Ref: ACR 60 2.21 MVGB A Report No.: S23082106602001 #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. # 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. # 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. # 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. # 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | |----------------------|-------------------------------------|--| | 400 - 6000MHz | 0.08 LIN | | # 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 0 - 300 | 0.20 mm | | 300 - 450 | 0.44 mm | # 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| |-------------|----------------------| Page: 5/10 Certificate #4298.01 Page 162 of 222 Report No.: S23082106602001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.2.21.MVGB.A | 1 g | 19 % (SAR) | |------|------------| | 10 g | 19 % (SAR) | # CALIBRATION MEASUREMENT RESULTS # RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------| | 750 | -23.80 | -20 | 56.4 Ω - 0.1 jΩ | # 6.2 MECHANICAL DIMENSIONS | Frequency MHz | Lm | L mm h mm d mm | | h mm | | nm | |---------------|-------------|----------------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | - | 100.0 ±1 %. | - | 6.35 ±1 %. | - | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | Page: 6/10 age 163 of 222 Report No.: S23082106602001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR 60.2.21 MVGB A | 2600 | 48.5 ±1 %. | 28.8 ±1 %. | 3.6 ±1 | . %. | |------|------------|------------|--------|------| | 3000 | 41.5 ±1 %. | 25.0 ±1 %. | 3.6 ±1 | . %. | | 3500 | 37.0±1 %. | 26.4 ±1 %. | 3.6 ±1 | . %. | | 3700 | 34.7±1 %. | 26.4 ±1 %. | 3.6 ±1 | . %. | # 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 7.1 MEASUREMENT CONDITION | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 41.8 sigma: 0.82 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 750750 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | # 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ε,') | | Conductiv | ity (σ) S/m | |------------------|-----------------------------|----------|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | 41.8 | 0.89 ±10 % | 0.82 | | 835 | 41.5 ±10 % | | 0.90 ±10 % | | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 40.5 ±10 % | | 1.20 ±10 % | | | 1500 | 40.4 ±10 % | | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10 % | | 1.37 ±10 % | | | 1800 | 40.0 ±10 % | | 1.40 ±10 % | | | 1900 | 40.0 ±10 % | | 1.40 ±10 % | | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | Page: 7/10 Ref: ACR.60.2.21.MVGB.A | 2100 | 39.8 ±10 % | 1.49 ±10 % | | |------|------------|------------|--| | 2300 | 39.5 ±10 % | 1.67 ±10 % | | | 2450 | 39.2 ±10 % | 1.80 ±10 % | | | 2600 | 39.0 ±10 % | 1.96 ±10 % | | | 3000 | 38.5 ±10 % | 2.40 ±10 % | | | 3500 | 37.9 ±10 % | 2.91 ±10 % | | # 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR | (W/kg/W) | |------------------|------------------|-------------|----------|-------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | 8.53 (0.85) | 5.55 | 5.56 (0.56) | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | ## SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.2.21.MVGB.A Certificate #4298.01 Page 166 of 222 Report No.: S23082106602001 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.2.21.MVGB.A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | SAM Phantom | MVG | SN-13/09-SAM68 | | Validated. No cal
required. | | | | COMOSAR Test Bench | Version 3 | NA | | Validated. No cal
required. | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | | | Reference Probe | MVG | EPGO333 SN 41/18 | 05/2020 | 05/2021 | | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | | | # **SAR Reference Dipole Calibration Report** Ref: ACR.60.3.21.MVGB.A # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE > FREQUENCY: 835 MHZ SERIAL NO.: SN 03/15 DIP0G835-347 # Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise - 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 03/01/2021 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr # Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the
International System of Units (SI). # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.3.21.MVGB.A | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 3/1/2021 | JES | | Checked by : | Jérôme Luc | Technical Manager | 3/1/2021 | JES | | Approved by: | Yann Toutain | Laboratory Director | 3/1/2021 | Gann Toutain | Mode d'emplei 2021.03.0 1 13:09:12 +01'00' Customer Name SHENZHEN NTEK TESTING Distribution: TECHNOLOGY CO., LTD. | Issue | Name | Date | Modifications | |-------|------------|----------|-----------------| | A | Jérôme Luc | 3/1/2021 | Initial release | | | | | | | | | | | | | | | | Ref: ACR.60.3.21.MVGB.A Report No.: S23082106602001 # TABLE OF CONTENTS | I | Intr | oduction4 | | |---|------|-----------------------------|---| | 2 | Dev | rice Under Test | | | 3 | Pro | duct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | asurement Method | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | asurement Uncertainty | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results | | | | 6.1 | Return Loss and Impedance | 6 | | | 6.2 | Mechanical Dimensions | 6 | | 7 | Val | idation measurement | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | 7 | | | 7.3 | Measurement Result | | | 8 | List | of Equipment | | Ref: ACR.60.3.21.MVGB.A Report No.: S23082106602001 #### INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | |-------------------------------------|----------------------------------|--| | Device Type | COMOSAR 835 MHz REFERENCE DIPOLE | | | Manufacturer | MVG | | | Model | SID835 | | | Serial Number | SN 03/15 DIP0G835-347 | | | Product Condition (new / used) Used | | | #### PRODUCT DESCRIPTION 3 #### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Ref: ACR 60 3 21 MVGB A Report No.: S23082106602001 #### MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. # 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. # 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. # MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. # 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.08 LIN | # 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | |-------------|--------------------------------|--| | 0 - 300 | 0.20 mm | | | 300 - 450 | 0.44 mm | | ## 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume Expanded Uncertainty | can Volume | Expanded Uncertainty | | |----------------------------------|------------|----------------------|--| |----------------------------------|------------|----------------------|--| Page: 5/10 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.3.21.MVGB.A | 1 g | 19 % (SAR) | |------|------------| | 10 g | 19 % (SAR) | # 6 CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|------------------------| | 835 | -25.44 | -20 | 54.4 Ω - 2.9 jΩ | # 6.2 MECHANICAL DIMENSIONS | Frequency MHz | Ln | L mm | | m | d r | nm | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | - | 89.8 ±1 %. | - | 3.6 ±1 %. | - | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | Page: 6/10 # Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Certificate #4298.01 Page 173 of 222 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.3.21.MVGB.A | 2600 | 48.5 ±1 %. | 2 | 8.8 ±1 %. | 3.6 ±1 %. | | |------|------------|---|------------|-----------|--| | 3000 | 41.5 ±1 %. | 2 | 5.0 ±1 %. | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | 2 | .6.4 ±1 %. | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | 2 | .6.4 ±1 %. | 3.6 ±1 %. | | #### VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 7.1 MEASUREMENT CONDITION | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 40.6 sigma: 0.89 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 835835 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | # 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ϵ_{r}) | | Conductiv | ity (σ) S/m | |------------------|--|----------|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | | 0.89 ±10 % | | | 835 | 41.5 ±10 % | 40.6 | 0.90 ±10 % | 0.89 | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 40.5 ±10 % | | 1.20 ±10 % | | | 1500 | 40.4 ±10 % | | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10 % | | 1.37 ±10 % | | | 1800 | 40.0 ±10 % | | 1.40 ±10 % | | | 1900 | 40.0 ±10 % | | 1.40 ±10 % | | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | Page: 7/10 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.3.21.MVGB.A | 39.8 ±10 % | 1.49 | 9 ±10 % | |------------|--|--| | 39.5 ±10 % | 1.67 | 7 ±10 % | | 39.2 ±10 % | 1.80 |) ±10 % | | 39.0 ±10 % | 1.96 | 5 ±10 % | | 38.5 ±10 % | 2.40 |) ±10 % | | 37.9 ±10 % | 2.91 | L±10 % | | | 39.5 ±10 %
39.2 ±10 %
39.0 ±10 %
38.5 ±10 % | 39.5 ±10 % 1.67
39.2 ±10 % 1.80
39.0 ±10 % 1.96
38.5 ±10 % 2.40 | # 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with
the used input power. | Frequency
MHz | 1 g SAR | (W/kg/W) | 10 g SAR | (W/kg/W) | |------------------|----------|-------------|----------|-------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | 9.84 (0.98) | 6.22 | 6.22 (0.62) | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | Certificate #4298.01 Page 175 of 222 Report No.: S23082106602001 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.3.21.MVGB.A Certificate #4298.01 Page 176 of 222 Report No.: S23082106602001 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.3.21.MVGB.A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | SAM Phantom | MVG | SN-13/09-SAM68 | | Validated. No cal
required. | | | COMOSAR Test Bench | Version 3 | NA | | Validated. No cal
required. | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | | Reference Probe | MVG | EPGO333 SN 41/18 | 05/2020 | 05/2021 | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | | # **SAR Reference Dipole Calibration Report** Ref: ACR.60.5.21.MVGB.A # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE > FREQUENCY: 1800 MHZ SERIAL NO.: SN 03/15 DIP1G800-349 # Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 03/01/2021 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr # Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI). # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.5.21.MVGB.A | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 3/1/2021 | JE | | Checked by : | Jérôme Luc | Technical Manager | 3/1/2021 | JES | | Approved by : | Yann Toutain | Laboratory Director | 3/1/2021 | Gann Toutain | Mode-d'emples 2021.03.0 1 13:10:48 +01'00' | | Customer Name | |----------------|---------------| | Distribution : | SHENZHEN NTEK | | | TESTING | | | TECHNOLOGY | | | CO., LTD. | | Issue | Name | Date | Modifications | |-------|------------|----------|-----------------| | A | Jérôme Luc | 3/1/2021 | Initial release | | | | | | | | | | | | | | | | Ref: ACR.60.5.21.MVGB.A # TABLE OF CONTENTS | 1 | Intro | oduction4 | | |---|-------|------------------------------|---| | 2 | Dev | ice Under Test | | | 3 | Proc | luct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results6 | | | | 6.1 | Return Loss and Impedance | 6 | | | 6.2 | Mechanical Dimensions | | | 7 | Val | dation measurement | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | | | | 7.3 | Measurement Result | | | 8 | List | of Equipment | | Ref: ACR 60 5 21 MVGB A Report No.: S23082106602001 # 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. ## 2 DEVICE UNDER TEST | Device Under Test | | | | |--------------------------------|-----------------------------------|--|--| | Device Type | COMOSAR 1800 MHz REFERENCE DIPOLE | | | | Manufacturer | MVG | | | | Model | SID1800 | | | | Serial Number | SN 03/15 DIP1G800-349 | | | | Product Condition (new / used) | Used | | | # 3 PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Ref: ACR 60 5 21 MVGB A Report No.: S23082106602001 #### MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. # 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. # 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. # MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. # 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------------|-------------------------------------| | 400 - 6000MHz | 0.08 LIN | # 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 0 - 300 | 0.20 mm | | 300 - 450 | 0.44 mm | # 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | | |-------------|----------------------|--| |-------------|----------------------|--| Page: 5/10 Certificate #4298.01 Page 182 of 222 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.5.21.MVGB.A | 1 g | 19 % (SAR) | |------|------------| | 10 g | 19 % (SAR) | # 6 CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 1800 | -28.85 | -20 | $47.9 \Omega + 2.9 j\Omega$ | # 6.2 MECHANICAL DIMENSIONS | Frequency MHz | Ln | mm h mm | | ım | d r | nm | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | - | 41.7 ±1 %. | - | 3.6 ±1 %. | - | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | Page: 6/10 # Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Certificate #4298.01 Page 183 of 222 Report No.: S23082106602001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref:
ACR.60.5.21.MVGB.A | 2600 | 48.5 ±1 %. | 28.8 ± | L %. | 3.6 ±1 %. | | |------|------------|--------|------|-----------|--| | 3000 | 41.5 ±1 %. | 25.0 ± | 1 %. | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | 26.4 ± | . %. | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | 26.4 ± | . %. | 3.6 ±1 %. | | #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 7.1 MEASUREMENT CONDITION | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 43.7 sigma: 1.34 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 18001800 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | # 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | Relative permittivity (ε,΄) | | ity (σ) S/m | |------------------|--------------|-----------------------------|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | | 0.89 ±10 % | | | 835 | 41.5 ±10 % | | 0.90 ±10 % | | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 40.5 ±10 % | | 1.20 ±10 % | | | 1500 | 40.4 ±10 % | | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10 % | | 1.37 ±10 % | | | 1800 | 40.0 ±10 % | 43.7 | 1.40 ±10 % | 1.34 | | 1900 | 40.0 ±10 % | | 1.40 ±10 % | | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | Page: 7/10 Ref: ACR.60.5.21.MVGB.A Report No.: S23082106602001 | 2100 | 39.8 ±10 % | 1.49 ±10 % | | |------|------------|------------|--| | 2300 | 39.5 ±10 % | 1.67 ±10 % | | | 2450 | 39.2 ±10 % | 1.80 ±10 % | | | 2600 | 39.0 ±10 % | 1.96 ±10 % | | | 3000 | 38.5 ±10 % | 2.40 ±10 % | | | 3500 | 37.9 ±10 % | 2.91 ±10 % | | # 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR | 1 g SAR (W/kg/W) | | (W/kg/W) | |------------------|----------|------------------|----------|--------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | 37.96 (3.80) | 20.1 | 19.81 (1.98) | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.5.21.MVGB.A Certificate #4298.01 Page 186 of 222 Report No.: S23082106602001 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.5.21.MVGB.A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | SAM Phantom | MVG | SN-13/09-SAM68 | Validated. No cal required. | Validated. No cal
required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | | Reference Probe | MVG | EPGO333 SN 41/18 | 05/2020 | 05/2021 | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | | # **SAR Reference Dipole Calibration Report** Ref: ACR.60.6.21.MVGB.A # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE > FREQUENCY: 1900 MHZ SERIAL NO.: SN 03/15 DIP1G900-350 # Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise - 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 03/01/2021 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr ## Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI). Certificate #4298.01 Page 188 of 222 Report No.: S23082106602001 ## SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.6.21.MVGB.A | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 3/1/2021 | JE | | Checked by : | Jérôme Luc | Technical Manager | 3/1/2021 | JE | | Approved by : | Yann Toutain | Laboratory Director | 3/1/2021 | Gann Toutain | 2021.03.0 1 13:11:42 +01'00' PHILIP | | Customer Name | |---------------|---------------| | | SHENZHEN NTEK | | Distribution: | TESTING | | Distribution: | TECHNOLOGY | | | CO., LTD. | | Issue | Name | Date | Modifications | |-------|------------|----------|-----------------| | A | Jérôme Luc | 3/1/2021 | Initial release | | | | | | | | | | | | | | | | Ref: ACR.60.6.21.MVGB.A Report No.: S23082106602001 # TABLE OF CONTENTS | 1 | Intro | oduction | | |---|-------|------------------------------|---| | 2 | Dev | ice Under Test | | | 3 | Prod | luct Description | | | | 3.1 | General Information | 4 | | 4 | | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | | | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results6 | | | | 6.1 | Return Loss and Impedance | 6 | | | 6.2 | Mechanical Dimensions | | | 7 | Vali | dation measurement | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | | | | 7.3 | Measurement Result | | | 8 | List | of Equipment | | Ref: ACR.60.6.21 MVGB.A Report No.: S23082106602001 # INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### DEVICE UNDER TEST 2 | Device Under Test | | | | | | |---------------------------------------|-----------------------|--|--|--|--| | Device Type COMOSAR 1900 MHz REFERENC | | | | | | | Manufacturer | MVG | | | | | | Model | SID1900 | | | | | | Serial Number | SN 03/15 DIP1G900-350 | | | | | | Product Condition (new / used) Used | | | | | | #### 3 PRODUCT DESCRIPTION #### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Ref: ACR 60 6 21 MVGB A Report No.: S23082106602001 #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. # 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. # 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. # 5 MEASUREMENT UNCERTAINTY All uncertainties listed
below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. # 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | | |----------------|-------------------------------------|--|--| | 400-6000MHz | 0.08 LIN | | | # 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | | |-------------|--------------------------------|--|--| | 0 - 300 | 0.20 mm | | | | 300 - 450 | 0.44 mm | | | # 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | | • | Page: 5/10 Certificate #4298.01 Page 192 of 222 Report No.: S23082106602001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.6.21.MVGB.A | 1 g | 19 % (SAR) | |------|------------| | 10 g | 19 % (SAR) | # CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 1900 | -24.79 | -20 | $50.8 \Omega + 5.7 j\Omega$ | # 6.2 MECHANICAL DIMENSIONS | Frequency MHz | Lm | nm | h mm | | d mm | | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | - | 39.5 ±1 %. | - | 3.6 ±1 %. | - | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | Page: 6/10 Certificate #4298.01 Page 193 of 222 Report No.: S23082106602001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.6.21.MVGB.A | 2600 | 48.5 ±1 %. | 28.8 ±1 %. | 3.6 ±1 %. | | |------|------------|------------|-----------|--| | 3000 | 41.5 ±1 %. | 25.0 ±1 %. | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | 26.4 ±1 %. | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | 26.4 ±1 %. | 3.6 ±1 %. | | # 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 7.1 MEASUREMENT CONDITION | | T | |---|--| | Software | OPENSAR V5 | | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 43.3 sigma: 1.41 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 19001900 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | # 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ε _r ') | | Conductiv | ity (σ) S/m | |------------------|--|----------|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | | 0.89 ±10 % | | | 835 | 41.5 ±10 % | | 0.90 ±10 % | | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 1450 40.5 ±10 % | | 1.20 ±10 % | | | 1500 | 40.4 ±10 % | | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10 % | | 1.37 ±10 % | | | 1800 | 1800 40.0 ±10 %
1900 40.0 ±10 % | | 1.40 ±10 % | | | 1900 | | | 1.40 ±10 % | 1.41 | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | Page: 7/10 Ref: ACR.60.6.21.MVGB.A Report No.: S23082106602001 | 2100 | 39.8 ±10 % | 1.49 ±10 % | | |------|------------|------------|--| | 2300 | 39.5 ±10 % | 1.67 ±10 % | | | 2450 | 39.2 ±10 % | 1.80 ±10 % | | | 2600 | 39.0 ±10 % | 1.96 ±10 % | | | 3000 | 38.5 ±10 % | 2.40 ±10 % | | | 3500 | 37.9 ±10 % | 2.91 ±10 % | | | | | | | # 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR (W/kg/W) | | |------------------|------------------|--------------|-------------------|--------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | 40.37 (4.04) | 20.5 | 20.48 (2.05) | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | Certificate #4298.01 Page 195 of 222 Report No.: S23082106602001 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.6.21.MVGB.A #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.6.21.MVGB.A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | | SAM Phantom | MVG | SN-13/09-SAM68 | | Validated. No cal
required. | | | | | COMOSAR Test Bench | Version 3 | NA | randatoa. Tro oai | Validated. No cal
required. | | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | | | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | | | | Reference Probe | MVG | EPGO333 SN 41/18 | 05/2020 | 05/2021 | | | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | | | | Report No.: S23082106602001 # **SAR Reference Dipole Calibration Report** Ref: ACR.60.8.21.MVGB.A # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE > FREQUENCY: 2450 MHZ SERIAL NO.: SN 03/15 DIP2G450-352 #### Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 03/01/2021 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr ## Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI). Certificate #4298.01 Page 198 of 222 Report No.: S23082106602001 ## SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.8.21.MVGB.A | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme LUC | Technical Manager | 3/1/2021 | JES | | Checked by : | Jérôme LUC | Technical Manager | 3/1/2021 | JE | | Approved by : | Yann Toutain | Laboratory Director | 3/1/2021 | Gann Toutain | 2021.03.01 13:13:40 +01'00' Customer Name SHENZHEN NTEK TESTING Distribution: TECHNOLOGY CO., LTD. | Issue | Name | Date | Modifications | |-------|----------------|----------|-----------------| | A | Jérôme LE GALL | 3/1/2021 | Initial release | | | | | | | | | | | | | | | | Ref: ACR.60.8.21.MVGB.A ## TABLE OF CONTENTS | 1 | Intro | oduction4 | | |---|-------|-----------------------------|---| | 2 | Dev | ice Under Test | | | 3 | Proc | luct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical
Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results | | | | 6.1 | Return Loss and Impedance | 6 | | | 6.2 | Mechanical Dimensions | 6 | | 7 | Vali | dation measurement | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | | | | 7.3 | Measurement Result | | | 8 | List | of Equipment | | Ref: ACR.60.8.21.MVGB.A Report No.: S23082106602001 #### INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### DEVICE UNDER TEST 2 | Device Under Test | | | |-------------------------------------|-----------------------------------|--| | Device Type | COMOSAR 2450 MHz REFERENCE DIPOLE | | | Manufacturer | MVG | | | Model SID2450 | | | | Serial Number SN 03/15 DIP2G450-352 | | | | Product Condition (new / used) Used | | | #### 3 PRODUCT DESCRIPTION #### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Ref. ACR 60 8 21 MVGB A Report No.: S23082106602001 #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | |----------------|-------------------------------------|--| | 400-6000MHz | 0.08 LIN | | ## 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 0 - 300 | 0.20 mm | | 300 - 450 | 0.44 mm | ## 5.3 <u>VALIDATION MEASUREMENT</u> The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| Page: 5/10 Certificate #4298.01 Page 202 of 222 Report No.: S23082106602001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.8.21.MVGB.A | 1 g | 19 % (SAR) | |------|------------| | 10 g | 19 % (SAR) | ## CALIBRATION MEASUREMENT RESULTS ## RETURN LOSS AND IMPEDANCE | Frequency (MHz) Return Loss (dB) | | Requirement (dB) | Impedance | | |----------------------------------|--|------------------|-----------------|--| | 2450 -23.18 | | -20 | 56.3 Ω - 2.9 jΩ | | ## 6.2 MECHANICAL DIMENSIONS | Frequency MHz | Lm | nm | h m | m | d r | nm | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | - | 30.4 ±1 %. | - | 3.6 ±1 %. | - | Page: 6/10 Certificate #4298.01 Page 203 of 222 Report No.: S23082106602001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.8.21.MVGB.A | 2600 | 48.5 ±1 %. | 28.8 ±1 % | 3.6 ±1 %. | | |------|------------|-----------|-----------|--| | 3000 | 41.5 ±1 %. | 25.0 ±1 % | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | 26.4 ±1 % | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | 26.4 ±1 % | 3.6 ±1 %. | | #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. #### 7.1 MEASUREMENT CONDITION | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 41.9 sigma: 1.88 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | Frequency | 24502450 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | #### 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | Relative permittivity (ϵ_{r}') | | ity (σ) S/m | |------------------|--------------|---|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | | 0.89 ±10 % | | | 835 | 41.5 ±10 % | | 0.90 ±10 % | | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 40.5 ±10 % | | 1.20 ±10 % | | | 1500 | 40.4 ±10 % | | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10 % | | 1.37 ±10 % | | | 1800 | 40.0 ±10 % | | 1.40 ±10 % | | | 1900 | 40.0 ±10 % | | 1.40 ±10 % | | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | Page: 7/10 Ref: ACR.60.8.21.MVGB.A Report No.: S23082106602001 | 39.8 ±10 % | | 1.49 ±10 % | | |------------|--|--|---| | 39.5 ±10 % | | 1.67 ±10 % | | | 39.2 ±10 % | 41.9 | 1.80 ±10 % | 1.88 | | 39.0 ±10 % | | 1.96 ±10 % | | | 38.5 ±10 % | | 2.40 ±10 % | | | 37.9 ±10 % | | 2.91 ±10 % | | | | 39.5 ±10 %
39.2 ±10 %
39.0 ±10 %
38.5 ±10 % | 39.5 ±10 %
39.2 ±10 %
41.9
39.0 ±10 %
38.5 ±10 % | 39.5 ±10 % 1.67 ±10 % 39.2 ±10 % 41.9 1.80 ±10 % 39.0 ±10 % 1.96 ±10 % 2.40 ±10 % | ## 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR (| W/kg/W) | 10 g SAR | (W/kg/W) | |------------------|-----------|--------------|----------|--------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | 53.69 (5.37) | 24 | 23.94 (2.39) | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | Certificate #4298.01 Page 205 of 222 Report No.: S23082106602001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.8.21.MVGB.A Certificate #4298.01 Page 206 of 222 Report No.: S23082106602001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.8.21.MVGB.A ## 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | |---------------------------------------|----------------------------|--------------------|---|---| | Equipment
Description | Manufacturer /
Model |
Identification No. | Current
Calibration Date | Next Calibration
Date | | SAM Phantom | MVG | SN-13/09-SAM68 | · amatara i i i o o an | Validated. No cal
required. | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | Reference Probe | MVG | EPGO333 SN 41/18 | 05/2020 | 05/2021 | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | Report No.: S23082106602001 # **SAR Reference Dipole Calibration Report** Ref: ACR.60.9.21.MVGB.A # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE > FREQUENCY: 2600 MHZ SERIAL NO.: SN 03/15 DIP2G600-356 #### Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 03/01/2021 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr ## Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI). Report No.: S23082106602001 ## SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.9.21.MVGB.A | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 3/1/2021 | JES | | Checked by : | Jérôme Luc | Technical Manager | 3/1/2021 | JES | | Approved by : | Yann Toutain | Laboratory Director | 3/1/2021 | Gann Toutain | 2021.03.01 13:14:51 +01'00' | | Customer Name | |---------------|---------------| | | SHENZHEN NTEK | | Distribution: | TESTING | | Distribution: | TECHNOLOGY | | | CO., LTD. | | Issue | Name | Date | Modifications | |-------|------------|----------|-----------------| | A | Jérôme Luc | 3/1/2021 | Initial release | | | | | | | | | | | | | | | | Ref: ACR.60.9.21.MVGB.A Report No.: S23082106602001 ## TABLE OF CONTENTS | 1 | Intro | oduction4 | | |---|-------|------------------------------|---| | 2 | Dev | ice Under Test | | | 3 | Proc | duct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | | | | 5.3 | Validation Measurement | | | 6 | Cali | bration Measurement Results6 | | | | 6.1 | Return Loss and Impedance | 6 | | | 6.2 | Mechanical Dimensions | 6 | | 7 | Val | idation measurement | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | | | | 7.3 | Measurement Result | | | 8 | List | of Equipment 10 | | Ref: ACR.60.9.21.MVGB.A Report No.: S23082106602001 #### INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### DEVICE UNDER TEST | Device Under Test | | | |--------------------------------|-----------------------------------|--| | Device Type | COMOSAR 2600 MHz REFERENCE DIPOLE | | | Manufacturer | MVG | | | Model | SID2600 | | | Serial Number | SN 03/15 DIP2G600-356 | | | Product Condition (new / used) | Used | | #### PRODUCT DESCRIPTION 3 #### GENERAL INFORMATION 3.1 MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Ref: ACR 60 9 21 MVGB A Report No.: S23082106602001 #### MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ## 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.08 LIN | ## 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 0 - 300 | 0.20 mm | | 300 - 450 | 0.44 mm | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | | • | Page: 5/10 Certificate #4298.01 Page 212 of 222 Report No.: S23082106602001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.9.21.MVGB.A | 1 g | 19 % (SAR) | |------|------------| | 10 g | 19 % (SAR) | ## CALIBRATION MEASUREMENT RESULTS ## 6.1 RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------| | 2600 | -21.15 | -20 | 52.7 Ω - 8.3 jΩ | ## 6.2 MECHANICAL DIMENSIONS | Frequency MHz | L mm | | h m | h mm | | d mm | | |---------------|-------------|----------|-------------|----------|------------|----------|--| | | required | measured | required | measured | required | measured | | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | Page: 6/10 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Certificate #4298.01 Page 213 of 222 Report No.: S23082106602001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.9.21.MVGB.A | 2600 | 48.5 ±1 %. | - | 28.8 ±1 %. | - | 3.6 ±1 %. | - | |------|------------|---|------------|---|-----------|---| | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ## 7.1 MEASUREMENT CONDITION | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head
Liquid Values: eps': 41.5 sigma: 2.03 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | Frequency | 26002600 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | ## 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ϵ_{r}') | | Conductivi | ity (σ) S/m | |------------------|---|----------|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | | 0.89 ±10 % | | | 835 | 41.5 ±10 % | | 0.90 ±10 % | | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 40.5 ±10 % | | 1.20 ±10 % | | | 1500 | 40.4 ±10 % | | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10 % | | 1.37 ±10 % | | | 1800 | 40.0 ±10 % | | 1.40 ±10 % | | | 1900 | 40.0 ±10 % | | 1.40 ±10 % | | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | · | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | Page: 7/10 Ref: ACR.60.9.21.MVGB.A Report No.: S23082106602001 | 2100 | 39.8 ±10 % | | 1.49 ±10 % | | |------|------------|------|------------|------| | 2300 | 39.5 ±10 % | | 1.67 ±10 % | | | 2450 | 39.2 ±10 % | | 1.80 ±10 % | | | 2600 | 39.0 ±10 % | 41.5 | 1.96 ±10 % | 2.03 | | 3000 | 38.5 ±10 % | | 2.40 ±10 % | | | 3500 | 37.9 ±10 % | | 2.91 ±10 % | | ## 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR | (W/kg/W) | |------------------|------------------|--------------|----------|--------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | 55.83 (5.58) | 24.6 | 24.19 (2.42) | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | Certificate #4298.01 Page 215 of 222 Report No.: S23082106602001 ## SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.9.21.MVGB.A Certificate #4298.01 Page 216 of 222 Report No.: S23082106602001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.9.21.MVGB.A ## 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |---------------------------------------|----------------------------|------------------|---|---|--| | Equipment
Description | | | Next Calibration
Date | | | | SAM Phantom | MVG | SN-13/09-SAM68 | Validated. No cal required. | Validated. No cal
required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | | Reference Probe | MVG | EPGO333 SN 41/18 | 05/2020 | 05/2021 | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | | ## <Justification of the extended calibration> If dipoles are verified in return loss (<-20dB, within 20% of prior calibration for below 3GHz, and <-8dB, within 20% of prior calibration for 5GHz to 6GHz), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. ## <Head 750MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -23.80 | - | 56.4 | - | Mar. 01, 2021 | | -23.642 | 0.66 | 56.998 | 0.598 | Feb. 28, 2022 | | -22.051 | 7.35 | 51.838 | 4.562 | Feb. 18, 2023 | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. ## <Head 835MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -25.44 | - | 54.40 | - | Mar. 01, 2021 | | -25.803 | 1.43 | 54.492 | 0.092 | Feb. 28, 2022 | | -23.947 | 5.87 | 56.615 | 2.215 | Feb. 18, 2023 | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. # Dipole Verification Data ## <Head 1800MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -28.85 | - | 47.90 | - | Mar. 01, 2021 | | -28.545 | 1.06 | 47.809 | 0.091 | Feb. 28, 2022 | | -25.8 | 10.57 | 45.156 | 2.744 | Feb. 18, 2023 | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. ## <Head 1900MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -24.79 | - | 50.80 | - | Mar. 01, 2021 | | -24.518 | 1.10 | 50.516 | 0.284 | Feb. 28, 2022 | | -23.144 | 6.64 | 53.604 | 2.804 | Feb. 20, 2023 | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. # **Dipole Verification Data** ## <Head 2450MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -23.18 | - | 56.30 | - | Mar. 01, 2021 | | -23.39 | 0.91 | 56.342 | 0.042 | Feb. 28, 2022 | | -26.296 | 13.44 | 54.99 | 1.310 | Feb. 20, 2023 | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. Report No.: S23082106602001 ## <Head 2600MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -21.15 | - | 52.70 | - | Mar. 01, 2021 | | -21.248 | 0.46 | 53.053 | 0.353 | Feb. 28, 2022 | | -21.627 | 2.25 | 54.412 | 1.712 | Feb. 20, 2023 | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. END _____