Report No.: HK2211105051-1E

FCC TEST REPORT

Test report
On Behalf of
Winner Wave Limited
For
Pocket
Model No.: H-1

FCC ID: 2ADFS-POCKET-H-1

Prepared For: Winner Wave Limited

Unit 1615 Peninsula Tower, 538 Castle Peak Road Lai Chi Kok Kowloon, Hong

Kong

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Nov. 10, 2022 ~Dec. 29, 2022

Date of Report: Dec. 29, 2022

Report Number: HK2211105051-1E

TEST RESULT CERTIFICATION

Applicant 5 name	Willier Wave Littlieu
	Unit 1615 Peningula Tower 538 Castle Peak Poad Lai Chi Ko

Unit 1615 Peninsula Tower, 538 Castle Peak Road Lai Chi Kok Address

Kowloon, Hong Kong

Actions Microelectronics Co., Ltd. Manufacture's Name.....

201, No.9 Building, Software Park, KeJiZhongEr Road,

GaoXinQu, NanShan, Shenzhen, China

Product description

Trade Mark: **EZCast** Product name......Pocket Model and/or type reference .: H-1

FCC Rules and Regulations Part 15 Subpart C Section 15.247

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests: Nov. 10, 2022 ~Dec. 29, 2022

Date of Issue....: Dec. 29, 2022

Test Result.....

Testing Engineer

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

TABLE OF CONTENTS

1.	TEST RESULT SUMMARY	5
	1.1. TEST PROCEDURES AND RESULTS	5
	1.2. INFORMATION OF THE TEST LABORATORY	5
	1.3. MEASUREMENT UNCERTAINTY	
2.		
	2.1. GENERAL DESCRIPTION OF EUT	
	2.2. CARRIER FREQUENCY OF CHANNELS	
	2.3. OPERATION OF EUT DURING TESTING	
	2.4. DESCRIPTION OF TEST SETUP	
3.	ENERA INFORMATION	9
	3.1. TEST ENVIRONMENT AND MODE	
	3.2. DESCRIPTION OF SUPPORT UNITS	
4.	TEST RESULTS AND MEASUREMENT DATA	12
	4.1. CONDUCTED EMISSION	12
	4.2. TEST RESULT	14
	4.3. MAXIMUM CONDUCTED OUTPUT POWER	16
	4.4. EMISSION BANDWIDTH	
	4.5. POWER SPECTRAL DENSITY	24
	4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	31
	4.7. RADIATED SPURIOUS EMISSION MEASUREMENT	41
	4.8. ANTENNA REQUIREMENT	
5.	PHOTOGRAPH OF TEST	68
C	DUOTOS OF THE FIIT	70

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0 Initial Test Report Release		Dec. 29, 2022	Jason Zhou
TNG	mG mG	THE THE	G ING

1. TEST RESULT SUMMARY

1.1. TEST PROCEDURES AND RESULTS

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247(b)(4)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247(b)(3)	PASS
6dB Emission Bandwidth	§15.247(a)(2)	PASS
Power Spectral Density	§15.247(e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. INFORMATION OF THE TEST LABORATORY

Shenzhen HUAK Testing Technology Co., Ltd. Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1.3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3 HUAKTE	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2. EUT DESCRIPTION

2.1. GENERAL DESCRIPTION OF EUT

Equipment:	Pocket	
Model Name:	H-1	TOG .
Series Model:	N/A maxities and	IK TEST
Model Difference:	N/A WARTESTING	
FCC ID:	2ADFS-POCKET-H-1	HUAKTESTING
Antenna Type:	Internal Antenna	
Antenna Gain:	3.04dBi	TESTIN
Operation frequency:	802.11b/g/n 20:2412~2462 MHz 802.11n 40: 2422~2452MHz	MUAK.
Number of Channels:	802.11b/g/n20: 11CH 802.11n 40: 7CH	TESTING
Modulation Type:	CCK/OFDM/DBPSK/DAPSK	71.0
Power Source:	DC 5V from Type-C	STING
Power Rating:	DC 5V from Type-C	HUAKTE

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Report No.:HK2211105051-1E

2.2. CARRIER FREQUENCY OF CHANNELS

	Channel List For 802.11b/802.11g/802.11n (HT20)								
Channel	Frequency (MHz)	Channel	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
01	2412	04	2427	07	2442	10	2457		
02	2417	05	2432	08	2447	11	2462		
03	2422	06	2437	09	2452	-STING			

Channel List For 802.11n (HT40)									
Channel	Channel Frequency (MHz) Channel Frequency (MHz) Channel Channel Channel						Frequency (MHz)		
STING_	XTESTING (04	2427	07	2442	- TESTIN	WTE		
@ H		05	2432	08	2447	HILAK	Monage Home		
03	2422	06	2437	09	2452				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.3. OPERATION OF EUT DURING TESTING

Operating Mode

The mode is used: Transmitting mode for 802.11b/802.11g/802.11n (HT20)

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

The mode is used: Transmitting mode for 802.11n (HT40)

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.4. DESCRIPTION OF TEST SETUP

AC Plug _____ Adapter ____ EUT ____ Laptop

Adapter information Model: HW-059200CHQ

Operation of EUT during testing:

Input: 100-240V, 50-60Hz, 0.5A

Output: 5VDC, 2A

Laptop information Model:TP00067A

Input: 20V, 2.25A/3.25A

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is Z position.

3. ENERA INFORMATION

3.1. TEST ENVIRONMENT AND MODE

Operating Environment:		
Temperature:	25.0 °C	HUAKTE
Humidity:	56 % RH	(iii)
Atmospheric Pressure:	1010 mbar	
Test Mode:		
Engineering mode:	Keep the EUT in continuous to by select channel and modula value of duty cycle is 98.46%	itions(The

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

STING	Mode	Data rate	
	802.11b	1Mbps	(HUAN
à	802.11g	6Mbps	
	802.11n(H20)	6.5Mbps	ESTING
W H	802.11n(H40)	13.5Mbps	HUAN
			(0.00)

Final Test Mode:

Operation mode:	Keep the EUT in continuous transmitting
Operation mode.	with modulation

- 1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.
- 2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20), 13.5Mbps for 802.11(H40). Duty cycle setting during the transmission is 98.5% with maximum power setting for all modulations.

3.2. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	Equipment	Mode	el No.	Serial I	No.	FCC	ID	Trade I	Name
100	1	NG	/ HUAK TESTIN	1	STING	1	HUAKTESTIN	1	CTING

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

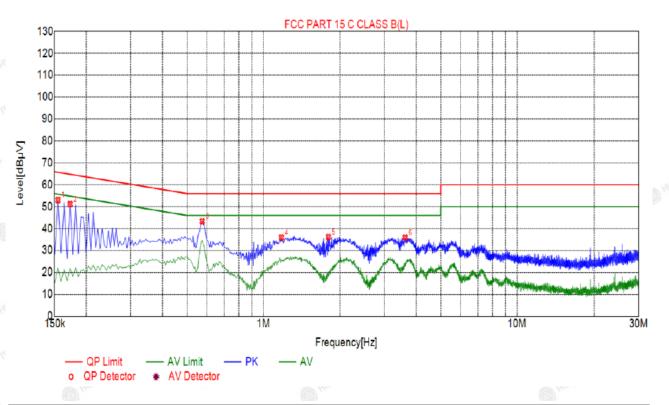
TEST RESULTS AND MEASUREMENT DATA

CONDUCTED EMISSION

Test Specification

THE	TIME	TIME	7100				
Test Requirement:	FCC Part15 C Secti	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013		TING				
Frequency Range:	150 kHz to 30 MHz	HUAKIE	AK TESTING				
Receiver setup:	RBW=9 kHz, VBW=	:30 kHz, Sweep	time=auto				
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	(MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46					
Test Setup:	Test table/Insulation Remark EUT Fauipment Under Test	Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line impedence Stabilization Network					
Test Mode:	Charging + transmit	ting with modula	tion				
Test Procedure:	line impedance s provides a 50ohr measuring equipr 2. The peripheral de power through a coupling impedar refer to the bloo photographs). 3. Both sides of A conducted interfe emission, the related	 Charging + transmitting with modulation The E.U.T is connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 					
Test Result:	PASS	(a)	0				
	ALM C		ATM				

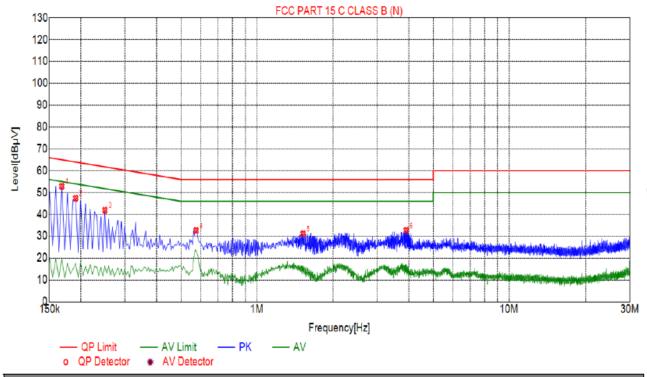
Test Instruments


Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Receiver	R&S	ESCI 7	HKE-010	Feb. 18, 2022	Feb. 17, 2023	
LISN	R&S	ENV216	HKE-002	Feb. 18, 2022	Feb. 17, 2023	
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Feb. 18, 2022	Feb. 17, 2023	
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	_{MCTES} TIES N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.2. TEST RESULT

Test Specification: Line


Sus	Suspected List								
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре	
1	0.1545	53.05	20.03	65.75	12.70	33.02	PK	L	
2	0.1725	51.21	20.04	64.84	13.63	31.17	PK	L	
3	0.5730	43.32	20.05	56.00	12.68	23.27	PK	L	
4	1.1760	35.93	20.09	56.00	20.07	15.84	PK	L	
5	1.8015	36.14	20.14	56.00	19.86	16.00	PK	L	
6	3.6195	35.91	20.25	56.00	20.09	15.66	PK	L	

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

Sus	Suspected List								
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре	
1	0.1680	52.89	20.01	65.06	12.17	32.88	PK	N	
2	0.1905	47.42	20.04	64.01	16.59	27.38	PK	N	
3	0.2490	41.95	20.04	61.79	19.84	21.91	PK	N	
4	0.5730	32.62	20.05	56.00	23.38	12.57	PK	N	
5	1.5225	31.13	20.11	56.00	24.87	11.02	PK	N	
6	3.9075	32.66	20.25	56.00	23.34	12.41	PK	N	

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

4.3. MAXIMUM CONDUCTED OUTPUT POWER

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02					
Limit:	30dBm					
Test Setup:	Power meter EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the Peak output power and record the results in the test report. 					
Test Result:	PASS					

Test Instruments

THE HUM	HOM	A HUM	The HUM	AND HOM	The HOME			
	RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due			
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023			
Power meter	Agilent	E4419B	HKE-085	Feb. 18, 2022	Feb. 17, 2023			
Power Sensor	Agilent	E9300A	HKE-086	Feb. 18, 2022	Feb. 17, 2023			
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023			
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test Data

TING	TING	TIME TIME	TING TIN
CTES.	HUAKTES	TX 802.11b Mode	HUAK TES!
Test	Frequency	Maximum Peak Conducted Output Power	LIMIT
Channel	(MHz)	(dBm)	dBm
CH01	2412	0.98	30
CH06	2437	0.94	30
CH11	2462	1.01	30 ,,,,,,,
		TX 802.11g Mode	
CH01	2412	-0.96	30
CH06	2437	-0.93	30 HINK TEST
CH11	2462	-0.97	30
	TESTING	TX 802.11n20 Mode	TESTING
CH01	2412	-0.98	30
CH06	2437	-0.98	30
CH11	2462	-0.90	30 MAY TESTING
		TX 802.11n40 Mode	9"
CH03	2422	-0.69	30
CH06	2437	-0.70 x 125 m	30 NAME TO STATE OF THE STATE O
CH09	2452	-0.75	30

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

4.4. EMISSION BANDWIDTH

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)					
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02					
Limit:	>500kHz					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 					
Test Result:	PASS					

Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023		
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

AFICATION.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test data

Took also wood	6dB Emission Bandwidth (MHz)					
Test channel	802.11b	802.11g	802.11n(H20)	802.11n(H40)		
Lowest	10.08	16.32	17.28	35.20		
Middle	10.04	16.32	17.32	35.12		
Highest	10.12	16.32	16.96	35.20		
Limit:	3 HUAKTES!	>!	500kHz			
Test Result:	TOK.	TESTING WUAKTESTI	PASS	TIME WANTESTING		

Test plots as follows:

802.11b Modulation

Lowest channel

Middle channel

Highest channel

802.11g Modulation

Lowest channel

Middle channel

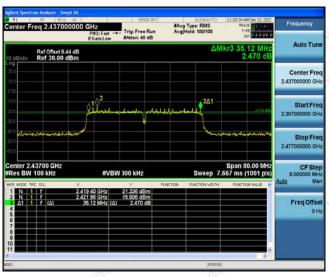
Highest channel

802.11n (HT20) Modulation

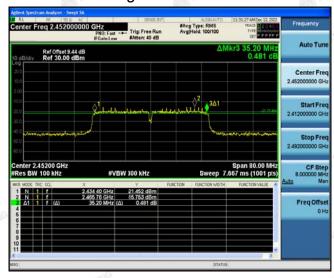
Lowest channel

Middle channel

Highest channel



802.11n (HT40) Modulation


Lowest channel

Middle channel

Highest channel

Page 24 of 70

4.5. POWER SPECTRAL DENSITY

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)					
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02					
Limit:	The average power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.					
Test Setup:	Spectrum Analyzer EUI					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The testing follows Measurement procedure 10.2 method PKPSD of FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = Peak, Sweep time = auto couple. Employ trace averaging (Peak) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 					
Test Result:	PASS					

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

ATION

Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023	
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Feb. 18, 2022	Feb. 17, 2023	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023	
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test data

EUT Set Mode	Channel	Result (dBm/30kHz)	Result (dBm/3kHz)			
	Lowest	-15.21	-25.21			
802.11b	Middle	-16.27	-26.27			
	Highest	-15.61	-25.61			
802.11g	Lowest	-24.67	-34.67			
	Middle	-23.97	-33.97			
	Highest	-24.56	-34.56			
802.11n(H20)	Lowest	-24.21	-34.21			
	Middle	-24.19	-34.19			
	Highest	-24.2	-34.2			
802.11n(H40)	Lowest	-27.5	-37.5			
	Middle	-27.45	-37.45			
	Highest	-27.35	-37.35			
PSD test result (dBm/3	BkHz)= PSD tes	t result (dBm/30kHz)-10				
Limit: 8dBm/3kHz						
Test Result:	PASS					

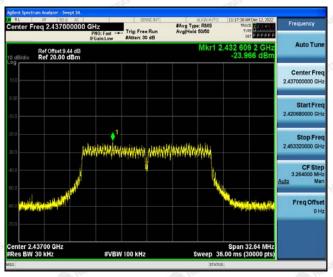
Test plots as follows:

802.11b Modulation

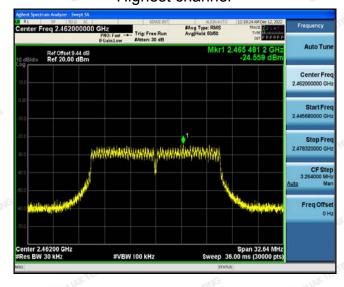
Lowest channel

Middle channel

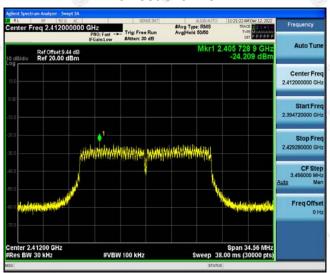
Highest channel



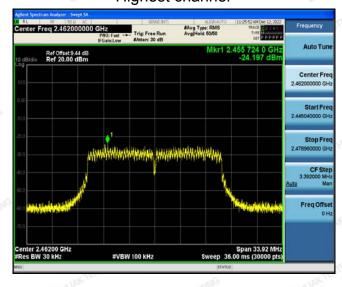
802.11g Modulation


Lowest channel

Middle channel

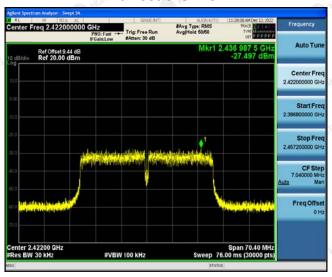

Highest channel

802.11n (HT20) Modulation

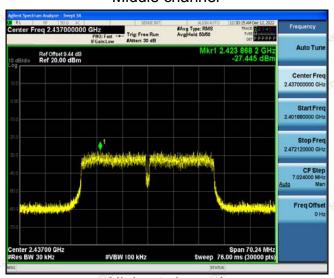

Lowest channel

Middle channel

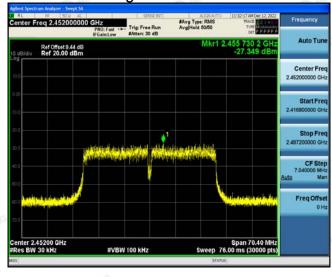
Highest channel



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



802.11n (HT40) Modulation


Lowest channel

Middle channel

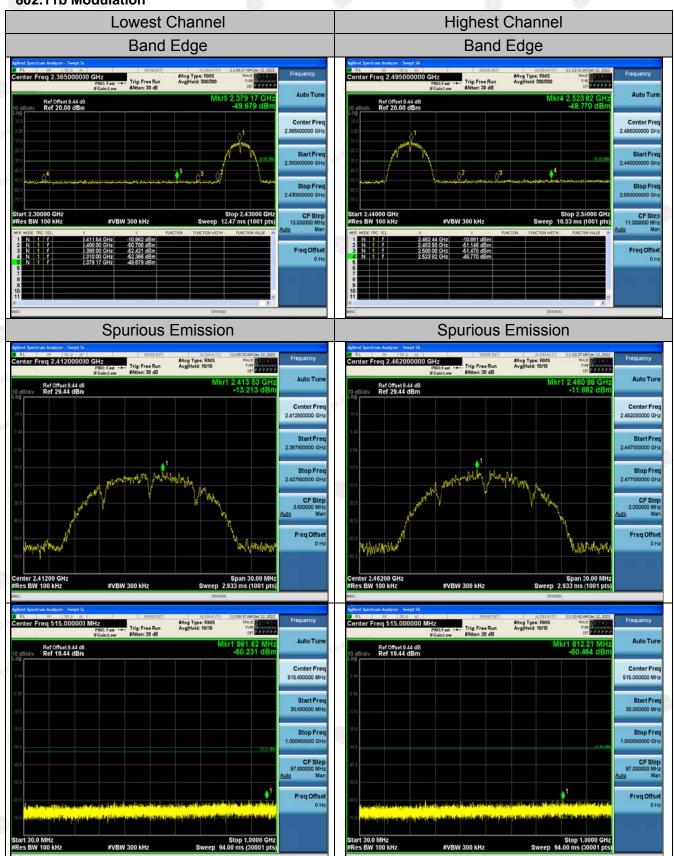
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT

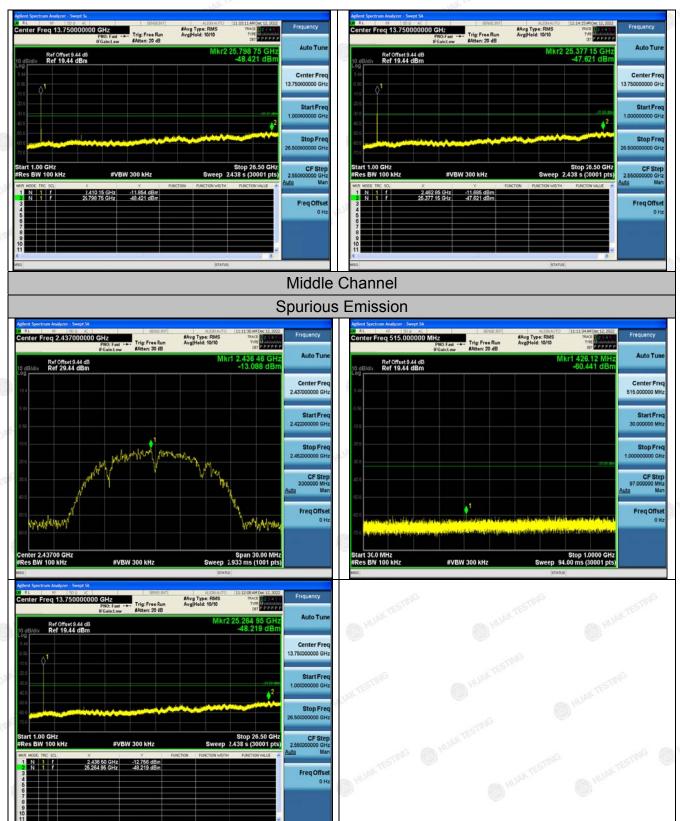
Test Specification

frequency band, the emissions which fall in non-restricted bands shall be attenuated at least 2 30dB relative to the maximum PSD level in 100 k RF conducted measurement and radiated emissions. Which fall in the restricted bands, as defined in S	n the 0 dB / Hz by ssions ection				
frequency band, the emissions which fall is non-restricted bands shall be attenuated at least 2 30dB relative to the maximum PSD level in 100 k RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in S 15.205(a), must also comply with the radiated emissions which fall is non-restricted bands, as defined in S 15.205(a), must also comply with the radiated emissions which fall is non-restricted bands shall be attenuated at least 2 30dB relative to the maximum PSD level in 100 k RF conducted measurement and radiated emissions which fall is non-restricted bands, as defined in S 15.205(a), must also comply with the radiated emissions which fall is non-restricted bands, as defined in S 15.205(a), must also comply with the radiated emissions which fall is non-restricted bands, as defined in S 15.205(a), must also comply with the radiated emissions which fall is non-restricted bands, as defined in S 15.205(a), must also comply with the radiated emissions which fall is non-restricted bands, as defined in S 15.205(a).	n the 0 dB / Hz by ssions ection				
Test Setup:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).				
MTE MARTE					
Test Mode: Transmitting mode with modulation					
1. The testing follows FCC KDB Publication 55807 15.247 Meas Guidance v05r02. 2. The RF output of EUT was connected to the spe analyzer by RF cable and attenuator. The path was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Dete Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency shall be attenuated by at least 20 dB relative to maximum in-band peak PSD level in 100 kHz maximum peak conducted output power procedused. If the transmitter complies with the condupower limits based on the use of RMS averagin a time interval, the attenuation required under the paragraph shall be 30 dB instead of 20 dB per 15.247(d). 5. Measure and record the results in the test report 6. The RF fundamental frequency should be excluding against the limit line in the operating frequency	ctrum loss ne ctor. cand the vhen lure is cted g over				
Test Result: PASS	ded				

Test Instruments

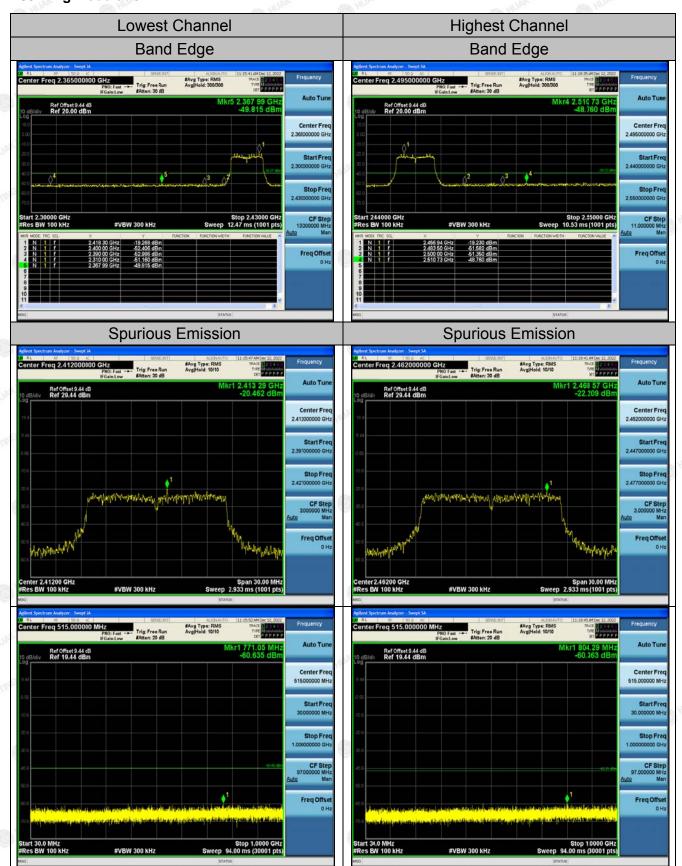

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023		
High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 18, 2022	Feb. 17, 2023		
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Feb. 18, 2022	Feb. 17, 2023		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023		
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A		

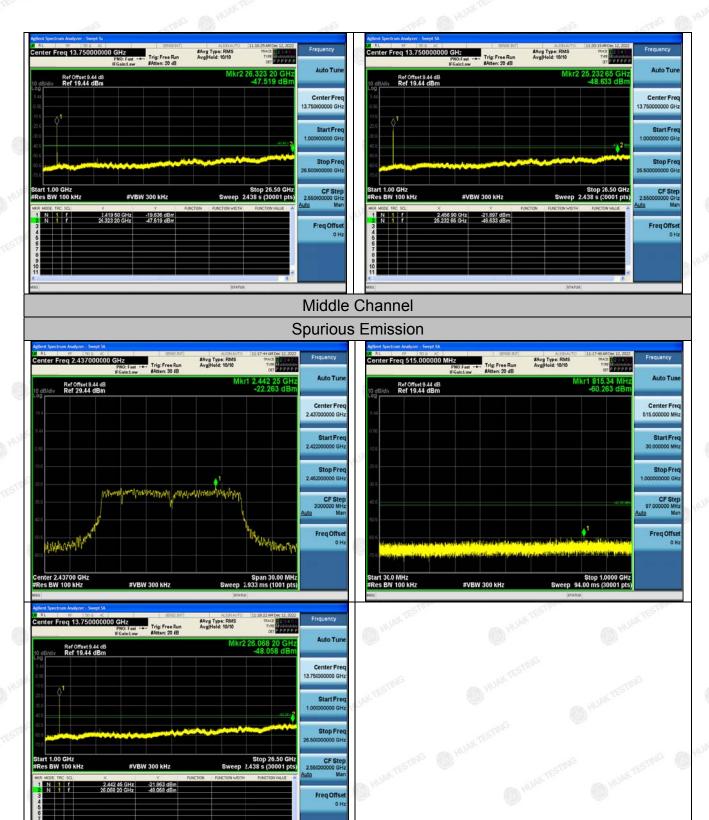
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

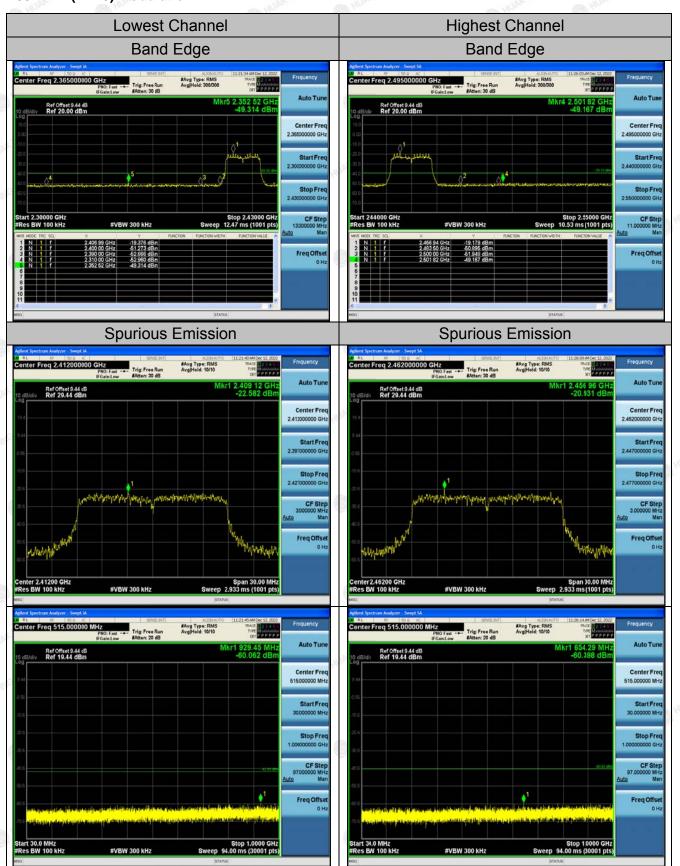


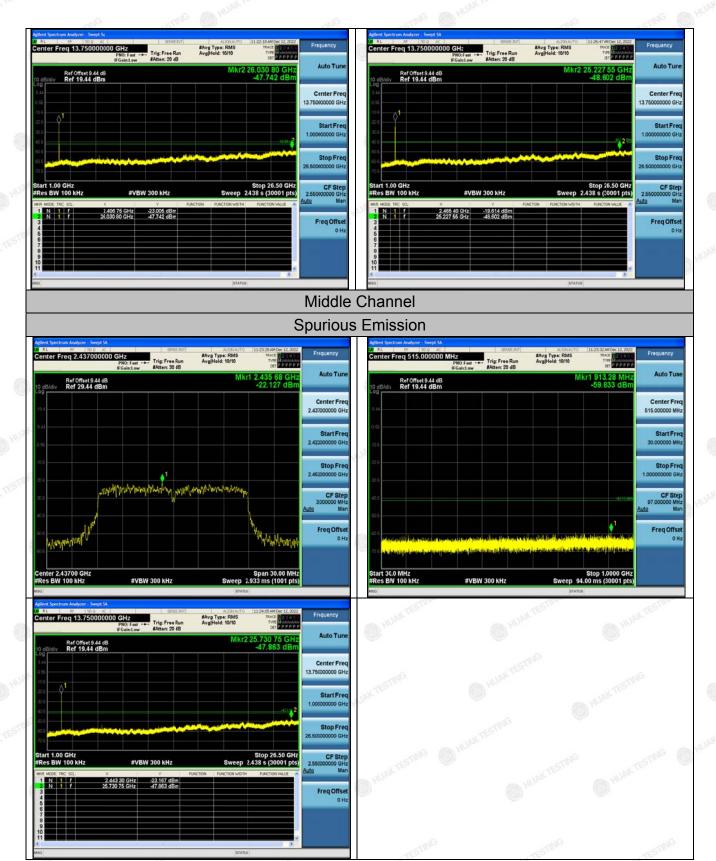
Test Data

802.11b Modulation

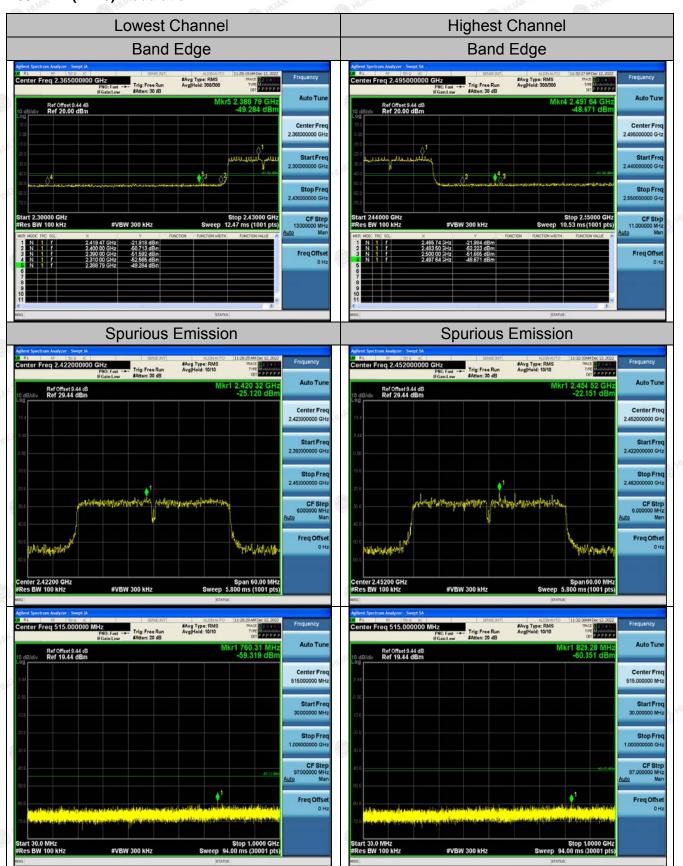


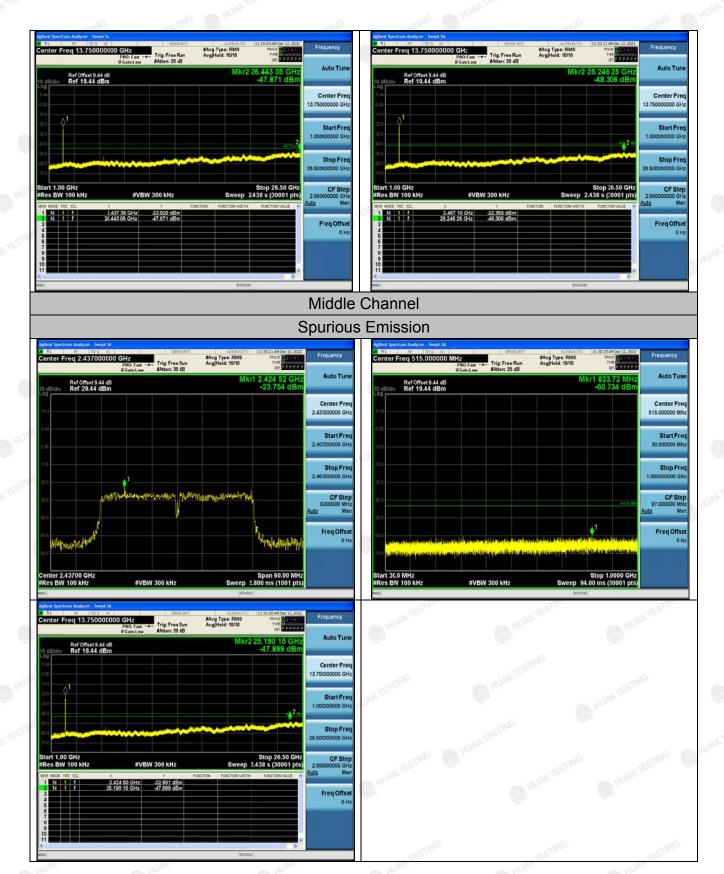



802.11g Modulation

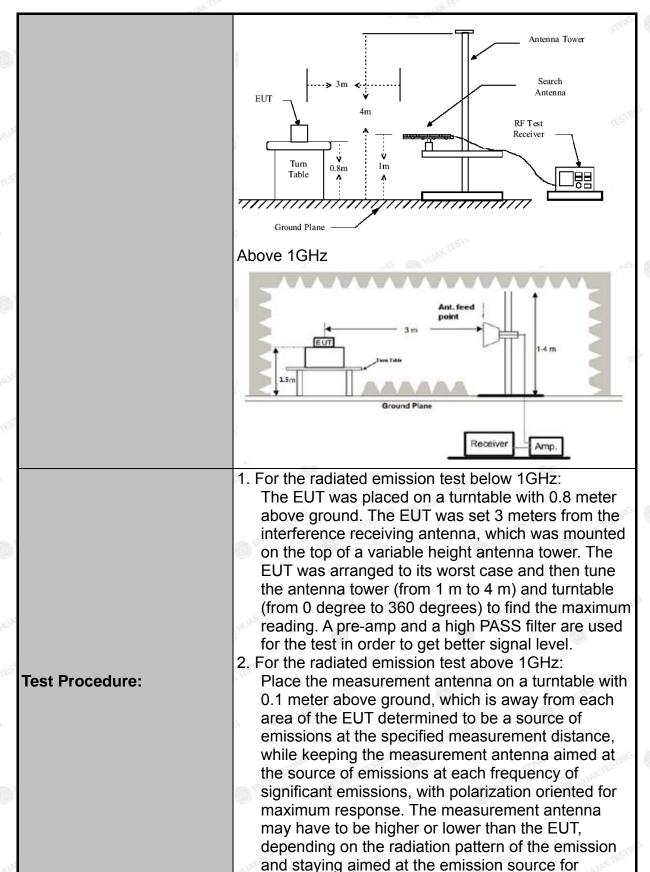


802.11n (HT20) Modulation





802.11n (HT40) Modulation


4.7. RADIATED SPURIOUS EMISSION MEASUREMENT

Test Specification

Test Requirement:	FCC Part15	C Sectio	n 1	5.209	TESTI	NG.	TESTIN
Test Method:	ANSI C63.10	0: 2013		(HUAR		MUNIC
Frequency Range:	9 kHz to 25 (GHz			STING		
Measurement Distance:	3 m	"TESTING		M HU	DKAR		"TESTING
Antenna Polarization:	Horizontal &	Vertical			G	0	HOM
Operation mode:	Horizontal & Vertical Transmitting mode with modulation Frequency Detector RBW VBW Respectively Shripped Policy Shripped Pol						
	9kHz- 150kHz	Quasi-pea	ak	200Hz	1kHz	Quas	Remark si-peak Value
Receiver Setup:		Quasi-pea	ak	9kHz	30kHz	Quas	si-peak Value
	30MHz-1GHz		ak				si-peak Value
	Above 1GHz	11 800	Un		1/1/6		eak Value
	Mar	Peak		1MHz	10Hz	Ave	erage Value
	Frequen	ісу		(microvolts/	meter)	Measurement Distance (meters)	
	.432				300		
			, ,		30		
					30		
						3	
Limit:	15.0	275.5				CTING	3
		1.00			THUAK T		3
	0	9	9				
	Frequency			-	Distan	ice	Detector
	Abaya 4011a	TO WAKE	500		110AH 3		Average
	Above 1GHz		5000		3		Peak
	For radiated	emission	ns I	pelow 30	MHz		CTING
Test setup:	EUT 0.8 m		l'able	Plane	RX Ant		A STITE
	30MHz to 10	SHz		•	HUAL		O HUAN

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

receiving the maximum signal.

10%	" LAN
	The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference
	ground plane. 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
	4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detectoris 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported.
	 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak;Trace =
	max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement.
	6.For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent.VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test results:	PASS OF THE STATE

Test Instruments

	Rad	iated Emission	Test Site (966)		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Receiver	R&S	ESCI-7	HKE-010	Feb. 18, 2022	Feb. 17, 2023	
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023	
Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 18, 2022	Feb. 17, 2023	
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Feb. 18, 2022	Feb. 17, 2023	
Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 18, 2022	Feb. 17, 2023	
Preamplifier	EMCI	EMC051845S E	HKE-015	Feb. 18, 2022	Feb. 17, 2023	
Preamplifier	Agilent	83051A	HKE-016	Feb. 18, 2022	Feb. 17, 2023	
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 18, 2022	Feb. 17, 2023	
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Feb. 18, 2022	Feb. 17, 2023	
Horn antenna	Schwarzbeck	9120D	HKE-013	Feb. 18, 2022	Feb. 17, 2023	
High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 18, 2022	Feb. 17, 2023	
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A	
Position controller	Taiwan MF	MF7802	HKE-011	Feb. 18, 2022	Feb. 17, 2023	
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A	
RF cable	Times	9kHz-1GHz	HKE-117	Feb. 18, 2022	Feb. 17, 2023	
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023	
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Feb. 18, 2022	Feb. 17, 2023	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Data

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:

Below 1GHz

Horizontal

QP Detector

Suspe	Suspected List									
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Polarity	
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	81.4271	-17.48	32.35	14.87	40.00	25.13	100	16	Horizontal	
2	116.3588	-15.10	34.19	19.09	43.50	24.41	100	139	Horizontal	
3	167.7859	-16.98	41.68	24.70	43.50	18.80	100	251	Horizontal	
4	259.9667	-12.73	40.56	27.83	46.00	18.17	100	1	Horizontal	
5	444.9750	-8.44	46.21	37.77	46.00	8.23	100	44	Horizontal	
6	504.4882	-7.11	33.29	26.18	46.00	19.82	100	287	Horizontal	

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Polarity

Vertical

Vertical

Suspected List Factor Reading Limit Margin Height Freq. Level Angle NO. [MHz] [dB] $[dB\mu V/m]$ $[dB\mu V/m]$ $[dB\mu V/m]$ [dB] [cm] [°] 64.2848 -14.66 35.62 20.96 40.00 19.04 100 142 1

43.50 116.6822 -15.13 40.15 25.02 18.48 100 333 Vertical 444.9750 -8.44 47.74 39.30 46.00 6.70 100 32 Vertical 4 593.4345 -5.3133.23 27.92 46.00 18.08 100 181 Vertical 5 741.8940 -2.97 26.96 23.99 46.00 22.01 100 243 Vertical 819.1964 -1.47 26.48 25.01 46.00 20.99 100 Vertical

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
© '	D'	• • ·
₩ 	-mic	-mic
-TIFE - U	AKTES TING	- WAXTES TING
- marting	- wilk the	O' wax tes

Note:1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. Theemission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

Above 1GHz

RADIATED EMISSION TEST

LOW CH1 (802.11b Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	60.39	-3.64	56.75	74	-17.25	peak
4824	45.86	-3.64	42.22	54	-11.78	AVG
7236	50.56	-0.95	49.61	74	-24.39	peak
7236	42.18	-0.95	41.23	54	-12.77	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detecto
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	62.94	-3.64	59.3	74	-14.7	peak
4824	42.92	-3.64	39.28	54	-14.72	AVG
7236	50.09	-0.95	49.14	74	-24.86	peak
7236	38.13	-0.95	37.18	54	-16.82	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	59.52	-3.51	56.01	74	-17.99	peak
4874	40.15	-3.51	36.64	54	-17.36	AVG
7311	52.89	-0.82	52.07	74	-21.93	peak
7311	38.53	-0.82	37.71	54	-16.29	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4874	57.34	-3.51	53.83	74	-20.17	peak
4874	41.02	-3.51	37.51	54	-16.49	AVG
7311	50.31	-0.82	49.49	74	-24.51	peak
7311	39.19	-0.82	38.37	54	-15.63	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

AFICATION.

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	58.09	-3.43	54.66	74	-19.34	peak
₅ 4924	44.44	-3.43	41.01	54	-12.99	AVG
7386	50.98	-0.75	50.23	74	-23.77	peak
7386	37.04	-0.75	36.29	54	-17.71	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	60.44	-3.43	57.01	74	-16.99	peak
4924	41.51	-3.43	38.08	54	-15.92	AVG
7386	50.09	-0.75	49.34	74	-24.66	peak
7386	39.99	-0.75	39.24	54	-14.76	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	57.18	-3.64	53.54	74	-20.46	peak
4824	43.52	-3.64	39.88	54	-14.12	AVG
7236	50.52	-0.95	49.57	74	-24.43	peak
7236	38.84	-0.95	37.89	54	-16.11	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	54.16	-3.64	50.52	74	-23.48	peak
4824	53.93	-3.64	50.29	54	-3.71	AVG
7236	51.27	-0.95	50.32	74	-23.68	peak
7236	38.75	-0.95	37.8	54	-16.2	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	60.22	-3.51	56.71	74	-17.29	peak
4874	42.12	-3.51	38.61	54	-15.39	AVG
7311	50.82	-0.82	50	74	-24	peak
7311	39.51	-0.82	38.69	54	-15.31	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4874	59.71	-3.51	56.2	74	-17.8	peak
4874	41.37	-3.51	37.86	54	-16.14	AVG
7311	52.91	-0.82	52.09	74	-21.91	peak
7311	38.66	-0.82	37.84	54	-16.16	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	59.36	-3.43	55.93	74	-18.07	peak
4924	44.03	-3.43	40.6	54	-13.4	AVG
7386	52.24	-0.75	51.49	74	-22.51	peak
7386	39.35	-0.75	38.6	54	-15.4	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBμV/m)	(dBµV/m)	(dB)	Туре
4924	52.17	-3.43	48.74	74	-25.26	peak
4924	44.23	-3.43	40.8	54	-13.2	AVG
7386	50.63	-0.75	49.88	74	-24.12	peak
7386	39.12	-0.75	38.37	54	-15.63	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	54.27	-3.64	50.63	74	-23.37	peak
4824	46.52	-3.64	42.88	54	-11.12	AVG
7236	51.47	-0.95	50.52	74	-23.48	peak
7236	41.92	-0.95	40.97	54	-13.03	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	55.76	-3.64	52.12	74	-21.88	peak
4824	43.67	-3.64	40.03	54	-13.97	AVG
7236	52.54	-0.95	51.59	74	-22.41	peak
7236	40.73	-0.95	39.78	54	-14.22	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	55.88	-3.51	52.37	74.00	-21.63	peak
4874	42.84	-3.51	39.33	54.00	-14.67	AVG
7311	51.16	-0.82	50.34	74.00	-23.66	peak
7311	39.39	-0.82	38.57	54.00	-15.43	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	55.13	-3.51	51.62	74.00	-22.38	peak
4874	42.53	-3.51	39.02	54.00	-14.98	AVG
7311	51.09	-0.82	50.27	74.00	-23.73	peak
7311	40.08	-0.82	39.26	54.00	-14.74	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4924	57.42	-3.43	53.99	74	-20.01	peak
4924	45.69	-3.43	42.26	54	-11.74	AVG
7386	55.41	-0.75	54.66	74	-19.34	peak
7386	37.15	-0.75	36.4	54	-17.6	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4924	56.88	-3.43	53.45	74	-20.55	peak
4924	42.91	-3.43	39.48	54	-14.52	AVG
7386	51.03	-0.75	50.28	74	-23.72	peak
7386	37.68	-0.75	36.93	54	-17.07	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal:

Frequency	Frequency Reading Result (MHz) (dBμV)	Factor Emission Level (dB) (dBµV/m)	Limits	Margin	Data stan Tunas	
(MHz)			(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	60.22	-3.63	56.59	74	-17.41	peak
4844	44.58	-3.63	40.95	54	-13.05	AVG
7266	56.98	-0.94	56.04	74	-17.96	peak
7266	42.76	-0.94	41.82	54	12.18	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data eter Tune
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	54.38	-3.63	50.75	74	-23.25	peak
4844	42.85	-3.63	39.22	54	-14.78	AVG
7266	52.23	-0.94	51.29	74	-22.71	peak
7266	34.73	-0.94	33.79	54	-20.21	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data da a Trus
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	61.77	-3.51	58.26	74	-15.74	peak
4874	45.62	-3.51	42.11	54	-11.89	AVG
7311	53.54	-0.82	52.72	74	-21.28	peak
7311	40.16	-0.82	39.34	54	-14.66	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data eter Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	56.79	-3.51	53.28	74	-20.72	peak
4874	43.48	-3.51	39.97	54	-14.03	AVG
7311	51.57	-0.82	50.75	74	-23.25	peak
7311	36.98	-0.82	36.16	54	-17.84	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH9 (802.11n/H40 Mode)/2452

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data atau Tuma
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	57.93	-3.43	54.5	74	-19.5	peak
4904	41.84	-3.43	38.41	54	-15.59	AVG
7356	52.69	-0.75	51.94	74	-22.06	peak
7356	40.78	-0.75	40.03	54	-13.97	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
V V	4904	54.58	-3.43	51.15	74	-22.85	peak
	4904	42.13	-3.43	38.7	54	-15.3	AVG
100	7356	50.59	-0.75	49.84	74	-24.16	peak
	7356	39.09	-0.75	38.34	54	-15.66	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Test Result of Radiated Spurious at Band edges

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data stan Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	56.67	-5.81	50.86	74	-23.14	peak
2310.00	47.34	-5.81	41.53	54	-12.47	AVG
2390.00	52.12	-5.84	46.28	74	-27.72	peak
2390.00	40.41	-5.84	34.57	54	-19.43	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Doto stor Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	53.74	-5.81	47.93	74	-26.07	peak
2310.00	40.96	-5.81	35.15	54	-18.85	AVG
2390.00	52.38	-5.84	46.54	74	-27.46	peak
2390.00	38.99	-5.84	33.15	54	-20.85	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	55.97	-5.81	50.16	74	-23.84	peak
2483.50	43.21	-5.81	37.4	54	-16.6	AVG
2500.00	51.63	-6.06	45.57	74	-28.43	peak
2500.00	37.48	-6.06	31.42	54	-22.58	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

						- 677
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	53.61	-5.81	47.8	74 HUM	-26.2	peak
2483.50	45.61	-5.81	39.8	54	-14.2	AVG
2500.00	50.28	-6.06	44.22	74	-29.78	peak
2500.00	40.68	-6.06	34.62	54	-19.38	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

AFICATION.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	De MAKTEST
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	— Detector Type
2310.00	56.28	-5.81	50.47	74	-23.53	peak
2310.00	43.01	-5.81	37.2	54	-16.8	AVG
2390.00	51.22	-5.84	45.38	74	-28.62	peak
2390.00	39.73	-5.84	33.89	54	-20.11	AVG
160	475	- 6	170		465	475

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data MAK TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	55.19	-5.81	49.38	74	-24.62	peak
2310.00	42.64	-5.81	36.83	54	-17.17	AVG
2390.00	53.81	-5.84	47.97	74	-26.03	peak
2390.00	40.14	-5.84	34.3	54	-19.7	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High (2462MHz)

Horizontal

(MILIT)	The .	1.76			160.	Detector Tune
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	53.27	-5.65	47.62	74	-26.38	peak
2483.50	41.68	-5.65	36.03	54	-17.97	AVG
2500.00	51.81	-5.65	46.16	74	-27.84	peak
2500.00	40.57	-5.65	34.92	54	-19.08	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	54.32	-5.65	48.67	74	-25.33	peak
2483.50	42.77	-5.65	37.12	54	-16.88	AVG
2500.00	50.04	-5.65	44.39	74	-29.61	peak
2500.00	38.53	-5.65	32.88	54	-21.12	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	TING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	54.07	-5.81	48.26	74	-25.74	peak
2310.00	43.07	-5.81	37.26	54	-16.74	AVG
2390.00	50.67	-5.84	44.83	74	-29.17	peak
2390.00	40.96	-5.84	35.12	54	-18.88	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data star Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	54.88	-5.81	49.07	74	-24.93	peak
2310.00	42.61	-5.81	36.8	54	-17.2	AVG
2390.00	49.94	-5.84	44.1	74	-29.9	peak
2390.00	38.82	-5.84	32.98	54	-21.02	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	"IAK TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	53.65	-5.65	48	74	-26	peak
2483.50	40.66	-5.65	35.01	54	-18.99	AVG
2500.00	50.76	-5.65	45.11	74 TESTIM	-28.89	peak
2500.00	37.17	-5.65	31.52	54	-22.48	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

-411/4	-7/1/4		Alla	-11/2	-411/4	-11/4
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	- Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	54.27	-5.65	48.62	74 _H	-25.38	peak
2483.50	41.45	-5.65	35.8	54	-18.2	AVG
2500.00	51.36	-5.65	45.71	74 AKTEST	-28.29	peak
2500.00	38.23	-5.65	32.58	54	-21.42	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	D. A. A. T. TING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	56.23	-5.81	50.42	74	-23.58	peak
2310.00	ESTING /	-5.81	TESTING	54	1	AVG
2390.00	54.19	-5.84	48.35	74	-25.65	peak
2390.00	1	-5.84	/	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data ta Ting
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	53.28	-5.81	47.47	74	-26.53	peak
2310.00	ESTING /	-5.81	N TESTING	54	1	AVG
2390.00	50.49	-5.84	44.65	74	-29.35	peak
2390.00	NG HUA	-5.84	1	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

AL

Operation Mode: TX CH High (2452MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data star Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.32	-5.65	50.67	74 HUAN	-23.33	peak
2483.50	1	-5.65	HUAK	54	1	AVG
2500.00	54.12	-5.65	48.47	74	-25.53	peak
2500.00	OK TESTING	-5.65	ING LOKTESTIN	54	TESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	54.22	-5.65	48.57	74	-25.43	peak
2483.50	1	-5.65	(3)	54	1 🔘	AVG
2500.00	52.09	-5.65	46.44	74	-27.56	peak
2500.00	HUAKTE /	-5.65	MAKTE	54	HUAK TEST	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Remark:

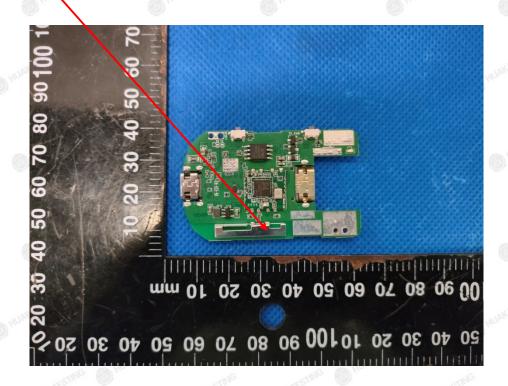
- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

AFICATION.

4.8. ANTENNA REQUIREMENT

Standard Applicable

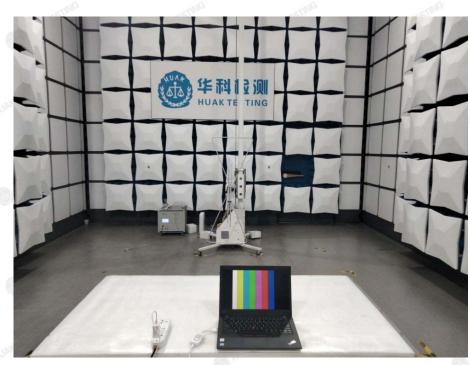
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

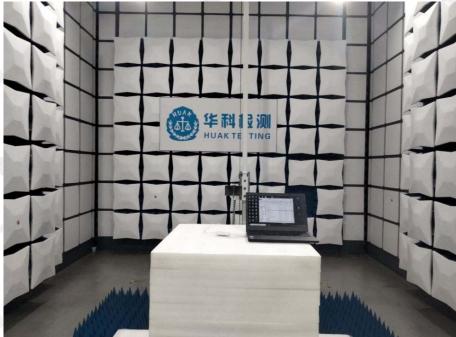

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

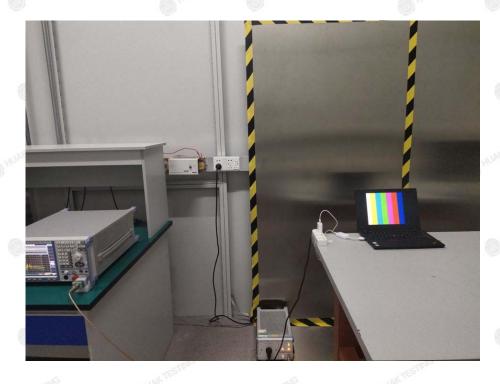
The antenna used in this product is Internal Antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 3.04dBi.


WIFI ANTENNA



5. PHOTOGRAPH OF TEST

Radiated Emissions



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----