

FCC Test Report

Report No.: AGC00008190409FE05

FCC ID : TW5GT4027

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: 1080P WiFi Smart Home Monitoring System

BRAND NAME : N/A

MODEL NAME : GT4027

CLIENT: Shenzhen Gospell Smarthome Electronic Co., Ltd.

DATE OF ISSUE : Jun. 06, 2019

STANDARD(S)

TEST PROCEDURE(S) : FCC Part 15.247

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gott.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F. , Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 88

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Jun. 06, 2019	Valid	Initial Release

The results spouroid this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com. VGC 8

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	5
2. GENERAL INFORMATION	6
Will all the state of the state	
2.1. PRODUCT DESCRIPTION	
2.2. TABLE OF CARRIER FREQUENCYS	
2.3. IEEE 802.11N MODULATION SCHEME	
2.4. RELATED SUBMITTAL(S) / GRANT (S)	
2.5. TEST METHODOLOGY	7
2.6. SPECIAL ACCESSORIES	7
2.7. EQUIPMENT MODIFICATIONS	7
3 MEASIDEMENT UNCEDTAINTY	The strong of th
3. MEASUREMENT UNCERTAINTY	
	拉那
4. DESCRIPTION OF TEST MODES	
5. SYSTEM TEST CONFIGURATION	10
5.1. CONFIGURATION OF EUT SYSTEM	10
5.2. EQUIPMENT USED IN EUT SYSTEM	10
5.3. SUMMARY OF TEST RESULTS	
6. TEST FACILITY	11
7. OUTPUT POWER	12
7.1. MEASUREMENT PROCEDURE	
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
7.3. LIMITS AND MEASUREMENT RESULT	13
8. 6 DB BANDWIDTH	15
	America J. J. Compares
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	15
8.3 LIMITS AND MEASUREMENT RESULTS	16

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (\$\frac{1}{2}\text{C}\$, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at the confirm

9. CONDUCTED SPURIOUS EMISSION	24
9.1. MEASUREMENT PROCEDURE	24
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
9.3. MEASUREMENT EQUIPMENT USED	
9.4. LIMITS AND MEASUREMENT RESULT	
10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	43
10.1 MEASUREMENT PROCEDURE	43
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	43
10.3 MEASUREMENT EQUIPMENT USED	43
10.4 LIMITS AND MEASUREMENT RESULT	43
11. RADIATED EMISSION	51
11.1. MEASUREMENT PROCEDURE	
11.2. TEST SETUP	52
11.3. LIMITS AND MEASUREMENT RESULT	53
11.4. TEST RESULT	53
12. BAND EDGE EMISSION	59
12.1. MEASUREMENT PROCEDURE	59
12.2. TEST SET-UP	
12.3. TEST RESULT	
13. FCC LINE CONDUCTED EMISSION TEST	76
13.1. LIMITS OF LINE CONDUCTED EMISSION TEST	76
13.2. BLOCK DIAGRAM OF TEST SETUP	
13.3. PROCEDURE OF LINE CONDUCTED EMISSION TEST	
13.4. TEST RESULT OF LINE CONDUCTED EMISSION TEST	
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	80

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

1. VERIFICATION OF CONFORMITY

TI VEIGH TO/ CHOICE OF C	3 () () () () () () () () () (
Applicant	Shenzhen Gospell Smarthome Electronic Co., Ltd.					
Address	East of 01st-04th Floor, Block A, No.1 Industrial park, Fenghuang Gang, South of No.1 Baotian Road, Xixiang Street, Bao'an District, Shenzhen City, Guangdong Province 518126, P.R.China					
manufacturer	Shenzhen Gospell Smarthome Electronic Co., Ltd.					
Address	East of 01st-04th Floor, Block A, No.1 Industrial park, Fenghuang Gang, South of No.1 Baotian Road, Xixiang Street, Bao'an District, Shenzhen City, Guangdong Province 518126, P.R.China					
Factory	Shenzhen Gospell Smarthome Electronic Co., Ltd.					
Address	East of 01st-04th Floor, Block A, No.1 Industrial park, Fenghuang Gang, South of No.1 Baotian Road, Xixiang Street, Bao'an District, Shenzhen City, Guangdong Province 518126, P.R.China					
Product Designation	1080P WiFi Smart Home Monitoring System					
Brand Name	N/A					
Test Model	GT4027					
Date of test	May. 28, 2019 to Jun. 06, 2019					
Deviation	None & San					
Condition of Test Sample	Normal					
Test Result	Pass					
Report Template	AGCRT-US-BGN/RF					

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.247.

Tested By	Drave	n.li
	Draven Li(Li Ming Liang)	Jun. 06, 2019
Reviewed By	Max 2	rang
	Max Zhang(Zhang Yi)	Jun. 06, 2019
Approved By	Forrest	العا
	Forrest Lei(Lei Yonggang) Authorized Officer	Jun. 06, 2019

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F. , Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Report No.: AGC00008190409FE05 Page 6 of 88

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is designed as "1080P WiFi Smart Home Monitoring System". It is designed by way of utilizing the DSSS and OFDM technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.412 GHz~2.462GHz
Output Power(Average)	IEEE 802.11b:17.49dBm; IEEE 802.11g:14.77dBm; IEEE 802.11n(20):14.81dBm; IEEE 802.11n(40):14.05dBm
Modulation	DSSS(DBPSK/DQPSK/CCK);OFDM(BPSK/QPSK/16-QAM/64-QAM)
Number of channels	11 m
Hardware Version	GT4027_M02
Software Version	E_900.GT4027ZJ.018.129
Antenna Designation	PCB antenna
Antenna Gain	2.0dBi
Power Supply	AC120V/60Hz

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
@ Figure Company	20 100 T	2412 MHZ
LGC I	2	2417 MHZ
700	3 4 5	2422 MHZ
S S S S S S S S S S S S S S S S S S S		2427 MHZ
CO MANAGEMENT CO	5	2432 MHZ
2400~2483.5MHZ	6	2437 MHZ
The Third Complete	7 ® Manual Control	2442 MHZ
of Chicago Complement	8 B	2447 MHZ
NGO NG	9	2452 MHZ
·illi	10	2457 MHZ
The Manufacture (S. S. J.	11 60	2462 MHZ

Note: For 20MHZ bandwidth system use Channel 1 to Channel 11, For 40MHZ bandwidth system use Channel 3 to Channel 9

The results spown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 7 of 88

2.3. IEEE 802.11N MODULATION SCHEME

MCS Nss	Modulation	R	NBPSC	NCBPS		NDBPS		Data rate(Mbps)		
Index	1133	Wiodulation		INDI GO	20MHz	40MHz	20MHz	40MHz	20MHz	40MHz
0	1	BPSK	1/2	15	52	108	26	54	6.5	13.5
1 4	Karaman America	QPSK	1/2	2	104	216	52	108	13.0	27.0
2	1	QPSK	3/4	2	104	216	78	162	19.5	40.5
3	C1	16-QAM	1/2	4	208	432	104	216	26.0	54.0
4	1	16-QAM	3/4	4	208	432	156	324	39.0	81.0
5	雅 lation of C	64-QAM	2/3	6	312	648	208	432	52.0	108.0
6	1	64-QAM	3/4	6	312	648	234	489	58.5	121.5
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0

Symbol	Explanation		
NSS	Number of spatial streams		
R	Code rate		
NBPSC	Number of coded bits per single carrier		
NCBPS	Number of coded bits per symbol		
NDBPS	Number of data bits per symbol		
GI A TANAMAN CONTRACTOR OF THE PARTY OF THE	Guard interval		

2.4. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: TW5GT4027** filing to comply with the FCC Part 15 requirements.

2.5. TEST METHODOLOGY

KDB 558074 D01 15.247 Meas Guidance v05: Guidance for compliance measurements on Digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

2.6. SPECIAL ACCESSORIES

Refer to section 5.2.

2.7. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gott.com.

Page 8 of 88

3. MEASUREMENT UNCERTAINTY

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in measurement" (GUM) published by CISPR and ANSI.

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 9 of 88

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION					
K Kanalance	1. 电	(a) (b)	estation of Globa	Low channel TX	100	NG.
2 @	The station of Global C	100	< G ⁽	Middle channel TX		THE THE
3	pa			High channel TX	The Compliance	® Marion of Clobal
4	KI milence	HE ALONG	® ## ##	Normal operating	Martin Station of Clobs	30 " CC

Note:

Transmit by 802.11b with Date rate (1/2/5.5/11)

Transmit by 802.11g with Date rate (6/9/12/18/24/36/48/54)

Transmit by 802.11n (20MHz) with Date rate (6.5/13/19.5/26/39/52/58.5/65)

Transmit by 802.11n (40MHz) with Date rate (13.5/27/40.5/54/81/108/121.5/135)

Note:

- 1. The EUT has been set to operate continuously on the lowest, middle and highest operation frequency Individually, and the eut is operating at its maximum duty cycle>or equal 98%
- 2. All modes under which configure applicable have been tested and the worst mode test data recording in the test report, if no other mode data.
- 3. The test software is the QATool_Dbg(package_Ulv71_DLLv1.15_driverv48_Jv2.25) which can set the EUT into the individual test modes.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (GC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.gent.com.

Page 10 of 88

5. SYSTEM TEST CONFIGURATION 5.1. CONFIGURATION OF EUT SYSTEM

- 49	
Contiguiro	•
Configure	•

EUT	

5.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1 %	1080P WiFi Smart Home Monitoring System	GT4027	TW5GT4027	EUT

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247	Output Power	Compliant
§15.247	6 dB Bandwidth	Compliant
§15.247	Conducted Spurious Emission	Compliant
§15.247	Maximum Conducted Output Power SPECTRAL Density	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Band Edges	Compliant
§15.207	Line Conduction Emission	Compliant

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 11 of 88

6. TEST FACILITY

Test Site	Test Site Attestation of Global Compliance (Shenzhen) Co., Ltd				
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China				
Designation Number	CN1259				
FCC Test Firm Registration Number	975832				
A2LA Cert. No.	5054.02				
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA				

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	Jun. 12, 2018	Jun. 11, 2019
LISN	R&S	ESH2-Z5	100086	Aug. 28, 2018	Aug. 27, 2019

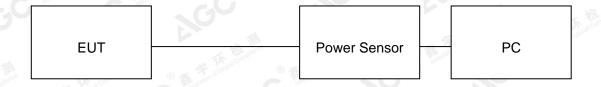
TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2018	Jun. 11, 2019
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 20, 2018	Dec. 19, 2019
Power sensor	Aglient	U2021XA	MY54110007	Sep. 20, 2018	Sep. 19, 2019
2.4GHz Fliter	Micro-tronics	087	N/A	Jun. 12, 2018	Jun. 11, 2019
Attenuator	Weinachel Corp	58-30-33	N/A	Jun. 12, 2018	Jun. 11, 2019
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 21, 2017	Sep. 20, 2020
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 14, 2018	Jun. 13, 2020
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May. 26, 2018	May. 25, 2020
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Oct. 25, 2018	Oct. 24, 2019
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep. 28, 2017	Sep. 27, 2019

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.geat.com.

Page 12 of 88

7. OUTPUT POWER


7.1. MEASUREMENT PROCEDURE

For average power test:

- 1. Connect EUT RF output port to power sensor through an RF attenuator.
- 2. Connect the power sensor to the PC.
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Record the maximum power from the software.

Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) AVERAGE POWER SETUP

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Page 13 of 88

7.3. LIMITS AND MEASUREMENT RESULT

TEST ITEM	OUTPUT POWER	1.Co	CO	S
TEST MODE	802.11b with data rate 1		life:	The Sometimes

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	15.71	30	Pass
2.437	16.84	30	Pass
2.462	17.49	30	Pass

TEST ITEM	OUTPUT POWER	® Metablional Global	(8) Allestation of C	CO
TEST MODE	802.11g with data rate 6	30 %		· [iii]

Frequency (GHz)	Average Power (dBm)		
2.412	12.43	30	Pass
2.437	14.02	30	Pass
2.462	14.77	30	Pass

TEST ITEM	OUTPUT POWER	III	玉 <u> </u>
TEST MODE	802.11n 20 with data rate 6.5	Total Complaine	© Filterwind Columb

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	12.18	30	Pass
2.437	13.16	30	Pass
2.462	14.81	30	Pass

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confirmed a

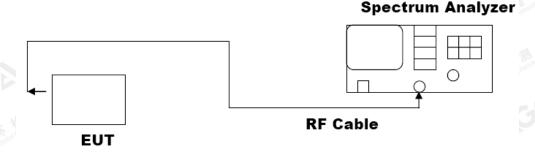
Page 14 of 88

TEST ITEM	OUTPUT POWER	© Milestation of Clobs.	© Management Clobal Co	(a) Allestation of C
TEST MODE	802.11n 40 with data rate 13.5			,

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.422	12.47	30	Pass
2.437	13.23	30	Pass
2.452	14.05	30	Pass

The results spouroid this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 15 of 88


8. 6 DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW≥3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 16 of 88

8.3. LIMITS AND MEASUREMENT RESULTS

TEST ITEM	6DB BANDWIDTH	@ Albertalion of S.	S Attention of Global C. C.	Attestation of
TEST MODE	802.11b with data rate 11	Co Co		11117:

	LIMITS AND MEA	SUREMENT RESULT	
Annicola Limite	Applicable Limits		
Applicable Limits	Test D	Test Data (MHz)	
200	Low Channel	10.07	PASS
>500KHZ	Middle Channel	10.01	PASS
	High Channel	9.07	PASS

TEST ITEM	6DB BANDWIDTH	© Alestalion of C	C Allegano	C
TEST MODE	802.11g with data rate 54		- Fill	

LIMITS AND MEASUREMENT RESULT					
Amplicable Limite	Applicable Limits				
Applicable Limits	Test Data (MHz) Criteria				
S	Low Channel	15.11	PASS		
>500KHZ	Middle Channel	15.10	PASS		
© # dolond Co	High Channel	15.09	PASS		

TEST ITEM	6DB BANDWIDTH	® Millestation of Clobal Co	© Attestation of Grants	100	NO
TEST MODE	802.11n 20 with data	rate 65		:1111	环

	LIMITS AND MEASU	IREMENT RESULT		
Applicable Limite		Applicable Limits		
Applicable Limits	Test Data (MHz)		Criteria	
	Low Channel	15.11	PASS	
>500KHZ	Middle Channel	15.09	PASS	
A potat complair	High Channel	15.10	PASS	

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at alther.//www.agc.gett.com.

Page 17 of 88

TEST ITEM	6DB BANDWIDTH	(C) State Station of Global	© Figure of Clobal	(8) Allestation of C
TEST MODE	802.11n 40 with data rate 135			

	LIMITS AND MEASURE	MENT RESULT		
Applicable Limits				
Applicable Limits	Test Data (MHz)		Criteria	
CC ***	Low Channel	35.06	PASS	
>500KHZ	Middle Channel	35.06	PASS	
	High Channel	35.06	PASS	

The results spouroid this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

802.11b TEST RESULTTEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

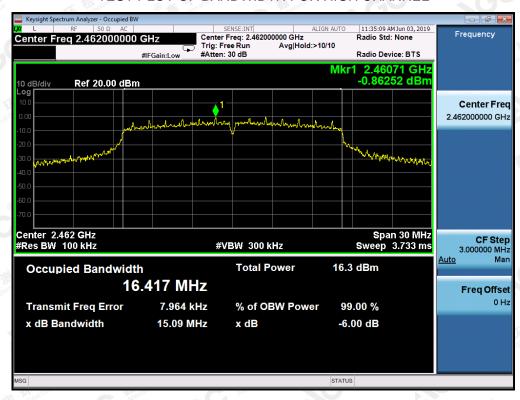
The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XOC, this document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are retained

VGC 8

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

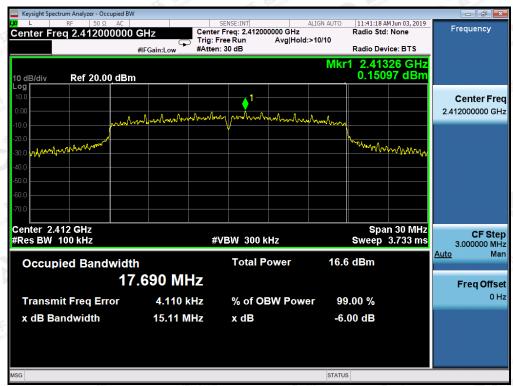
802.11g TEST RESULT
TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gott.com.


\GC g

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true.//www.agc.gatt.com.

Attestation of Global Compliance


VGC 8

802.11n (20) TEST RESULT TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL



The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XOC, this document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are retained

\GC s

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

802.11n (40) TEST RESULT
TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

\GC g

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Page 24 of 88

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

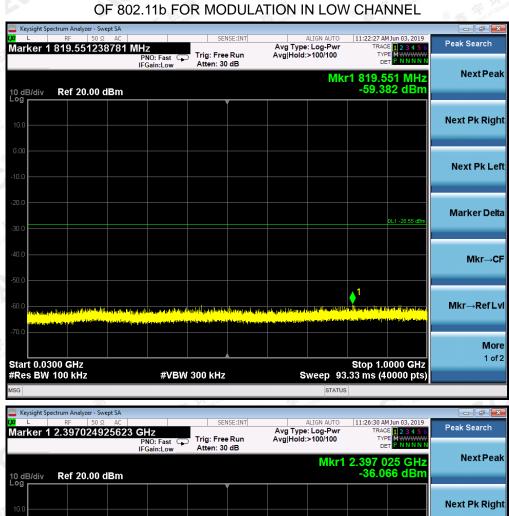
Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW>RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW>RBW) are conform to the requirement.

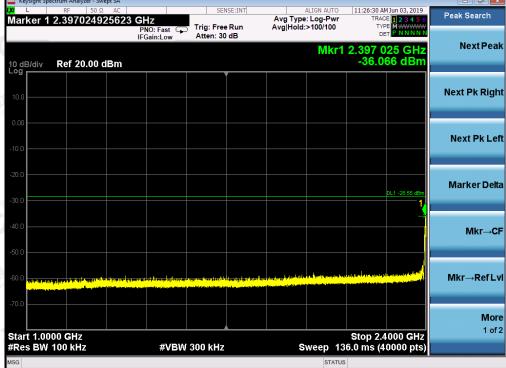
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 8.2.

9.3. MEASUREMENT EQUIPMENT USEDJN

The same as described in section 6.


9.4. LIMITS AND MEASUREMENT RESULT

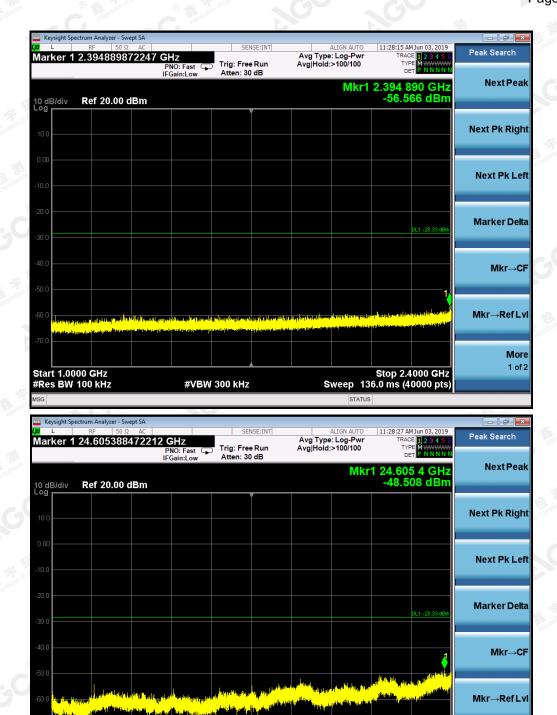

LIMITS AND MEASUREMENT RESULT						
A	Measurement Result					
Applicable Limits	Test Data	Criteria				
In any 100 KHz Bandwidth Outside the	At least -30dBc than the limit	F Global Company				
frequency band in which the spread spectrum	Specified on the BOTTOM	PASS				
intentional radiator is operating, the radio frequency	Channel					
power that is produce by the intentional radiator shall be at least 30 dB below that in 100KHz		T. H. W. W.				
bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the	At least -30dBc than the limit Specified on the TOP Channel	PASS				
restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	· · · · · · · · · · · · · · · · · · ·					

The results spowning this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (GC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.gent.com.

TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802 11b FOR MODULATION IN LOW CHANNEL

The results spought this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (GC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a three-like the complex of the report will be confirmed at a three-like three-like

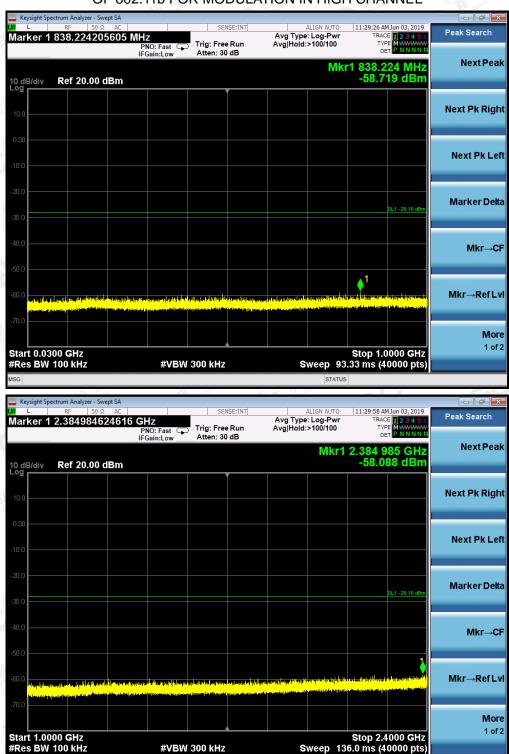
VGC 8


TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11b FOR MODULATION IN MIDDLE CHANNEL

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

More

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.


#VBW 300 kHz

\GC ?

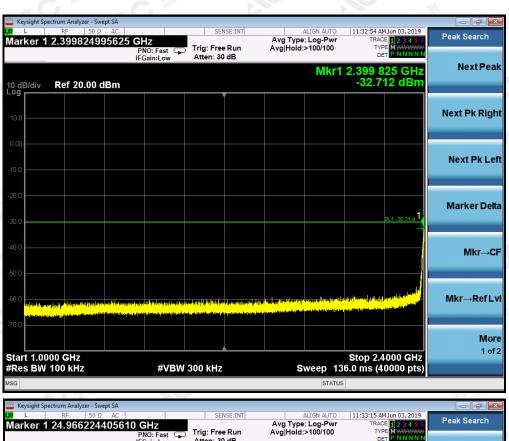
Start 2.48 GHz #Res BW 100 kHz Stop 25.00 GHz Sweep 2.152 s (40000 pts)

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11b FOR MODULATION IN HIGH CHANNEL

The results shown this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

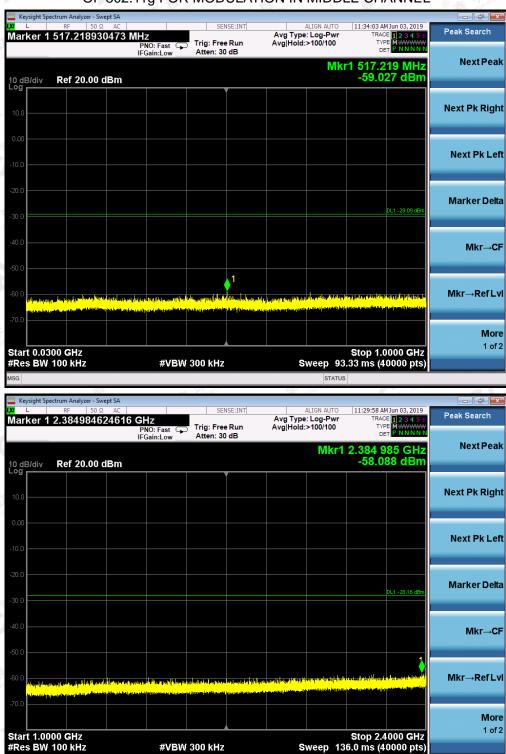
#VBW 300 kHz

Stop 2.4000 GHz Sweep 136.0 ms (40000 pts)



TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11g FOR MODULATION IN LOW CHANNEL

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

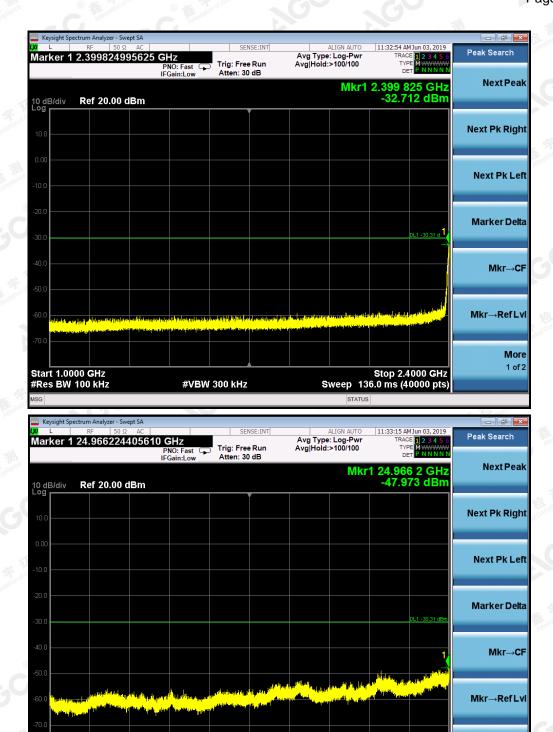


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11g FOR MODULATION IN MIDDLE CHANNEL

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (GC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gatt.com.

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11g FOR MODULATION IN HIGH CHANNEL

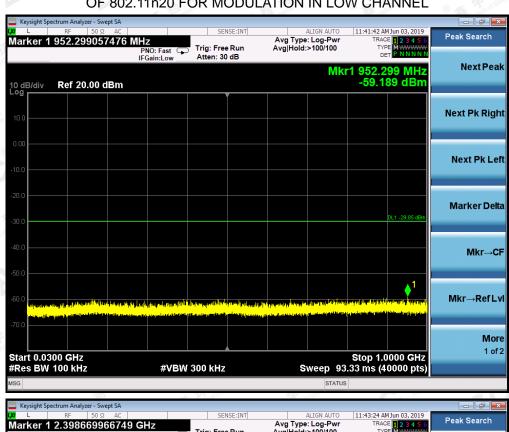


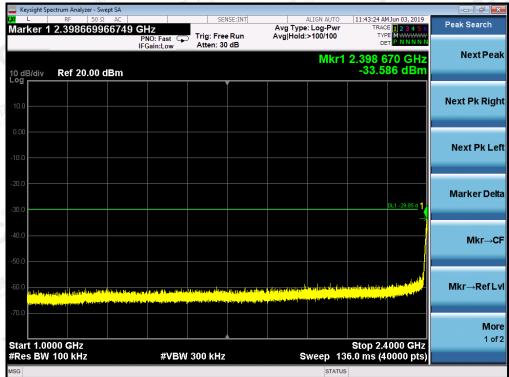
The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

More

@ 400 089 2118

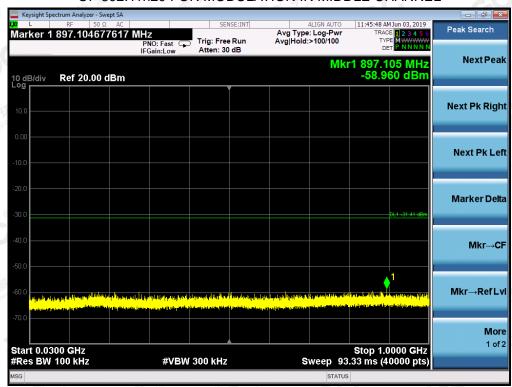
The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.


#VBW 300 kHz

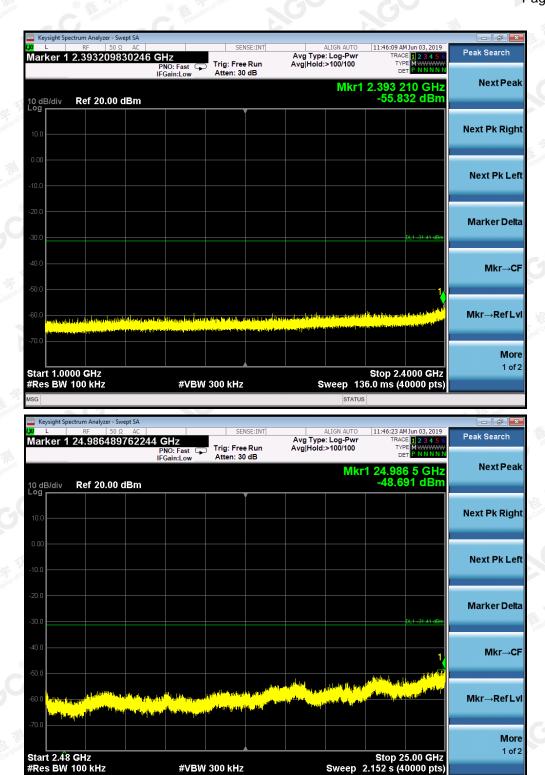

Start 2.48 GHz #Res BW 100 kHz

Stop 25.00 GHz Sweep 2.152 s (40000 pts)

TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11n20 FOR MODULATION IN LOW CHANNEL

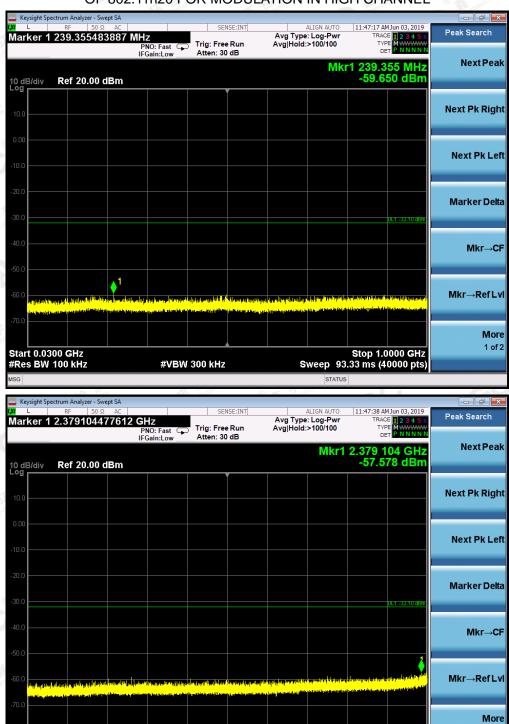


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (GC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gatt.com.



TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n20 FOR MODULATION IN MIDDLE CHANNEL

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.



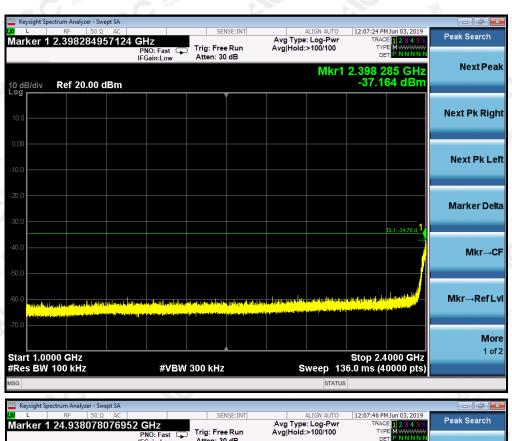
The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n20 FOR MODULATION IN HIGH CHANNEL

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

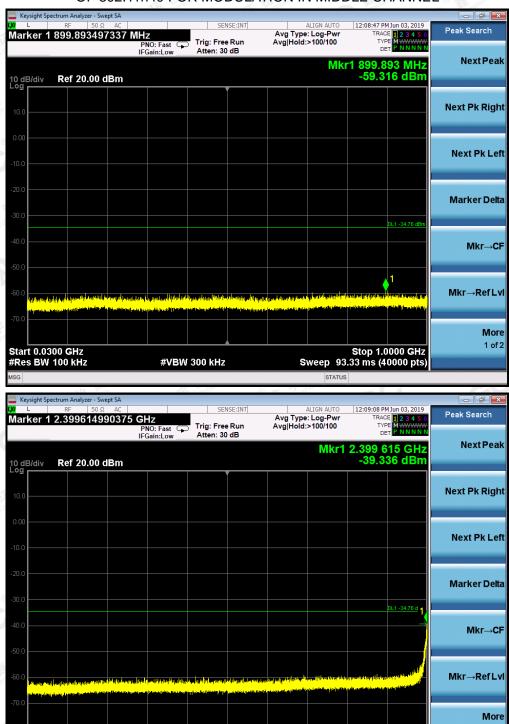
#VBW 300 kHz

Start 1.0000 GHz #Res BW 100 kHz Stop 2.4000 GHz Sweep 136.0 ms (40000 pts) 1 of 2



TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11n40 FOR MODULATION IN LOW CHANNEL

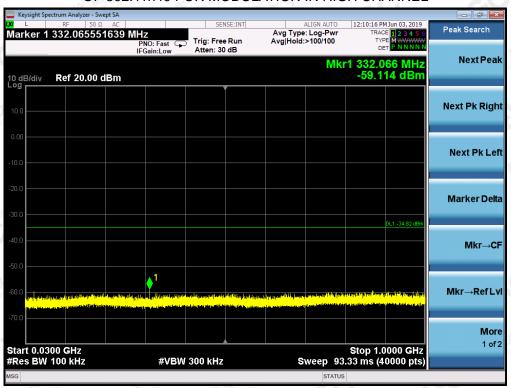
The results shown this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.



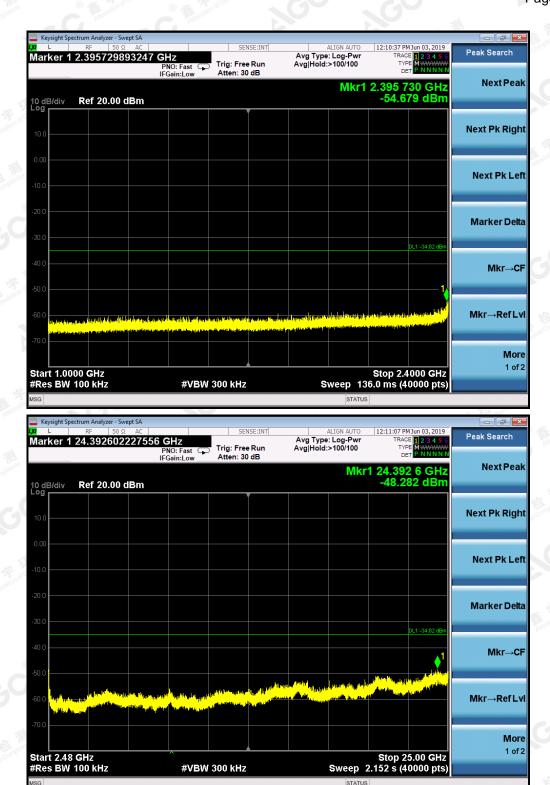
The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n40 FOR MODULATION IN MIDDLE CHANNEL

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


#VBW 300 kHz

Start 1.0000 GHz #Res BW 100 kHz Stop 2.4000 GHz Sweep 136.0 ms (40000 pts) 1 of 2



TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n40 FOR MODULATION IN HIGH CHANNEL

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Page 43 of 88

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

10.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of AVGPSD-1 in the ANSI C63.10 (2013) item 11.10 was used in this testing

10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Refer To Section 8.2.

10.3 MEASUREMENT EQUIPMENT USED

Refer To Section 6.

10.4 LIMITS AND MEASUREMENT RESULT

TEST ITEM	POWER SPECTRAL DENSITY	The Mariane	F. F. Completion 60 4
TEST MODE	802.11b with data rate 1	© Medalion of Calif	A CO

Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-0.516	8 08	Pass
Middle Channel	0.050	8	Pass
High Channel	-0.442	8	Pass

TEST ITEM	POWER SPECTRAL DENSIT	Υ	The plants
TEST MODE	802.11g with data rate 6	E. M. Commond	(8) All the state of the state

Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-5.975	8 F. H.	Pass
Middle Channel	-6.321	8	Pass
High Channel	-7.090	8	Pass

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Page 44 of 88

TEST ITEM	POWER SPECTRAL DENSITY	The Tomplance	T. T. Commission
TEST MODE	802.11n 20 with data rate 6.5	C Allestation of C	Allegation of Co.

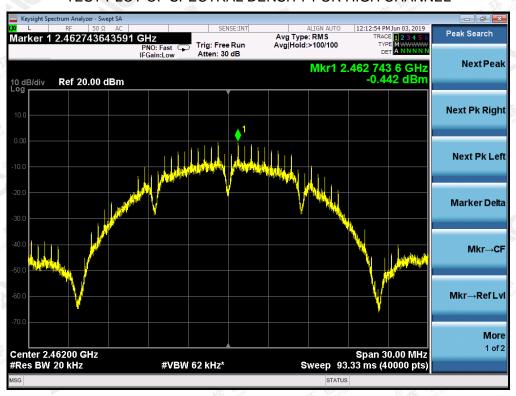
Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result	
Low Channel	-5.932	8 8 CC	Pass	
Middle Channel	-6.247	8	Pass	
High Channel	-6.772	8	Pass	

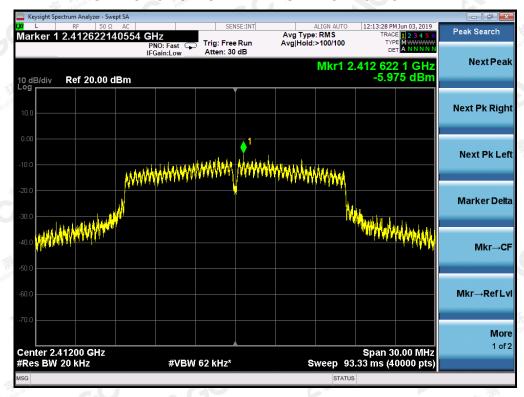
TEST ITEM	POWER SPECTRAL DENSITY	NO at	:111
TEST MODE	802.11n 40 with data rate 13.5	The Compliance	T. Kandanaco (C.)

Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-8.674	8	Pass
Middle Channel	-9.937	8	Pass
High Channel	-9.982	8	Pass

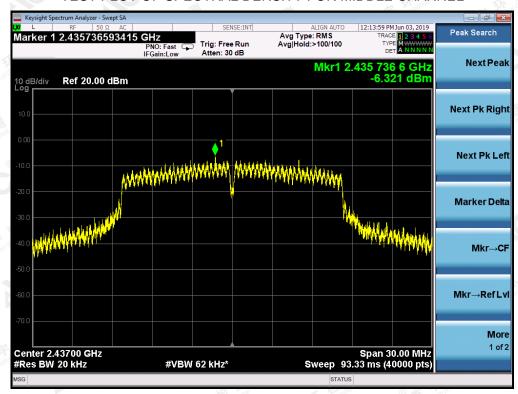
The results spouroid this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

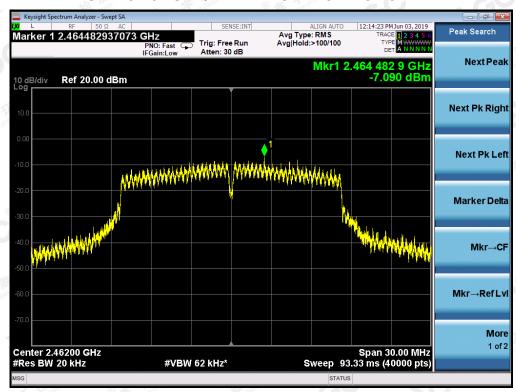
802.11b TEST RESULT TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL


TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

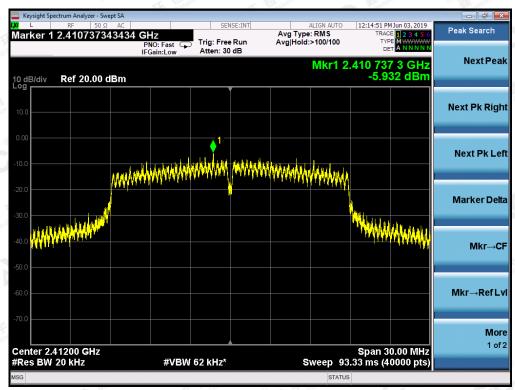

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are retained fo

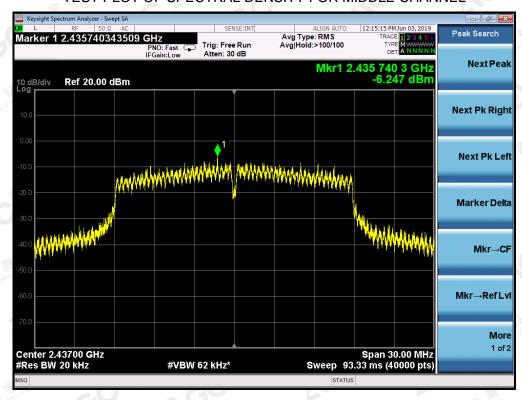
TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL


802.11g TEST RESULT
TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

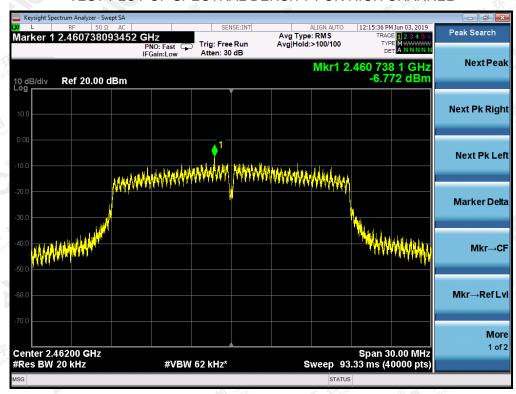

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are retained fo

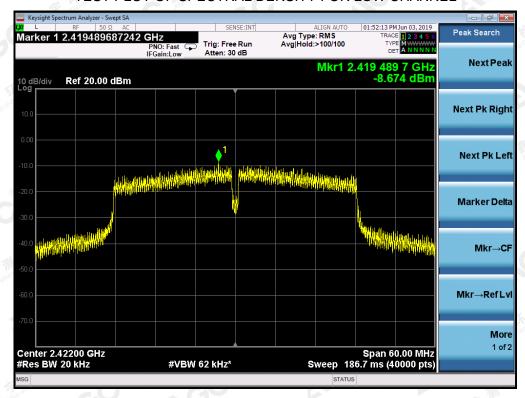
TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL


TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

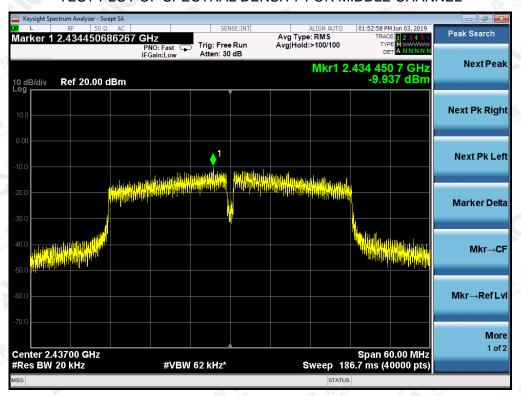

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

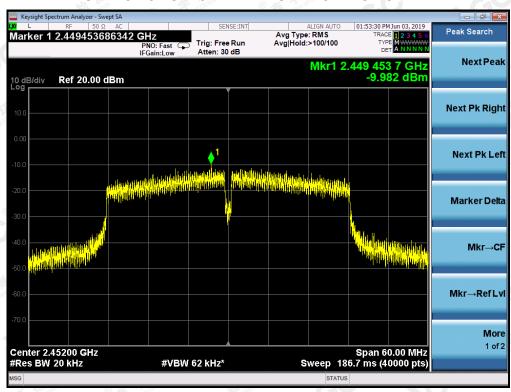
802.11n 20 TEST RESULT TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL


TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are retained fo

TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL


802.11n 40 TEST RESULT
TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is issued by XOC, this document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are retained fo

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

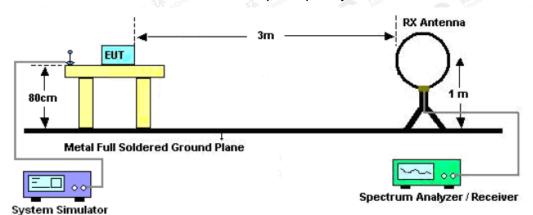
The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 51 of 88

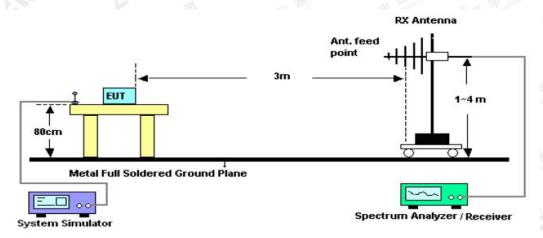
11. RADIATED EMISSION

11.1. MEASUREMENT PROCEDURE

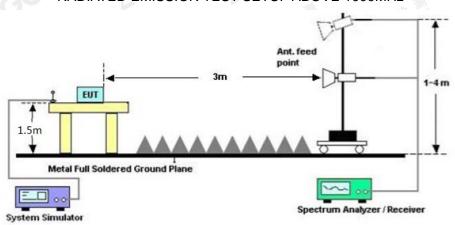
- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

VGC 8



11.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 53 of 88

11.3. LIMITS AND MEASUREMENT RESULT

15.209(a) Limit in the below table has to be followed

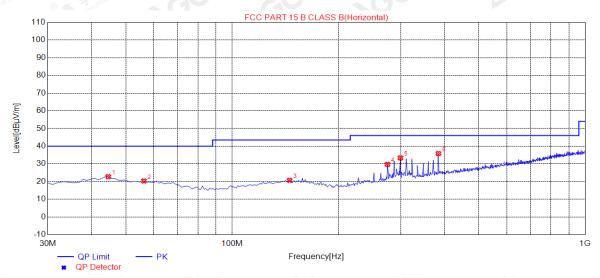
Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	and a second sec		
216~960	200	3		
Above 960	500	3		

Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

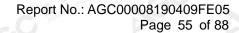
11.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

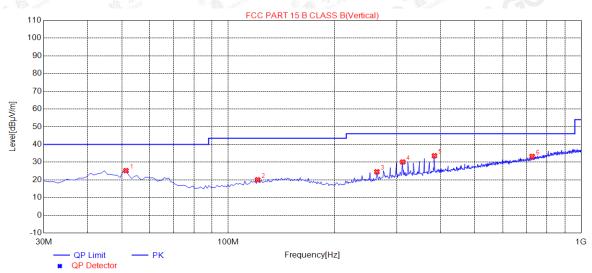

No emission found between lowest internal used/generated frequencies to 30MHz

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gent.com.

RADIATED EMISSION BELOW 1GHZ


EUT	1080P WiFi Smart Home Monitoring System	Model Name	GT4027
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Horizontal

1	V O.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
	1	44.5500	22.77	14.82	40.00	17.23	200	206	Horizontal
	2	56.1900	20.34	14.20	40.00	19.66	150	42	Horizontal
	3	145.4300	20.68	14.88	43.50	22.82	150	9	Horizontal
	4	275.4100	29.70	15.88	46.00	16.30	100	124	Horizontal
	5	299.6600	33.37	15.91	46.00	12.63	100	120	Horizontal
	6	384.0500	35.86	19.23	46.00	10.14	100	264	Horizontal


RESULT: PASS

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

EUT	1080P WiFi Smart Home Monitoring System	Model Name	GT4027
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Vertical

_	"///23		36551	127	: GY W ASS	100			
10 m	NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
Ī	1	51.3400	25.19	14.57	40.00	14.81	150	197	Vertical
	2	121.1800	20.03	13.55	43.50	23.47	200	137	Vertical
	3	263.7700	24.56	14.88	46.00	21.44	100	69	Vertical
	4	312.2700	30.08	16.37	46.00	15.92	100	232	Vertical
	5	384.0500	33.58	19.23	46.00	12.42	100	232	Vertical
1	6	726.4600	33.24	26.61	46.00	12.76	150	63	Vertical

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

- 2. The "Factor" value can be calculated automatically by software of measurement system.
- 3. All test modes had been pre-tested. The 802.11b at low channel is the worst case and recorded in the report.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 56 of 88

RADIATED EMISSION ABOVE 1GHZ

EUT	1080P WiFi Smart Home Monitoring System	Model Name	GT4027
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	\/alua Tima
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4824.092	44.53	3.72	48.25	74	-25.75	peak
4824.080	38.46	3.72	42.18	54	-11.82	AVG
7236.031	42.25	8.15	50.4	74	-23.6	peak
7236.069	36.81	8.15	44.96	54	-9.04	AVG
Attesti	Allestand	C And			lim	litte:
					AT THE	TK Kilmpliance
emark:		TIME:	10 july	表	obal Comir	of Global
actor = Anter	nna Factor + Cable	Loss - Pre-	amplifier.	® station of	All	3statio.

EUT	1080P WiFi Smart Home Monitoring System	Model Name	GT4027
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4824.020	43.65	3.72	47.37	74	-26.63	peak
4824.029	39.12	3.72	42.84	54	-11.16	AVG
7236.062	42.46	8.15	50.61	74	-23.39	peak
7236.020	37.48	8.15	45.63	54	-8.37	AVG
Combijano ® 4	Edulon of C	Attestation,	7.0			
- G					4	Maria de la composição de
Remark:				MET THOUSE	IK KEL	lance ® #
Factor = Anter	nna Factor + Cab	le Loss – Pre-	amplifier.	F/ Clobal Comb	O F. To Global	Attest

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confirmed a

Attestation of Global Compliance

Report No.: AGC00008190409FE05 Page 57 of 88

EUT	1080P WiFi Smart Home Monitoring System	Model Name	GT4027
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Tree
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4874.063	47.36	3.75	51.11	74	-22.89	peak
4874.059	43.22	3.75	46.97	54	-7.03	AVG
7311.094	41.18	8.16	49.34	74	-24.66	peak
7311.098	37.26	8.16	45.42	54	-8.58	AVG
Attestu	Attestan	a G Alle			-cill	litte:
					KST WALCO	TK KEL poliance
emark:		litt:	10 July	表	Dal Comp	of Global
actor = Anter	nna Factor + Cable	e Loss – Pre	-amplifier.	® # astalion of	Altestall	
d.	"][[1]	Jul 1100	G101			

EUT	1080P WiFi Smart Home Monitoring System	Model Name	GT4027
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2437MHZ	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	V-II - T
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4874.047	46.32	3.75	50.07	74	-23.93	peak
4874.048	40.35	3.75	44.1	54	-9.9	AVG
7311.026	42.19	8.16	50.35	74	-23.65	peak
7311.083	39.71	8.16	47.87	54	-6.13	AVG
				7/21 " " " " " " " " " " " " " " " " " " "	大村	
		-till	-100	El pal Comp.	Global Co	PATE ATTE
emark:	· ·	I niance	Compliano ®	E dation of C.	Attestation	
. 17 17 -0	nna Factor + Cab	le Loss – Pre-a	mplifier.	Testation L	Allesto	

The results spouroid this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 58 of 88

EUT	1080P WiFi Smart Home Monitoring System	Model Name	GT4027
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2462MHZ	Antenna	Horizontal

Meter Reading	Factor				
	i actor	Emission Level	Limits	Margin	\/alua Tima
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
43.36	3.81	47.17	74	-26.83	peak
40.19	3.81	44	54	-10	AVG
40.85	8.19	49.04	74	-24.96	peak
36.82	8.19	45.01	54	-8.99	AVG
Allestan	- C And			-cul	line:
10				KE THE	TK KE maliance
	LITE:		三 孙	al Comp	of Global
na Factor + Cable	Loss – Pre-	amplifier.	® ##Balation of	Attestall	
	43.36 40.19 40.85 36.82	43.36 3.81 40.19 3.81 40.85 8.19 36.82 8.19	43.36 3.81 47.17 40.19 3.81 44 40.85 8.19 49.04	43.36 3.81 47.17 74 40.19 3.81 44 54 40.85 8.19 49.04 74 36.82 8.19 45.01 54	43.36 3.81 47.17 74 -26.83 40.19 3.81 44 54 -10 40.85 8.19 49.04 74 -24.96 36.82 8.19 45.01 54 -8.99

EUT	1080P WiFi Smart Home Monitoring System Model Name		GT4027
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2462MHZ	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4924.045	44.48	3.81	48.29	74	-25.71	peak
4924.040	39.91	3.81	43.72	54	-10.28	AVG
7386.061	38.47	8.19	46.66	74	-27.34	peak
7386.110	37.52	8.19	45.71	54	-8.29	AVG
40	300				**************************************	Y 25
Remark:			-711	TK Kil Compliance	The bal comp	(E) Antesi
actor = Anter	nna Factor + Cable	Loss - Pre-	amplifier.	F of Global	8 Figure of Gu	

RESULT: PASS

Note:

Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All test modes had been pre-tested. The 802.11b mode is the worst case and recorded in the report.

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Page 59 of 88

12. BAND EDGE EMISSION

12.1. MEASUREMENT PROCEDURE

Radiated restricted band edge measurements

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting

12.2. TEST SET-UP

same as 11.2

Note:

- 1. Factor=Antenna Factor + Cable loss Amplifier gain. Field Strength=Factor + Reading level
- 2. The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F.

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Attestation of Global Compliance

12.3. TEST RESULT

EUT	1080P WiFi Smart Home Monitoring System	Model Name	GT4027	
Temperature	25°C	Relative Humidity	55.4%	
Pressure	960hPa	Test Voltage	Normal Voltage	
Test Mode	802.11b with data rate 1 2412MHZ	Antenna	Horizontal	

PK

AV

RESULT: PASS

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

AIGC 8