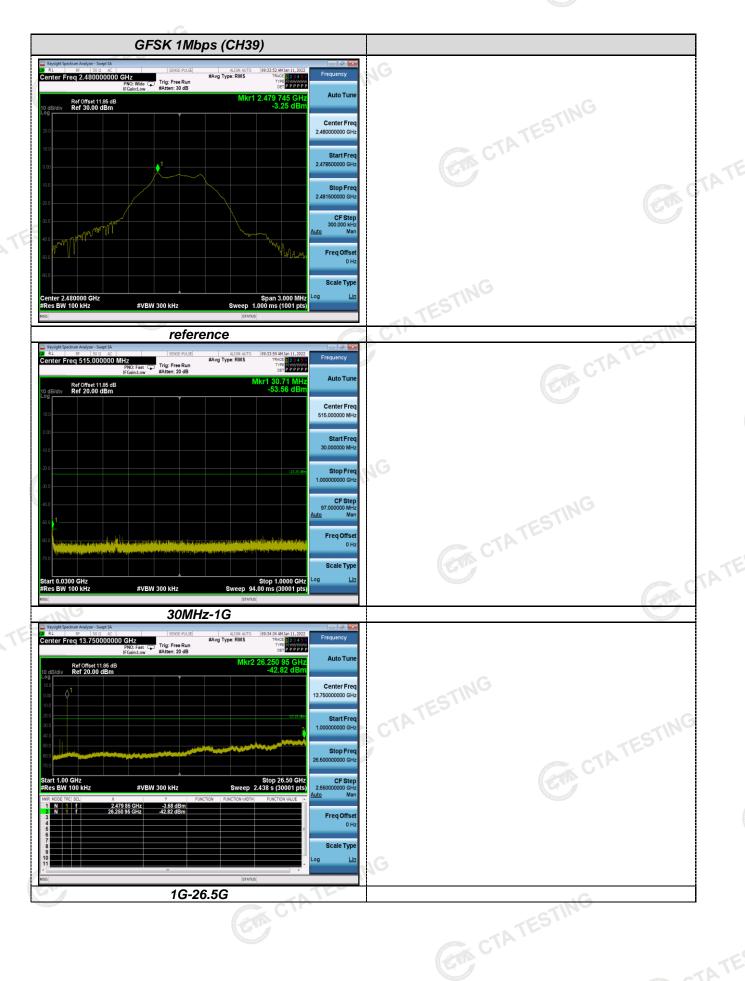
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

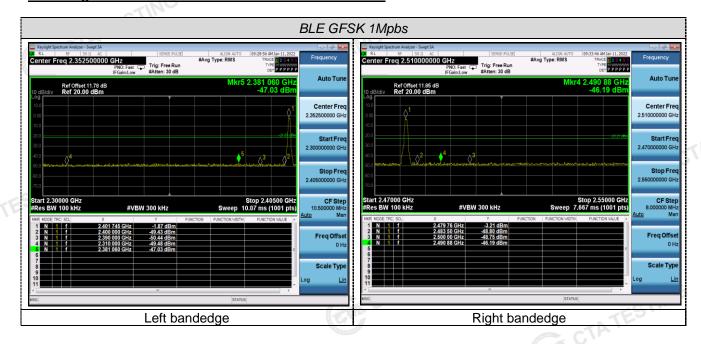


Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Test plot as follows: CTATESTING

Report No.: CTA22011400601 Page 26 of 37



Report No.: CTA22011400601 Page 27 of 37

Report No.: CTA22011400601 Page 28 of 37

Band-edge Measurements for RF Conducted Emissions:

Report No.: CTA22011400601 Page 29 of 37

Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

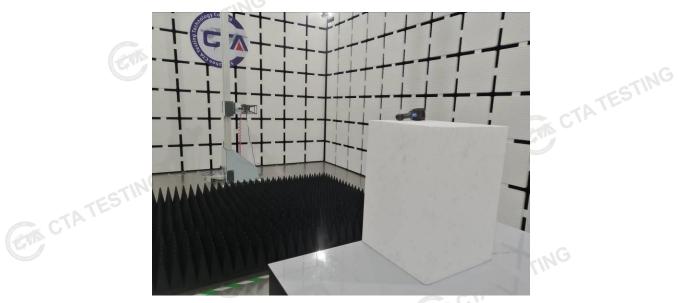
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 0.00 dBi.


Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATESTING

Page 30 of 37 Report No.: CTA22011400601

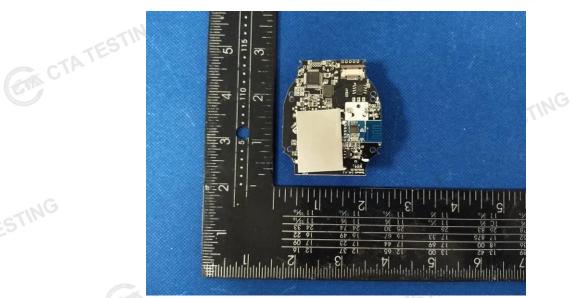
Test Setup Photos of the EUT

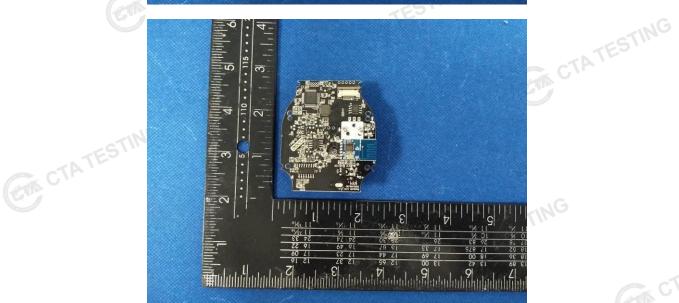
Page 31 of 37 Report No.: CTA22011400601

Photos of the EUT

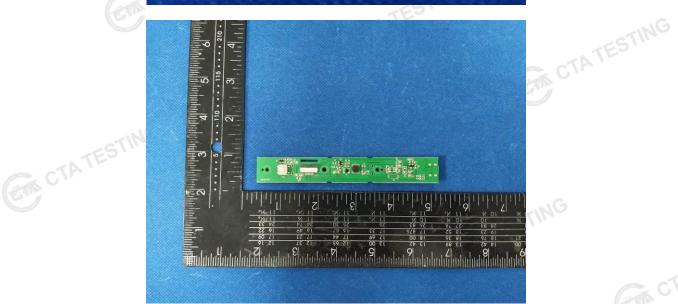
Page 32 of 37 Report No.: CTA22011400601

Report No.: CTA22011400601 Page 33 of 37


Report No.: CTA22011400601 Page 34 of 37




Page 35 of 37 Report No.: CTA22011400601



Report No.: CTA22011400601 Page 36 of 37

Report No.: CTA22011400601 Page 37 of 37

