

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

Amended Test Report

Prepared for:

Inovonics

Address:

11000 Westmoor Circle Building 10, Suite 250 Westminster, CO 80021

Product:

TBA Module

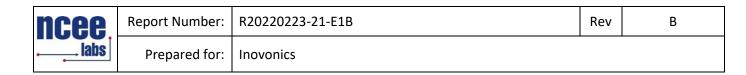
Test Report No:

R20220223-21-E1B

Approved by:

Mahendra Karthik Vepuri, NCE EMC Test Engineer, iNARTE Certified EMC Engineer #EMC-041453-E

DATE:


24 August 2022

Total Pages:

48

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

REVISION PAGE

Rev. No.	Date	Description
Original	30 June 2022	Original – KVepuri
		Prepared by BWinter/Flane
A	10 August 2022	Changed EIRP to Maximum Conducted
		Power in Section 4 and 4.3 -BW
В	24 August 2022	Added Conducted Emissions Results-
		BW/KV

Prepared for:

Inovonics

Rev

CONTENTS

Rev	ision Pa	age	2
1.0	Sum	nmary of test results	4
2.0	EUT	Description	5
	2.1	Equipment under test	5
	2.2	Description of test modes	6
	2.3	Description of support units	6
3.0	Lab	oratory description	7
	3.1	Laboratory description	7
	3.2	Test personnel	7
	3.3	Test equipment	8
	3.4	GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMENTS	9
4.0	Deta	ailed results	10
	Dea		10
	4.1	Duty Cycle	
			12
	4.1	Duty Cycle	12
	4.1 4.2	Duty Cycle	12
	4.1 4.2 4.3	Duty Cycle Radiated emissions Peak Output Power	12 13 20 21
	4.1 4.2 4.3 4.4	Duty Cycle Radiated emissions Peak Output Power Bandwidth	12
	4.1 4.2 4.3 4.4 4.5	Duty Cycle Radiated emissions Peak Output Power Bandwidth Bandedges	12
-	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Duty Cycle	12
Арр	4.1 4.2 4.3 4.4 4.5 4.6 4.7 endix A	Duty Cycle	12
Арр Арр	4.1 4.2 4.3 4.4 4.5 4.6 4.7 endix A endix B	Duty Cycle	12

1.0 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-247, Issue 2

	SUMMARY		
Standard Section	Test Type and Limit	Result	Remark
FCC 15.203	Unique Antenna Requirement	Pass	PCB antenna
FCC 15.35 RSS-Gen, 6.10	Duty cycle of pulsed emissions	Pass	Pulsed emissions duty cycle was applied
FCC 15.209 RSS-Gen, 7.1	Receiver Radiated Emissions	Pass	Meets the requirement of the limit.
FCC 15.247(a)(1)(i) RSS-247, 5.1(c)	Minimum Bandwidth, Limit: Min. 250kHz, Frequency Separation	Pass	Meets the requirement of the limit.
FCC 15.247(b)(1) RSS-247, 5.1	Maximum Peak Output Power, Limit: Max. 24 dBm	Pass	Meets the requirement of the limit.
FCC 15.209 RSS-Gen, 8.9 RSS-247, 5.5	Transmitter Radiated Emissions	Pass	Meets the requirement of the limit.
FCC 15.247(a) (1) (i) RSS-247, 5.1(c)	Frequency hopping system, Limit: Max. 0.4 Seconds in 10 Second Period	Pass	Meets the requirement of the limit.
FCC 15.209, 15.205,15.247 RSS-Gen, 8.9 RSS-247, 5.5	Band Edge Measurement, Limit: 20dB less than the peak value of fundamental frequency	Pass	Meets the requirement of the limit.
FCC 15.207 RSS-Gen. 8.8	Conducted AC Emissions	Pass	Meets the requirement of the limit.

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

The Equipment Under Test (EUT) was a wireless FHSS transmitter, TBA module.

EUT	TBA Module
EUT Received	6/1/2022
EUT Tested	6/16/2022- 6/24/2022
Serial No./ Tx ID	010425 (NCEE assigned serial number)
Operating Band	902.0 – 928.0 MHz
Device Type	FHSS
Power Supply	3VDC Battery (CR123A Lithium) (Radiated Emissions). 5VDC Power Supply, iOmega Zip, model SSW5-7630 (Representative supply used for conducted emissions).

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 DESCRIPTION OF TEST MODES

The EUT operates on, and was tested at the frequencies below:

Channel	Frequency
Low	902.4
Middle	914.8
High	927.6

These are the only three representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

Rev

В

EUT was modified to transmit at the highest practical duty cycle on the lowest, highest and one channel in the middle that was used for all RF tests.

2.3 DESCRIPTION OF SUPPORT UNITS

N/A

В

Rev

3.0 LABORATORY DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number:	1953.01
FCC Accredited Test Site Designation No:	US1060
Industry Canada Test Site Registration No:	4294A-1
CAB MRA Recognition Identification No:	US0177

Environmental conditions varied slightly throughout the tests.

3.2 TEST PERSONNEL

No.	PERSONNEL	TITLE	ROLE
1	Nic Johnson	Technical Manager	Review
2	Karthik Vepuri	EMC Test Engineer	Testing, Report and Review
3	Fox Lane	EMC Test Engineer	Testing
4	Blake Winter	EMC Test Engineer	Testing and Report
5	Grace Larsen	EMC Test Engineer	Testing

Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (26.5GHz)	N9038A	MY56400083	July 19, 2022	July 19, 2024
Keysight MXE Signal Analyzer (44GHz)	N9038A	MY59050109	July 19, 2022	July 19, 2024
SunAR RF Motion***	JB1	A091418	July 27, 2021	August 27, 2022
EMCO Horn Antenna	3115	6416	July 28, 2021	July 28, 2023
Rohde & Schwarz Preamplifier*	TS-PR18	3545700803	April 4, 2022	April 4, 2024
Trilithic High Pass Filter*	6HC330	23042	April 22, 2022	April 22, 2024
MiniCircuits High Pass Filter*	VHF-1320+	15542	April 4, 2022	April 4, 2024
ETS – Lindgren- VSWR on 10m Chamber	10m Semi- anechoic chamber- VSWR	4740 Discovery Drive	July 30, 2020	July 30, 2023
NCEE Labs-NSA on 10m Chamber	10m Semi- anechoic chamber-NSA	NCEE-001	May 24, 2022	May 24, 2025
TDK Emissions Lab Software	V11.25	700307	NA	NA
Com-Power LISN	LI-220C	20070017	September 22, 2020	September 22, 2022
RF Cable (preamplifier to antenna)*	MFR-57500	01-07-002	April 4, 2022	April 4, 2024
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	September 24, 2021	September 24, 2023
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3864	September 24, 2021	September 24, 2023
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	September 24, 2021	September 24, 2023
N connector bulkhead (10m chamber)**	PE9128	NCEEBH1	September 24, 2021	September 24, 2023
N connector bulkhead (control room)**	PE9128	NCEEBH2	September 24, 2021	September 24, 2023

*Internal Characterization

**2 year calibration cycle

*** Extended Cal

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities. All equipment were in Cal during testing. However, latest calibration dates were provided.

Rev

Measurement type presented in this report (Please see the checked box below):

Conducted \Box

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

В

Rev

Figure 1 - Bandwidth Measurements Test Setup

Radiated 🛛

All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

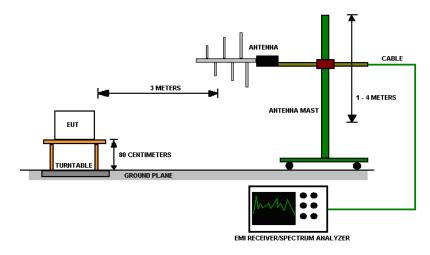


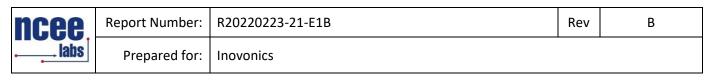
Figure 2 - Radiated Emissions Test Setup

В

Prepared for: | Inovonics

4.0 DETAILED RESULTS

			DSS Radia	ted Radio Measu	irements			
CHANNEL	Transmitter	99% Occupied Bandwidth (kHz)	20 dB Bandwidth (kHz)	PEAK Conducted Power	PEAK Conducted Power	RESULT	No. of Hopping Channels	Time of Occupancy*
		, , , , , , , , , , , , , , , , , , ,		(dBm)	(mW)		25	0.0874 s*
Low	Continuous	251.30	255.1	19.66	92.47	PASS	Min	Duty Cycle
Mid	Continuous	250.89	254.4	19.60	91.20	PASS	Frequency Separation	Correction
High	Continuous	250.20	254.2	19.51	89.33	PASS	800 kHz	-13.2
				Peak Output Po table of this sect				d in the last
Occupied Ba BW $\leq 500 \text{ kH}$		20 dB Bandwidth Lir	nit 250 kHz ≤	Time of Occupa	ncy<0.4 S in 10	S		
211 - 000 M	· _ ·			*Manufacturer d is 0.088s within			average channe	l occupancy tim
			Unre	stricted Band-Ed	,			
			00					
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Relative Highest out of band level (dBm)	Relative Fundamental (dBm)	Delta (dB)	Min Delta (dB)	R	esult
Low*	Continuous	902.4	-68.355	-30.016	38.339	20	P	ASS
Low*	Hopping	902.4	-67.924	-30.476	37.448	20	Р	ASS
High*	Continuous	927.6	-76.059	-30.48	45.579	20	P	ASS
High*	Hopping	927.6	-76.059	-32.526	43.533	20	Р	ASS
			Peak R	Restricted Band-	Edge			
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Peak R Highest out of band level (dBuV/m @ 3m)	Restricted Band-B Measurement Type	Edge Limit (dBuV/m @ 3m)*	Margin	R	esult
CHANNEL		/Measurement Frequency (MHz)	Highest out of band level (dBuV/m	Measurement Type	Limit (dBuV/m @ 3m)*	Margin		esult
	Mode Continuous Hopping	/Measurement Frequency	Highest out of band level (dBuV/m @ 3m)	Measurement	Limit (dBuV/m @		P	
Low**	Continuous	/Measurement Frequency (MHz) 613.208	Highest out of band level (dBuV/m @ 3m) 32.41	Measurement Type Radiated	Limit (dBuV/m @ 3m)* 46.02	13.61	P	ASS



В

Prepared for: Inovonics

Channel, MHz	Antenna Factor (dB)	Cable Loss (dB)	dBm to dBuV	Correction/Reference level offset
613.2	23.00	4.44	107	134.44
610.9	22.90	4.44	107	134.34
972.6	27.10	5.49	107	139.59
970.3	27.03	5.47	107	139.50

Declaration from manufacturer: The EchoStream protocol defines 64 channels spaced 400 kHz apart. Manufacturer uses only 25 channels from the set of 64. The minimum spacing between channels is ~ 800 kHz with some channels space ~1.2 MHz apart. The entire channel map uses a spacing of 400 kHz, but the used channels are either 800 kHz or 1.2 MHz apart.

4.1 DUTY CYCLE

Manufacturer declared that the maximum on time possible per channel is 22 ms in a given 100 ms period. So, Duty cycle correction factor for spurious emissions related to the transmitter is $20 \log 22/100 = -13.2 \text{ dB}$.

Test Method: ANSI C63.10-2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

Rev

В

FREQUENCIES (MHz)	FIELD STRENGTH (μV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).

3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

В

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10-meter semianechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements form 30MHz-1GHz and 1.5m for measurements from 1GHz to 10 GHz.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.

d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.

e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise, the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.

2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:

No deviation.

Test setup:

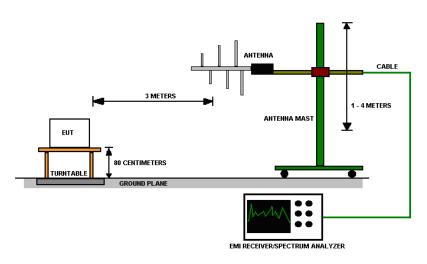
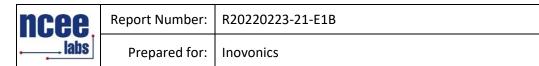
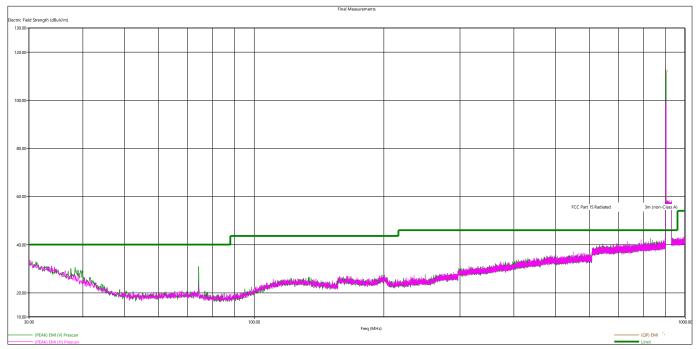



Figure 3 - Radiated Emissions Test Setup

EUT operating conditions


Details can be found in section 2.1 of this report.

Rev

В

Test results:

*Noise floor on this plot looks higher than the other plots because of the receiver settings during the test to avoid saturation. The worst-case measurements are listed in the tables below, all other measurements were found to be at least 6 dB below the limit.

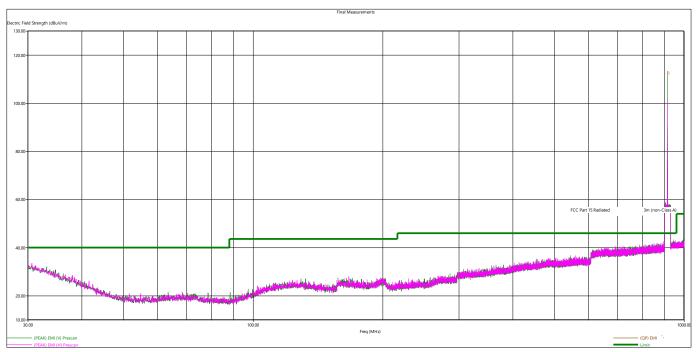
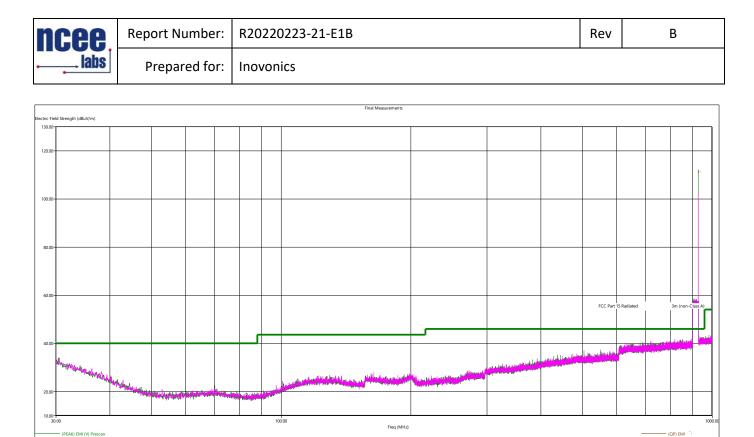
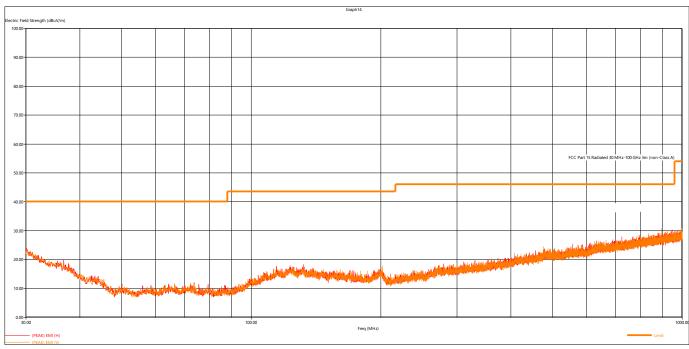



Figure 5 - Radiated Emissions Plot, Mid Channel, 30 MHz-1GHz


*Noise floor on this plot looks higher than the other plots because of the receiver settings during the test to avoid saturation. The worst-case measurements are listed in the tables below, all other measurements were found to be at least 6 dB below the limit.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

*Noise floor on this plot looks higher than the other plots because of the receiver settings during the test to avoid saturation. The worst-case measurements are listed in the tables below, all other measurements were found to be at least 6 dB below the limit.

Figure 7 - Radiated Emissions Plot, Transmitter Off, 30 MHz-1GHz

The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions. The worst-case emissions are reported.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 17 of 48

В

Rev

No other Quasi-peak measurements were attributable to the EUT in the 30MHz – 1GHz frequencies.

		Peak I	Measurem	ents, 900	MHz Radi	0,		
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Radio Band
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			MHz
2707.180000	51.74	73.98	22.24	289.00	94.00	Н	Low	900 -928
1804.674000	50.22	73.98	23.76	387.00	324.00	V	Low	900 -928
5414.374000	62.57	73.98	11.41	130.00	218.00	Н	Low	900 -928
6316.866000	55.47	73.98	18.51	280.00	33.00	Н	Low	900 -928
4512.292000	51.54	73.98	22.44	113.00	118.00	V	Low	900 -928
2744.470000	54.32	73.98	19.66	204.00	86.00	Н	Mid	900 -928
1829.502000	49.30	73.98	24.68	457.00	0.00	V	Mid	900 -928
4573.920000	52.31	73.98	21.67	204.00	22.00	Н	Mid	900 -928
5488.740000	60.91	73.98	13.07	113.00	207.00	Н	Mid	900 -928
6404.710000	47.54	73.98	26.44	136.00	328.00	V	Mid	900 -928
1855.296000	45.48	73.98	28.50	149.00	359.00	V	High	900 -928
2782.826000	56.93	73.98	17.05	411.00	356.00	V	High	900 -928
4638.100000	54.51	73.98	19.47	116.00	237.00	Н	High	900 -928
5565.564000	62.90	73.98	11.08	112.00	221.00	Н	High	900 -928
	All other me	easurements	were foun	d to be at	least 6dB	below	the limit line	-

		Average	e Measurei	ments, 90) MHz Ra	dio,		
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Radio Band
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			MHz
2707.180000	38.54	53.98	15.44	289.00	94.00	Н	Low	900 -928
1804.674000	37.02	53.98	16.96	387.00	324.00	V	Low	900 -928
5414.374000	49.37	53.98	4.61	130.00	218.00	Н	Low	900 -928
6316.866000	42.27	53.98	11.71	280.00	33.00	Н	Low	900 -928
4512.292000	38.34	53.98	15.64	113.00	118.00	V	Low	900 -928
2744.470000	41.12	53.98	12.86	204.00	86.00	Н	Mid	900 -928
1829.502000	36.10	53.98	17.88	457.00	0.00	V	Mid	900 -928
4573.920000	39.11	53.98	14.87	204.00	22.00	Н	Mid	900 -928
5488.740000	47.71	53.98	6.27	113.00	207.00	Н	Mid	900 -928
6404.710000	34.34	53.98	19.64	136.00	328.00	V	Mid	900 -928
1855.296000	32.28	53.98	21.7	149.00	359.00	V	High	900 -928
2782.826000	43.73	53.98	10.25	411.00	356.00	V	High	900 -928
4638.100000	41.31	53.98	12.67	116.00	237.00	Н	High	900 -928
5565.564000	49.70	53.98	4.28	112.00	221.00	Н	High	900 -928

Average Level is obtained by adding the duty cycle correction factor found in section 4.1 to the Peak level. All the measurements were compared to general limits from FCC part 15.209 to show compliance. All other measurements were found to be at least 6dB below the limit line.

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit Value Emission Level.
- 5. The EUT was measured in all 3 orthogonal axes. See the test setup photo exhibit for details on the orientations.

Rev

Rev

В

4.3 **PEAK OUTPUT POWER**

Test Method: ANSI C63.10, Section(s) 7.8.5

Limits of bandwidth measurements:

Per FCC Part 15

For an FHSS system with 25 channels, the output power is required to be less than 250 mW or 24 dBm.

Test procedures:

Spectrum analyzer was set with a resolution bandwidth greater than occupied bandwidth and centered on the operating channel. Output power was measured by direct coaxial connection to the EUT output port.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

- 1. All the output power plots can be found in the Appendix C.
- 2. All data is in the table in results section 4.0.
- 3. All the measurements were found to be compliant.

Rev

4.4 BANDWIDTH

Test Method: ANSI C63.10, Section(s) 6.9.2

Limits of bandwidth measurements:

The allowed 20 dB bandwidth of the hopping channel is 250 kHz \leq BW \leq 500 kHz.

Test procedures:

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 3 kHz RBW and 30 kHz VBW.

The 20 dB bandwidth is defined as the bandwidth of which is higher than peak power minus 20dB. The 99% bandwidth is defined as the bandwidth that contains 99% of the power.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

- 1. All the bandwidth plots can be found in the Appendix C.
- 2. All data is in the table in results section 4.0.
- 3. All the measurements were found to be compliant.

Test Method: ANSI C63.10, Section(s) 6.10.6

Limits of band edge measurements:

For emissions outside of the allowed band of operation (902 - 928MHz), the emission level needs to be 20dB under the maximum fundamental field strength. However, if the emissions fall within one of the restricted bands from 15.205 the field strength levels need to be under that of the limits in 15.209.

Rev

В

Test procedures:

The resolution bandwidth was set to 100kHz and the EMI receiver was used to scan from the band edge to the fundamental frequency with a Peak detector. The highest emissions level beyond the band edge was measured and recorded. For restricted band edge measurements, the unit was tested to the same method as section 4.2 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

- 1. All the band edge plots can be found in the Appendix C.
- 2. All data is in the table in results section 4.0.
- 3. If the device falls under FCC Part 15.247 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 20 dB between peak and the band edge.
- 4. The restricted band edge compliance is shown by comparing to the general limit defined in Part 15.209. The limit shown in the graph accounts for the antenna gain of the device.

Rev

В

Prepared for: Inovonics

4.6 CARRIER FREQUENCY SEPARATION, NUMBER OF HOPPING CHANNELS, TIME OF OCCUPANCY

Test Method: ANSI C63.10, Section 7.8.2, 7.8.3, 7.8.4

Limits for Time of Occupancy

Average time of occupancy on any frequency, not to exceed 0.4 seconds within a 10 second period.

Test procedures:

The method from KDB 558074 D01 v05;

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

- 1. All the plots can be found in the Appendix C.
- 2. All the measurements were found to be compliant.
- 3. The measurements are reported on the graph.
- 4. Declaration from manufacturer: The EchoStream protocol defines 64 channels spaced 400 kHz apart. Manufacturer uses only 25 channels from the set of 64. The minimum spacing between channels is ~ 800 kHz with some channels space ~1.2 MHz apart. The entire channel map uses a spacing of 400 kHz, but the used channels are either 800 kHz or 1.2 MHz apart.

4.7 CONDUCTED AC MAINS EMISSIONS

Test Method: ANSI C63.10-2013, Section(s) 6.2

Limits for conducted emissions measurements:

FREQUENCY OF EMISSION (MHz)	CONDUCTE (dBµ\	
	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

Notes:

1. The lower limit shall apply at the transition frequencies.

The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz
All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Test Procedures:

- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room. An iOmega Zip power supply, model SSW5-7630, was connected through a line impedance stabilization network (LISN) to the AC power mains. The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both the Line and Neutral of the AC power connected to the power supply through the LISN were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

Deviation from the test standard:

No deviation

EUT operating conditions:

The battery was removed and power supply was connected with wires to the EUT battery terminals.

Rev

Test Results: PASS

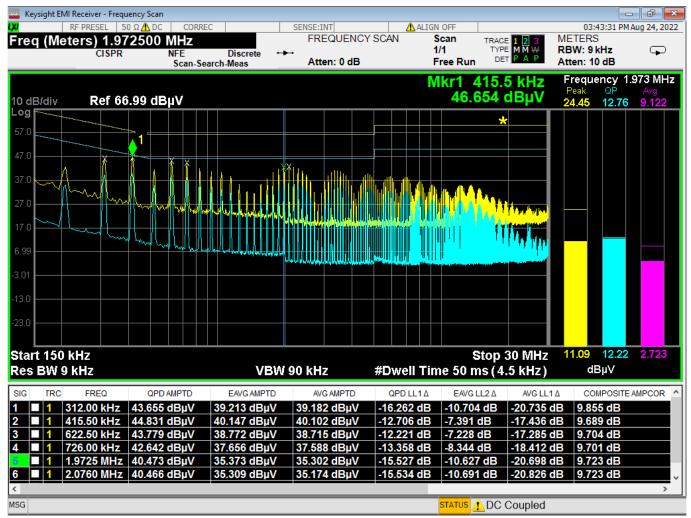
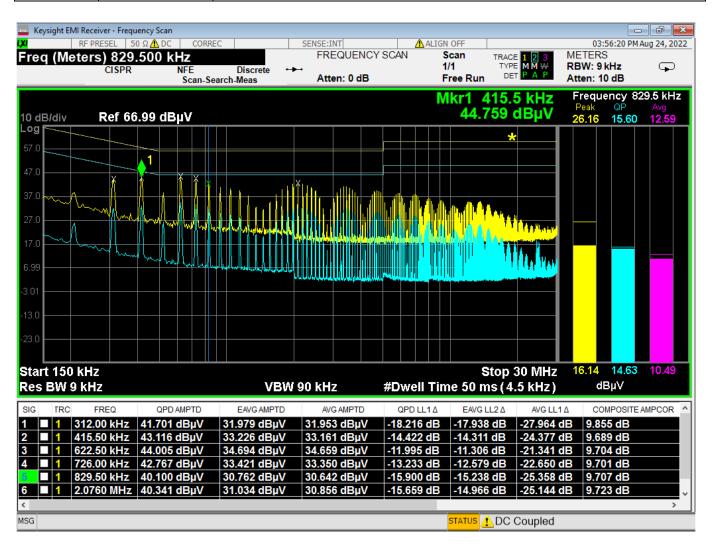



Figure 8 - Conducted Emissions Plot, Line

Prepared for: Inovonics

В

Rev

Figure 9 - Conducted Emissions Plot, Neutral

Rev

В

Prepared for: Inovonics

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by the taking the $20^{100}(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

ncee,	Report Number:	R20220223-21-E1B	Rev	В
labs	Prepared for:	Inovonics		

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30

Power (watts) = 10^[Power (dBm)/10] / 1000

Voltage ($dB\mu V$) = Power (dBm) + 107 (for 50 Ω measurement systems)

Field Strength (V/m) = 10^{Field} Strength (dB μ V/m) / 20] / 10^{6}

Gain = 1 (numeric gain for isotropic radiator)

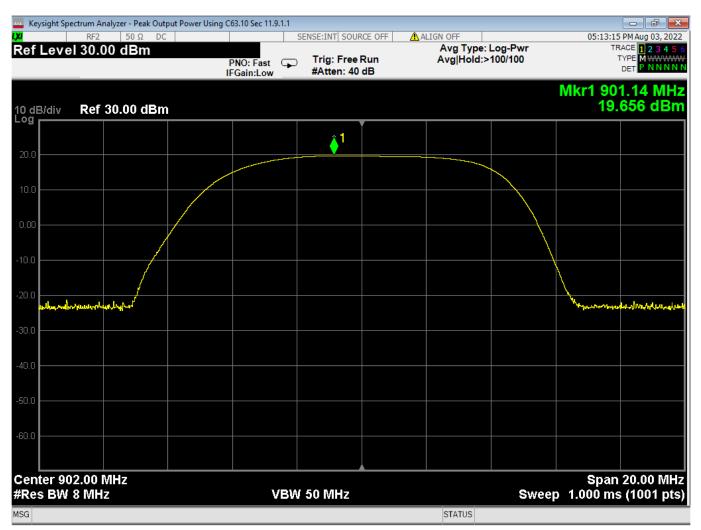
Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

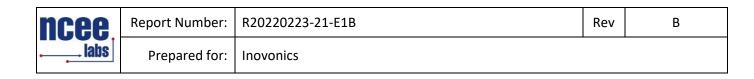
 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

10log(10^9) is the conversion from micro to milli

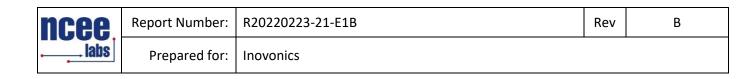
APPENDIX B - MEASUREMENT UNCERTAINTY

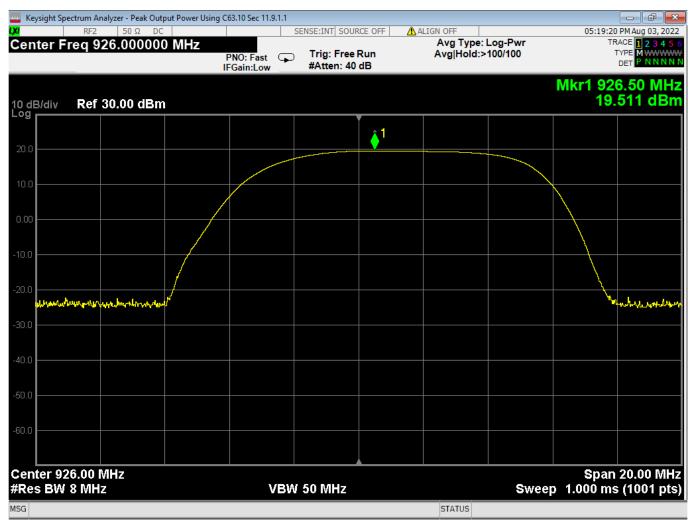

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

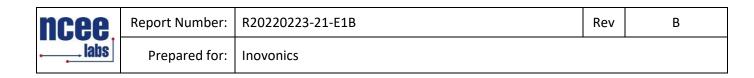
Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	±4.31
Radiated Emissions, 3m	1GHz - 18GHz	±5.08
Emissions limits, conducted	30MHz – 18GHz	±3.03 dB

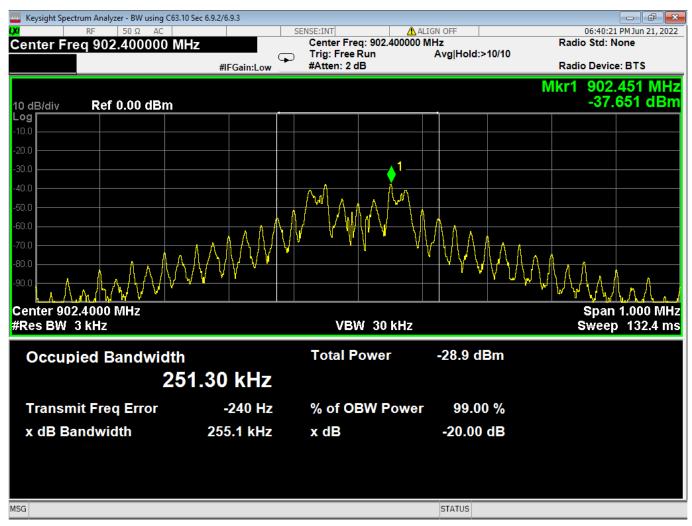

Expanded uncertainty values are calculated to a confidence level of 95%.

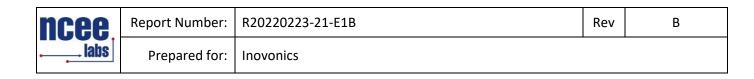
APPENDIX C – GRAPHS AND TABLES

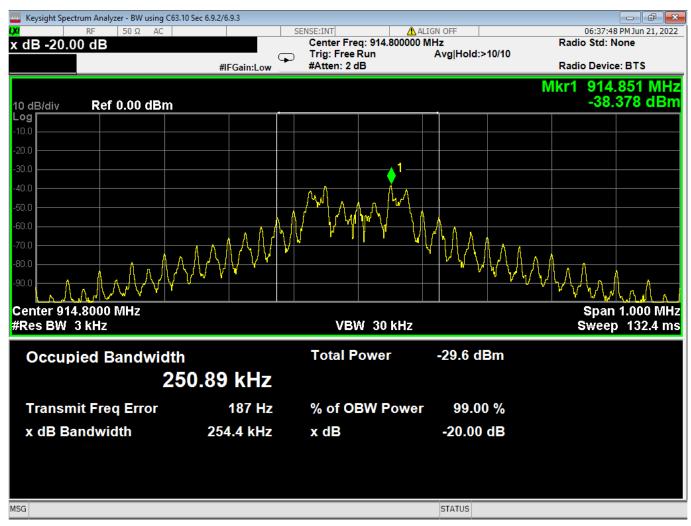


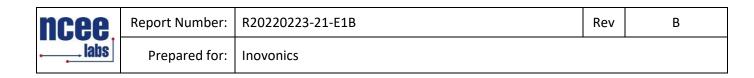

01 Conducted Output Power, Low Channel


🔤 Keysight Sp	ectrum Analyzer - Peak Out	put Power Using C63.10	Sec 11.9.1.1						×
L <mark>XI</mark>	RF2 50 Ω DC		S	ENSE:INT SOURC	CE OFF 🥼	ALIGN OFF			PM Aug 03, 2022
Ref Leve	el 30.00 dBm		:Fast 🖵 n:Low	Trig: Free R #Atten: 40 c		Avg Type: Avg Hold:>	Log-Pwr •100/100	1	ACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN
10 dB/div Log	Ref 30.00 dBm	1						Mkr1 91 19.	3.60 MHz 596 dBm
20.0				<u> </u>					
10.0									
0.00	/								
-10.0									
-20.0									
-30.0	hnit mandide							Mangandra	petertantin Whatler
-40.0									
-50.0									
-60.0									
Center 01	15.00 MHz							Snan	20.00 MHz
#Res BW	8 MHz		VBW	50 MHz			Sweep	5 1.000 ms	20.00 MH2 (1001 pts)
MSG						STATUS			


02. Conducted Output Power, Mid Channel




03 Conducted Output Power, High Channel



04 Bandwidth Low Channel

05. Bandwidth Mid Channel

06 Bandwidth High Channel

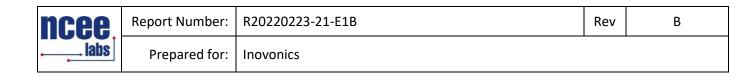
ncee	Report Number:	R20220223-21-E1B	Rev	В
labs	Prepared for:	Inovonics		

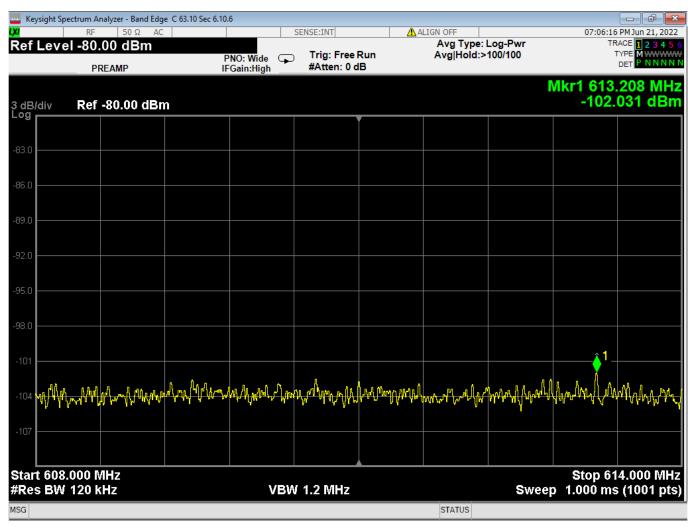
Keysight Sp		nalyzer - Ba	ind Edge	C 63.10 Sec 6.	10.6												- F
	RF	50 \$	2 AC				SENSE:I	NT		🛕 AL	IGN OFF				07:		M Jun 21, 20
					PNO: V IFGain:	Vide 🖵) Tri #At	g: Free R tten: 6 dl	lun 3		Avg T Avg H	ype: old:>	Log-Pw 100/100	/r		TY	CE 1 2 3 4 PE MWWW ET P N N N
dB/div	Ref	- 4.00 (dBm														
2 9 4.0																	
4.0					+_<	<u>}</u>											
.0																	
												~ ~~					
.0 .0 .0	-												-ware	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
.0															A NAVINA	<u>~~~</u> w	᠋᠂᠕᠕
.0																	
															Oton	002	0000 84
art 902 Res BW	2.0000 / 100	kHz				VBV	V 1.0	MHz					S	Sweep	5.0p 1.000	903. ms (0000 M (1001 p
R MODE T			X	02.336 MH	7	Y - 30.476	dBm	FUNC	TION	FUNCT	ION WIDTH			FU	INCTION VA	LUE	
2 N	1 f 1 f	(Δ)	90	2.000 0 MH -336 kH	Z	-67.924	dBm 49 dB										
í E																	3

07 Bandedge Unrestricted Low Channel Hopping

ncee.	Report Number:	R20220223-21-E1B	Rev	В
labs	Prepared for:	Inovonics		

Keysight Spec		er - Band Edg	e C 63.10 Sec 6.10).6												F
	RF	50 Ω AC				SENSE:I	NT		🛆 Al	IGN OFF				09:56	5:01 PM J	
op Fred	q 903.0	00000		P N O: Wid FGain:Lo			g: Free l tten: 6 d					Log-Pwi 100/100	·		TYPE	1234 MWWW PNNN
) dB/div	Pef -A	00 dBm											N	lkr1 90 -3	2.39 0.01	9 MH 6 dB
4.0						1_										
					~ ^											
l.0																
.0 3∆1																
.0														and the second s	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
🛵 ———																ᡃ᠆ᡐᠰᡳ᠈
l.O																
art 902.0 Res BW					VBW	/ 1.0	MHz					S	weep	Stop 9 1.000 r	03.00 ns (1(00 M)01 p
	C SCL		× 902.399 MHz		Y 30.016	dBm	FUNC	CTION	FUNCT	ION WIDT	H		FU	NCTION VALU	E	
2 Ν 1 Δ1 1	f f (Δ)		02.000 0 MHz -399 kHz		68.355 -38.33	dBm										
F 1	f	9	02.000 0 MHz		83.647	dBm										
																>


07 Bandedge Unrestricted Low Channel Relative


ncee.	Report Number:	R20220223-21-E1B	Rev	В
labs	Prepared for:	Inovonics		

🛄 Keysight Sp	ectrum Analyzer - Band Ed	lge C 63.10 Sec 6.10.6				
LXI	RF 50 Ω A	C	SENSE:INT	ALIGN OFF		:08 PM Jun 21, 2022
RefLeve	el -60.00 dBm			Avg Type: Lo	g-Pwr	TRACE 1 2 3 4 5 6
		PNO: Wide	Trig: Free Run	Avg Hold:>10	0/100	TYPE M WWWWW
	PREAMP	IFGain:High	#Atten: 0 dB	-		DET P N N N N N
	TREAM	ii Sunnigh				
					Mkr1 61	0.898 MHz
					-10	2.164 dBm
10 dB/div Log	Ref -60.00 dB	111			10/	
70.0						
-70.0						
-80.0						
-90.0						
			≰1			
-100						
Nun	$m \sim m \sim$	www.walthallangenergenergenergenergenergenergenergen	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	Marghman	who have have a	ma mar mar
-110						
-120						
-130						
1000						
-140						
140						
-150						
-130						
Start 608.	000 MHz				Ston	614.000 MHz
#Res BW			3W 1.2 MHz		Sweep 1.000 n	nc (1001 nto)
#Res DW	IZV KHZ	VI			Sweep 1.0001	n s (1001 pls)
MSG				STATUS		

08 Bandedge Restricted Low Channel without Corrections Hopping

	Corrections a	and Raw Value	es for Restricte	d Band Edges
Channel, MHz	Antenna Factor (dB)	Cable Loss (dB)	dBm to dBuV	Correction/Reference level offset
610.9	22.90	4.44	107	134.34
d	BuV = Uncorrec	ted Level (dBm	n) + 107 + Anten	na Factor + Cable

08 Bandedge Restricted Low Channel without Corrections

	Corrections a	and Raw Value	es for Restricte	d Band Edges
Channel, MHz	Antenna Factor (dB)	Cable Loss (dB)	dBm to dBuV	Correction/Reference level offset
613.2	23.00	4.44	107	134.44
d	BuV = Uncorrec	ted Level (dBm	n) + 107 + Anten	na Factor + Cable

ncee.	Report Number:	R20220223-21-E1B	Rev	В
labs	Prepared for:	Inovonics		

Keysight Spec	trum Ana	lyzer - Band E	Edge C 63.10 Sec 6	.10.6								
	RF	50 Ω	AC			SENSE:INT		ΔA	LIGN OFF			7 PM Jun 21, 20
	_			PNO: Wi IFGain:L		Trig: F #Atten	ree Run 6 dB		Avg Type Avg Hold:			RACE 1 2 3 4 TYPE MWWW DET P N N N
dB/div	Dof -	4.00 dB	m							N	1kr3 928 -76	.000 MI 059 dB
^{yg}	KGI ~	+.00 UD										
.0												
.0												
.0												
.0												21
.0			a manana and a second									mon
.0 .0 <mark>~~~⁷~~^</mark>	mm	سرمرير										
.0												
art 927.0 Res BW 1					VBW	/ 1.0 MF	z			Sweep	Stop 923 1.000 ms	8.0000 M s (1001 p
R MODE TRO			Х		Y		FUNCTION	FUNC	FION WIDTH	FU	NCTION VALUE	
Ν <u>1</u> Δ1 1	f f (A)		Hz (Δ)	-32.526 -39.10	5 dB						
F 1	f		928.000 M	-IZ	-76.059	dBm						
									STATUS			2

09 Bandedge Unrestricted High Channel Hopping

ncee.	Report Number:	R20220223-21-E1B	Rev	В
labs	Prepared for:	Inovonics		

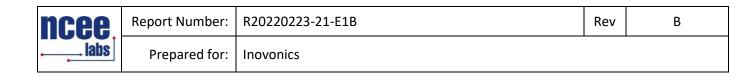
Keysight Spe	ectrum A	nalyzer - Band E	dge C 63.10 Sec 6.1	0.6												ð E
	RF	50 Ω /	AC			SENSE:I	NT		🔔 Al	IGN OFF					15 PM Jun 2	
tart Fre	q 92	7.000000	MHz	PNO: Wie IFGain:Le			g: Free F tten: 6 d					Log-Pwr 100/100			TRACE 1 2 TYPE MW DET P N	2345 ////////////////////////////////////
0 dB/div	Ref	-4.00 dBi	m										N	lkr1 92 -30	7.595 .480 (MH dBr
og 4.0																
24.0									Ô	1						
4.0									<u>*</u>							
4.0																
4.0			- Contraction and a second second													2∆
4.0	مہمیں	and a second														
1.0 1.0																
	~~~~	8411-												<b>6</b> 4 64		
tart 927. Res BW					VBW	1.0	MHz					Sv	veep	Stop 92 1.000 m	28.0000 IS (1001	1 pi
	RC SCL		× 927.595 MH	7	Y -30.480	dBm	FUNC	TION	FUNCT	TION WIDT	H		FU	NCTION VALUE		
2 <u>A1</u> 1 3 F 1		(Δ)	405 kH 928.000 MH	z (Δ)	- <u>38.87</u> 76.059	2 dB										
																)

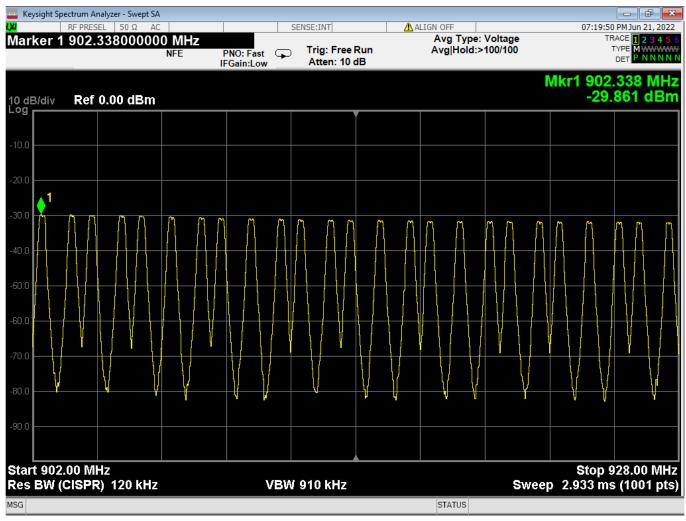
09 Bandedge Unrestricted High Channel

ncee.	Report Number:	R20220223-21-E1B	Rev	В
labs	Prepared for:	Inovonics		

eysight Spectrum Ar									- F
RF	50 Ω AC			SENSE:INT		ALIGN OFF			3 PM Jun 21, 2
PF	REAMP		PNO:Fast 🖵 Gain:High	Trig: Free #Atten: 0 d			be: Log-Pwr d:>100/100	Т	RACE 1 2 3 4 TYPE MWW DET P N N
B/div Ref	-55.00 dBi	~						Mkr1 97 -100	0.32 M .703 dE
	-55.00 UBI				Ĭ				
		<u> </u>							
when a free free	whennenandre	mandomen	<b>┶ᡣ</b> ᢦᡙᢔᠲᢉ᠆ᠼ᠕ᢛᠬᢦᢩᠰ᠆ᠲ	Manager and Angels	-lam mar	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	مريسية ميريسية المريسية المريسية المريسية المريسية المريسية المريسية المريسية المريسية المريسية المريسة المريس مريسية المريسية المريس	-Monney marker marker	<del>ป[ุ]ญแลงสาวค</del>
rt 0.96000 Q es BW 120 k	SHz (Hz		VBW	/ 1.2 MHz			Swee	Stop 1 2.600 m	.00000 G s (1001 p
MODE TRC SCL		X	Y		CTION	FUNCTION WIDTH		FUNCTION VALUE	
<u>N 1 f</u>		970.32 MHz	-100.703	dBm					
File <state< td=""><td>900 MHz FH</td><td>SS Restricted</td><td>Higher Bande</td><td>edge.state&gt; r</td><td>ecalled</td><td>STATUS</td><td></td><td></td><td></td></state<>	900 MHz FH	SS Restricted	Higher Bande	edge.state> r	ecalled	STATUS			

10 Bandedge Restricted High Channel without Corrections Hopping

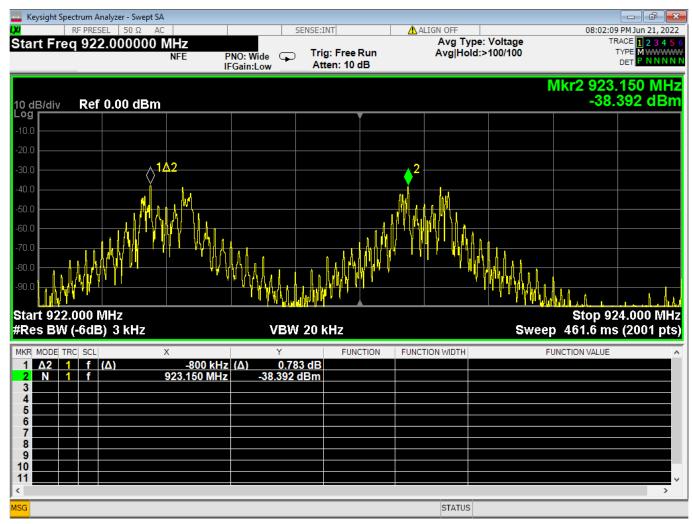

Corrections and Raw Values for Restricted Band Edges								
Channel,	Antenna Factor	Cable Loss	dBm to	Correction/Reference level offset				
MHz	(dB)	(dB)	dBuV					
970.3	27.03	5.47	107	139.50				
dBuV = Uncorrected Level (dBm) + 107 + Antenna Factor + Cable								


ncee.	Report Number:	R20220223-21-E1B	Rev	В
	Prepared for:	Inovonics		

Ceysight Spectru	ım Analyzer - Band E	-							- F
	RF 50 Ω			SENSE:INT		ALIGN OFF	1 D		PM Jun 21, 2
irt Freq s	960.000000 PREAMP	F	PNO: Fast 🖵 Gain:High	Trig: Free #Atten: 0 d		Avg Type Avg Hold:	Log-Pwr >100/100	T	ACE 1 2 3 A YPE MWW DET P N N
dB/div	Ref -55.00 dl	3m						Mkr1 972 -99.4	.56 M 165 dE
a 🗌				,					
			<u>^1</u>						
)									
	allen af an an air a			∽₩₽Ĵ <b>₩</b> Ĺ╱₩Ĵ₩₩ [₩] ₩	╊╍╍╍╍ <b>┙</b> ┲╱┓╏┙╿╻╲╾┦	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		КГЦил шл.Гµд_Лардунг чэг	₽ [₽] ₩ <u>₽</u> ₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
; <b></b>									
5									
5									
; <b></b>									
Int 0.9600								Stop 1.0	0000 0
es BW 12			VBW	1.2 MHz			Sweep	2.600 ms	(1001 )
MODE TRC		Х	Y		TION	FUNCTION WIDTH	FUN	ICTION VALUE	
N 1	<u>f</u>	972.56 MHz	-99.465	dBm					

10 Bandedge Restricted High Channel without Corrections, continuous

Corrections and Raw Values for Restricted Band Edges								
Channel, MHz (dB)		Cable Loss dBm to (dB) dBuV		Correction/Reference level offset				
972.6	27.10	5.49	107	139.59				
dBuV = Uncorrected Level (dBm) + 107 + Antenna Factor + Cable								





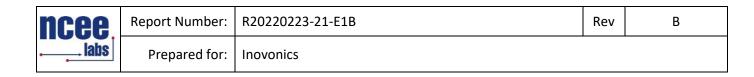

11 Hop Count, 25 Hops

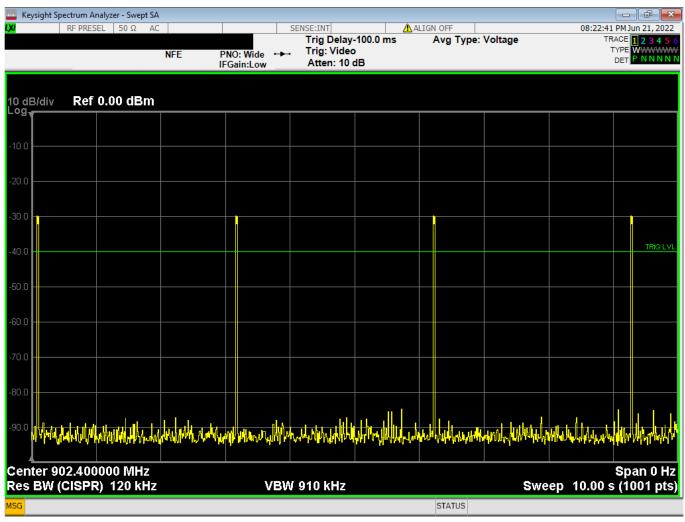
**Declaration from manufacturer:** The EchoStream protocol defines 64 channels spaced 400 kHz apart. Manufacturer uses only 25 channels from the set of 64. The minimum spacing between channels is ~ 800 kHz with some channels space ~1.2 MHz apart. The entire channel map uses a spacing of 400 kHz, but the used channels are either 800 kHz or 1.2 MHz apart.

ncee.	Report Number:	R20220223-21-E1B	Rev	В
	Prepared for:	Inovonics		



**12 Minimum Frequency Separation** 


**Declaration from manufacturer:** The EchoStream protocol defines 64 channels spaced 400 kHz apart. Manufacturer uses only 25 channels from the set of 64. The minimum spacing between channels is ~ 800 kHz with some channels space ~1.2 MHz apart. The entire channel map uses a spacing of 400 kHz, but the used channels are either 800 kHz or 1.2 MHz apart.


ncee labs	Report Number:	R20220223-21-E1B	Rev	В
	Prepared for:	Inovonics		

Marker 1 9.95000 ms	NFE P	NO: Wide	SENSE:INT Trig Delay Trig: Video Atten: 10 o	-10.00 ms	ALIGN OFF Avg Type Avg Hold:		TR 1	PM Jun 21, 2022       ACE     1 2 3 4 5 6       YPE     M       DET     P     N     N     N
10 dB/div Ref 0.00 dBm							Mkr1 9 -29.	9.950 ms 701 dBm
-10.0	1							
-30.0								TRIG LVL
-50.0								
-70.0 -80.0 -80.0					2 <u>0</u> 1	ol/91sozoladyyalatyy	instation and the	himelikanika ny vyk
Center 902.400000 MHz #Res BW (-6dB) 300 kHz		VBW	/ 2.0 MHz					Span 0 Hz (2001 pts)
MKR     MODE     TRC     SCL     SCL </td <td>× <u>9.950 ms</u> 21.85 ms</td> <td></td> <td>dBm</td> <td>CTION F</td> <td></td> <td>FU</td> <td>NCTION VALUE</td> <td>^</td>	× <u>9.950 ms</u> 21.85 ms		dBm	CTION F		FU	NCTION VALUE	^
4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6								
7 8 9 10								
11   < MSG					STATUS			> *

13 Channel Occupancy, On time*

*Measured in hopping mode provided by the manufacturer.





14 Channel Occupancy in 10 s window, 4 Hops possible*

*Measured in hopping mode provided by the manufacturer.

21.85 ms x4=87.4 ms=0.0874 s

ncee,	Report Number:	R20220223-21-E1B	Rev	В
labs	Prepared for:	Inovonics		

## REPORT END