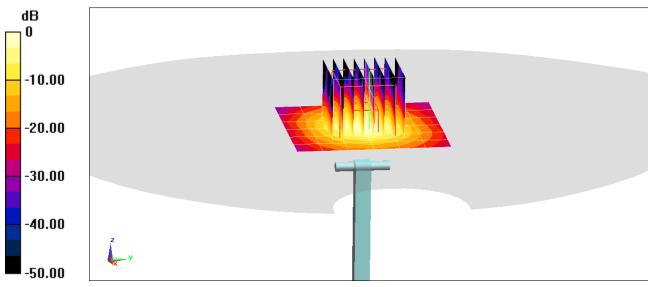
PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191


Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 6.154$ S/m; $\epsilon_r = 47.01$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-26-2018; Ambient Temp: 21.3°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7308; ConvF(4.18, 4.18, 4.18) @ 5750 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 10/3/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 16.1 W/kg SAR(1 g) = 3.47 W/kg Deviation(1 g) = -8.80%

0 dB = 8.59 W/kg = 9.34 dBW/kg

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D750V3-1003_Jan18

CALIBRATION CERTIFICATE

Object	D750V3 - SN:1003		
Calibration procedure(s)	QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz		
Calibration date:	January 15, 2018	3	BN 01-25-2018
		ional standards, which realize the physical un robability are given on the following pages an	
All calibrations have been conduct	ted in the closed laborato	ry facility: environment temperature (22 \pm 3)°(C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Nelwork Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Signature Seef Tille
Approved by:	Kalja Pokovic	Technical Manager	fll
			lssued: January 15, 2018
This calibration certificate shall no	t be reproduced except in	full without written approval of the laboratory	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero dl taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured
not applicable of not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

_

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.28 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.42 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.0 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.58 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.71 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω - 2.1 jΩ		
Return Loss	- 27.6 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2 Ω - 6.2 jΩ
Return Loss	- 24.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.043 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 21, 2009

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom

SAM Head Phantom

For usage with cSAR3DV2-R/L

_ ._ _ . _

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	7.94 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.33 W/kg
SAR for nominal Head TSL parameters		

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.22 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.52 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.06 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.38 W/kg

SAR result with SAM Head (Ear)

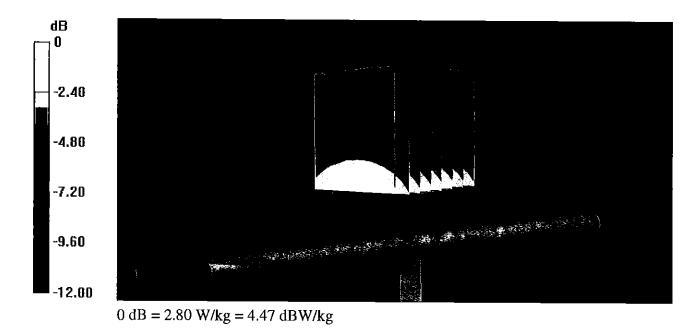
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.67 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.70 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.15 W/kg

DASY5 Validation Report for Head TSL

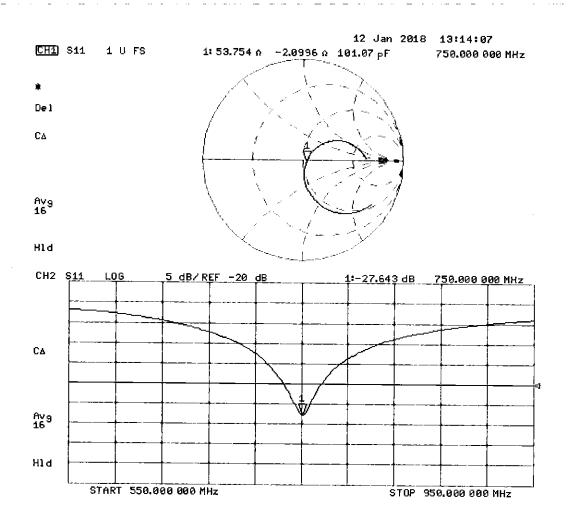
Date: 12.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 59.11 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.15 W/kg SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.80 W/kg

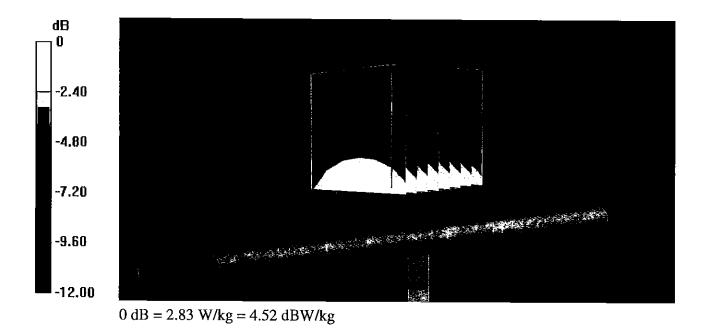
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

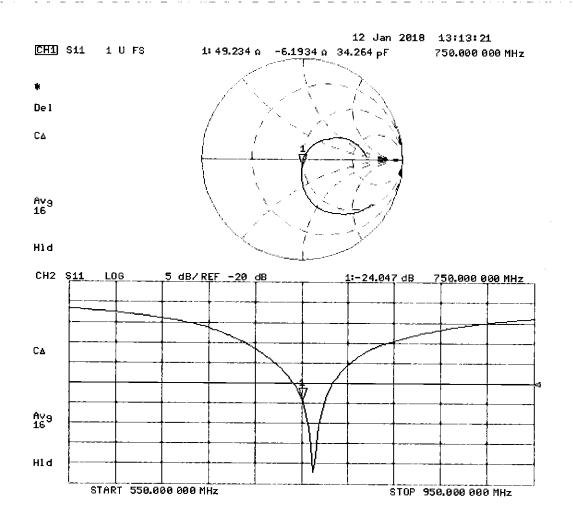
Date: 12.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96$ S/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.19, 10.19, 10.19); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x8x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 57.31 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.43 W/kg Maximum value of SAR (measured) = 2.83 W/kg

Impedance Measurement Plot for Body TSL

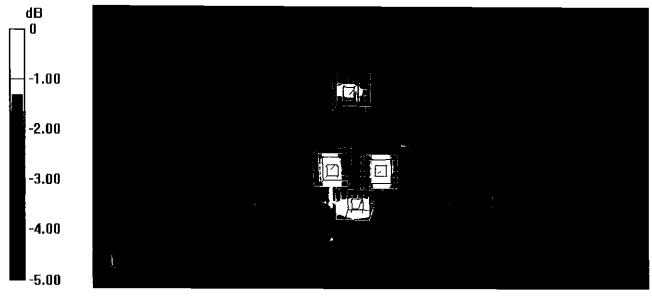
Date: 15.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9$ S/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.79 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.89 W/kg SAR(1 g) = 1.98 W/kg; SAR(10 g) = 1.33 W/kg Maximum value of SAR (measured) = 2.58 W/kg

SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.85 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 2.94 W/kg SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.62 W/kg

SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.29 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 2.78 W/kg SAR(1 g) = 2.01 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.56 W/kg

SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.01 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.31 W/kg SAR(1 g) = 1.67 W/kg; SAR(10 g) = 1.15 W/kg Maximum value of SAR (measured) = 2.11 W/kg

0 dB = 2.58 W/kg = 4.12 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Sorvizio svizzero di taratura

Accreditation No.: SCS 0108

BNV 03-27-2017 BNV 04-04-2018

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatorios to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D750V3-1054_Mar17

CALIBRATION CERTIFICATE Object D750V3 - SN:1054 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: March 07, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certilicate No.)	Scheduled Calibration
Power meter NRP	SN; 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Referenco Probo EX3DV4	SN: 7349	31-Dec-16 (No. EX3-7349_Dec16)	Dec-17
DAE4	SN: 601	04-Jan-17 (No. DAE4-601_Jan17)	Jan-18
Secondary Standards	ID #	Check Date (In house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (In house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oot-18
Power sensor HP 8481A	SN: MY41092317	07-Ocl-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN; US37390585	18-Oct-01 (in house check Oct-18)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Johannes Kurikka	Laboratory Technician	you lean
Approved by:	Kaija Pokovic	Technical Manager	Ally
			Issued: March 14, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kelibrierdienst

Service sulsse d'étaionnage

C Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
		V02.0.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.37 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5,50 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	2 2.0 °C	55 .5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.61 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.68 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1054_Mar17

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.7 Ω - 0.7 jΩ
Return Loss	- 26.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.7 Ω - 3.6 jΩ
Return Loss	- 28.7 dB

General Antenna Parameters and Design

)	<u> </u>
Electrical Delay (one	diraction)	1.033 ns	1
	, 		

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

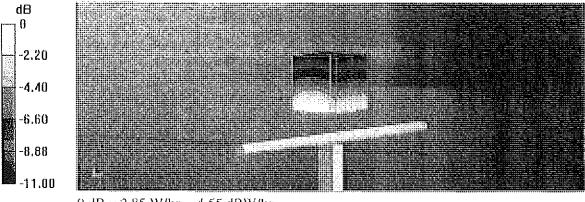
Manufactured by	SPEAG
Manufactured on	November 08, 2011

DASY5 Validation Report for Head TSL

Date: 07.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054


Communication System: UID 0 - CW ; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.17, 10.17, 10.17); Calibrated: 31,12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 59.71 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.21 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.4 W/kg Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

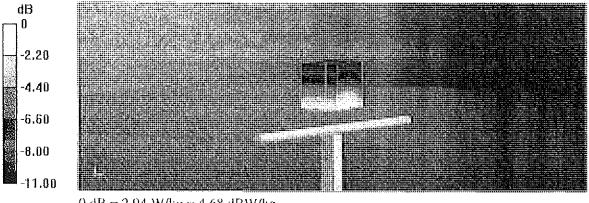
Impedance Measurement Plot for Head TSL

.

DASY5 Validation Report for Body TSL

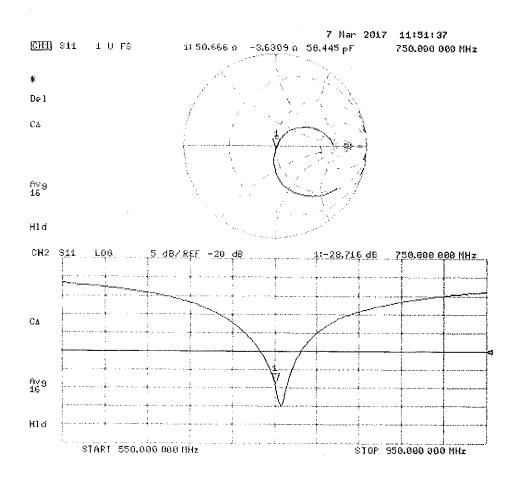
Date: 07.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW ; Frequency: 750 MHz Medium parameters used: f = 750 MHz; σ = 0.99 S/m; ϵ_r = 54.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.88 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.31 W/kg SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.45 W/kg Maximum value of SAR (measured) = 2.94 W/kg

+0 dB = 2.94 W/kg = 4.68 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST' Gr ******

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

D750V3 - SN:1054

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date:

March 07, 2018

Description:

SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

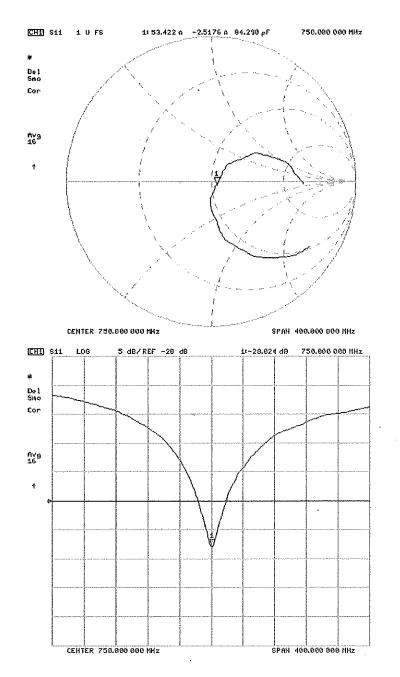
	and the second		2007/00/00/00/00/00/00/00	A second statement of the second	where the second state is a second state of the	
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agllent	8753ES	S-Parameter Network Analyzer	8/3/2017	Annual	8/3/2018	MY40000670
Agilent	N5182A	MXG Vector Signal Generator	1/24/2018	Annual	1/24/2019	MY47420651
Amplifler Research	1551G6	Amplifier	C8T	N/A	CBT	433971
Anritsu	MA24118	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Puise Power Sensor	10/16/2017	Annual	10/16/2018	1126066
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	1328004
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Mini-Circuits	8W-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	1/22/2018	Annual	1/22/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/13/2017	Annual	7/13/2018	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/21/2017	Annual	6/21/2018	1333
SPEAG	EX3DV4	SAR Probe	7/17/2017	Annual	7/17/2018	7410
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BROPTE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

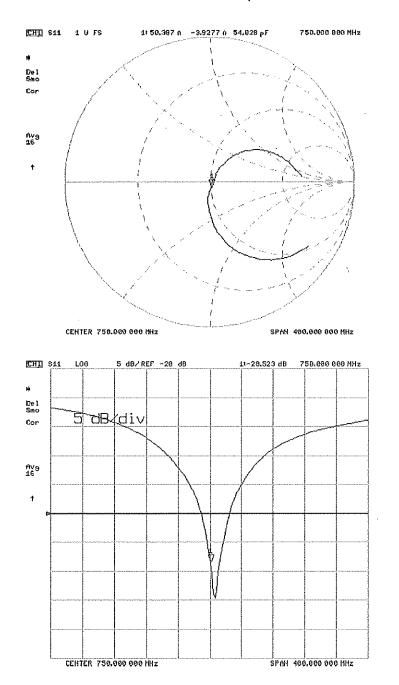
Object:	Date issued:	Page 1 of 4
D750V3 - SN:1054	03/07/2018	

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:



Object:	Date Issued:	Dogo 2 of 4
D750V3 - SN:1054	03/07/2018	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date issued:	Page 2 of 4
D750V3 – SN:1054	03/07/2018	Fage 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Pogo 4 of 4
D750V3 – SN:1054	03/07/2018	Page 4 01 4

Calibration Laboratory of Schmid & Partner Engineering AG

PC Test

Client

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D835V2-4d047_Oct18

CALIBRATION CERTIFICATE

Object	D835V2 - SN:4d0)47	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abo	ve 700 MHz
	-		BN 10-3 D-2018
Calibration date:	October 19, 2018		10-30-2018
The measurements and the uncerta	ainties with confidence pr	onal standards, which realize the physical uni robability are given on the following pages and y facility: environment temperature (22 ± 3)°C	d are part of the certificate.
Calibration Equipment used (M&TE			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	<u>A</u>
Approved by:	Kalja Pokovic	Technical Manager	<u>fl</u> UG
This calibration certificate shall not	be reproduced except in	i full without written approval of the laboratory	Issued: October 22, 2018

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	201.00 (10	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.47 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.55 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.71 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.60 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.36 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0 Ω - 0.5 jΩ
Return Loss	- 39.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.6 Ω - 4.1 jΩ
Return Loss	- 24.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.387 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

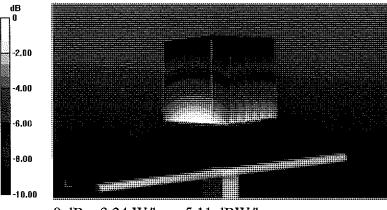
Manufactured by	SPEAG
Manufactured on	August 16, 2006

DASY5 Validation Report for Head TSL

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 40.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.9, 9.9, 9.9) @ 835 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.84 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.69 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 3.24 W/kg

0 dB = 3.24 W/kg = 5.11 dBW/kg

Impedance Measurement Plot for Head TSL

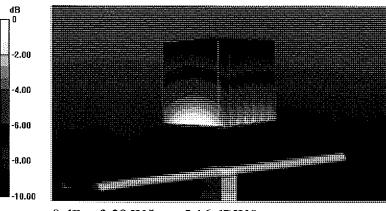
File	Ylew	<u>C</u> hannel	Sw <u>e</u> ep	Calibration	<u>Trace Scale Ma</u> rk	er System	<u>Window Help</u>	
							1: 835.000000 MHz 416.97 pF 835.000000 MHz	50.959 Ω -457.12 mΩ 10.524 mU -25.223 °
	Ch1: Sta	Ch 1 Avg = art 635.000 t	MHZ					Stop 1.03500 GHz
50.0 40.0 20.0 10.0 -10. -20. -30. -30. -50.	- 00 - 00 - 00 - 00 - 00 - 00 - 00	Ch 1 Avg = art 635.000 H	20 MH2				1: 835.00000 MHz	-39.557 dB
Sta	atus	CH 1: [311		C* 1-Port	Avg=20	l Delau	LCL

DASY5 Validation Report for Body TSL

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.98$ S/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.05, 10.05, 10.05) @ 835 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 61.27 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.68 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 3.28 W/kg

0 dB = 3.28 W/kg = 5.16 dBW/kg

Impedance Measurement Plot for Body TSL

50.00 48.811 40.00 30.00 20.00		Stop 1.03500 GHz
40.00 30.00 20.00		
10.00 0.00 -10.00 -20.00 -	> 1: 835.00000 MH	z -24.029 dB

Calibration Laboratory of

PC Test

Client

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D835V2-4d133_Oct18

CALIBRATION CERTIFICATE

Object	D835V2 - SN:4d	133	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits ab	00VE 700 MHz BN / 10 30 2018
Calibration date:	October 19, 2018)	
The measurements and the uncerta	ainties with confidence p ed in the closed laborator	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3)	and are part of the certificate.
	1		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
Calibrated by:	Name Manu Seitz	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	- AUG
This calibration certificate shall not	be reproduced except in	full without written approval of the laborato	lssued: October 22, 2018 ry.

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.43 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL		
SAN averaged over 10 cm ² (10 g) of nead 15L	condition	
SAR measured	250 mW input power	1.54 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.75 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.40 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.6 Ω - 2.4 jΩ
Return Loss	- 32.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.0 Ω - 6.7 jΩ
Return Loss	- 21.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.397 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

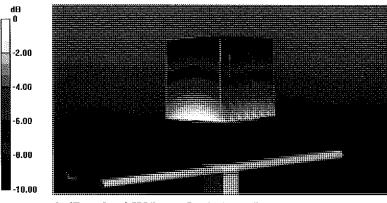
Manufactured by	SPEAG
Manufactured on	July 22, 2011

DASY5 Validation Report for Head TSL

Date: 19.10.2018

Test Laboratory: The name of your organization

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.9, 9.9, 9.9) @ 835 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 63.02 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.68 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.24 W/kg

0 dB = 3.24 W/kg = 5.11 dBW/kg

Impedance Measurement Plot for Head TSL

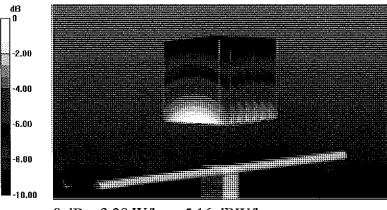
		5.000000 MHz 79.672 pF 5.000000 MHz	50.571 Ω -2.3924 Ω 24.448 mU -75.225 °
Ch 1 Avg = 20 Ch 1: Start 635,000 MHz		an hinin najnin nina ina an	Stop 1.03500 GHz
50.00 40.00 30.00 20.00 10.00 0.00 -10.00 -20.00 -20.00 -40.00 -40.00 -50.00 Ch 1 Avg = 20 Ch1: Start 635.000 MHz	> 1; 83	5.00000 MHz	-32.235 dB

DASY5 Validation Report for Body TSL

Date: 19.10.2018

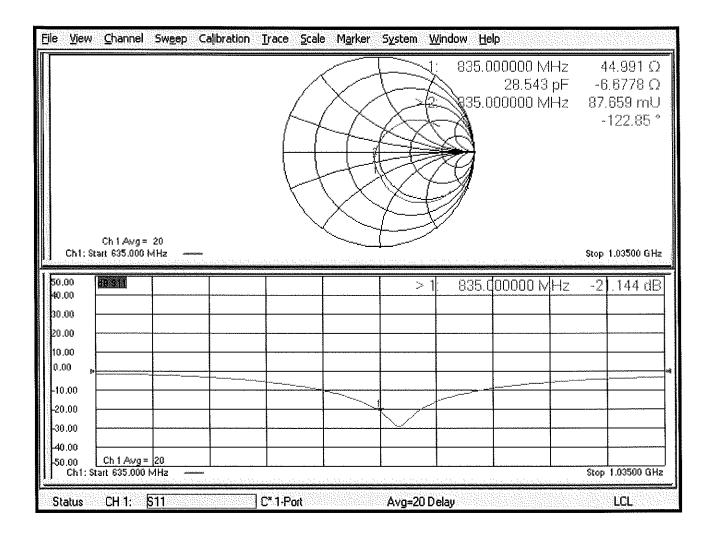
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.98$ S/m; $\epsilon_r = 54.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.05, 10.05, 10.05) @ 835 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 61.61 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.69 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.28 W/kg

0 dB = 3.28 W/kg = 5.16 dBW/kg

Impedance Measurement Plot for Body TSL

S Schweizerlischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

PC Test Client Certificate No: D1750V2-1148 May17 CALIBRATION CERTIFICATE Object D1750V2 - SN:1148 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz 05-09-2017 05-09-201 May 09, 2017 Calibration date: 승규는 승규는 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-17 (No. 217-02521/02522) Apr-18 Power sensor NRP-Z91 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02522) Apr-18 Reference 20 dB Attenuator SN: 5058 (20k) 07-Apr-17 (No. 217-02528) Apr-18 Type-N mismatch combination SN: 5047.2 / 06327 07-Apr-17 (No. 217-02529) Apr-18 Reference Probe EX3DV4 SN: 7349 31-Dec-16 (No. EX3-7349_Dec16) Dec-17 DAE4 SN: 601 28-Mar-17 (No. DAE4-601_Mar17) Mar-18 Secondary Standards ID # Check Date (In house) Scheduled Check Power meter EPM-442A SN: GB37480704 07-Oct-15 (in house check Oct-16) In house check: Oct-18 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-16) in house check: Oct-18 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-16) In house check: Oct-18 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-16) in house check: Oct-18 Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-16) In house check: Oct-17

 Name
 Function
 Signature

 Calibrated by:
 Claudio Leubler
 Laboratory Technician

 Approved by:
 Kalja Pokovic
 Technical Manager

Certificate No: D1750V2-1148_May17

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.1 7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.93 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.8 Ω - 0.7 jΩ
Return Loss	- 42.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.7 Ω - 0.5 jΩ
Return Loss	- 26.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.223 ns
Electrical Beilay (one allocation)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

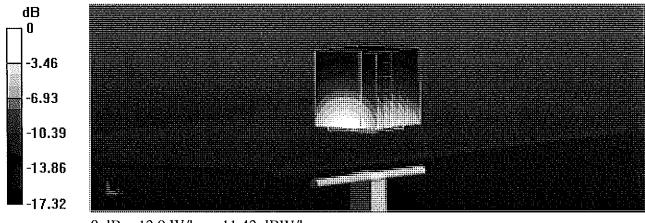
Manufactured by	SPEAG
Manufactured on	September 30, 2014

DASY5 Validation Report for Head TSL

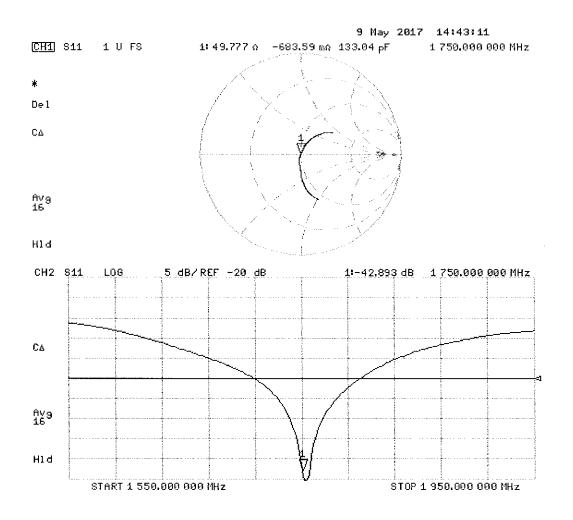
Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.36$ S/m; $\varepsilon_r = 39$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.4 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.83 W/kg Maximum value of SAR (measured) = 13.9 W/kg

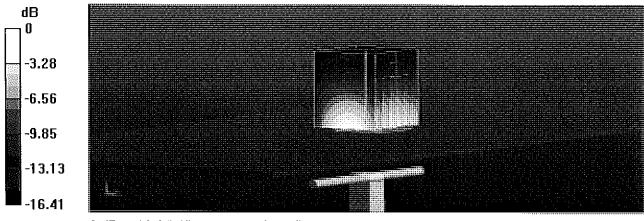
0 dB = 13.9 W/kg = 11.43 dBW/kg

DASY5 Validation Report for Body TSL

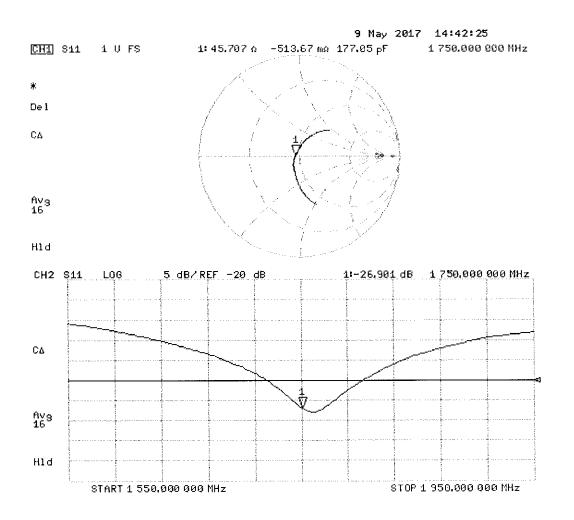
Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.47$ S/m; $\varepsilon_r = 53.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 99.49 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 15.9 W/kg SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.93 W/kg Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D1750V2 - SN: 1148

May 09, 2018

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date:

Description:

SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

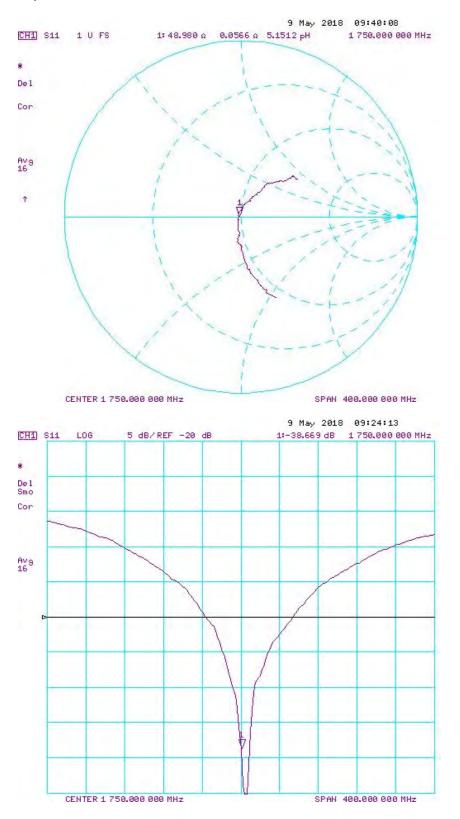
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2018	Annual	2/9/2019	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/21/2017	Annual	6/21/2018	1333
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/12/2017	Annual	9/12/2018	1091
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287
SPEAG	ES3DV3	SAR Probe	2/13/2018	Annual	2/13/2019	3213
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Pasternack	NC-100	Torque Wrench	4/18/2018	Annual	4/18/2019	1445
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	941001

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

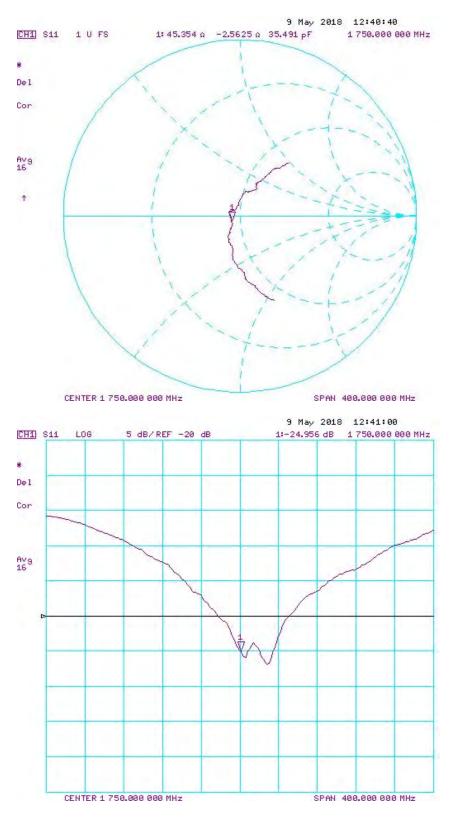
Object:	Date Issued:	Page 1 of 4
D1750V2 – SN: 1148	05/09/2018	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	dBm	(%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
5/9/2017	5/9/2018	1.223	3.64	3.59	-1.37%	1.93	1.91	-1.04%	49.8	49.0	0.8	-0.7	0.1	0.8	-42.9	-38.7	9.90%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		BODY SAR (1g)	(9/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5/9/2017	5/9/2018	1.223	3.7	3.88	4.86%	1.98	2.06	4.04%	45.7	45.4	0.3	-0.5	-2.6	2.1	-26.9	-25.0	7.20%	PASS

Object:	Date Issued:	Page 2 of 4
D1750V2 – SN: 1148	05/09/2018	Fage 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D1750V2 – SN: 1148	05/09/2018	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D1750V2 – SN: 1148	05/09/2018	Page 4 of 4

Calibration Laboratory of

PC Test

Client

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1750V2-1150_Oct18

CALIBRATION CERTIFICATE D1750V2 - SN:1150 Object Calibration procedure(s) QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz BN1 10/30/2018 October 22, 2018 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) 1D # Scheduled Calibration Primary Standards SN: 104778 04-Apr-18 (No. 217-02672/02673) Power meter NRP Apr-19 Power sensor NRP-Z91 SN: 103244 04-Apr-18 (No. 217-02672) Apr-19 Power sensor NRP-Z91 SN: 103245 04-Apr-18 (No. 217-02673) Apr-19 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-18 (No. 217-02682) Apr-19 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-18 (No. 217-02683) Apr-19 Dec-18 Reference Probe EX3DV4 SN: 7349 30-Dec-17 (No. EX3-7349_Dec17)

SN: 601 Oct-19 DAE4 04-Oct-18 (No. DAE4-601_Oct18) Secondary Standards ID # Check Date (in house) Scheduled Check SN: GB37480704 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power meter EPM-442A Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-18) In house check: Oct-19 Name

 Name
 Function
 Signature

 Calibrated by:
 Michael Weber
 Laboratory Technician
 Milling

 Approved by:
 Katja Pokovic
 Technical Manager
 Issued: October 22, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole ٠ positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. ٠ No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.33 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.4 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9 Ω - 0.4 jΩ
Return Loss	- 40.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 0.1 jΩ
Return Loss	- 29.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.217 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

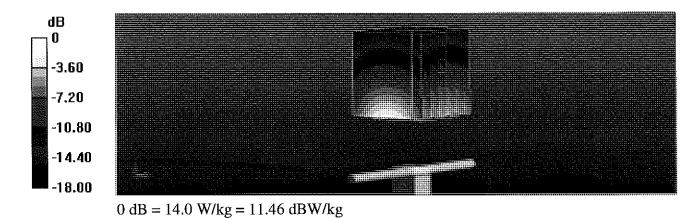
Manufactured by	SPEAG
Manufactured on	April 10, 2015

DASY5 Validation Report for Head TSL

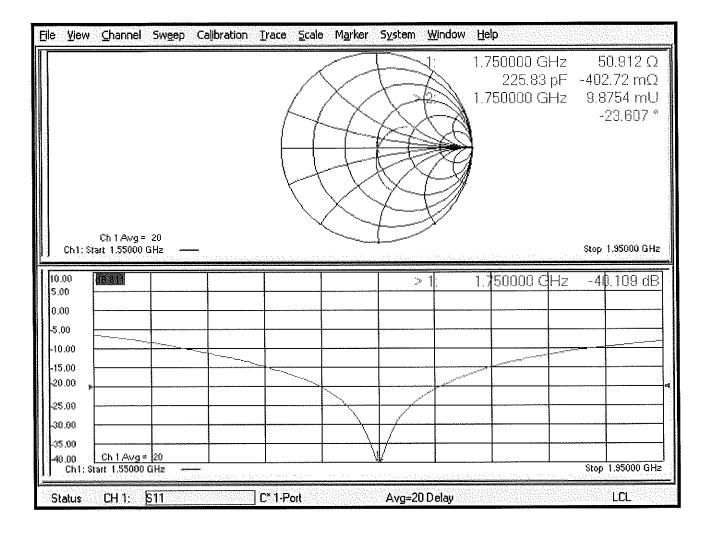
Date: 22.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.33$ S/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electromics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 108.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.76 W/kg Maximum value of SAR (measured) = 14.0 W/kg

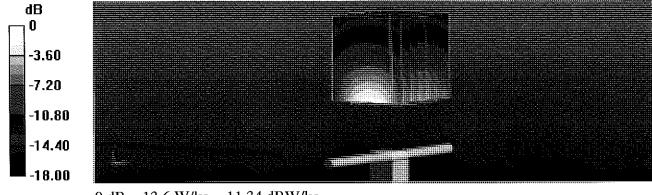
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.10.2018

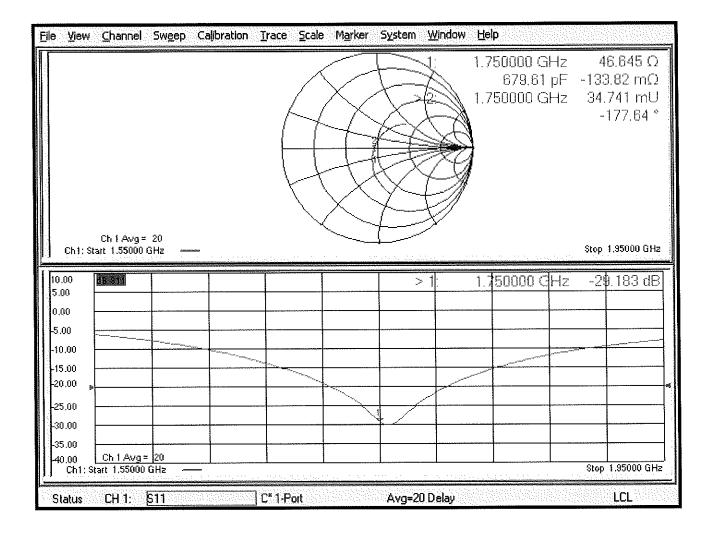
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.46 S/m; ϵ_r = 53.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 102.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.82 W/kg Maximum value of SAR (measured) = 13.6 W/kg

0 dB = 13.6 W/kg = 11.34 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Servizio svizzero di taratura

Swiss Calibration Service

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client PC Test

Certificate No: D1900V2-5d080_Oct18

CALIBRATION CERTIFICATE D1900V2 - SN:5d080 Object QA CAL-05.v10 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz October 23, 2018 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID # Scheduled Calibration Primary Standards Cal Date (Certificate No.) Power meter NRP SN: 104778 04-Apr-18 (No. 217-02672/02673) Apr-19 SN: 103244 04-Apr-18 (No. 217-02672) Power sensor NRP-Z91 Apr-19 Power sensor NRP-Z91 SN: 103245 04-Apr-18 (No. 217-02673) Apr-19 Apr-19 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-18 (No. 217-02682) Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-18 (No. 217-02683) Apr-19 Reference Probe EX3DV4 SN: 7349 30-Dec-17 (No. EX3-7349_Dec17) Dec-18 DAE4 SN: 601 04-Oct-18 (No. DAE4-601_Oct18) Oct-19 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter EPM-442A SN: GB37480704 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-18) In house check: Oct-19 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic **Technical Manager**

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: October 23, 2018

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TO	Atomical advantation of Hannial
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	VJZ.10.2
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.8 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.18 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5 Ω + 7.9 jΩ
Return Loss	- 21.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.1 Ω + 8.1 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

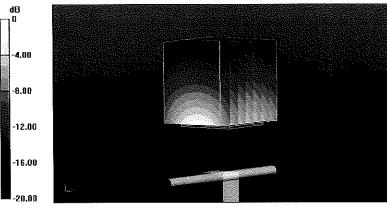
Manufactured by	SPEAG
Manufactured on	June 28, 2006

DASY5 Validation Report for Head TSL

Date: 23.10.2018

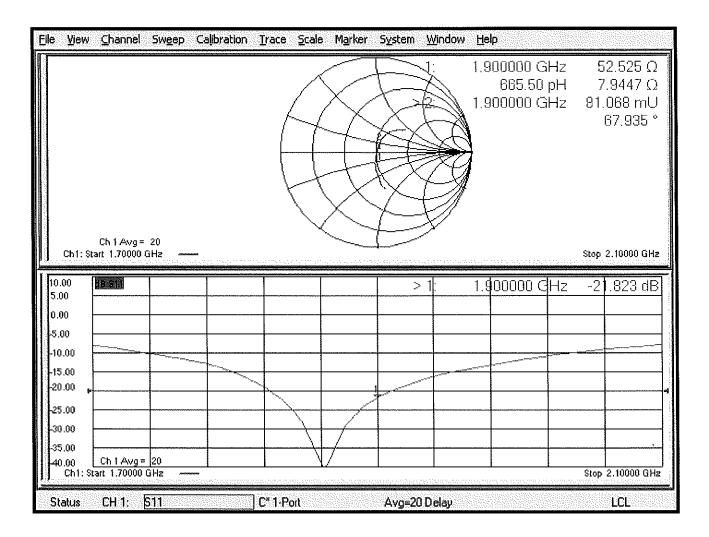
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4$ S/m; $\varepsilon_r = 40.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.0 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dBW/kg

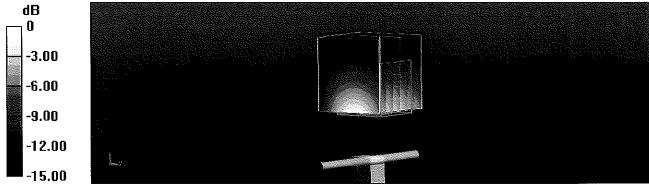
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

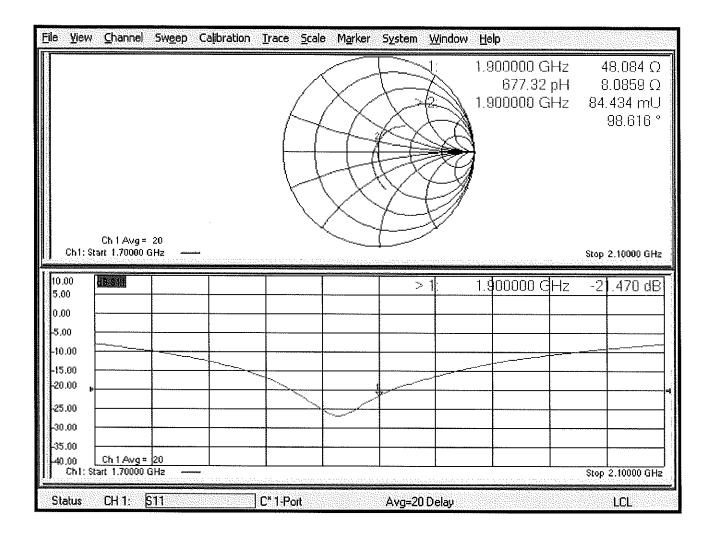
Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.47 S/m; ϵ_r = 52.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.86 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.62 W/kg; SAR(10 g) = 5.09 W/kg Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG

PC Test

Client

Zeughausstrasse 43, 8004 Zurich, Switzerland

BC-MRA

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1900V2-5d148_Feb18

CALIBRATION CERTIFICATE

andar se sa tanàna mandritra dia kaominina dia mampikana mandritra dia kaominina dia kaominina dia kaominina di Ny INSEE dia mampikambana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'n			nin an
Object	D1900V2 - SN:50	1148	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ve 700 MHz BNV 03-02-2018
Calibration date:	February 07, 201	8	
The measurements and the uncert	tainties with confidence p	onal standards, which realize the physical uni robability are given on the following pages and γ facility: environment temperature (22 ± 3)°C	d are part of the certificate.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	Jel 14
This calibration certificate shall no	t be reproduced except ir	n full without written approval of the laboratory	Issued: February 7, 2018

Certificate No: D1900V2-5d148_Feb18

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

, .	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.7 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.2 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω + 5.8 jΩ
Return Loss	- 24.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.8 Ω + 6.5 jΩ
Return Loss	- 23.1 dB

General Antenna Parameters and Design

Electrical Delay (and direction)	
Electrical Delay (one direction)	1.199 ns
	1.100115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

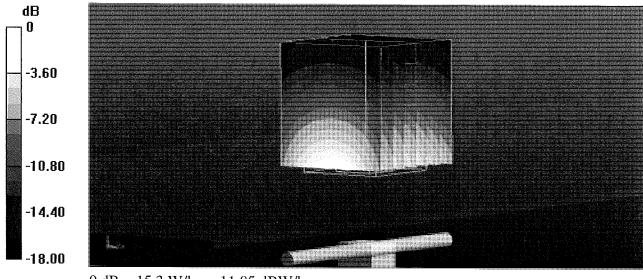
Manufactured by	SPEAG
Manufactured on	March 11, 2011

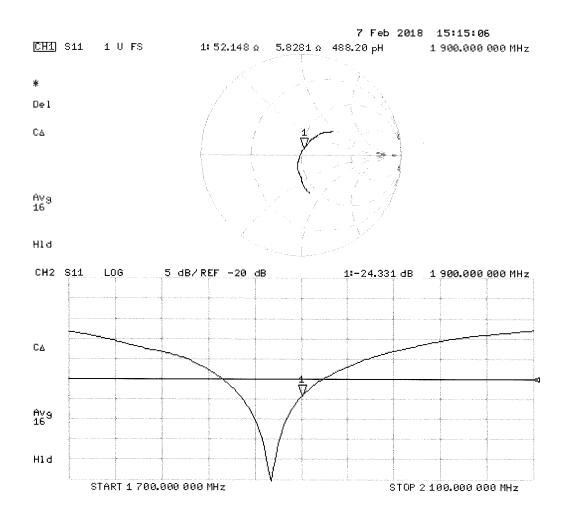
DASY5 Validation Report for Head TSL

Date: 07.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.39 S/m; ϵ_r = 40.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

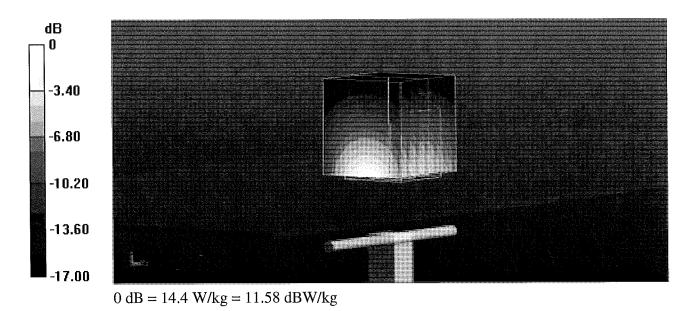
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

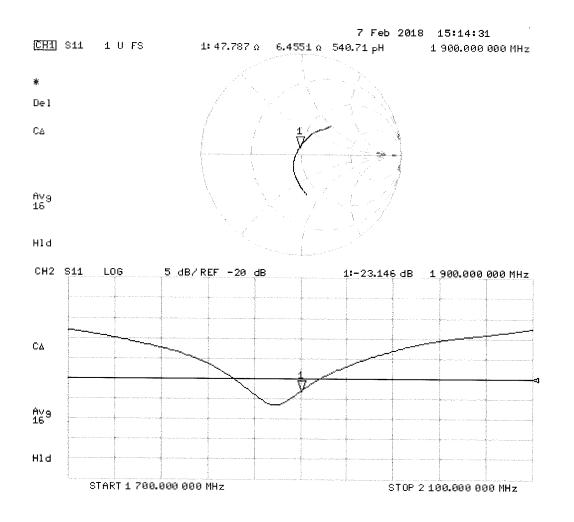
Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 109.6 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.22 W/kg Maximum value of SAR (measured) = 15.3 W/kg

DASY5 Validation Report for Body TSL

Date: 07.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.48 S/m; ϵ_r = 55.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.0 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.14 W/kg Maximum value of SAR (measured) = 14.4 W/kg

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Client **PC Test** Certificate No: D1900V2-5d149_Oct18

CALIBRATION CERTIFICATE

Object	D1900V2 - SN:50	1149	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abo	
Calibration date:	October 23, 2018		BNV 10-30-2018
	•	onal standards, which realize the physical uni robability are given on the following pages and	
All calibrations have been conducte	ed in the closed laborato	y facility: environment temperature (22 \pm 3)°C	c and humidity < 70%.
Calibration Equipment used (M&TE	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047,2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
	1		
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	
			Q =
			an a
Approved by:	Katja Pokovic	Technical Manager	RIAL
			Issued: October 23, 2018
This calibration certificate shall not	be reproduced except in	I full without written approval of the laboratory.	

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.3 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
or a reading of the star (10 g) of field for	condition	
SAR measured	250 mW input power	5.11 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point $52.9 \Omega + 6.3 j\Omega$	
Return Loss	- 23.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5 Ω + 8.2 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.193 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

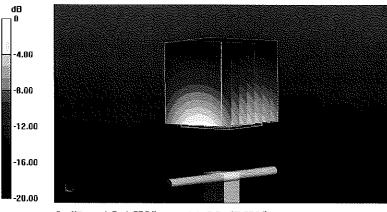
Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 23.10.2018

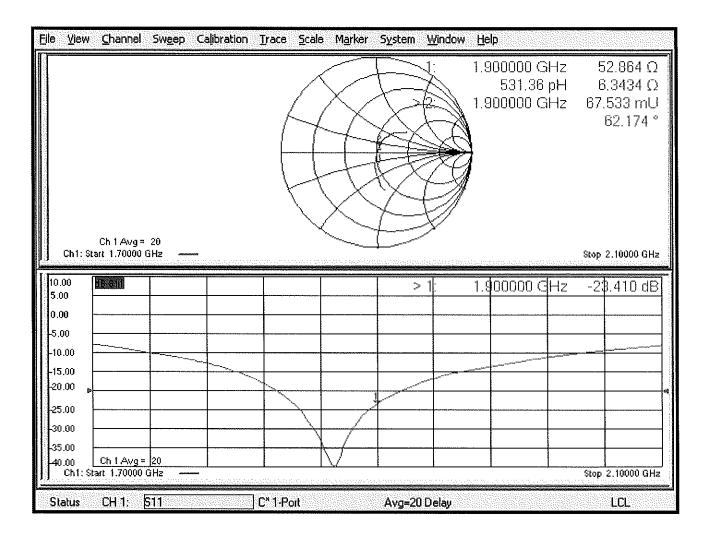
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4$ S/m; $\epsilon_r = 40.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.0 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 9.8 W/kg; SAR(10 g) = 5.11 W/kg Maximum value of SAR (measured) = 15.4 W/kg

0 dB = 15.4 W/kg = 11.88 dBW/kg

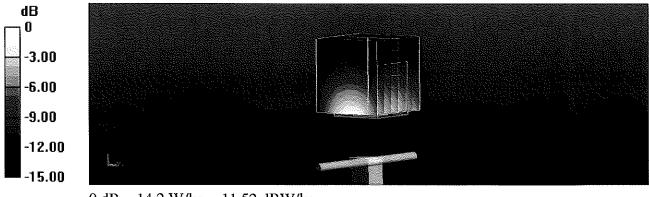
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.47 S/m; ϵ_r = 52.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.1 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.11 W/kg Maximum value of SAR (measured) = 14.2 W/kg

0 dB = 14.2 W/kg = 11.52 dBW/kg

Impedance Measurement Plot for Body TSL

<u>File V</u> iew	<u>Channel Swe</u> ep (Calibration <u>T</u> race <u>S</u> cale M	arker System <u>W</u> indow <u>H</u> elp	
	Ch 1 Avg = 20		1: 1.90000 684. 1.900000	48 pH - 8.1713 Ω
Ch1: S	itart 1.70000 GHz			Stop 2.10000 GHz
10.00 5.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00 Ch1: S	Ch 1 Avg = 20 tart 1.70000 GHz			CGHz -21.519 dB
Status	CH11: 511	C* 1-Port	Avg=20 Delay	LCL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

ient PC Test		Ce	rtificate No: D2300V2-1064_Nov17
ALIBRATION C	ERTIECATE		
bject	D2300V2-SN:10	064	BEBRICHSERICA SARETERS
alibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation	i kits above 700 MHz
			BAN
Calibration date:	November 08, 20	J 1 Y	12/04/2017
The measurements and the uncer	rtainties with confidence p	robability are given on the following	physical units of measurements (SI). ng pages and are part of the certificate. $11/21/$
Il calibrations have been conduc	ted in the closed laborator	ry facility: environment temperatu	re (22 \pm 3)°C and humidity < 70%.
alibration Equipment used (M&T	E critical for calibration)		
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/025	22) Apr-18
ower sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
ower sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
eference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
pe-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
eference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_Ma	
AE4	SN: 601	26-Oct-17 (No. DAE4-601_Oc	t17) Oct-18
econdary Standards	iD #	Check Date (in house)	Scheduled Check
ower meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oc	t-16) In house check: Oct-18
ower sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oc	t-16) In house check: Oct-18
ower sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oc	•
F generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oc	
letwork Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oc	t-17) In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Techn	idan die UC
Approved by:	Katja Pokovic	Technical Manage	• JECHE
			Issued: November 8, 2017
This calibration certificate shall n	ot be reproduced except i	n full without written approval of th	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2300 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.3 ± 6 %	1.70 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	47.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.84 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.9	1.81 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9±6%	1.85 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	11.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	46.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.69 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.4 Ω - 5.2 jΩ
Return Loss	- 25.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.1 Ω - 4.1 jΩ
Return Loss	- 23.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.168 ns
	1.106 fts

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

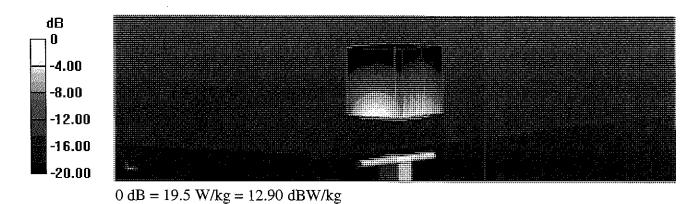
Manufactured by	SPEAG
Manufactured on	August 20, 2015

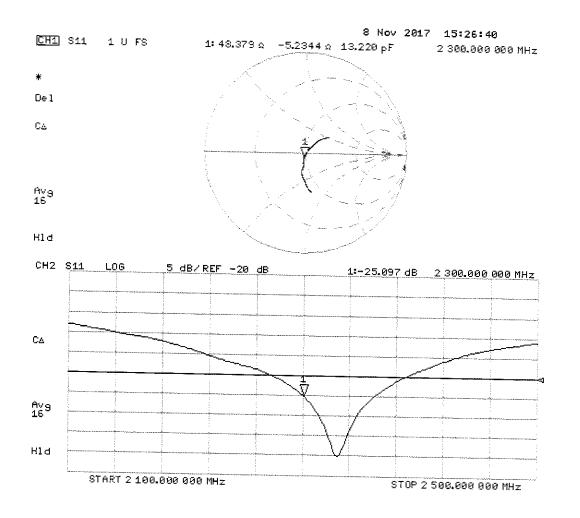
DASY5 Validation Report for Head TSL

Date: 08.11.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1064


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.7$ S/m; $\epsilon_r = 38.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.31, 8.31, 8.31); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

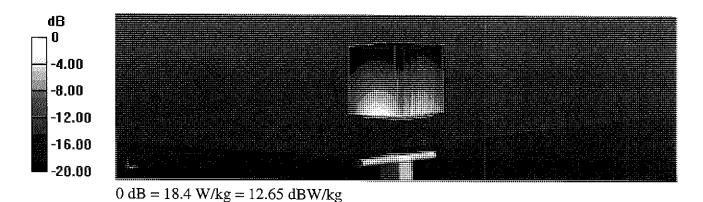
Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 112.6 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 23.8 W/kg SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.84 W/kg Maximum value of SAR (measured) = 19.5 W/kg

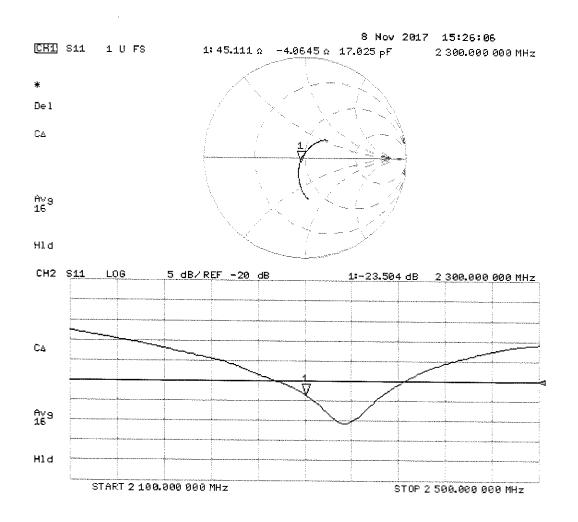
DASY5 Validation Report for Body TSL

Date: 08.11.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1064


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; σ = 1.85 S/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.22, 8.22, 8.22); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.6 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 22.6 W/kg SAR(1 g) = 11.8 W/kg; SAR(10 g) = 5.69 W/kg Maximum value of SAR (measured) = 18.4 W/kg

PCTEST ENGINEERING LABORATORY, INC. 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D2300V2 - SN: 1064

November 20, 2018

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date:

Description:

SAR Validation Dipole at 2300 MHz.

Calibration Equipment used:

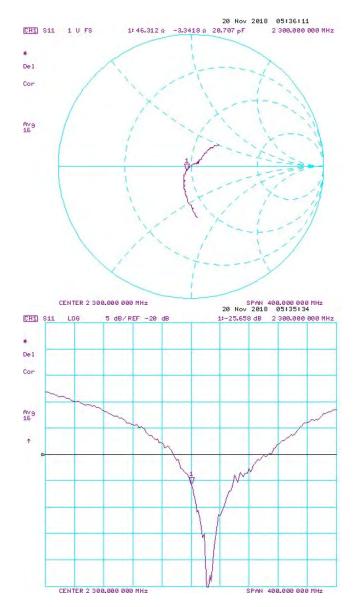
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Vector Network Analyzer	8/30/2018	Annual	8/30/2019	MY40003841
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	1328004
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2018	Annual	7/11/2019	1322
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7410

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	SAR Test Engineer	BROPTE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

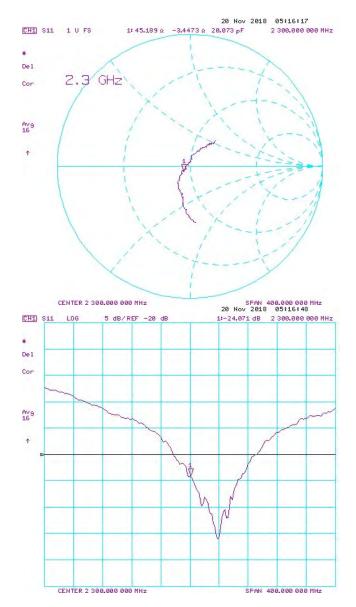
Object:	Date Issued:	Page 1 of 4
D2300V2 – SN: 1064	11/20/2018	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	ubm	(%)	dBm	(10g) W/kg @ 20.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Head (dB)	Head (dB)	Deviation (%)	
11/8/2017	11/20/2018	1.168	4.76	4.69	-1.47%	2.31	2.24	-3.03%	48.4	46.3	2.1	-5.2	-3.3	1.9	-25.1	-25.7	-2.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
11/8/2017	11/20/2018	1.168	4.65	4.83	3.87%	2.26	2.29	1.33%	45.1	45.2	0.1	-4.1	-3.4	0.7	-23.5	-24.1	-2.40%	PASS

Object:	Date Issued:	Page 2 of 4
D2300V2 – SN: 1064	11/20/2018	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 4
D2300V2 – SN: 1064	11/20/2018	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dago 4 of 4
D2300V2 – SN: 1064	11/20/2018	Page 4 of 4

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calbraton Data	Uxtonison Date	Certificate Flectrical Delay (ns)	Centricale SAR Targel Head (19) W/kg (§ 20.0 dBm	Measurad Head SAR (1g) W/kg gb 20 0 dBm	Deviation 1g (%)	Certificate GAR Target Head (10g) Wilkg (§ 20.0 d0m	Measured Head SAR (10g) W/kg @ 20.0 dBm	Devlation 10g (%)	Certificate Impedance Head (Chm) Real	Measured Impedance Head (Chim) Heal	Difference (Chni) Real	Certificate Impedance Head (Chin) Imaginary	Measured Impedance Head (Ching Imeginary	Difference (Chm) Imegitudy	Certificate Return Loss Head (dD)	Measured Return Loss Head (dB)	Dusiation (%)	FIASEJFAIL
6/7/2017	6/4/2018	1,151	5.70	6.71	0.18%	2.55	2.51	-1.57%	49.4	53.4	4.0	-6.3	-6.7	0.4	-23.9	-22.6	5 90%	PASS
Calibration Date	Extension Date	Certificate Dectrical Detay (re)	Certricate SAR Target Body (1g) Write (2 20.0 dam	Meanuned Body EAK (1p) W/kg @ 20.0 dBm	Devention 1g	Centricate SAR Tacget Body (10g) Wring @ 20.0 dBmi	Measured Body SAR (10a) W/leg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Chin) Real	Measured Impodance Body (Chin) Tabal	Difference (Crim) (Anal	Certificate Impedance Body (Chin) Imaginary	Mensured Impedance Dody (Chm) Imaginary	Difference (Ohm) Imeginary	Certificate Return Loss Body (dB)	Measured Poturn Lons Dody (dB)	Desiston (%)	PASS/FAIL
6/7/2017	6/4/2016	1.151	5.47	5.65	3 20%	2.44	2.40	1.64%	46.4	40.5	21	-41	.6.2	41	-25.0	-21.8	12.80%	PASS

Object:	Date Issued:	D0.44
D2600V2 - SN: 1064	06/04/2018	Page 2 of 4

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: D2300V2-1073_Aug18

CALIBRATION CERTIFICATE

Object	D2300V2 - SN:10	073	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abo	ve 700 MHz DA-06-2018
			09-06-20.5
Calibration date:	August 13, 2018		
The measurements and the uncert	ainties with confidence p	ional standards, which realize the physical unitrobability are given on the following pages and the facility: environment temperature $(22 \pm 3)^{\circ}$ C	d are part of the certificate.
	- chical for calibration)		
Primary Standards	!D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	_Check Date (in house)	Seheduled Ob
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	Scheduled Check
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18 In house check: Oct-18
Calibrated by:	Name Michael Weber	Function Laboratory Technician	Signature
	· · · · · · · · · · · · · · · · · · ·	n an	11.112
Approved by:	Katja Pokovic	Technical Manager	L.U.L
This calibration certificate shall not		ананананананананананананананананананан	Issued: August 13, 2018

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

To	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2300 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.70 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	49.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.9	1.81 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.85 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	47.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.1 Ω - 5.2 jΩ
Return Loss	- 25.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.5 Ω - 4.1 jΩ
Return Loss	- 23.9 dB

General Antenna Parameters and Design

Electrical Delay (and dispation)	
Electrical Delay (one direction)	1.171 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 16, 2015

DASY5 Validation Report for Head TSL

Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1073

Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; σ = 1.7 S/m; ϵ_r = 38.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.08, 8.08, 8.08) @ 2300 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 115.9 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 24.1 W/kg SAR(1 g) = 12.5 W/kg; SAR(10 g) = 6.02 W/kg Maximum value of SAR (measured) = 20.2 W/kg

Impedance Measurement Plot for Head TSL

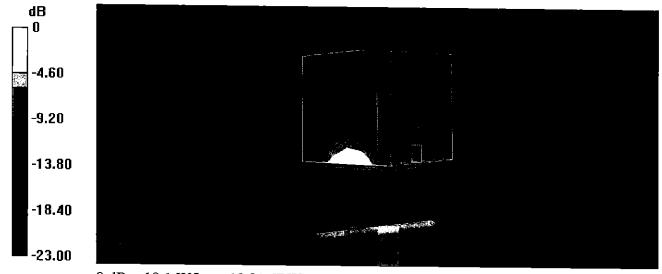
<u>Fi</u> le	⊻iew	Channel	Sw <u>e</u> ep	Calibration	<u>T</u> race	<u>S</u> cale	M <u>a</u> rker	S <u>y</u> stem	<u>Wi</u> ndow	<u>H</u> elp				
	-01-1-02	Ch 1 Awg	20								8000 G 13,259 0000 G	рF	-5 52. -1	0.050 Ω .2189 Ω 094 mU 86.467 °
	Ch1:St	art 2,10000	GHz —					- 					Stop 2	2.50000 GHz
-15 -20 -25 -30 -35	00 00 000 000 000 000 000 000 000 000	<u>Ch 1 Avg</u>	GHz —							2.30				2.50000 GHz
St	atus	CH 1:	511		C* 1 Po	ut	•	Avg=20	Delay					LCL

DASY5 Validation Report for Body TSL

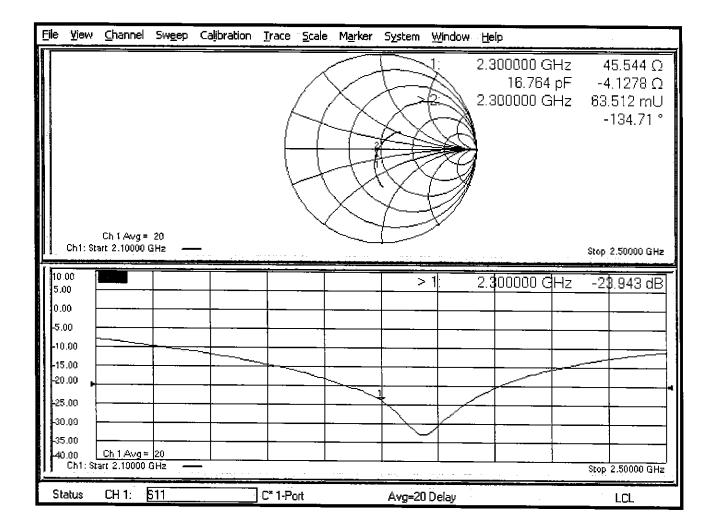
Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1073


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; σ = 1.85 S/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.08, 8.08, 8.08) @ 2300 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.5 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 22.9 W/kg SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.86 W/kg Maximum value of SAR (measured) = 19.1 W/kg

0 dB = 19.1 W/kg = 12.81 dBW/kg

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

Schweizerischer Kallbrlerdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2450V2-719_Aug17

Object	D2450V2 - SN:7	19 of the second second	
			PN
Calibration procedure(s)	QA CAL-05.v9	Aktan Alah Marin	· ·
		dure for dipole validation kits abo	ove 700 MHz 8/27 Extende BN
	11년 48년 동네가 한다.		Fxtende
			Rai
Calibration date:	August 17, 2017	· 我们就是你说,你可能是可能的。"	BN 7/19/2
			7/19/2
This calibration certificate docum	ents the traceability to nat	ional standards, which realize the physical un	nits of measurements (SI).
The measurements and the unce	rtainties with confidence p	robability are given on the following pages an	nd are part of the certificate.
All calibrations have been conduc	ted in the closed laborato	ry facility: environment temperature (22 \pm 3)°(C and humidity < 70%
Calibration Equipment used (M&	FE critical for calibration)		
	lD #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	ID # SN: 104778	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522)	Scheduled Calibration Apr-18
Power meter NRP			
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 1D # SN: GB37480704	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 1D # SN: GB37480704 SN: US37292783	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 1D # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-17

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V 52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.86 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.9 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	arameters 22.0 °C 52.7		1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.00 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.7 Ω + 7.0 jΩ
Return Loss	- 21.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.4 Ω + 8.1 jΩ		
Return Loss	- 21.8 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

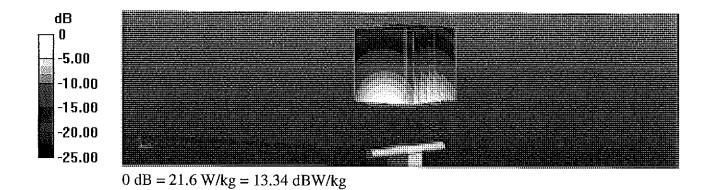
Manufactured by	SPEAG		
Manufactured on	September 10, 2002		

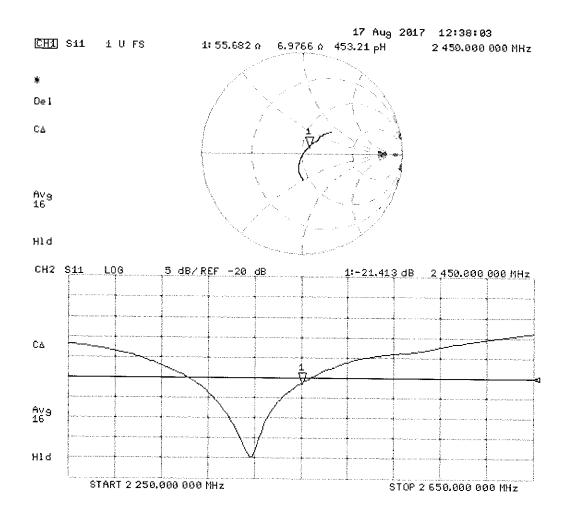
DASY5 Validation Report for Head TSL

Date: 17.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

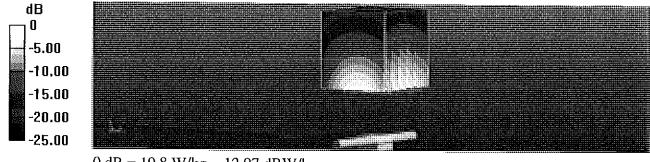
Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.8 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.15 W/kg Maximum value of SAR (measured) = 21.6 W/kg

DASY5 Validation Report for Body TSL

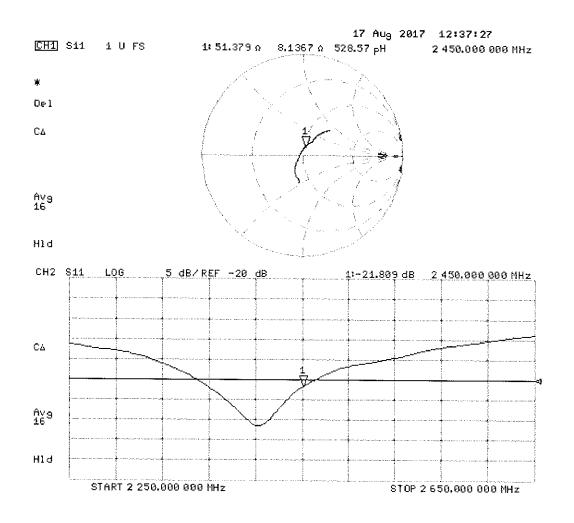
Date: 17.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.0 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 25.2 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6 W/kg Maximum value of SAR (measured) = 19.8 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D2450V2 - SN: 719

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

07/18/2018

Extended Calibration date:

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

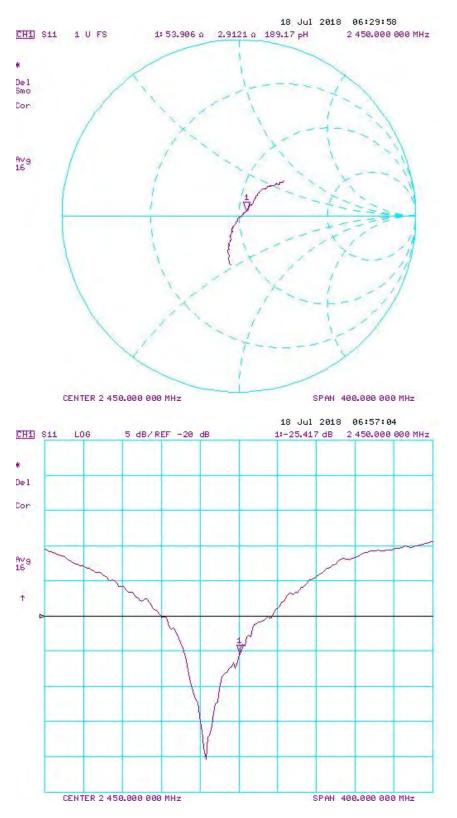
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4438C	ESG Vector Signal Generator	3/24/2017	Biennial	3/24/2019	MY42082385
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	ML2495A	Power Meter	11/28/2017	Annual	11/28/2018	1039008
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	1368
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/9/2017	Annual	8/9/2018	1323
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/12/2017	Annual	9/12/2018	1091
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3319
SPEAG	ES3DV3	SAR Probe	8/14/2017	Annual	8/14/2018	3332

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

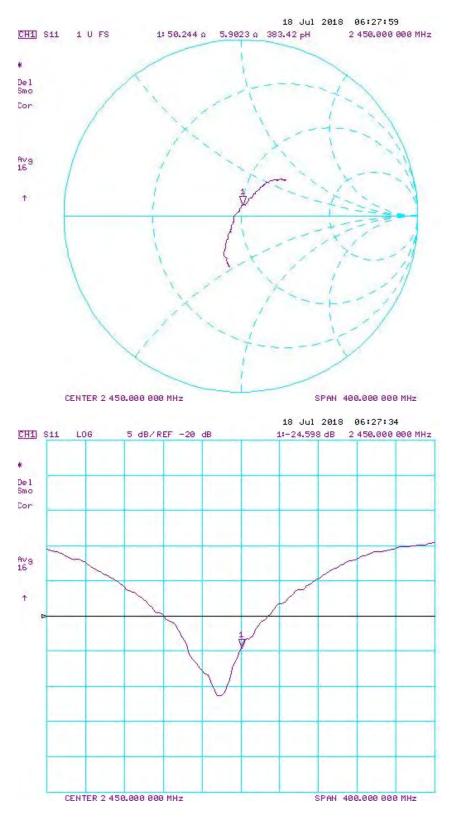
Object:	Date Issued:	Dogo 1 of 1
D2450V2 – SN: 719	07/18/2018	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	dBm	(%)	W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
8/17/2017	7/18/2018	1.150	5.19	5.46	5.20%	2.43	2.51	3.29%	55.7	53.9	1.8	7.0	2.9	4.1	-21.4	-25.4	-18.70%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)		(40-) Million (2)	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
8/17/2017	7/18/2018	1.150	5.01	5.19	3.59%	2.37	2.38	0.42%	51.4	50.2	1.2	8.1	5.9	2.2	-21.8	-24.6	-12.80%	PASS

Object:	Date Issued:	Daga 2 of 4
D2450V2 – SN: 719	07/18/2018	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dogo 2 of 4
D2450V2 – SN: 719	07/18/2018	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 – SN: 719	07/18/2018	Page 4 of 4

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration	Extension Date	Cartificate Electrical Delay (mi)	Conficants (IAR Target Head (10) Wileg (0:200 c0m	Measured Head SAR (1g) W/hg (g 20.0 dBm	Deviation 10 (%)	Cartificate BATI Target Head (10p) W/kg (0) 20 0 all/m	Messeurad Head SAR (10g) W/kg @ 20.0 dBm	DeMation 10g (%)	Contification (Impetitionice Hered (Centry) Resal	Moanwed Impedience Head (Orm) Fixed	Difference (Chim) Rosel	Certificate Impedance Hand (Chm) Imeghany	Measured Impedance Head (Orim) Imspinery	Carrierances (Charr) Inneginery	Cientification Resturn Lose Heinel (1975)	Minimanid Paturn Low Heled (20)	Densellion (%)	HABSHAL
8/17/2017	7/10/2018	1.150	5 19	5.46	B 20%	2.43	2.01	3.29%	55.7	63.0	1.0	70	20	41	-21.4	25.4	-18.70%	PASS
Cisibration Date	Ibsermon Deta	Certificate Electrical Delay (re)	Centriscete J)AB Target Body (10) W/Ng (5 20.0 dBm	Manual Body SAR (1g) W/kg @ 20.0 cBm	Denellari 10 (%)	Cartificate BAUE Turget Bedy (10g) W/Ng db 20 0 dBm	Aleaaurind Booy GAR (10µ) Why th 20.0 allm	Deveton 100 (%)	Centilicale Impedance Body (Chm) Real	Measured Impodiance Body (Chm) Final	Olforenco (Chim) Heal	Contricate Impedance Body (Chm) Imeginary	Measured Impedance Body (Chm) Imaginary	Citterencer (Onn) Imaginary	Certificator Return Loss Booty (cfl)	Moenumd Return Lose Dody (dfi)	Deviation (%)	PASE/FAIL

Object:	Date Issued:	Page 2 of 4
D2450V2 - SN: 719	07/18/2018	Fage 2 014

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

. .

S

С

S

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D2450V2-797_Sep17

CALIBRATION CERTIFICATE

Object	D2450V2 - SN:79	7	· · ·	
Callbration procedure(s)	QA CAL-05.v9 Calibration procee	dure for dipole validation kits abo	ve 700 MHz 5 C رواوع[20 ا	Ŋ
Calibration date:	September 11, 20)17	We 700 MHz 5CV 10/03/2011 Extended PMV J/20/20	18
This calibration certificate document The measurements and the uncert	nts the traceability to natic ainties with confidence pr	onal standards, which realize the physical un obability are given on the following pages an	Is of measurements (SI).	
All calibrations have been conducted	ed in the closed laboratory	y facility: environment temperature (22 \pm 3)°(C and humidity < 70%.	
Calibration Equipment used (M&TE	E critical for calibration)			
Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18	
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18	
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18	
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18	
Type-N mismatch combination	SN: 5047,2 / 08327	07-Apr-17 (No. 217-02529)	Apr-18	
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18	
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check	
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18	
Power sensor HP 8481A	SN; US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18	
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18	
RF generator R&S SMT-08	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18	
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17	•
	Name	Function	Signature	
Calibrated by:	Michael Weber	Laboratory Technician	Miller	
Approved by:	Katja Pokovic	Technical Manager	blitty	
		· · · · ·	issued: September 11, 2017	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst S

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters;

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the ٠ nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

à

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	18. 18. us ut	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.1 W/kg ± 17.0 % (k≃2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω + 7.4 jΩ
Return Loss	~ 21.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 9.1 jΩ
Return Loss	- 20.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	January 24, 2006	

DASY5 Validation Report for Head TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.86 S/m; ϵ_r = 37.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 113.5 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.28 W/kg Maximum value of SAR (measured) = 21.6 W/kg

0 dB = 21.6 W/kg = 13.34 dBW/kg

Impedance Measurement Plot for Head TSL

'n

.

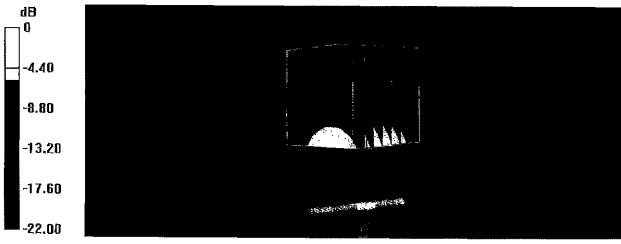
DASY5 Validation Report for Body TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

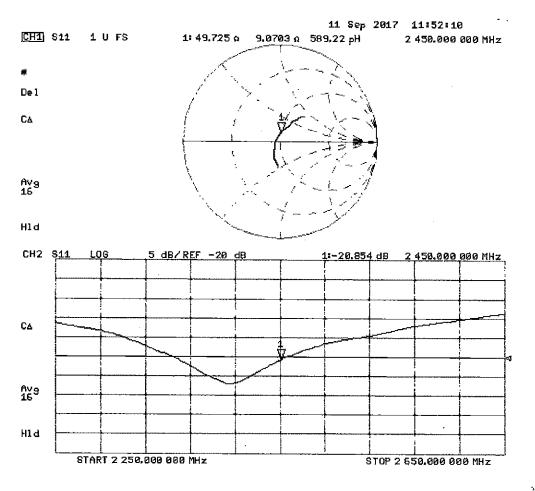
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.04 S/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.4 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 25.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.14 W/kg

Maximum value of SAR (measured) = 20.3 W/kg

 $0 \, dB = 20.3 \, W/kg = 13.07 \, dBW/kg$

Impedance Measurement Plot for Body TSL

ţ,

. PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

PCTEST

D2450V2 - SN: 797

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 11, 2018

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	7720	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Agilent	8753ES	S-Parameter Vector Network Analyzer	8/30/2018	Annuai	8/30/2019	MY40003841
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	СВТ	N/A
SPEAG	DAK-3,5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7410
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2018	Annual	7/11/2019	1322
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3319
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	1368
Anritsu	MA2411B	Puise Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA24118	Puise Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/22/2017	Annuəl	10/22/2018	1328004
Aglient	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	C8T	N/A	CBT	N/A
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	СВТ	N/A

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

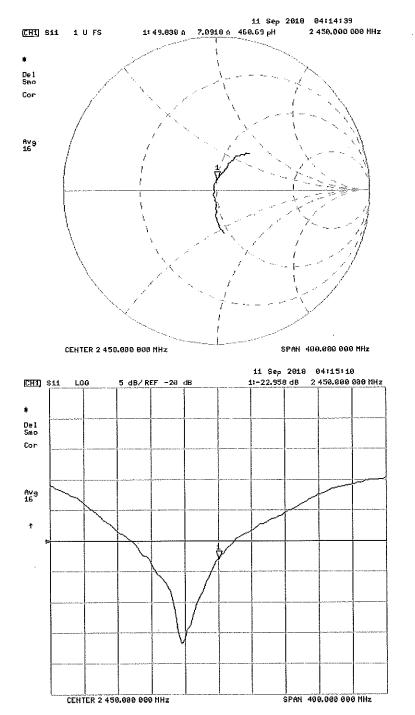
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	3KOK-

Object:	Date Issued:	Page 1 of 4
D2450V2 – SN: 797	09/11/2018	

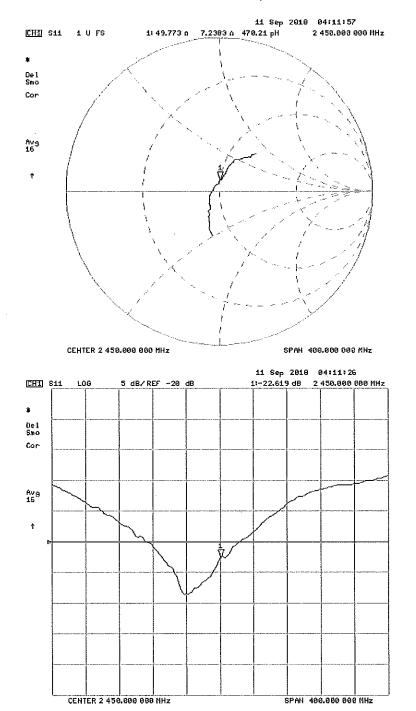
DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20,0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificata SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imeginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Gertificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASSIFAIL
9/11/2017	9/11/2018	1.152	5.27	5.52	4.74%	2.48	2.54	2.42%	53.8	49.8	4	7.4	7.1	0,3	-21.9	-23	-4.80%	PASS


Calibration Date	Extension Date	Fledarden		Measured Body SAR (1g) W/kg @ 20,0 dBm	19/3	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impediance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificata Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/11/2018	1.152	5.11	5.17	1.17%	2.42	2.37	-2.07%	49.7	49.8	0.1	9.1	7.2	1.9	-20,9	-22.6	-8.20%	PASS

Object:	Date Issued:	Dage 2 of 4
D2450V2 – SN: 797	09/11/2018	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D2450V2 SN: 797	09/11/2018	

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 – SN: 797	09/11/2018	

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Qate	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dB/m	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Haad (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/11/2018	1.152	5.27	5.52	4.74%	2.48	2,54	2.42%	53,8	49,8	4	7.4	7,1	0,3	-21.9	-23	-4.80%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificata SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL

Object:	Date Issued:	Dama 2 of 4
D2450V2 - SN: 797	09/11/2018	Page 2 of 4

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D2450V2-981_Aug18

S

CALIBRATION CERTIFICATE

Object	D2450V2 - SN:9	81, 81, 81, 81, 81, 81, 81, 81, 81, 81,	
Calibration procedure(s)	QA CAL-05.v10		
	Calibration proce	edure for dipole validation kits ab	ove 700 MHz
		· · · · · · · · · · · · · · · · · · ·	/
			BNV 19-26/201
	· .		19-26/201
Calibration date:	August 16, 2018	n and an and a second	
This calibration certificate docume The measurements and the uncert	nts the traceability to nat ainties with confidence p	ional standards, which realize the physical ur probability are given on the following pages ar	nits of measurements (SI). nd are part of the certificate.
		ny facility: environment temperature (22 ± 3)°	
Calibration Equipment used (M&TE	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sel The
Approved by:	Katja Pokovic	Technical Manager	Lold -
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	Issued: August 23, 2018

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL ConvF N/A	tissue simulating liquid sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.0 Ω + 2.3 jΩ
Return Loss	- 25.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.2 Ω + 4.7 jΩ
Return Loss	- 26.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 30, 2014	

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom		
Filantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
		TO USAGE WILL COARSDVZ-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.0 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.2 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.0 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.3 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.2 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.74 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	34.7 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	17.5 W/kg ± 16.9 % (k=2)

DASY5 Validation Report for Head TSL

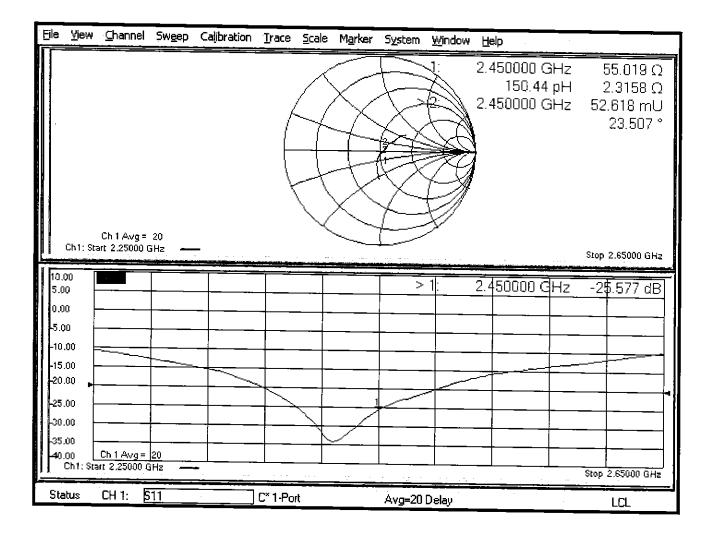
Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.86 S/m; ϵ_r = 37.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 116.6 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 22.1 W/kg

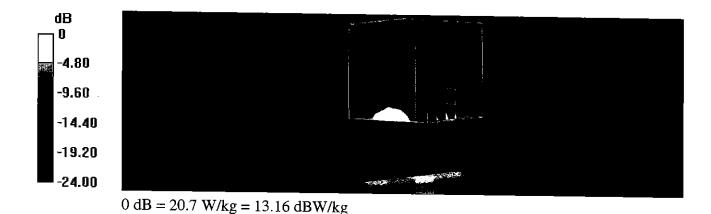
0 dB = 22.1 W/kg = 13.44 dBW/kg

DASY5 Validation Report for Body TSL

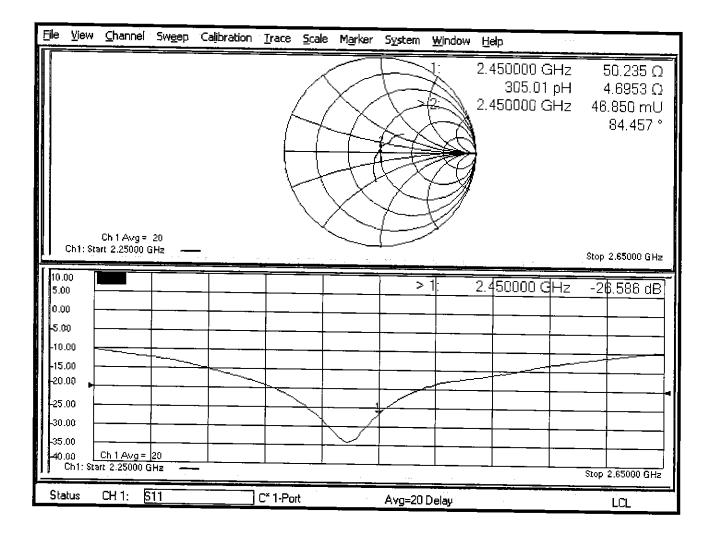
Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.02 S/m; ϵ_r = 51.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.0 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 25.3 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.11 W/kg Maximum value of SAR (measured) = 20.7 W/kg

Impedance Measurement Plot for Body TSL

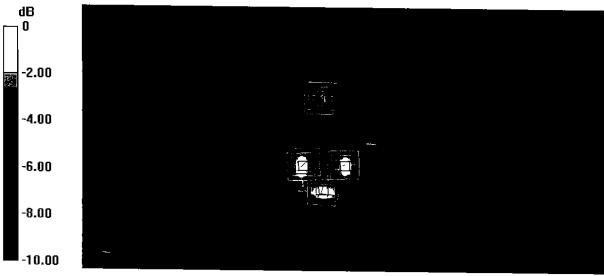
Date: 16.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW ; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\epsilon_r = 40.2$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

SAM Head Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.2 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 26.4 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.33 W/kg Maximum value of SAR (measured) = 22.0 W/kg

SAM Head Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.9 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.3 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.35 W/kg Maximum value of SAR (measured) = 21.7 W/kg

SAM Head Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.0 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 24.1 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.11 W/kg Maximum value of SAR (measured) = 20.5 W/kg

SAM Head Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.03 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 15.8 W/kg SAR(1 g) = 8.74 W/kg; SAR(10 g) = 4.4 W/kg Maximum value of SAR (measured) = 13.5 W/kg

0 dB = 22.0 W/kg = 13.42 dBW/kg

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С

- Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Clie

			b: D2600V2-1004_Apr18
CALIBRATION C	ERTIFICAT:		
Object	D2600V2 - SN:1()04	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abc	ove 700 MHz BN 05-01-201
Calibration date:	April 11, 2018		•
		ional standards, which realize the physical un robability are given on the following pages an	
All calibrations have been conduc	ted in the closed laborato	ry facility: environment temperature (22 \pm 3)°(C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
B			Collocation Official
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power meter EPM-442A Power sensor HP 8481A	SN: GB37480704 SN: US37292783	07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	
Power sensor HP 8481A			In house check: Oct-18
	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18 In house check: Oct-18
Power sensor HP 8481A Power sensor HP 8481A	SN: US37292783 SN: MY41092317	07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: US37292783 SN: MY41092317 SN: 100972	07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17)	In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18

Issued: April 12, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	2.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.9 W/kg ± 17.0 % (k=2)
	F	······································
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	2.19 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		,

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.7 Ω - 5.7 jΩ
Return Loss	- 24.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.0 Ω - 3.8 jΩ
Return Loss	- 24.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	A I I I I I I I I I I
	1.149 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

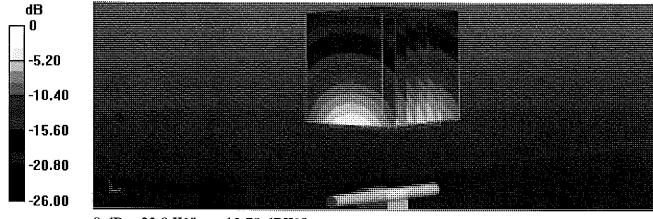
Manufactured by	SPEAG	
Manufactured on	December 23, 2006	

DASY5 Validation Report for Head TSL

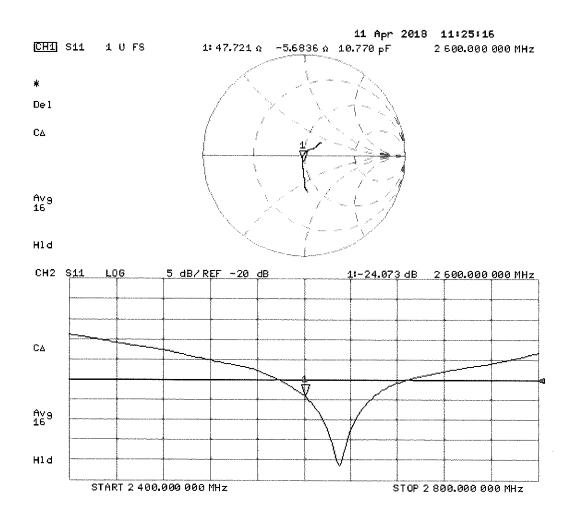
Date: 11.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.7, 7.7, 7.7); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 118.5 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.35 W/kg Maximum value of SAR (measured) = 23.9 W/kg

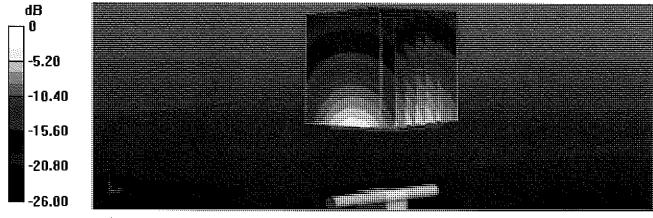
0 dB = 23.9 W/kg = 13.78 dBW/kg

DASY5 Validation Report for Body TSL

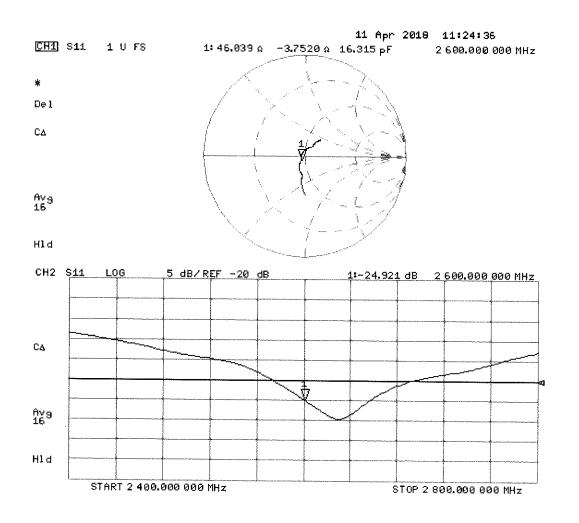
Date: 11.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.19 S/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.81, 7.81, 7.81); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 108.5 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 22.9 W/kg

0 dB = 22.9 W/kg = 13.60 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

S

С

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Cilent

Certificate No: D2600V2-1064_Jun17

CALIBRATION CERTIFICATE

Object

D2600V2 - SN:1064

Calibration procedure(s)

QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

June 07, 2017

815/2017 Extended BN 07/18/201 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-Dec-16 (No. EX3-7349_Dec16)	Dec-17
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Johannes Kurikka	Laboratory Technician	yua un
Approved by:	Katja Pokovic	Technical Manager	Cl 14

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1064_Jun17

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kallbrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	-
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$d\mathbf{x}$, $d\mathbf{y}$, $d\mathbf{z} = 5 \text{ mm}$	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.3 ± 6 %	2.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	57.0 W/kg ± 17.0 % (k=2)
CAD successed over 10 cm ³ (10 s) of Vood TCI	aandilian	

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.46 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.7 ± 6 %	2.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.9 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.4 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.4 Ω - 6.3 jΩ
Return Loss	- 23.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.4 Ω - 4.1 jΩ
Return Loss	- 25.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.151 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

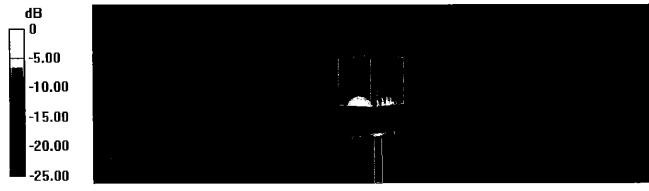
Manufactured by	SPEAG
Manufactured on	August 14, 2012

DASY5 Validation Report for Head TSL

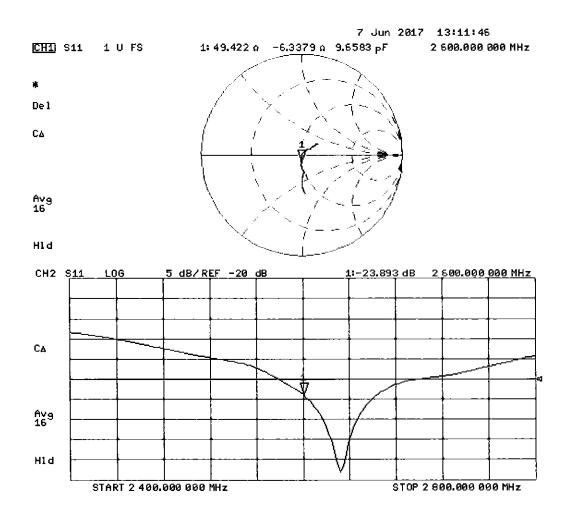
Date: 07.06.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1064


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.02 S/m; ϵ_r = 37.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 115.9 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 14.6 W/kg; SAR(10 g) = 6.46 W/kg Maximum value of SAR (measured) = 24.5 W/kg

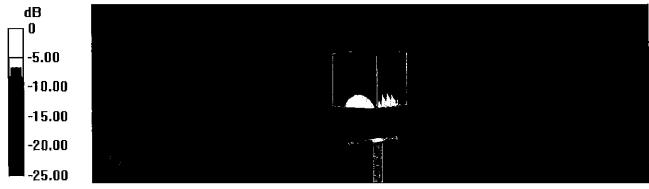
0 dB = 24.5 W/kg = 13.89 dBW/kg

DASY5 Validation Report for Body TSL

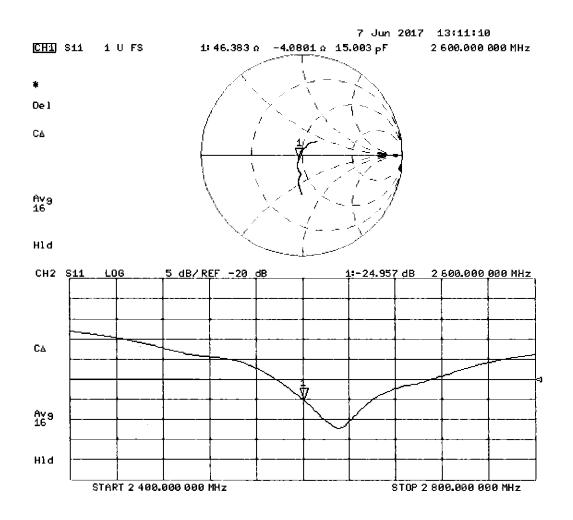
Date: 07.06.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1064


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.94, 7.94, 7.94); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 101.9 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.8 W/kg SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.15 W/kg Maximum value of SAR (measured) = 22.4 W/kg

0 dB = 22.4 W/kg = 13.50 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D2600V2 - SN: 1064

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

06/04/2018

Extended Calibration date:

Description:

SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

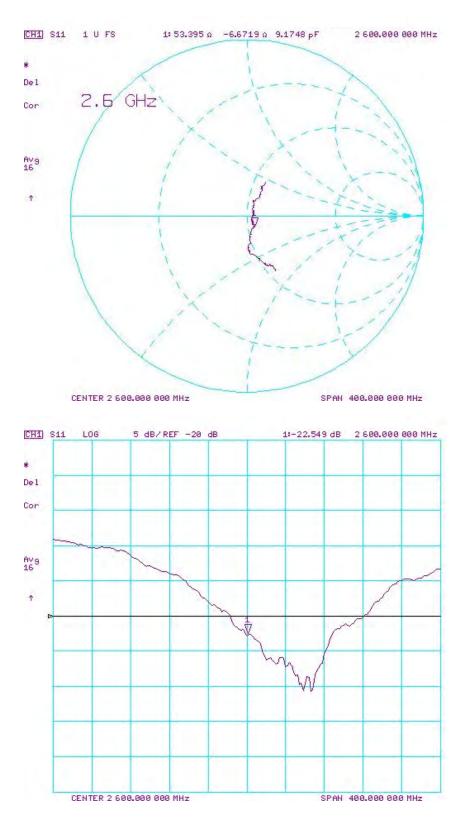
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4438C	ESG Vector Signal Generator	3/24/2017	Biennial	3/24/2019	MY42082385
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	ML2495A	Power Meter	11/28/2017	Annual	11/28/2018	1039008
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/21/2017	Annual	6/21/2018	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	1368
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	7/11/2017	Annual	7/11/2018	1039
SPEAG	ES3DV3	SAR Probe	8/14/2017	Annual	8/14/2018	3332
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3319

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

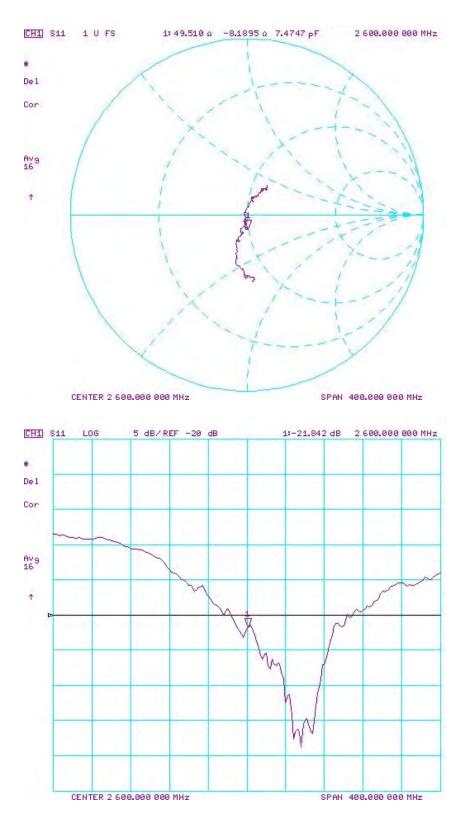
Object:	Date Issued:	Page 1 of 4
D2600V2 – SN: 1064	06/04/2018	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date		Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(%)	Head (10g) W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
6/7/2017	6/4/2018	1.151	5.70	5.71	0.18%	2.55	2.51	-1.57%	49.4	53.4	4.0	-6.3	-6.7	0.4	-23.9	-22.5	5.90%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)		(40-) 14/0- 0	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
6/7/2017	6/4/2018	1.151	5.47	5.65	3.29%	2.44	2.48	1.64%	46.4	49.5	3.1	-4.1	-8.2	4.1	-25.0	-21.8	12.80%	PASS

Object:	Date Issued:	Page 2 of 4
D2600V2 – SN: 1064	06/04/2018	Fage 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dogo 2 of 4
D2600V2 – SN: 1064	06/04/2018	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2600V2 – SN: 1064	06/04/2018	Page 4 of 4

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swise Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Calibration procedure(s) QA CAL Calibration Calibration date: Calibration date: Septemil This callbration certificate documents the traceative measurements and the uncertainties with or All calibrations have been conducted in the close Calibration Equipment used (M&TE critical for or Primary Standards Power meter NRP SN: 10477 Power meter NRP SN: 10477 Power sensor NRP-Z91 SN: 10324 Power sensor NRP-Z91 SN: 10324 Reference 20 dB Attenuator SN: 5058 Type-N mismatch combination SN: 5047. Reference Probe EX3DV4 SN: 7349 DAE4 SN: 6037 Power sensor HP 8481A SN: US37 Power sensor HP 8481A SN: 10097 Power sensor HP 8481A SN: 10327		· ,	ite No: D2600V2-10	
Calibration procedure(s) QA CAL Calibration date: Calibration Calibration date: Septemi This calibration certificate documents the traceer The measurements and the uncertainties with or All calibrations have been conducted in the closer Calibration Equipment used (M&TE critical for or Primary Standards ID # Power meter NRP SN: 10477 Power sensor NRP-Z91 SN: 10324 Power sensor NRP-Z91 SN: 5047. Reference Probe EX3DV4 SN: 5047. Reference Probe EX3DV4 SN: 5047. Power sensor HP 8481A SN: W337 Power sensor HP 8481A SN: W337 Power sensor HP 8481A SN: W337 Power sensor HP 8481A SN: US37 Network Analyze	ICATE		•	,
Calibration Calibration Calibration date: Septemil This calibration certificate documents the traces The measurements and the uncertainties with or All calibrations have been conducted in the closs Calibration Equipment used (M&TE critical for or Primary Standards ID # Power meter NRP SN: 10477 Power sensor NRP-Z91 SN: 10324 Power sensor NRP-Z91 SN: 5058 Type-N mismatch combination SN: 5047. Reference Probe EX3DV4 SN: 601 Secondary Standards ID # Power sensor HP 8481A SN: US37 Power sensor HP 8481A SN: 10097 Power sensor HP 8481A SN: US37 Network Analyzer HP 8753E SN: US37 Name Na	/2 - SN:1071		,	
Calibration date: Septemil This callbration certificate documents the tracear The measurements and the uncertainties with or All callbrations have been conducted in the closs Calibration Equipment used (M&TE critical for or Primary Standards ID # Power meter NRP SN: 10477 Power meter NRP SN: 10324 Power sensor NRP-Z91 SN: 5058 Type-N mismatch combination SN: 5047 Reference Probe EX3DV4 SN: 5047 Power sensor HP 8481A SN: US37 Network Analyzer HP 8753E SN: US37 Name Name </td <td></td> <td></td> <td></td> <td>BNY</td>				BNY
This callbration certificate documents the traceat The measurements and the uncertainties with of All callbrations have been conducted in the closs Calibration Equipment used (M&TE critical for of Primary Standards ID # Power meter NRP SN: 10477 Power sensor NRP-Z91 SN: 10324 Power sensor NRP-Z91 SN: 6058 Type-N mismatch combination SN: 5047. Reference Probe EX3DV4 SN: 7349 DAE4 SN: 601 Secondary Standards ID # Power sensor HP 8481A SN: US37 Power sensor HP 8481A SN: MY41 RF generator R&S SMT-06 SN: 10097 Network Analyzer HP 8753E SN: US37 Name Name		or dipole validation kits	above 700 MHz	09-28-20
This callbration certificate documents the traceative measurements and the uncertainties with of All calibrations have been conducted in the closs Calibration Equipment used (M&TE critical for or primary Standards Calibration Equipment used (M&TE critical for or primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 SN: 10324 Reference 20 dB Attenuator Type-N mismatch combination SN: 601 Secondary Standards ID # Power sensor HP 8481A SN: 6037 Power sensor HP 8481A SN: 1097 Solution SM: 5037 Power sensor HP 8481A SN: 10097 Network Analyzer HP 8753E Name	• .		- 11	0.1
This callbration certificate documents the traceat The measurements and the uncertainties with of All callbrations have been conducted in the closs Calibration Equipment used (M&TE critical for of Primary Standards ID # Power meter NRP SN: 10477 Power sensor NRP-Z91 SN: 10324 Power sensor NRP-Z91 SN: 6058 Type-N mismatch combination SN: 5047. Reference Probe EX3DV4 SN: 7349 DAE4 SN: 601 Secondary Standards ID # Power sensor HP 8481A SN: US37 Power sensor HP 8481A SN: MY41 RF generator R&S SMT-06 SN: 10097 Network Analyzer HP 8753E SN: US37 Name Name		• •	Fixtended	
The measurements and the uncertainties with c All calibrations have been conducted in the closs Calibration Equipment used (M&TE critical for c Primary Standards ID # Power meter NRP SN: 10477 Power meter NRP SN: 10324 Power sensor NRP-Z91 SN: 5058 Type-N mismatch combination SN: 5047, Reference Probe EX3DV4 SN: 601 Secondary Standards ID # Power sensor HP 8481A SN: US37 Power sensor HP 8481A SN: MY41 RF generator R&S SMT-06 SN: US37 Network Analyzer HP 8753E SN: US37 Name Name	ber 13, 2016	· · · · ·	above 700 MHz Extended	9/20/20
All calibrations have been conducted in the close Calibration Equipment used (M&TE critical for			al units of measurements	(SI).
Calibration Equipment used (M&TE critical for or primary Standards ID # Power meter NRP SN: 10477 Power sensor NRP-Z91 SN: 10324 Power sensor NRP-Z91 SN: 5058 Type-N mismatch combination SN: 5047. Reference Probe EX3DV4 SN: 7349 DAE4 SN: 601 Secondary Standards ID # Power meter EPM-442A SN: GB37 Power sensor HP 8481A SN: WY41 RF generator R&S SMT-06 SN: 10097 Network Analyzer HP 8753E SN: US37				
Primary StandardsID #Power meter NRPSN: 10477Power sensor NRP-Z91SN: 10324Power sensor NRP-Z91SN: 10324Power sensor NRP-Z91SN: 10324Reference 20 dB AttenuatorSN: 5058Type-N mismatch combinationSN: 5047.Reference Probe EX3DV4SN: 7349DAE4SN: 601Secondary StandardsID #Power meter EPM-442ASN: G837Power sensor HP 8481ASN: WY41Power sensor HP 8481ASN: 10097Ref generator R&S SMT-06SN: 10097Network Analyzer HP 8753ESN: US37NameName	sed laboratory facility	r: environment temperature (22	± 3)°C and humidity < 70%	6.
Power meter NRPSN: 10477Power sensor NRP-Z91SN: 10324Power sensor NRP-Z91SN: 10324Power sensor NRP-Z91SN: 10324Reference 20 dB AttenuatorSN: 5058Type-N mismatch combinationSN: 5047.Reference Probe EX3DV4SN: 7349DAE4SN: 601Secondary StandardsID #Power sensor HP 8481ASN: US37Power sensor HP 8481ASN: MY41RF generator R&S SMT-06SN: 10097Network Analyzer HP 8753ESN: US37	calibration)			
Power sensor NRP-Z91 SN: 10324 Power sensor NRP-Z91 SN: 10324 Reference 20 dB Attenuator SN: 5058 Type-N mismatch combination SN: 5047, Reference Probe EX3DV4 SN: 601 DAE4 SN: 601 Secondary Standards ID # Power sensor HP 8481A SN: US37 Power sensor HP 8481A SN: 10095 RF generator R&S SMT-06 SN: US37 Network Analyzer HP 8753E SN: US37	Cal D	ate (Certificate No.)	Scheduled Ca	alibration
Power sensor NRP-Z91 SN: 10324 Reference 20 dB Attenuator SN: 5058 Type-N mismatch combination SN: 5047. Reference Probe EX3DV4 SN: 7349 DAE4 SN: 601 Secondary Standards ID # Power meter EPM-442A SN: G837 Power sensor HP 8481A SN: US37 Power sensor HP 8481A SN: 10097 RF generator R&S SMT-06 SN: US37 Network Analyzer HP 8753E SN: US37	78 06-Aj	or-16 (No. 217-02288/02289)	Apr-17	
Reference 20 dB Attenuator SN: 5058 Type-N mismatch combination SN: 5047. Reference Probe EX3DV4 SN: 7349 DAE4 SN: 601 Secondary Standards ID # Power meter EPM-442A SN: GB37 Power sensor HP 8481A SN: US37 Power sensor HP 8481A SN: MY41 RF generator R&S SMT-06 SN: 10097 Network Analyzer HP 8753E SN: US37	44 06-Ar	pr-16 (No, 217-02288)	Apr-17	
Type-N mismatch combinationSN: 5047.Reference Probe EX3DV4SN: 7349DAE4SN: 601Secondary Standards1D #Power meter EPM-442ASN: GB37Power sensor HP 8481ASN: US37Power sensor HP 8481ASN: MY41RF generator R&S SMT-06SN: US37Network Analyzer HP 8753ESN: US37Name	45 06-Ar	pr-16 (No. 217-02289)	Apr-17	
Reference Probe EX3DV4 SN: 7349 DAE4 SN: 601 Secondary Standards 1D # Power meter EPM-442A SN: GB37 Power sensor HP 8481A SN: US37 Power sensor HP 8481A SN: MY41 RF generator R&S SMT-06 SN: 10097 Network Analyzer HP 8753E SN: US37 Name Name	(20k) 05-Ar	or-16 (No. 217-02292)	Apr-17	
DAE4 SN: 601 Secondary Standards ID # Power meter EPM-442A SN; GB37 Power sensor HP 8481A SN: US37 Power sensor HP 8481A SN: MY41 RF generator R&S SMT-06 SN: 10097 Network Analyzer HP 8753E SN: US37 Name	.2/06327 05-Aj	or-16 (No. 217-02295)	Apr-17	
Secondary Standards ID # Power meter EPM-442A SN; GB37 Power sensor HP 8481A SN: US37 Power sensor HP 8481A SN: MY41 RF generator R&S SMT-06 SN: 10097 Network Analyzer HP 8753E SN: US37 Name		n-16 (No. EX3-7349_Jun16)	Jun-17	
Power meter EPM-442A SN: GB37 Power sensor HP 8481A SN: US37 Power sensor HP 8481A SN: MY41 RF generator R&S SMT-06 SN: 10097 Network Analyzer HP 8753E SN: US37 Name		ec-15 (No. DAE4-601_Dec15)	Dec-16	
Power meter EPM-442A SN: GB37 Power sensor HP 8481A SN: US37 Power sensor HP 8481A SN: MY41 RF generator R&S SMT-06 SN: 10097 Network Analyzer HP 8753E SN: US37 Name	Chec	k Date (in house)	Scheduled Cl	heck
Power sensor HP 8481A SN: US37 Power sensor HP 8481A SN: WY41 RF generator R&S SMT-06 SN: 10097 Network Analyzer HP 8753E SN: US37 Name		ct-15 (No. 217-02222)	In house che	
Power sensor HP 8461A SN: MY41 RF generator R&S SMT-06 SN: 10097 Network Analyzer HP 8753E SN: US37 Name		ct-15 (No. 217-02222)	In house che	
RF generator R&S SMT-06 SN: 10097 Network Analyzer HP 8753E SN: US37 Name		ct-15 (No. 217-02223)	In house che	
Network Analyzer HP 8753E SN: US37		n-15 (in house check Jun-15)	In house che	
	-	ct-01 (in house check Oct-15)	In house che	
		Function	Sionature a	
	(rali	Laboratory Technician	Jall	N.
Approved by: Kalja Poko	ovic .	Technical Manager	Ru	4
•			Issued: Sente	mber 13, 2016

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Sohweizerischer Kalibrierdienst

Service suisse d'étaionnage

C Servizio svizzero di taratura

S Swiss Callbration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.3±6%	2.05 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		17 16 ja ma

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity		
Nominal Body TSL parameters	22.0 °C	52.5	2,16 mho/m		
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.1 ±6 %	2.22 mho/m ± 6 %		
Body TSL temperature change during test	< 0.5 °C	- 16 56-99-99			

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW Input power	13,8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	· · · · · · · · · · · · · · · · · · ·
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.9 Ω - 6.7 jΩ
Return Loss	- 23.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.1 Ω - 2.1 jΩ
Return Loss	- 26.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns
	1

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 17, 2013

DASY5 Validation Report for Head TSL

Date: 13.09.2016

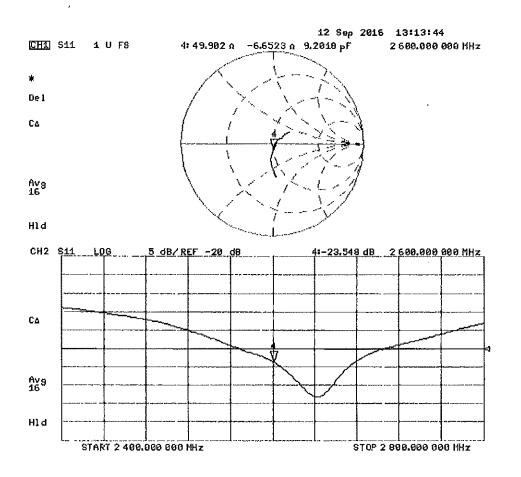
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1071

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.05$ S/m; $\varepsilon_r = 37.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.56, 7.56, 7.56); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 115.1 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.45 W/kg Maximum value of SAR (measured) = 24.6 W/kg

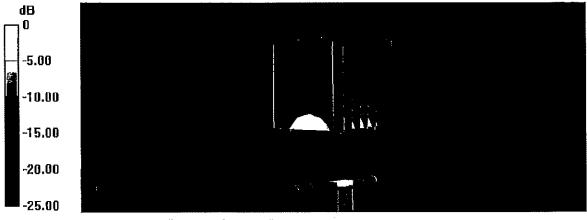
0 dB = 24.6 W/kg = 13.91 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

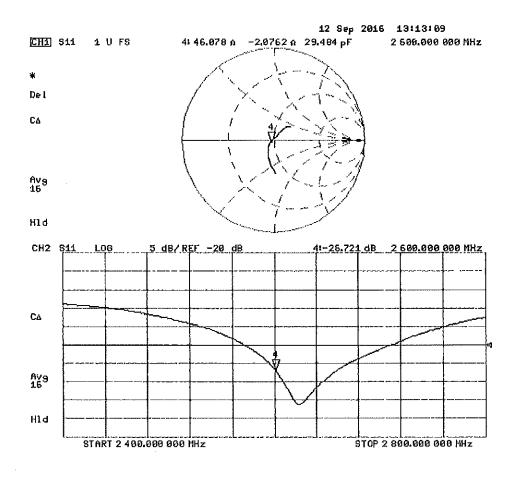
Date: 13.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1071

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\varepsilon_r = 51.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.48, 7.48, 7.48); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.7 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 23.3 W/kg

0 dB = 23.3 W/kg = 13.67 dBW/kg

۰.

 PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

D2600V2 – SN: 1071

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Calibration date: 09/07/2017

Description:

SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	7720	Dual Directional Coupler	СВТ	N/A	CBT	MY52180215
Keysight Technologies 85033E Standa		Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Agilent	8753ES	S-Parameter Network Analyzer	10/26/2016	Annual	10/26/2017	US39170118
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/13/2017	Annuai	7/13/2018	1322
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2017	Annual	5/10/2018	1070
SPEAG	EX3DV4	4 SAR Probe		Annual	7/17/2018	7410
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
Anritsu	MA24118	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1339018
Anritsu	Anritsu ML2495A Power Meter		10/16/2015	Biennial	10/16/2017	941001
Agilent	N51.82A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
Seekonk	NC-100	Torque Wrench	11/6/2015	Biennial	11/6/2017	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	ĊBŢ	N/A	СВТ	N/A

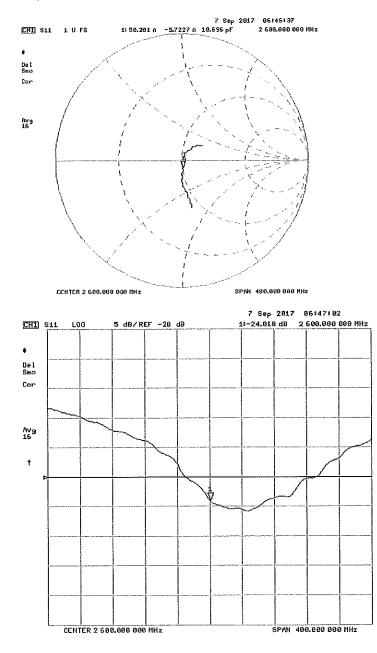
Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BROPTE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	NOK-

Object:	Date Issued:	Page 1 of 4
D2600V2 SN: 1071	09/07/2017	

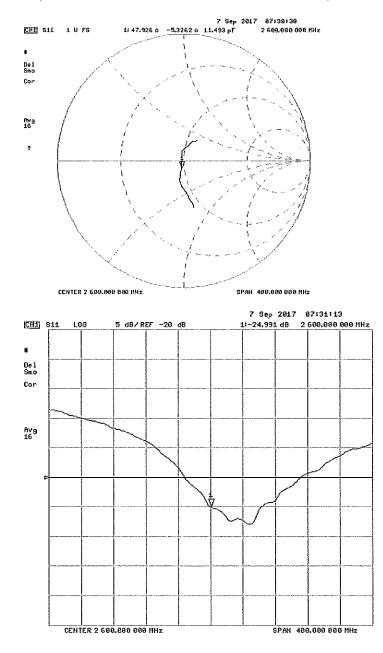
DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	dBm	(%)	w/кg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
9/13/2016	9/7/2017	1.153	5.63	5.73	1.78%	2.53	2.52	-0.40%	49.9	50.3	0.4	-6.7	-5.7	1.0	-23.5	-24.0	-2.10%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(40-) 10/2- @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
9/13/2016	9/7/2017	1.153	5.42	5.34	-1.48%	2.45	2.33	-4.90%	46.1	47.9	1.8	-2.1	-5.3	3.2	-26.7	-25.0	6.40%	PASS


Object:	Date Issued:	Dogo 2 of 4
D2600V2 – SN: 1071	09/07/2017	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

۰,

Object:	Date Issued:	Page 3 of 4
D2600V2 - SN: 1071	09/07/2017	

Impedance & Return-Loss Measurement Plot for Body TSL

..**.**.

مر .

Object:	Date Issued:	Dogo 4 of 4
D2600V2 - SN: 1071	09/07/2017	Page 4 of 4

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel, +1,410,290,6652 / Fax +1,410,290,6654 http://www.pctest.com

Certification of Calibration

Object

D2600V2 - SN: 1071

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Calibration date: 09/11/2018

Description:

SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennlal	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	СВТ	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9405
Keysight	7720	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	B5033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Agilent	8753ES	S-Parameter Vector Network Analyzer	8/30/2018	Annual	8/30/2019	MY40003841
Mini-Circuits	8W-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7410
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2018	Annual	7/11/2019	1322
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3319
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	1368
Anritsu	MA24118	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	1328004
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	СВТ	N/A	CBT	N/A

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

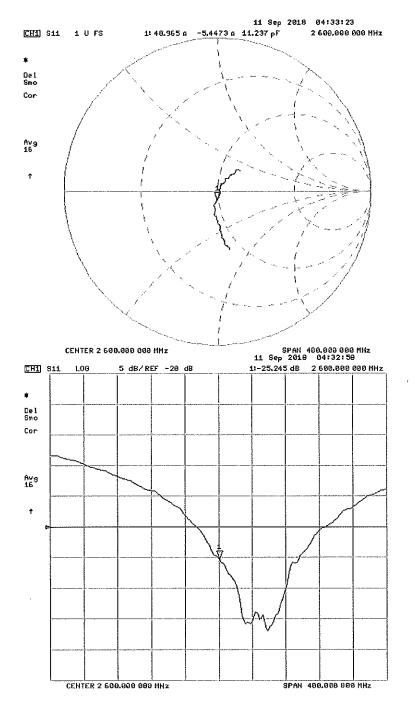
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	3XOK

 Object:
 Date Issued:
 Page 1 of 4

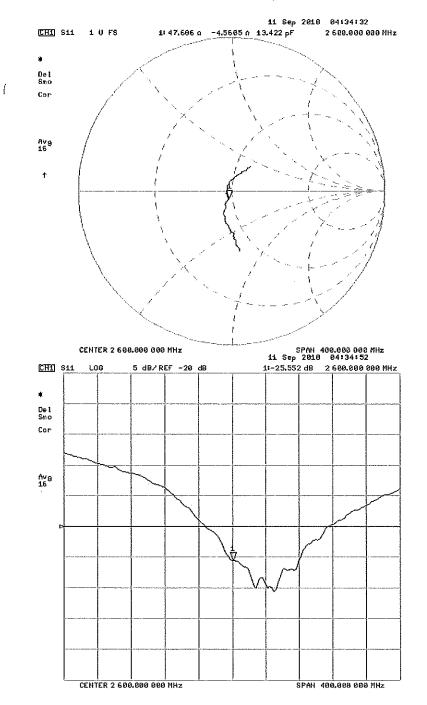
 D2600V2 - SN: 1071
 09/11/2018
 Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(04)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Head SAR	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/13/2016	9/11/2018	1.153	5.63	5.52	-1.95%	2.53	2.47	-2.37%	49.9	49	0.9	-6.7	-5.4	1.3	-23.5	-25.2	-7.40%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/.)		(10a) W/ka	Deviation 10g (%)		Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
9/13/2016	9/11/2018	1.153	5.42	5.57	2.77%	2.45	2.46	0.41%	46.1	47.7	1.6	-2.1	-4.6	2.5	-26.7	-25.6	4.30%	PASS

Object:	Date Issued:	Dogo 2 of 4
D2600V2 – SN: 1071	09/11/2018	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D2600V2 SN: 1071	09/11/2018	

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2600V2 - SN: 1071	09/11/2018	Page 4 of 4

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D3700V2-1002	Sen	18
	P	· • • •

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

PC Test

Client

Object	D3700V2 - SN:10	002	felias (filada an baile an air an a
Calibration procedure(s)	QA CAL-22.v3 Calibration proce	dure for dipole validation kits b	etween 3-6 GHz 5C م/21/2014
Calibration date:	September 13, 2	018	nanalyn man a anton a'r man y yr yw yn
		ional standards, which realize the physical robability are given on the following pages	
All calibrations have been conducte	ed in the closed laborator	ry facility: environment temperature (22 \pm :	3)°C and humidity < 70%.
Calibration Equipment used (M&TE	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	ail
			VES
Approved by:	Katja Pokovic	Technical Manager	flelt
This calibration certificate shall not	be reproduced except in	full without written approval of the laborat	Issued: September 14, 2018 orv.

Calibration Laboratory of

Cloceany

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Giossaiy.	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3700 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.7	3.12 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.4 ± 6 %	3.06 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.77 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	67.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.46 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.6 W/kg ± 19.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	51.0	3.55 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.5 ± 6 %	3.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	· · · · · · · · · · · · · · · · · · ·
SAR measured	100 mW input power	6.52 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	65.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.9 Ω - 8.1 jΩ
Return Loss	- 21.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.3 Ω - 5.9 jΩ
Return Loss	- 24.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.134 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

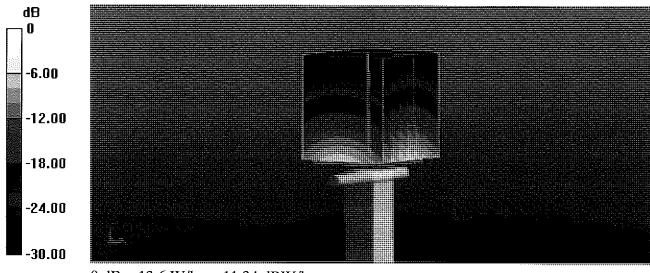
Manufactured by	SPEAG
Manufactured on	August 26, 2002

DASY5 Validation Report for Head TSL

Date: 13.09.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1002


Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.06$ S/m; $\varepsilon_r = 37.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.5, 7.5, 7.5) @ 3700 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm

(8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mmReference Value = 70.67 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 19.7 W/kg SAR(1 g) = 6.77 W/kg; SAR(10 g) = 2.46 W/kg Maximum value of SAR (measured) = 13.6 W/kg

Impedance Measurement Plot for Head TSL

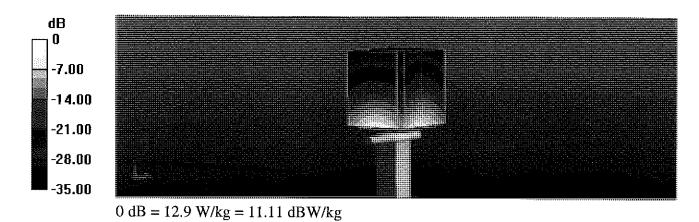
<u>File View Channel Sv</u>	veep Calibration	<u>Trace</u> <u>S</u> cale M <u>a</u> rker	System <u>W</u> indow	<u>H</u> elp	
				3.700000 GHz 5.3141 pF 3.700000 GHz	48.853 Ω -8.0945 Ω 82.427 mU -93.386 °
Ch 1 Avg = 20 Ch 1: Start 3.50000 GHz		·····			Stop 3.90000 GHz
10.00 5.00 0.00 -5.00 -10.00 -15.00 -25.00 -25.00 -30.00 -35.00 -40.00 Ch 1 Awg = 20 Ch 1: Start 3.50000 GHz			> 1:	3.700000 GHz	-2).679 dB

DASY5 Validation Report for Body TSL

Date: 12.09.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1002


Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.5$ S/m; $\varepsilon_r = 49.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.28, 7.28, 7.28) @ 3700 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm/Zoom Scan , dist=1.4mm

(8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.34 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 6.52 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 12.9 W/kg

Impedance Measurement Plot for Body TSL

	1: 3.700000 G 7.3012 3.700000 G	pF -5.8914 Ω
Ch 1 Avg = 20 Ch 1: Start 3,50000 GHz		Stop 3,90000 GHz
10.00 10.01 5.00 0.00 -5.00	> 1: 3.700000 G	Hz -24.101 dB

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: D5GHzV2-1057_Jan18

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:1	057	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits be	etween 3-6 GHz
			BN
Calibration date:	January 16, 2018	}	BN 01-25-2018
		onal standards, which realize the physical (robability are given on the following pages a	
All calibrations have been conduct	ted in the closed laborator	y facility: environment lemperature (22 ± 3))°C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Atlenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
	1		
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Techniclan	Stillyn
Approved by:	Katja Pokovic	Technical Manager	66165
			Issued: January 18, 2018
This calibration certificate shall no	n pe reproduced except ll	n full without written approval of the laborate	лу,

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service sulsse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.55 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	4.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.06 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	5.41 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.36 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.64 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.6 ± 6 %	5.94 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.9 W/kg ± 19.9 % (k=2)
	1	

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	6.15 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.72 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	50.0 Ω - 5.5 jΩ
Return Loss	- 25.2 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.7 Ω - 2.1 jΩ
Return Loss	- 26.2 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	52.7 Ω + 0.0 jΩ
Return Loss	- 31.5 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.3 Ω - 6.7 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	48.4 Ω - 3.9 jΩ
Return Loss	- 27.4 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	55.3 Ω - 1.6 jΩ
Return Loss	- 25.6 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	52.6 Ω + 1.1 jΩ
Return Loss	- 31.2 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	51.8 Ω - 0.4 jΩ
Return Loss	- 34.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.203 ns	Electrical Delay (one direction)	1.203 ns
---	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 27, 2006

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions (f=5200 MHz)

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.6 W/kg ± 20.3 % (k=2)
CAD successed over 10 cm ³ (10 s) of Head TCI	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.35 W/kg

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.6 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.6 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	5.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.7 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	1.76 W/kg

Measurement Conditions (f=5800 MHz)

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
---------	------------------	-----------------------------

SAR result with SAM Head (Top)

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.62 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	86.3 W/kg ± 20.3 % (k=2)
SAR averaged over 10 $ m cm^3$ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	88.9 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.4 W/kg ± 20.3 % (k=2)
SAB averaged over 10 cm ³ (10 g) of Head TSI	condition	

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	5.68 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.8 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	1.89 W/kg

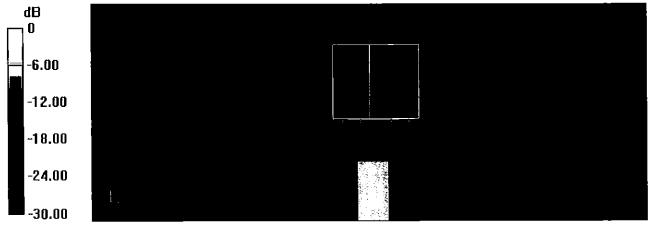
DASY5 Validation Report for Head TSL

Date: 11.01.2018

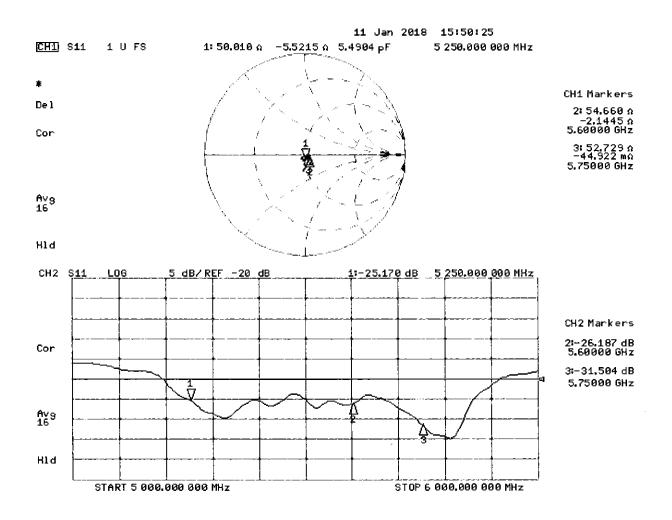
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.55$ S/m; $\varepsilon_r = 36.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.9$ S/m; $\varepsilon_r = 35.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.06$ S/m; $\varepsilon_r = 35.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2017, ConvF(5.05, 5.05, 5.05); Calibrated: 30.12.2017, ConvF(4.98, 4.98, 4.98); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 modified; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.54 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.77 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 8.41 W/kg; SAR(10 g) = 2.4 W/kg Maximum value of SAR (measured) = 19.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.93 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

DASY5 Validation Report for Body TSL

Date: 10.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

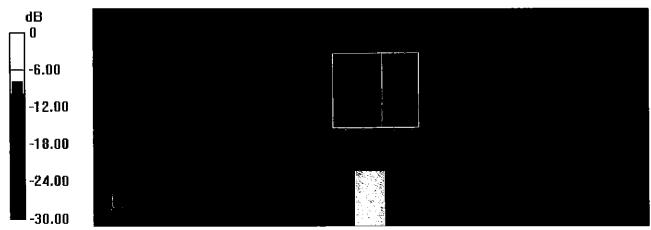
Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.41$ S/m; $\varepsilon_r = 47.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5250 MHz; $\sigma = 5.48$ S/m; $\varepsilon_r = 47.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.94$ S/m; $\varepsilon_r = 46.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.15$ S/m; $\varepsilon_r = 46.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.22$ S/m; $\varepsilon_r = 46.2$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.22$ S/m; $\varepsilon_r = 46.2$; $\rho = 1000$ kg/m³

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.35, 5.35, 5.35); Calibrated: 30.12.2017, ConvF(5.26, 5.26, 5.26); Calibrated: 30.12.2017, ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2017, ConvF(4.57, 4.57, 4.57); Calibrated: 30.12.2017, ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

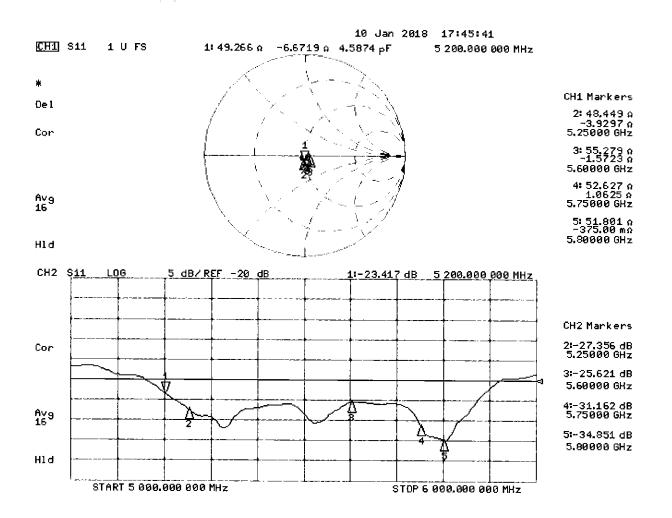
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.05 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.06 W/kg Maximum value of SAR (measured) = 17.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.53 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 7.64 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 17.9 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.09 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 34.0 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.45 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.14 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.13 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

Impedance Measurement Plot for Body TSL

DASY5 Validation Report for SAM Head

Date: 16.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.59$ S/m; $\epsilon r = 36.5$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5800 MHz; $\sigma = 5.28$ S/m; $\epsilon r = 35.4$; $\rho = 1000$ kg/m3 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.75, 5.75, 5.75); Calibrated: 30.12.2017, ConvF(4.96, 4.96, 4.96); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

SAM Head/Top - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

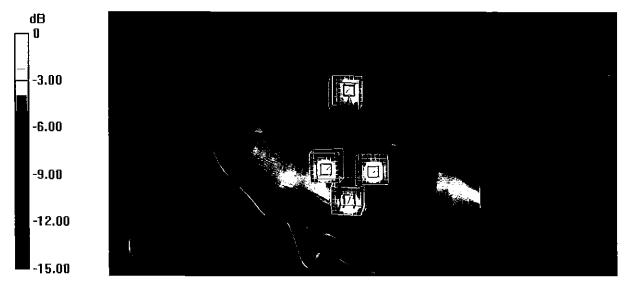
dz=1.4mm Reference Value = 72.99 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (measured) = 19.7 W/kg

SAM Head/Top - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mmReference Value = 73.00 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 36.5 W/kg SAR(1 g) = 8.62 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 21.9 W/kg

SAM Head/Mouth - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.79 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 8.54 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 20.7 W/kg SAM Head/Mouth - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.69 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 34.9 W/kg

SAR(1 g) = 8.88 W/kg; SAR(10 g) = 2.44 W/kgMaximum value of SAR (measured) = 23.0 W/kg

SAM Head/Neck - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=1.4mm Reference Value = 72.48 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 19.3 W/kg

SAM Head/Neck - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.90 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 33.4 W/kgSAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.35 W/kgMaximum value of SAR (measured) = 21.8 W/kg

SAM Head/Ear - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.68 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 16.3 W/kg SAR(1 g) = 5.16 W/kg; SAR(10 g) = 1.76 W/kg Maximum value of SAR (measured) = 11.1 W/kg

SAM Head/Ear - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.96 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 21.2 W/kg SAR(1 g) = 5.68 W/kg; SAR(10 g) = 1.89 W/kg Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
 Service sulsse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the eignatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D5GHzV2-1191_Sep16

Dbject	D5GHzV2 - SN:1		1
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits bet	BN 7 ween 3-6 GHz 09-28-201
			Extended PMV
Calibration date:	September 21, 2	016	9/20/20
	•	onal standards, which realize the physical un robability are given on the following pages an	
All calibrations have been conduc	cted in the closed laborato	ry facility: environment temperature (22 ± 3)%	C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
	1		
rimary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
	ID # SN: 104778	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289)	Scheduled Calibration Apr-17
Power meter NRP			
Power meter NRP Power sensor NRP-Z91	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Арг-17
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244	06-Apr-16 (No. 217-02288/02289) 08-Apr-16 (No. 217-02288)	Apr-17 Apr-17
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245	06-Apr-16 (No. 217-02288/02289) 08-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289)	Apr-17 Apr-17 Apr-17
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mIsmatch combination	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	06-Apr-16 (No. 217-02288/02289) 08-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289)	Арг-17 Арг-17 Арг-17 Арг-17
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mIsmatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	06-Apr-16 (No. 217-02288/02289) 08-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295)	Арг-17 Арг-17 Арг-17 Арг-17 Арг-17
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mIsmatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mIsmatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601	06-Apr-16 (No. 217-02288/02289) 08-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mIsmatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601	06-Apr-16 (No. 217-02288/02289) 08-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704	06-Apr-16 (No. 217-02288/02289) 08-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222)	Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-18 Scheduled Check In house check: Oct-16
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783	06-Apr-16 (No. 217-02288/02289) 08-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222)	Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	06-Apr-16 (No. 217-02288/02289) 08-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: US37292783 SN: MY41092317 SN: 100972	06-Apr-16 (No. 217-02288/02289) 08-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15)	Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mIsmatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Callbrated by:	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Iac-MRA

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swisa Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

- 12

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22,0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	4.59 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		60 40 50 400

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	

.

Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5,07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8,45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.6 W / kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) ℃	33.8 ± 6 %	5.08 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	44 <i>774</i> 4	

SAR result with Head TSL at 5750 MHz

SAR for nominal Head TSL parameters

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 W/kg

normalized to 1W

22.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

(

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.4 ± 6 %	5,52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

Ę

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW Input power	7.74 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.0 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
CAR averaged over 10 cm (10 g) of body 102		2 17 W/ka

SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	6.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	10.54 47 14	اب در بر اط

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

Ĺ

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.5 ± 6 %	6.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	4575	

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition		
SAR measured	100 mW input power	7.65 W/kg	
SAR for nominal Body TSL parameters	normalized to 1W	76.1 W/kg ± 19.9 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition		
SAR measured	100 mW input power	2,14 W/kg	

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	55.7 Ω - 4.3 jΩ	
Return Loss	- 23.4 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	58.3 Ω - 3.2 jΩ
Return Loss	- 21.8 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	58.1 Ω + 4.8 jΩ
Return Loss	- 21.2 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	56.1 Ω - 3.7 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	58.9 Ω - 1.7]Ω
Return Loss	- 21.7 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	59.5 Ω + 6.9 jΩ
Return Loss	- 19.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.204 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 28, 2003

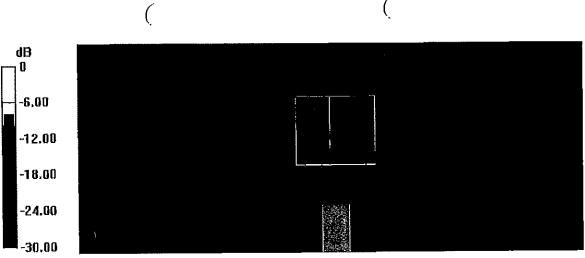
DASY5 Validation Report for Head TSL

Date: 21,09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.59$ S/m; $\varepsilon_r = 34.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.93$ S/m; $\varepsilon_r = 34$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.08$ S/m; $\varepsilon_r = 33.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

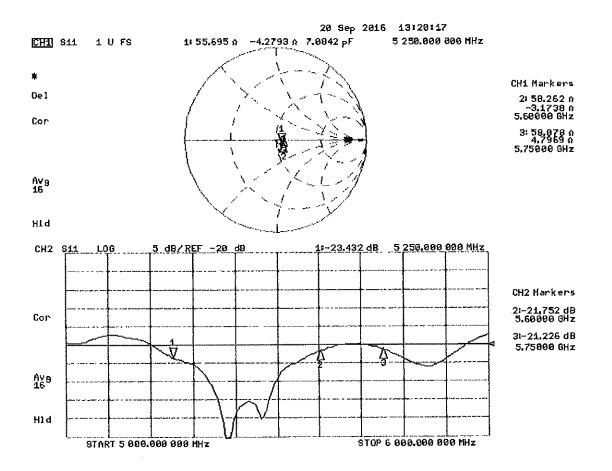

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.42, 5.42, 5.42); Calibrated: 30.06.2016, ConvF(4.89, 4.89, 4.89); Calibrated: 30.06.2016, ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.49 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.34 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 20.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.15 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 19.3 W/kg



(

0 dB = 18.2 W/kg = 12.60 dBW/kg

Impedance Measurement Plot for Head TSL

(

(

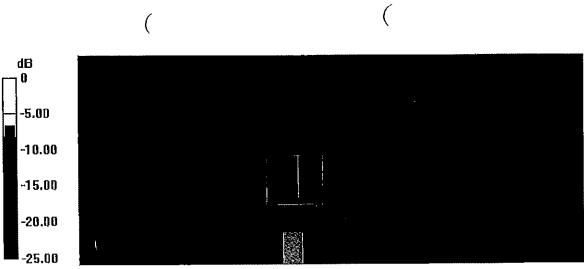
DASY5 Validation Report for Body TSL

Date: 20.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

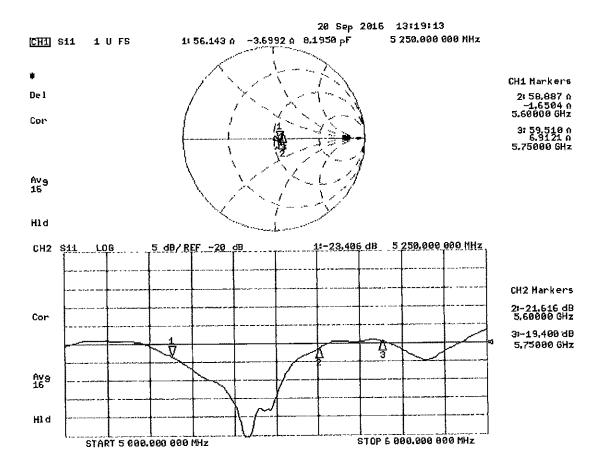
Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.52$ S/m; $\varepsilon_r = 47.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 6$ S/m; $\varepsilon_r = 46.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.21$ S/m; $\varepsilon_r = 46.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016, ConvF(4.35, 4.35, 4.35); Calibrated: 30.06.2016, ConvF(4.3, 4.3, 4.3); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.49 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.85 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 18.8 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.21 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.5 W/kg

0 dB = 17.7 W/kg = 12.48 dBW/kg

Impedance Measurement Plot for Body TSL

(

(

 PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

D5GHzV2 – SN: 1191

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 9/19/2017

Description:

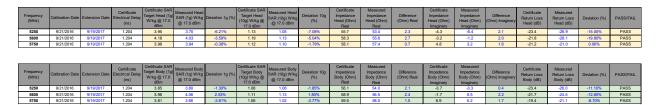
SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

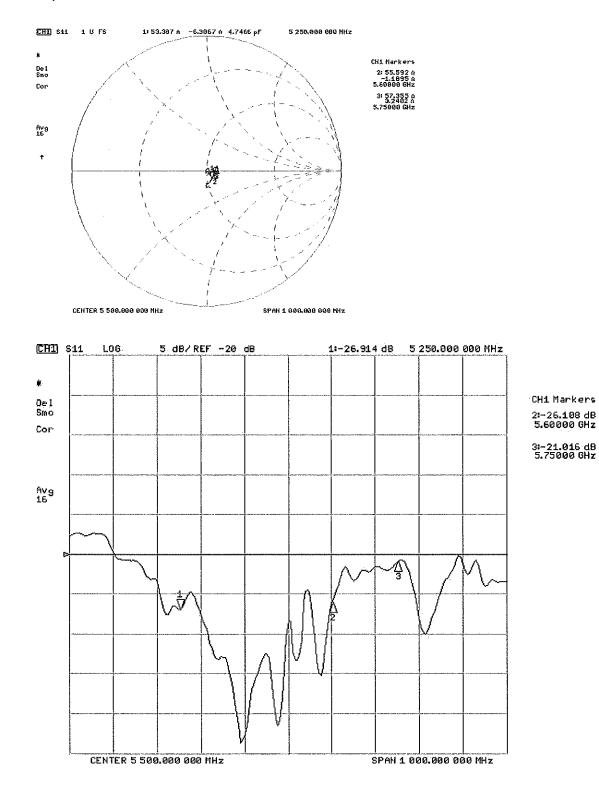
Manufacturer	facturer Model Description				Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3d8)	CBT	N/A	CBT	9406
Keysight	7720	Dual Directional Coupler	CBT	N/A	CBT	MY52180215 /
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Agilent	8753ES	S-Parameter Network Analyzer	10/26/2016	Annual	10/26/2017	US39170118
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	C8T	N/A	CBT	N/A
SPEAG	DAK-3.S	Dielectric Assessment Kit	5/10/2017	Annual	5/10/2018	1070
SPEAG	EX3DV4	SAR Probe	1/13/2017	Annual	1/13/2018	3589
SPEAG	EX3DV4	SAR Probe	2/13/2017	Annual	2/13/2018	3914
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/16/2017	Annual	1/16/2018	1466
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2017	Annual	2/9/2018	665
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1339018
Anritsu	MI.2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Agilent	N5182A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
Seekonk	NC-100	Torque Wrench	11/6/2015	Bienniai	11/6/2017	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	C87	N/A	CBT	N/A
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	C8T	N/A	CBT	N/A

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BAODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	3XOK

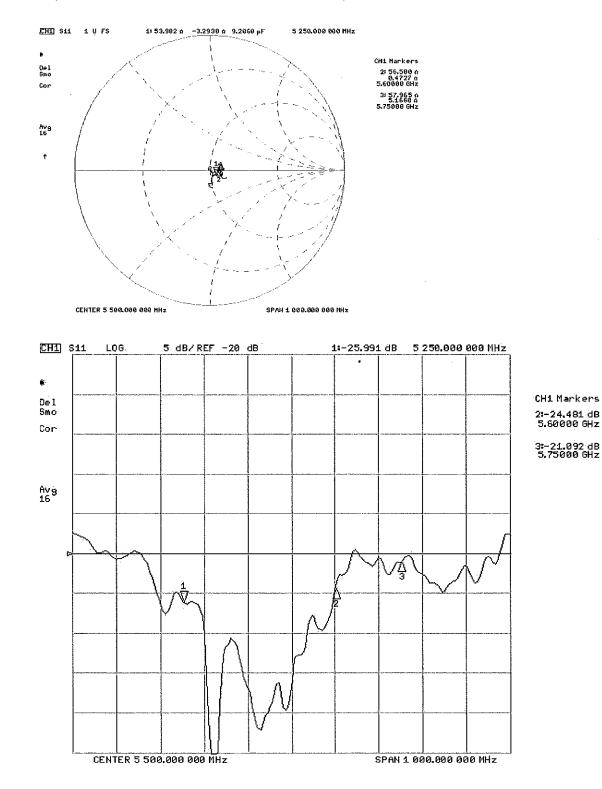

Object:	Date Issued:	Page 1 of 4
D5GHzV2 SN: 1191	09/19/2017	1 age 01 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Object:	Date Issued:	Page 2 of 4
D5GHzV2 – SN: 1191	09/19/2017	raye 2 014

Impedance & Return-Loss Measurement Plot for Head TSL

٠,

Object:	Date Issued:	Page 3 of 4
D5GHzV2-SN: 1191	09/19/2017	raye 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

' :

Object:	Date Issued:	
D5GHzV2 – SN: 1191	09/19/2017	Page 4 of 4

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

PCTEST

D5GHzV2 - SN: 1191

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 9/11/2018

Description:

SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Blennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	155166	Amplifier	СВТ	N/A	CBT	433971
Narda	4772-3	Attenuator (3d8)	CBT	N/A	CBT	9406
Keysight	772D	Dual Directional Coupler	CBT	N/A	СВТ	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Agilent	8753ES	S-Parameter Vector Network Analyzer	8/30/2018	Annual	8/30/2019	MY40003841
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	СВТ	N/A	CBT	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	EX3DV4	SAR Probe	4/18/2018	Annual	4/18/2019	7357
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/11/2018	Annual	4/11/2019	1407
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA24118	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/22/2017	Annuai	10/22/2018	1328004
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Narda	4014C-5	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	СВТ	N/A

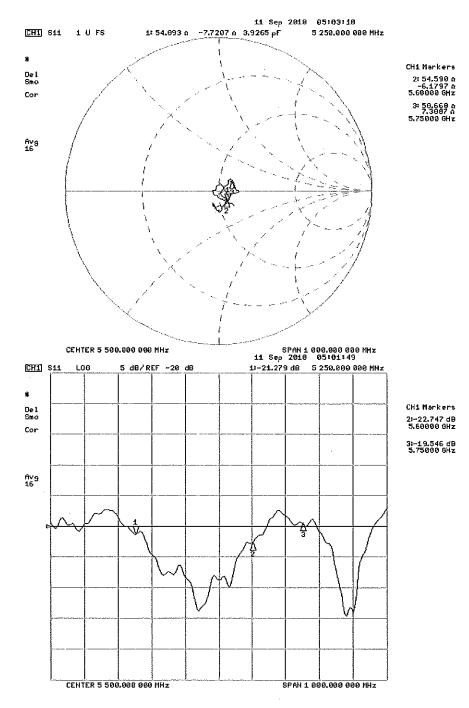
Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

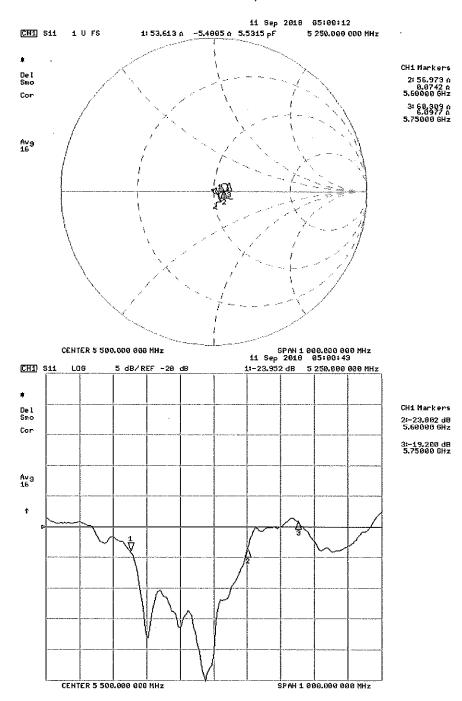
Object:	Date issued:	Page 1 of 4
D5GHzV2 SN: 1191	09/11/2018	

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 17.0 dBm	Measured Head SAR (1g) W/kg @ 17.0 dBm		Certificate SAR Target Head (10g) W/kg @ 17.0 dBm	Measured Head SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5250	9/21/2016	9/11/2018	1.204	3.945	3.9	-1.14%	1.13	1.11	-1.77%	55.7	54.9	0.8	-4.3	-7.7	3.4	-23.4	-21.3	9.10%	PASS
5600	9/21/2016	9/11/2018	1.204	4.18	4.19	0.24%	1.19	1.18	-0.84%	58.3	54.6	3.7	-3.2	-6.2	3	-21.8	-22.7	-4.30%	PASS
5750	9/21/2016	9/11/2018	1.204	3.955	3.82	-3.41%	1.12	1.08	-3.57%	58.1	58.7	0.6	4.8	7.4	2.6	-21.2	-19.5	7.80%	PASS
Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 17.0 dBm	Measured Body SAR (1g) W/kg @ 17.0 dBm		Certificate SAR Target Body (10g) W/kg @ 17.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5250	9/21/2016	9/11/2018	1.204	3.85	3.6	-6.49%	1.08	1.01	-6.48%	56.1	53.6	2.5	-3.7	-5.5	1.8	-23.4	-24	-2.40%	PASS
5600	9/21/2016	9/11/2018	1.204	3.96	4.01	1.26%	1.11	1.1	-0.90%	58.9	57	1.9	-1.7	0.1	1.8	-21.7	-23.8	-9.70%	PASS
5750	9/21/2016	9/11/2018	1.204	3.805	3.88	1.97%	1.06	1.06	0.00%	59.5	60.3	0.8	6.9	6.1	0.8	-19.4	-19.2	1.00%	PASS

Object:	Date Issued:	Dogo 2 of 4
D5GHzV2 – SN: 1191	09/11/2018	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date issued:	Page 3 of 4
D5GHzV2 – SN: 1191	09/11/2018	rage 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D5GHzV2 – SN: 1191	09/11/2018	Page 4 of 4

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificat	e No: E	S3-3	287	Oc	t18

S

С

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3287	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes	l
Calibration date:	October 22, 2018	
	ents the traceability to national standards, which realize the physical units of measurements (SI). tainties with confidence probability are given on the following pages and are part of the certificate.	

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

· · · · · · · · · · · · · · · · · · ·	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	
			J.C.
Approved by:	Katja Pokovic	Technical Manager	E CAL
			200 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
			Issued: October 23, 2018
This calibration certificate	e shall not be reproduced except in full y	without written approval of the labo	ratory

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DACV system to align probe concervity to the robet coordinate system

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- *DCPx,y,z:* DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3287

Manufactured: June 7, 2010 Calibrated:

October 22, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)	
Norm $(\mu V/(V/m)^2)^A$	0.88	0.99	1.01	± 10.1 %	
DCP (mV) ^B	106.5	104.5	106.2		

Modulation Calibration Parameters

מוט	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [≞] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	170.5	±3.3 %
		Y	0.0	0.0	1.0		183.9	
		Z	0.0	0.0	1.0		185.7	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1	C2	α	T1	T2	T3	T4	T5	Т6
	fF	fF	V ^{−1}	ms.V ^{−2}	ms.V⁻¹	ms	V⁻²	V ⁻¹	
Х	63.21	438.0	33.52	29.02	2.824	5.044	1.538	0.382	1.009
Y	66.95	483.3	35.70	29.79	3.474	5.100	0.294	0.696	1.011
Z	55.14	387.3	34.16	28.13	2.433	5.100	1.594	0.322	1.010

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

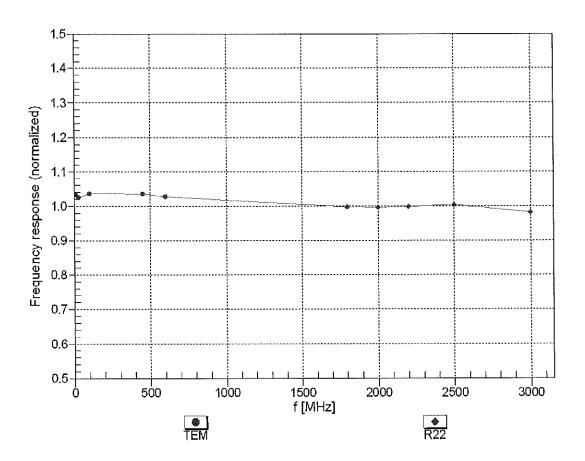
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.76	6.76	6.76	0.28	1.78	± 12.0 %
835	41.5	0.90	6.61	6.61	6.61	0.60	1.20	± 12.0 %
1750	40.1	1.37	5.48	5.48	5.48	0.53	1.28	± 12.0 %
1900	40.0	1.40	5.24	5.24	5.24	0.41	1.52	± 12.0 %
2300	39.5	1.67	4.82	4.82	4.82	0.42	1.57	± 12.0 %
2450	39.2	1.80	4.63	4.63	4.63	0.55	1.39	± 12.0 %
2600	39.0	1.96	4.38	4.38	4.38	0.58	1.43	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to \pm 110 MHz.

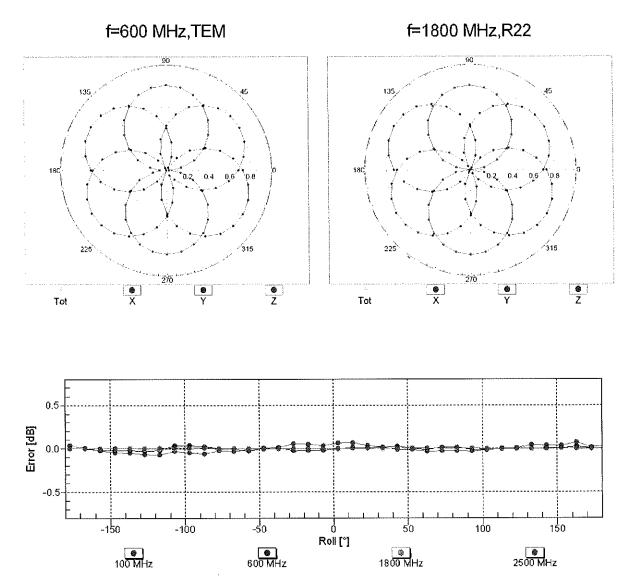
^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

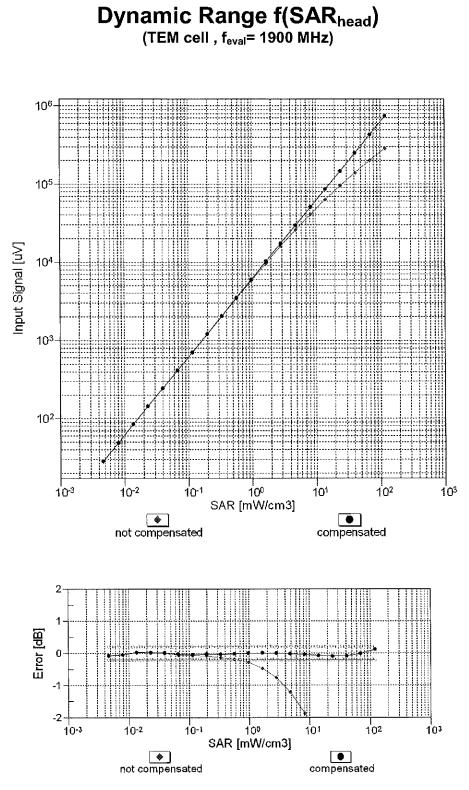

			-		•			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.43	6.43	6.43	0.72	1.15	± 12.0 %
835	55.2	0.97	6.34	6.34	6.34	0.52	1.32	± 12.0 %
1750	53.4	1.49	4.98	4.98	4.98	0.28	2.12	± 12.0 %
1900	53.3	1.52	4.83	4.83	4.83	0.43	1.57	± 12.0 %
2300	52.9	1.81	4.55	4.55	4.55	0.62	1.36	± 12.0 %
2450	52.7	1.95	4.29	4.29	4.29	0.72	1.17	± 12.0 %
2600	52.5	2.16	4.19	4.19	4.19	0.50	1.20	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

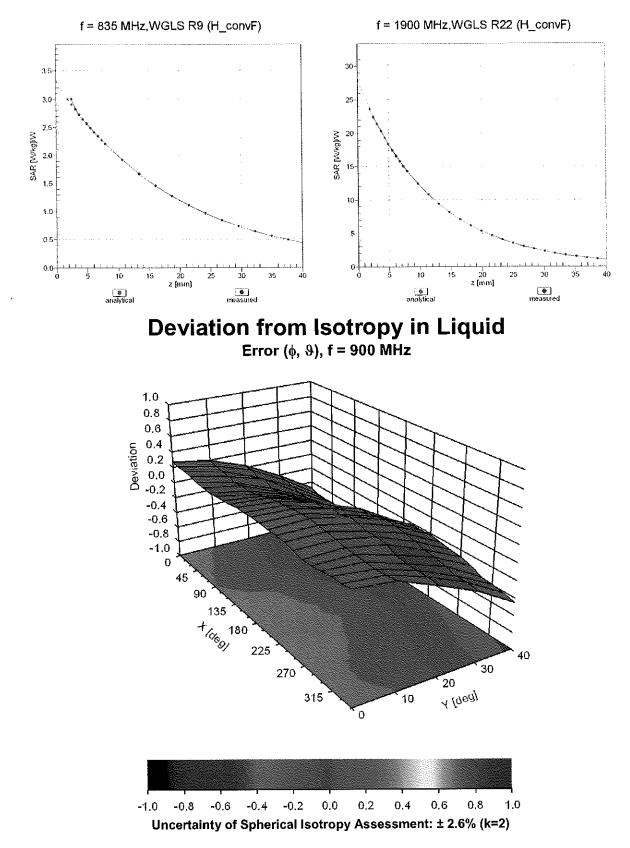
^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	93.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix: Modulation Calibration Parameters

ÜİD	IX: MODULATION Calibration Paran Communication System Name		A dB	B dBõV	C	D dB	VR mV	Max Unc ^E (k=2)
0	CW	Х	0.00	0.00	1.00	0.00	170.5	± 3.3 %
		Y	0.00	0.00	1.00		183.9	
		Z	0.00	0.00	1.00	40.00	185.7	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	X	7.53	77.06	17.83	10.00	25.0	± 9.6 %
		Y	8.14	78.38	19.04		25.0	
		Z	9.25	80.89	19.28		25.0	
10011- CAB	UMTS-FDD (WCDMA)	х	1.43	73.85	18.87	0.00	150.0	±9.6 %
	,,	Y	0.97	66.02	14.16		150.0	
		Ζ	1.09	68.86	15.96		150.0	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.37	66.92	17.13	0.41	150.0	± 9.6 %
		Y	1.26	64.41	15.18		150.0	
		Z	1.30	65.60	16.10		150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	5.15	67.38	17.44	1.46	150.0	± 9.6 %
		Y	5.18	67.06	17.28		150.0	
10021-	GSM-FDD (TDMA, GMSK)	Z X	5.09 14.53	67.36 88.52	17.42 23.56	9.39	150.0 50.0	± 9.6 %
DAC		Y	14.96	89.86	24.90		50.0	
		Z	31.90	102.69	24.30		50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	X	13.53	87.25	23.18	9.57	50.0	± 9.6 %
Brio		Y	14.02	88.59	24.52		50.0	
		Ż	26.42	99.51	27.28		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	52.08	107.25	27.36	6.56	60.0	± 9.6 %
		Y	41.48	106.06	28.00		60.0	
		Z	100.00	118.06	30.27		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	16.26	99.58	37.07	12.57	50.0	± 9.6 %
		Y	13.58	93.24	34.70		50.0	l
		Z	21.87	110.76	41.97		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	18.41	99.97	33.81	9.56	60.0	±9.6 %
		Y	15.35	95.05	32.27		60.0	
10027-	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	Z X	21.72 100.00	105.96 115.09	36.44 28.07	4.80	60.0 80.0	± 9.6 %
DAC	•							
		<u>Y</u>	100.00	117.60	29,52		80.0	
10028-	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Z X	100.00 100.00	116.87 115.09	28.79 27.27	3.55	80.0 100.0	± 9.6 %
DAC		Y	100.00	116.00	28.32		100.0	
		Z	100.00	116.90 116.94	28.32		100.0	+
10029-	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	13.44	93.53	30.58	7.80	80.0	± 9.6 %
DAC		Ŷ	11.59	89.61	29.29	1.00	80.0	
		Z	14.19	96.32	32.08		80.0	-
10030- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	100.00	114.89	28.31	5.30	70.0	± 9.6 %
0.01		Y	92.82	116.56	29.65		70.0	
		Z	100.00	116.45	28.94		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	116.79	26.49	1.88	100.0	± 9.6 %
		Y	100.00	115.79	26.19		100.0	
		Z	100.00	117.41	26.65		100.0	1

ES3DV3-- SN:3287

10032-	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	123.13	28.06	1.17	100.0	± 9.6 %
CAA						1.11		1 3.0 %
		Y	100.00	116.53	25.36		100.0	
		Z	100.00	121.10	27.07		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	15.49	93.49	25.39	5.30	70.0	± 9.6 %
		Y	12.09	89.66	24.64		70.0	
		Z	22.85	100.72	27.71		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	11.69	94.03	24.43	1.88	100.0	± 9.6 %
		Y	5.21	81.43	20.33		100.0	
		Ζ	10.45	92.04	23.50		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	7.19	89.07	22.83	1.17	100.0	± 9.6 %
		Y	3.19	76.15	18.09		100.0	
		Ζ	5.32	84.13	20.72		100.0	
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	18.47	96.50	26.38	5.30	70.0	±9.6 %
		Y	13.77	92.00	25.46		70.0	
		Z	29.42	105.03	29.00		70.0	
10037- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	11.12	93.30	24.16	1.88	100.0	±9.6 %
		Y	5.06	81.04	20.15		100.0	
		Z	9.78	91.13	23.19		100.0	
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	7.70	90.38	23.33	1.17	100.0	± 9.6 %
		Y	3.27	76.73	18,38		100.0	
		Ζ	5.57	85.06	21.13		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	3.68	82.65	21.02	0.00	150.0	± 9.6 %
		Y	1.70	69.59	15.11		150.0	
		Z	2.11	74.03	16.84		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	23.70	95.06	24.07	7,78	50.0	± 9.6 %
		Y	21.98	95.27	24.98		50.0	
•	· · · · · · · · · · · · · · · · · · ·	Ζ	100.00	116.88	29.97		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.00	115.10	1.28	0.00	150.0	± 9.6 %
		Y	0.01	122.01	1.58		150.0	
		Ζ	0.00	110.42	5.98		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	9.90	79.84	22.32	13.80	25.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	10.52	80.91	23.58		25.0	
		Z	12.94	86.06	24.76		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	11.07	83.29	22.21	10.79	40.0	± 9.6 %
		Y	11.66	84.62	23.55		40.0	
		Z	15.99	90.77	24.97		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	11.47	84.45	23.20	9.03	50.0	± 9.6 %
		Y	11.19	84.08	23.66		50.0	
		Ζ	14.67	89.92	25.31		50.0	
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	Х	10.29	88.76	28.24	6.55	100.0	± 9.6 %
~~~~		Y	9.12	85.50	27.09		100.0	
		Ζ	10.20	89.78	29.04		100.0	
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.61	69.65	18.33	0.61	110.0	± 9.6 %
		Y	1.43	66.43	16.16		110.0	
		Ζ	1.49	68.00	17.26		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	Х	100.00	131.01	33.54	1.30	110.0	±9.6 %
	······································	Y	22.84	107.12	27.36		110.0	
		Ζ	100.00	130.89	33.42	•••	110.0	

#### ES3DV3-- SN:3287

		·····			,			
10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	18.52	105.45	29.38	2.04	110.0	±9.6 %
		Y	6.96	88.43	24.11		110.0	
		Z	15.38	103.23	28.94		110.0	
10062- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.90	67.27	16.85	0.49	100.0	± 9.6 %
		Y	4.89	66.79	16.55		100.0	
		Z	4.81	67.12	16.71		100.0	
10063- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.93	67.42	16.97	0.72	100.0	± 9.6 %
		Y	4.94	66.96	16.70		100.0	
		Z	4.85	67.28	16.85		100.0	
10064- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	×	5.27	67.73	17.21	0.86	100.0	± 9.6 %
		Y	5.30	67.34	16.98		100.0	
		Z	5.17	67.59	17.11		100.0	
10065- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	×	5.17	67.74	17.34	1.21	100.0	± 9.6 %
		Y	5.20	67.39	17.15		100.0	
		Z	5.08	67.64	17.28		100.0	
10066- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.22	67.85	17.55	1.46	100.0	± 9.6 %
		Y	5.26	67.54	17.39		100.0	
		Z	5.14	67.77	17.52		100.0	
10067- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.52	67.92	17.94	2.04	100.0	± 9.6 %
		Y	5.59	67.70	17.86		100.0	
		Z	5.46	67.96	17.98		100.0	
10068- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.67	68.31	18.30	2.55	100.0	± 9.6 %
		Y	5.76	68.13	18.25		100.0	
		Z	5.59	68.29	18.34		100.0	
10069- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.74	68.18	18.44	2.67	100.0	± 9.6 %
0,10		Y	5.83	68.02	18.41		100.0	
		Z	5.67	68.25	18.53		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.29	67.59	17.79	1.99	100.0	± 9.6 %
		Y	5.34	67.32	17.67		100.0	
		Ż	5.24	67.60	17.81	1	100.0	1
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.36	68.17	18.10	2.30	100.0	± 9.6 %
0.0		ΙY	5.42	67.91	18.00		100.0	
		Ż	5.30	68.17	18.14		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.49	68.49	18.48	2.83	100.0	±9.6 %
		Y	5.57	68.29	18.43	1	100.0	
		Z	5.44	68.53	18.57		100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.52	68.57	18.73	3.30	100.0	± 9.6 %
		Y	5.62	68.40	18.71		100.0	
		Z	5.48	68.62	18.83		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.69	69.08	19.21	3.82	90.0	± 9.6 %
	· · · · · · · · · · · · · · · ·	Y	5.81	68.98	19.24		90.0	
		Z	5.63	69.10	19.33		90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	×	5.69	68.85	19.30	4.15	90.0	± 9.6 %
<u> </u>		Y	5.82	68.76	19.35	T	90.0	
<b>_</b>		Ż	5.65	68.92	19.46		90.0	-
10077-	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.73	68.94	19.41	4.30	90.0	± 9.6 %
CAB		Y	5.86		19.45		90.0	+
			1 7 7 7	68.86	1945	ł.	1 90.0	

#### ES3DV3-SN:3287

10081- CAB	CDMA2000 (1xRTT, RC3)	X	1.50	74.73	17.78	0.00	150.0	± 9.6 %
		Y	0.85	64.97	12.38		150.0	
		Z	0.93	67.53	13.57		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	2.13	63.53	8.53	4.77	80.0	± 9.6 %
		Y	2.34	64.23	9.30		80.0	
		Z	2.05	63.65	8.54		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	49.50	106.58	27.22	6.56	60.0	± 9.6 %
······		Y	40.33	105.69	27.94		60.0	
		Z	100.00	118.15	30.33		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	2.07	70.20	17.39	0.00	150.0	± 9.6 %
		Y	1.76	66.51	15.04	·	150.0	
40000		Z	1.86	68.23	16.00		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	X	2.03	70.21	17.38	0.00	150.0	± 9.6 %
		Y	1.72	66.45	14.99		150.0	
10000		Z	1.83	68.21	15.97		150.0	
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	18.31	99.80	33.74	9.56	60.0	±9.6 %
		Y	15.30	94.94	32.23		60.0	
10100-	LTE-FDD (SC-FDMA, 100% RB, 20	Z	21.61	105.78	36.38		60.0	
CAE	MHz, QPSK)	X	3.71	73.39	18.12	0.00	150.0	± 9.6 %
		Y	3.14	69.82	16.14		150.0	1
10101-		Z	3.27	71,18	16.96		150.0	
CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.51	69.02	16.73	0.00	150.0	± 9.6 %
		Y	3.32	67.43	15.69		150.0	
10102-		Z	3.32	68.05	16.10		150.0	
CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.59	68.86	16.77	0.00	150.0	± 9.6 %
		Y	3.42	67.38	15.79		150.0	
10103-		Z	3.42	67.96	16.18		150.0	
CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	8.68	77.91	20.86	3.98	65.0	± 9.6 %
		Y	8.39	76.97	20.64		65.0	
40404		Z	8.88	79.01	21.52		65.0	
10104- CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	8.68	76.81	21.30	3.98	65.0	± 9.6 %
		Y	8.50	76.03	21.10		65.0	
10105- CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	Z X	8.59 8.09	77.26 75.44	21.68 21.00	3.98	65.0 65.0	± 9.6 %
		Y	7.65	73.94	20.48		OF O	
		Z	7.67	75.03	20.48		65.0 65.0	
10108- CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	3.25	72.47	17.95	0.00	150.0	± 9.6 %
·		Y	2.79	69.04	15.96		150.0	
		Z	2.87	70.38	16.80		150.0	
10109- CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	3.18	68.93	16.75	0.00	150.0	± 9.6 %
		Y	2.99	67.17	15.59	·····	150.0	
10/11		Z	2.98	67.88	16.03		150.0	
10110- CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	2.67	71.57	17.72	0.00	150.0	±9.6 %
•		Y	2.28	68.03	15.59		150.0	
101.1		Z	2.34	69.49	16.47		150.0	
10111- CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.93	69.90	17.29	0.00	150.0	±9.6 %
		Υ	2.67	67.50	15.78		150.0	
		Z	2.69	68.60	16.34		150.0	

#### ES3DV3-SN:3287

10112-	LTE-FDD (SC-FDMA, 100% RB, 10	X	3.29	68.76	16.73	0.00	150.0	± 9.6 %
CAG	MHz, 64-QAM)	Y	3.11	67.13	15.65		150.0	
		Z	3.11	67.82	16.07		150.0	
10113- CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	3.07	69.85	17.32	0.00	150.0	± 9.6 %
		Y	2.83	67.62	15.92		150.0	
		z	2.84	68.68	16.45		150.0	
10114- CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.26	67.69	16.67	0.00	150.0	±9.6 %
		Y	5.23	67.13	16.29		150.0	
		z	5.17	67.44	16.47		150.0	
10115- CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	×	5.63	67.96	16.80	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	5.62	67.49	16.48		150.0	
		Z	5.52	67.74	16.63		150.0	
10116- CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.39	67.95	16.72	0.00	150.0	± 9.6 %
		Y	5.36	67.40	16.35		150.0	
		Ζ	5.29	67.69	16.52		150.0	
10117- CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.27	67.71	16.70	0.00	150.0	± 9.6 %
		Y	5.24	67.16	16.33		150.0	
		Z	5.16	67.39	16.47		150.0	
10118- CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	5.69	68.10	16.87	0.00	150.0	± 9.6 %
		Y	5.66	67.55	16.52		150.0	
		Z	5.60	67.91	16.73		150.0	
10119- CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	5.36	67.90	16.71	0.00	150.0	± 9.6 %
		Y	5.33	67.36	16.35		150.0	
		Z	5.26	67.63	16.50		150.0	
10140- CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.65	68.85	16.68	0.00	150.0	± 9.6 %
		Y	3.47	67.39	15.72		150.0	
		Z	3.46	67.97	16.10		150.0	
10141- CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.76	68.83	16.80	0.00	150.0	± 9.6 %
		Y	3.60	67.45	15.88		150.0	
		Z	3.58	68.02	16.25		150.0	
10142- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	2.48	71.91	17.76	0.00	150.0	± 9.6 %
		Y	2.05	67.79	15.33		150.0	
		Z	2.12	69.52	16.24		150.0	
10143- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	2.90	71.18	17.49	0.00	150.0	± 9.6 %
		Y	2.52	67.93	15.59		150.0	1
		Z	2.57	69.41	16.20		150.0	
10144- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.62	68.68	15.85	0.00	150.0	± 9.6 %
		Y	2.38	66.30	14.35		150.0	
		Z	2.36	67.27	14.69		150.0	
10145- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	2.00	71.99	16.45	0.00	150.0	± 9.6 %
		Y	1.42	65.89	13.07		150.0	<u> </u>
		Z	1.41	66.95	13.17		150.0	ļ
10146- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	5.79	80.59	18.98	0,00	150.0	± 9.6 %
		Y	3.05	71.20	15.41		150.0	
		Z	3.43	73.13	15.30		150.0	
10147- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	9.98	88.43	21.82	0.00	150.0	± 9.6 %
		Y	3.72	74.13	16.84		150.0	
		z	4.87	77.77	17.26	1	150.0	

#### ES3DV3-- SN:3287

10149- CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	3.19	69.00	16.80	0.00	150.0	± 9.6 %
		Υ	3.00	67.22	15.63		150.0	
		Z	2.99	67.94	16.08		150.0	1
10150- CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	Х	3.30	68.82	16.78	0.00	150.0	± 9.6 %
		Y	3.12	67.17	15.69		150.0	
		Z	3.11	67.87	16.11		150.0	
10151- CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	х	9.20	80.06	21.79	3.98	65.0	± 9.6 %
		Υ	8.68	78.68	21.42		65.0	
40450		Z	9.50	81.45	22.55		65.0	
10152- CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	8.32	76.99	21.17	3.98	65.0	± 9.6 %
		Y	8.10	76.11	20.95		65.0	
10153-		Z	8.24	77.53	21.54	0.00	65.0	
CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	8.68	77.73	21.81	3.98	65.0	± 9.6 %
		Y	8.45	76.81	21.57		65.0	
10154-		Z	8.63	78.31	22.20		65.0	
CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.76	72.22	18,09	0.00	150.0	± 9.6 %
		Y	2.34	68.47	15.87		150.0	
10155-		Z	2.39	69.94	16.75		150.0	ļ
CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.93	69.90	17.30	0.00	150.0	± 9.6 %
		Y	2.67	67.50	15.78		150.0	
40450		Z	2.69	68.61	16.35		150.0	
10156- CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	2.40	72.73	18.02	0.00	150.0	± 9.6 %
		Y	1.91	67.88	15.23		150.0	
		Z	1.98	69.77	16.17		150.0	
10157- CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.54	69.89	16.32	0.00	150.0	±9.6 %
		Y	2.20	66.71	14.41		150.0	
		Z	2.21	67.97	14.84		150.0	
10158- CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	3.08	69.91	17.37	0.00	150.0	± 9.6 %
		Y	2.83	67.66	15.96		150.0	
		Z	2.85	68.73	16.49	·	150.0	
10159- CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.68	70.46	16.65	0.00	150.0	± 9.6 %
		Y	2.30	67.13	14.70		150.0	
		Z	2.33	68.43	15.13		150.0	
10160- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	3.08	70.59	17.38	0.00	150.0	± 9.6 %
		Y	2.80	68.13	15.84		150.0	
		Z	2.83	69.23	16.52		150.0	
10161- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	3.19	68.74	16.75	0.00	150.0	± 9.6 %
		Y	3.01	67.04	15.62		150.0	
10100		Z	3.00	67.79	16.05		150.0	
10162- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	3.29	68.74	16.78	0.00	150.0	± 9.6 %
		Y	3.12	67.09	15.70		150.0	
10100		Z	3.11	67.88	16.13		150.0	
10166- CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	4.20	71.91	20.30	3.01	150.0	± 9.6 %
		Y	3.97	69.88	19.20		150.0	
		Z	4.01	71.48	20.04		150.0	
10167- CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	5.82	76.43	21.33	3.01	150.0	± 9.6 %
		Y	5.06	72.83	19.70		150.0	
		Z	5.46	75.92	21.03		150.0	

#### ES3DV3-SN:3287

10168- CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	6.57	79.03	22,72	3.01	150.0	±9.6 %
		Y	5.52	74.71	20.84		150.0	
		Z	6.17	78.53	22.43		150.0	
10169- CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	4.18	75.15	21,66	3.01	150.0	±9.6 %
		Y	3.68	71.43	19.79		150.0	
		Z	3.71	73.29	20.84		150.0	
10170- CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	8.28	87.06	25.72	3.01	150.0	±9.6 %
		Y	5.41	77.71	22.06		150.0	
		Z	6.71	83.81	24.55		150.0	
10171- AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	5.78	79.38	21.89	3.01	150.0	±9.6 %
		Y	4.38	73.23	19.30		150.0	
		Z	4.93	77.24	21.04		150.0	
10172- CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	34.48	110.68	33.22	6.02	65.0	± 9.6 %
		Y	19.27	99.23	30.20		65.0	
		Z	64.25	125.69	37.96		65.0	
10173- CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	43.93	109.49	31.07	6.02	65.0	± 9.6 %
		Y	20.84	96.83	28.02		65.0	
		Z	100.00	126.58	36.03		65.0	
10174- CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	30.93	102.12	28.52	6.02	65.0	± 9.6 %
		Y	17.32	92.53	26.25		65.0	
		Z	61.98	116.33	32.90		65.0	
10175- CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	4.10	74.63	21.33	3.01	150.0	± 9.6 %
		Y	3.62	71.04	19.52		150.0	
	· · · · · · · · · · · · · · · · · · ·	Z	3.65	72.87	20.55		150.0	
10176- CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	8.30	87.09	25.74	3.01	150.0	± 9.6 %
		Y	5.42	77.74	22.07		150.0	
		Z	6.72	83.85	24.57		150.0	
10177- CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	4.15	74.88	21.47	3.01	150.0	± 9.6 %
		Y	3.66	71.24	19.64		150.0	
		Z	3.69	73.07	20.66		150.0	
10178- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	8.06	86.52	25.50	3.01	150.0	± 9.6 %
		Y	5.33	77.40	21.91	1	150.0	
		Ż	6.59	83.44	24.39		150.0	
10179- CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	6.83	82.82	23.58	3.01	150.0	± 9.6 %
		Y	4.83	75.24	20.50		150.0	
		Z	5.71	80.26	22.61		150.0	
10180- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	5.73	79.20	21.80	3.01	150.0	± 9,6 %
		Y	4.36	73.12	19.23		150.0	
·	· · · · · · · · · · · · · · · · · · ·	Z	4.90	77.11	20.97		150.0	
10181- CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	4.14	74.86	21.46	3.01	150.0	± 9.6 %
		Y	3.65	71.22	19.63		150.0	
		Z	3.68	73.05	20.65		150.0	
10182- CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	8.05	86.48	25.49	3.01	150.0	± 9.6 %
		Y	5.32	77.37	21.89		150.0	
		Z	6.57	83.40	24.38		150.0	
10183- AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	5.72	79.16	21.78	3.01	150.0	± 9.6 %
<u> </u>		Y	4.35	73.09	19.22		150.0	
<b> </b>		Z	4.89	77.08	20.96	1	150.0	

#### ES3DV3-SN:3287

10184- CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	4.16	74.92	21.48	3.01	150.0	± 9.6 %
		Y	3.67	71.26	19.65	†	150.0	···
		Z	3.70	73.10	20.68		150.0	
10185- CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	8.10	86.60	25.54	3.01	150.0	± 9.6 %
		Y	5.35	77.45	21.93		150.0	
		Z	6.62	83.51	24.42		150.0	
10186- AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	5.76	79.27	21.83	3.01	150.0	± 9.6 %
		Y	4.38	73.16	19.26		150.0	
		Z	4.92	77.18	21.00		150.0	
10187- CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	4.17	74.96	21.54	3.01	150.0	± 9.6 %
	****	Y	3.67	71.29	19.69		150.0	
		Z	3.71	73.16	20.74		150.0	
10188- CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	8.67	87.99	26.14	3.01	150.0	± 9.6 %
		Y	5.56	78.25	22.35		150.0	
	·	Z	6.98	84.62	24.93		150.0	[
10189- AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	5.99	80.05	22.22	3.01	150.0	± 9.6 %
		Y	4.49	73.64	19.55		150.0	
		Z	5.09	77.84	21.35		150.0	
10193- CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.70	67.14	16.49	0.00	150.0	± 9.6 %
		Y	4.65	66.50	16.06		150.0	
		Z	4.58	66.86	16.22		150.0	
10194- CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	X	4.90	67.52	16.60	0.00	150.0	± 9.6 %
		Y	4.86	66.88	16.17		150.0	
		Z	4.77	67.20	16.34		150.0	
10195- CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	4.94	67.52	16.60	0.00	150.0	± 9.6 %
		Y	4.90	66.89	16.18		150.0	
		Z	4.81	67.23	16.35		150.0	
10196- CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.72	67.25	16.53	0.00	150.0	± 9.6 %
		Y	4.68	66.61	16.10		150.0	
		Z	4.60	66.94	16.25		150.0	
10197- CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	X	4.91	67.54	16.61	0.00	150.0	± 9.6 %
		Υ	4.87	66.90	16,18		150.0	
		Ζ	4.78	67.23	16.35		150.0	
10198- CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	4.94	67.54	16.61	0.00	150.0	± 9.6 %
		Y	4.90	66.90	16.19		150.0	
		Z	4.81	67.24	16.37		150.0	
10219- CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.67	67.27	16.50	0.00	150.0	± 9.6 %
		Y	4.63	66.62	16.06		150.0	
		Z	4.54	66.96	16.22		150.0	
10220- CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.91	67.53	16.61	0.00	150.0	± 9.6 %
		Y	4.87	66.90	16.18		150.0	
		Z	4.78	67.21	16.35		150.0	
10221- CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	Х	4.95	67.46	16.60	0.00	150.0	±9.6 %
		Y	4.91	66.85	16.18		150.0	
		Z	4.82	67.17	16.35		150.0	
10222- CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	5.25	67.74	16.71	0.00	150.0	± 9.6 %
		Y	5.22	67.19	16.33		150.0	
		Z	5.14	67.40	16.47		150.0	

## ES3DV3-- SN:3287

10223- CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	5.62	68.04	16.87	0.00	150.0	± 9.6 %
		Y	5.61	67.57	16.55		150.0	
		z	5.46	67.62	16.59		150.0	*****
10224- CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	5.30	67.86	16.69	0.00	150.0	±9.6 %
		Y	5.27	67.29	16.31		150.0	
		Z	5.18	67.50	16.44		150.0	
10225- CAB	UMTS-FDD (HSPA+)	Х	3.00	67.11	16.18	0.00	150.0	±9.6 %
		Y	2.89	65.79	15.26		150.0	
		Z	2.86	66.46	15.54		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	47.57	111.04	31.57	6.02	65.0	± 9.6 %
		Y	21.77	97.71	28.37		65.0	
		Z	100.00	126.78	36.17		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	33.21	103.47	29.00	6.02	65.0	± 9.6 %
		Y	18.61	93.88	26.76		65.0	
	·	Z	72.01	119.09	33.69		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	43.41	115.45	34.63	6.02	65.0	± 9.6 %
		Υ	21.18	101.54	31.02		65.0	
		Z	73.36	128.78	38.85		65.0	
10229- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	43.98	109.51	31.08	6.02	65.0	± 9.6 %
		Y	20.89	96.85	28.04		65.0	
		Z	100.00	126.58	36.04		65.0	
10230- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	31.28	102.35	28.60	6.02	65.0	± 9.6 %
		Y	17.95	93.18	26.47		65.0	
		Z	65.65	117.34	33.17		65.0	
10231- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	40.51	113.99	34.16	6.02	65.0	± 9.6 %
		Y	20.32	100.64	30.68		65.0	
		Z	66.72	126.73	38.25		65.0	
10232- CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	43.98	109.51	31.08	6.02	65.0	± 9.6 %
		Y	20.87	96.85	28.04		65.0	
		Z	100.00	126.58	36.04		65.0	
10233- CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	31.31	102.37	28.61	6.02	65.0	± 9.6 %
		Y	17.95	93.19	26.47		65.0	
		Z	65.78	117.38	33.18	1	65.0	
10234- CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	37.61	112.37	33.61	6.02	65.0	± 9.6 %
		Y	19.46	99.66	30.29		65.0	
		Z	60.59	124.57	37.59	<u> </u>	65.0	
10235- CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	44.16	109.59	31.10	6.02	65.0	± 9.6 %
		Y	20.90	96.88	28.05		65.0	1
		Z	100.00	126.59	36.05		65.0	
10236- CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	31.57	102.49	28.64	6.02	65.0	± 9.6 %
		Y	18.06	93.27	26.50		65.0	
		Z	66.68	117.58	33.22		65.0	
10237- CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	40.98	114.23	34.22	6.02	65.0	± 9.6 %
		Y	20.43	100.76	30.72		65.0	
		Z	67.89	127.10	38.35		65.0	
10238- CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	44.02	109.54	31.08	6.02	65.0	± 9.6 %
		Y	20.87	96.85	28.04		65.0	
		Ż	100.00	126.59	36.04	1	65.0	

#### ES3DV3-SN:3287

10239- CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	31.34	102.40	28.62	6.02	65.0	± 9.6 %
		Y	17.95	93.19	26.48		65.0	
		Z	65.90	117.43	33.19	1	65.0	
10240- CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	40.84	114.17	34.21	6.02	65.0	± 9.6 %
		Y	20.37	100.72	30.70		65.0	
		Z	67.60	127.02	38.33		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	13.50	87.98	27.59	6.98	65.0	± 9.6 %
		Y	11.90	84.56	26.53		65.0	
		Ζ	14.12	90.28	28.72		65.0	
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	13.27	87.58	27.38	6.98	65.0	± 9.6 %
		Y	11.12	83.03	25.85		65.0	
		Z	12.87	88.25	27.90		65.0	
10243- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	9.24	81.69	25.97	6,98	65.0	± 9.6 %
		Y	9.29	80.98	25.85		65.0	
		Z	9.97	84.60	27.47		65.0	
10244- CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	10.07	81.06	21.15	3.98	65.0	± 9.6 %
		Y	9.37	79.84	21.15		65.0	<b></b>
		Z	10.40	82.17	21.43		65.0	1
10245- CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	9.92	80.58	20.93	3.98	65.0	± 9.6 %
		Y	9.29	79.47	20.97		65.0	<u> </u>
		Z	10.13	81.50	21.13	······································	65.0	
10246- CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	9.36	82.64	21.70	3.98	65.0	± 9.6 %
		Y	8.42	80.73	21.28		65.0	·
		Z	9.87	84.16	22.17		65.0	
10247- CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	x	7.85	77.75	20.44	3.98	65.0	± 9.6 %
		Y	7.56	76.79	20.29		65.0	
		Z	7.78	78.21	20.53		65.0	
10248- CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	7.84	77.28	20,24	3.98	65.0	± 9.6 %
		Y	7.59	76.41	20.13		65.0	
		Z	7.72	77.63	20.29		65.0	
10249- CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	Х	10.16	84.10	22.78	3.98	65.0	± 9.6 %
		Y	9.02	81.83	22.19		65.0	
		Ζ	11.03	86.34	23.62		65.0	
10250- CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	Х	8.66	79.41	22.21	3.98	65.0	± 9.6 %
		Y	8.28	78.20	21.90		65.0	
~		Ζ	8.69	80.22	22.63		65.0	
10251- CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	8.19	77.31	21.11	3.98	65.0	± 9.6 %
		Y	7.93	76.33	20.88		65.0	<u> </u>
		Ζ	8.16	77.97	21.45		65.0	
10252- CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	9.91	83.04	22.96	3.98	65.0	± 9.6 %
		Y	9.02	81.03	22.39		65.0	
		Ζ	10.55	85.09	23.89		65.0	
10253- CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	Х	8.10	76.42	20,99	3.98	65.0	± 9.6 %
		Y	7.91	75.57	20.78		65.0	
		Ζ	8.03	76.94	21.33		65.0	
10254- CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	Х	8.47	77.16	21.59	3.98	65.0	±9.6 %
		Y	8.27	76.28	21.37		65.0	
			0.21	(0.20	<u>ZI.37</u>		n	

#### ES3DV3-SN:3287

10255- CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	8.92	79.74	21.91	3.98	65.0	± 9.6 %
		Y	8.44	78.38	21.54		65.0	
		Z	9.16	81.05	22.63		65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	8.96	78.82	19.56	3.98	65.0	± 9.6 %
		Y	8,66	78.38	19.92		65.0	
		Z	8.87	79.14	19.45		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	8.76	78.15	19.23	3.98	65.0	± 9.6 %
		Y	8.57	77.86	19.65		65.0	
		Z	8.54	78.21	19.01		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	8.23	80.27	20.30	3.98	65.0	± 9.6 %
		Y	7.69	79.06	20.18		65.0	
		Z	8.13	80.56	20.22		65.0	
10259- CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	8.16	78.29	21.04	3.98	65.0	± 9.6 %
		Y	7.83	77.23	20.83		65.0	
		Z	8.14	78.91	21.27		65.0	
10260- CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	8.18	78.05	20.97	3.98	65.0	± 9.6 %
		Y	7.89	77.07	20.79		65.0	
		Z	8.12	78.59	21.15		65.0	
10261- CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	9.70	83.10	22.69	3.98	65.0	± 9.6 %
		Y	8.75	81.03	22.13		65.0	
	· · · · · · · · · · · · · · · · · · ·	Z	10.33	85.06	23.50		65.0	
10262- CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	8.65	79.37	22.18	3.98	65.0	± 9.6 %
		Y	8.27	78.16	21.87		65.0	
		Z	8.68	80.17	22.59		65.0	
10263- CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	8.18	77.31	21.11	3.98	65.0	± 9.6 %
0/4		Y	7.93	76.34	20.88		65.0	1
		Z	8.15	77.96	21.45		65.0	
10264- CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	9.85	82.90	22.89	3.98	65.0	± 9.6 %
0,1		Y	8.97	80.91	22.33		65.0	
		Z	10.47	84.92	23.82	<u> </u>	65.0	
10265- CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	8.32	77.00	21.17	3.98	65.0	± 9.6 %
		Y	8.10	76.11	20.95		65.0	
		Z	8.24	77.53	21.55		65.0	
10266- CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	8.68	77.72	21.80	3.98	65.0	± 9.6 %
		Y	8.45	76.80	21.57		65.0	
		Z	8.63	78.31	22,20		65.0	
10267- CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	9.19	80.02	21.78	3.98	65.0	± 9.6 %
		Y	8.67	78.65	21.41		65.0	
		Z	9.48	81.42	22.54		65.0	
10268- CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	8.76	76.52	21.32	3.98	65.0	± 9.6 %
		Y	8.60	75.79	21.15		65.0	
		Z	8.66	76.94	21.68		65.0	
10269- CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	8.68	76.12	21.24	3.98	65.0	± 9.6 %
		Y	8.54	75.43	21.08		65.0	
		Z	8.58	76.51	21.57		65.0	
10270- CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	8.76	77.59	20.98	3.98	65.0	± 9.6 %
		Y	8.48	76.66	20.76	1	65.0	

#### ES3DV3- SN:3287

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.75	67.54	16.13	0.00	150.0	± 9.6 %
		Y	2.59	65.84	14.97		150.0	
		z	2.62	66.79	15.44		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.98	71.72	17.77	0.00	150.0	± 9.6 %
		Y	1.57	66.85	14.80		150.0	
		Z	1.68	68.85	15.99		150.0	
10277- CAA	PHS (QPSK)	X	5,52	68.98	13.68	9.03	50.0	±9.6 %
		Y	6.18	70.61	15.13		50.0	
		Z	5.33	69.04	13.51		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	8.68	78.27	19.91	9.03	50.0	± 9.6 %
		Y	9.24	79.43	21.04		50.0	
		Z	9.06	79.61	20.36		50.0	[
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	8.84	78.47	20.00	9.03	50.0	± 9.6 %
		Y	9.40	79.62	21.12		50.0	
		Z	9.21	79.79	20.45		50.0	
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	2,53	76.75	18.53	0.00	150.0	± 9.6 %
		Y	1.47	67.51	13.90		150.0	1
40004		Z	1.65	70.41	15.02		150.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	1.44	74.15	17.52	0.00	150.0	± 9.6 %
		Y	0.84	64.78	12.27		150.0	
		Z	0.91	67.24	13.41		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	2.94	86.43	22.66	0.00	150.0	± 9.6 %
		Y	0.94	67.21	13.88		150.0	
		Z	1.25	72.55	16.26		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	8.52	104.26	28.75	0.00	150.0	± 9.6 %
		Y	1.19	70,50	15.89		150.0	
1000		Z	2.08	80.22	19.81		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	9.77	81.63	23.08	9.03	50.0	± 9.6 %
		Y	9.82	81.44	23.46		50.0	
		Z	11.19	84.96	24.41		50.0	
10297- AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	3.27	72.60	18.02	0.00	150.0	± 9.6 %
	······································	Y	2.80	69.13	16.02		150.0	
40000		Z	2.88	70.48	16.86		150.0	
10298- AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	2.28	73.12	17.57	0.00	150.0	±9.6 %
		Y	1.68	67.21	14.31		150.0	
40000		Z	1.73	69.06	15.02		150.0	
10299- AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	5.83	80.69	19.80	0.00	150.0	± 9.6 %
		Y	3.42	72.22	16.49		150.0	
10200		Z	4.30	76.07	17.39		150.0	
10300- AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	3.42	71.78	15.52	0.00	150.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	2.69	67.85	13.82		150.0	
10301-	1555 002 160 MIMAY (00:40 /	Z	2.73	68.87	13.61		150.0	
AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	5.57	67.67	18.57	4.17	80.0	±9.6 %
		Y	5.78	67.86	18.57		80.0	
10202		Z	5.72	68.56	18.87		80.0	
10302- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	6.16	68.78	19.58	4.96	80.0	± 9.6 %
		Y	6.30	68.51	19.30		80.0	
		Z	6.18	69.12	19.60		80.0	

## ES3DV3-- SN:3287

40000			0.00	00.00	(0.07	( 00		
10303- AAA	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	X	6.02	68.90	19.67	4.96	80.0	± 9.6 %
	TOWITZ, 040200, 1 000)	Y	6.17	68.65	19.39		80.0	
		z	6.04	69.21	19.66		80.0	
10304- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	5.66	68.19	18.86	4.17	80.0	± 9.6 %
		Y	5.77	67.85	18.54		80.0	
		Z	5.66	68.44	18,81		80.0	
10305- AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	7.03	75.37	23.25	6.02	50.0	± 9.6 %
		Y	9.48	82.40	26.40		50.0	
		Z	9.45	83.47	26.75		50.0	
10306- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	6.41	71.60	21.68	6.02	50.0	± 9.6 %
		Y	6.61	71.33	21.32		50.0	
10307-	IEEE 802.16e WiMAX (29:18, 10ms,	Z X	6.53 6.53	72.26	21.74	6.02	50.0	+069/
10307- AAA 10308-	10MHz, QPSK, PUSC, 18 symbols)	Y	6.71	72.00	21.88	0.02	50.0	± 9.6 %
							50.0	
	IEEE 802.16e WIMAX (29:18, 10ms,	Z X	6.64 6.58	73.01 72.85	21.90 22.10	6.02	50.0 50.0	± 9.6 %
AAA	10MHz, 16QAM, PUSC)	X Y	7.88			0.02		I 9.0 %
		Z	6.72	77.20	24.23 22.14		50.0 50.0	
	IEEE 802.16e WiMAX (29:18, 10ms,		6.72	73.52	22.14	6.02	50.0	± 9.6 %
10309- AAA	10MHz, 16QAM, AMC 2x3, 18 symbols)	Y		71.94		0.02	50.0	±9.0 %
			6.73		21.48			
10310- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	Z X	<u>6.64</u> 6.43	72.61 71.87	21.93 21.71	6.02	50.0 50.0	± 9.6 %
		Y	6.62	71.53	21.32		50.0	
		Z	6.55	72.54	21.77		50.0	
10311- AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.66	71.76	17.57	0.00	150.0	± 9.6 %
		Y	3.14	68.49	15.73		150.0	
		Z	3.24	69.73	16.49		150.0	
10313- AAA	IDEN 1:3	X	6.89	76.52	17.70	6.99	70.0	± 9.6 %
		Y	6.61	75.87	17.81		70.0	
		Z	7.80	79.06	18.82	-	70.0	
10314- AAA	IDEN 1:6	X	8.95	82.07	22.06	10.00	30.0	± 9.6 %
		Y	7.91	79.82	21.63		30.0	
		Z	10.67	86.11	23.72		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.22	66.52	17.02	0.17	150.0	± 9.6 %
		Y	1.11	63.83	14.85	[	150.0	
		Z	1.15	65.06	15.82	L	150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.79	67.26	16.63	0.17	150.0	± 9.6 %
		Y	4.77	66.71	16.27		150.0	<b></b>
		Z	4.69	67.06	16.44		150.0	
10317- AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.79	67.26	16.63	0.17	150.0	± 9.6 %
		Y	4.77	66.71	16.27		150.0	
10400- AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	Z X	4.69 4.91	67.06 67.58	16.44 16.59	0.00	150.0 150.0	± 9.6 %
		Y	4,87	66.94	16.16		150.0	
		Z	4.07	67.27	16.35		150.0	
10401- AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.51	67.53	16.59	0.00	150.0	± 9.6 %
		Y	<b>E</b> 40	07.00	10.00	·	1 1 1 0 0	+
		I Y	5.48	67.02	16.26		150.0	

10402-	IEEE 802.11ac WiFi (80MHz, 64-QAM,	X	5.82	60.10	46.70	0.00	150.0	1000
AAD	99pc duty cycle)	^	0.02	68.12	16.73	0.00	150.0	± 9.6 %
		Y	5.79	67.61	16.40		150.0	
		Z	5.71	67.82	16.52		150.0	[
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	2.53	76.75	18.53	0.00	115.0	± 9.6 %
		Y	1.47	67.51	13.90		115.0	
		Z	1.65	70.41	15.02		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	2.53	76.75	18.53	0.00	115.0	± 9.6 %
		Y	1.47	67.51	13.90		115.0	
40400		Z	1.65	70.41	15.02		115.0	
10406- AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	100.00	121.33	30.70	0.00	100.0	± 9.6 %
		Y	17.68	98.28	25.62		100.0	
10410-		Z	100.00	119.36	29.52	0.00	100.0	
AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	×	100.00	117.12	29.14	3.23	80.0	± 9.6 %
		Y	100.00	119.43	30.56		80.0	
40445		Z	100.00	119.33	29.99	-	80.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	×	1.05	64.70	16.09	0.00	150.0	± 9.6 %
		Y	0.96	62.34	13.96		150.0	
10110		Z	1.00	63.43	14.88		150.0	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	4.70	67.17	16.53	0.00	150.0	± 9.6 %
		Y	4.65	66.53	16.09		150.0	
		Z	4.59	66.90	16.28		150.0	
10417- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.70	67.17	16.53	0.00	150.0	± 9.6 %
		Y	4.65	66.53	16.09		150.0	
40440		Z	4.59	66.90	16.28		150.0	
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	×	4.69	67.33	16.54	0.00	150.0	± 9.6 %
		Y	4.64	66.65	16.08		150.0	
		Z	4.57	67.05	16.29		150.0	
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	×	4.71	67.28	16.55	0.00	150.0	± 9.6 %
		Y	4.66	66.62	16.10		150.0	
		Z	4.60	67.00	16.30		150.0	
10422- AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.83	67.27	16.55	0.00	150.0	±9.6 %
		Y	4.79	66.64	16.13		150.0	
40400		Z	4.72	67.01	16.31		150.0	
10423- AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	5.04	67.66	16.69	0.00	150.0	± 9.6 %
		Y	5.01	67.04	16.28	ļ	150.0	
10404		Z	4.90	67.36	16.44		150.0	
10424- AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.95	67.60	16.66	0.00	150.0	± 9.6 %
		Y Z	4.91	66.97	16.23		150.0	
10425- AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	4.82 5.50	67.30 67.84	16.41 16.74	0.00	150.0 150.0	± 9.6 %
		Y	5.49	67.38	16.43		150.0	
		Ż	5.41	67.63	16.57		150.0	<u> </u>
10426- AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.52	67.88	16.76	0.00	150.0	± 9.6 %
		Y	5.51	67.41	16.44		150.0	
		Z	5.41	67.63	16.57		150.0	

10427-	IEEE 802.11n (HT Greenfield, 150 Mbps,	X	5.54	67.91	16.77	0.00	150.0	± 9.6 %
AAB	64-QAM)	Y	5 50	67.40	10.44		150.0	
	· · · · · · · · · · · · · · · · · · ·		5.52	67.43 67.62	16.44 16.56		150.0	
10430-	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	Z X	<u>5,42</u> 4.52	71.31	18.76	0.00	150.0	± 9.6 %
AAD						0.00		±9.0 %
		Y	4.32	69.77	17.85		150.0	
		Z	4.28	70.66	18.14		150.0	
10431- AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.46	67.83	16.68	0.00	150.0	±9.6 %
		Y	4.39	67.02	16.13		150.0	
		Z	4.30	67.47	16.32		150.0	
10432- AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	×	4.74	67.68	16.66	0.00	150.0	± 9.6 %
		Y	4.69	66.98	16.18		150.0	
		Z	4.59	67.35	16.37		150.0	
10433- AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.97	67.65	16.69	0.00	150.0	± 9.6 %
		Y	4.93	67.02	16.26		150.0	
		Z	4.83	67.34	16.43		150.0	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.66	72.23	18.86	0.00	150.0	±9.6 %
		Y	4,38	70.37	17.81		150.0	
		Z	4.38	71.47	18.13		150.0	
10435- AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	116.95	29.06	3.23	80.0	± 9.6 %
		Y	100.00	119.28	30.50		80.0	
		Z	100.00	119.16	29.91		80.0	
10447- AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.81	68.11	16.36	0.00	150.0	± 9.6 %
		Y	3.69	66.93	15.60		150.0	
		Z	3.61	67.54	15.77		150.0	
10448- AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	4.28	67.62	16.54	0.00	150.0	±9.6 %
		Y	4.20	66.78	15.97		150.0	
		Z	4.13	67.25	16.18		150.0	
10449- AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	X	4.52	67.52	16.57	0.00	150.0	± 9.6 %
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Y	4.46	66.78	16.07		150.0	[
		Z	4.39	67.18	16.27		150.0	
10450- AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.69	67.43	16.56	0.00	150.0	± 9.6 %
/ 0 10		Υ	4.64	66.74	16.10		150.0	
		Z	4.58	67.10	16.28		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	3.77	68.52	16.20	0.00	150.0	± 9.6 %
		Y	3.62	67.16	15.35		150.0	
		Ż	3.52	67.79	15.46		150.0	[
10456- AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6,36	68.45	16.90	0.00	150.0	± 9.6 %
<u> </u>		Y	6.35	68.04	16.63	1	150.0	
		Ż	6.26	68.19	16.72		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	3.87	65.81	16.29	0.00	150.0	± 9.6 %
	····	Y	3.82	65.17	15.81		150.0	
		Z	3.80	65.53	16.00		150.0	
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	4.22	71.17	18.26	0.00	150.0	± 9.6 %
		Y	3.94	69.22	17.15		150.0	
		Ż	4.01	70.71	17.59	1	150.0	
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	5.26	68.17	18.33	0.00	150.0	± 9.6 %
1001		Y	5.16	67.29	17.83	1	150.0	1
		Ż	5.10	68.13	18.06		150.0	-

10460- AAA	UMTS-FDD (WCDMA, AMR)	X	1.33	76.50	20.68	0.00	150.0	± 9.6 %
		Y Z	0.81	66.18 69.86	14.61 16.92		150.0 150.0	
10461- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	120.53	30.78	3.29	80.0	± 9.6 %
		Y	100.00	120.99	31.37		80.0	
		Z	100.00	124.03	32.20		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	105.89	23.78	3.23	80.0	± 9.6 %
		Y	68.65	104.80	24.72		80.0	
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Z X	100.00 34.22	107.80 92.48	24.46 19.99	3.23	80.0 80.0	± 9.6 %
		Y	20.78	89.39	20.30		80.0	
		Z	100.00	104.65	22,95		80.0	
10464- AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	118.59	29.74	3.23	80.0	± 9.6 %
·····		Y	100.00	119.30	30.44		80.0	
		Ż	100.00	122.02	31.12		80.0	
10465- AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	105.43	23.55	3.23	80.0	± 9.6 %
		Y	36.42	97.15	22.76		80.0	
		Z	100.00	107.28	24.20		80.0	
10466- AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	17.89	85,74	18.15	3.23	80.0	± 9.6 %
		Y	13.99	84.78	18.93		80.0	
		Z	100.00	104.18	22.73		80.0	
10467- AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	100.00	118.79	29.83	3.23	80.0	±9.6 %
		Y	100.00	119.47	30.52		80.0	
10.100		Z	100.00	122.25	31.22		80.0	
10468- AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	×	100.00	105.55	23.61	3.23	80.0	± 9.6 %
·····		Y	42.04	98.90	23.22		80.0	
10469-		Z	100.00	107.44	24.27		80.0	
AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	18.42	86.04	18.22	3.23	80.0	± 9.6 %
		Y	14.20	84.95	18.97		80.0	
10470-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	Z	100.00	104.18	22.73		80.0	
AAE	QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	118.81	29.83	3.23	80.0	± 9.6 %
		<u> </u>	100.00	119.49	30.52		80.0	
10471- AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Z X	100.00 100.00	122.27 105.50	31.22 23.58	3.23	80.0 80.0	± 9,6 %
	······································	Y	42.06	98.87	23.20		80.0	
		Z	100.00	107.39	24.25		80.0	
10472- AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	18.24	85.92	18.18	3.23	80.0	±9.6 %
		Y	14.18	84.92	18.95		80.0	5 ¹
10470		Z	100.00	104.13	22.70		80.0	
10473- AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	118.78	29.81	3.23	80.0	±9.6 %
•		Y	100.00	119.47	30.51		80.0	
10474- AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Z X	100.00 100.00	122.24 105.51	31.21 23.58	3.23	80.0 80.0	±9.6 %
	a, oe odbitanio-2,0,+,7,0,8)	Y	41.44	98.71	23.16	···	80.0	
		Z	100.00	107.39	23.16		80.0	
10475- AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	18.00	85.79		3.23	80.0	±9.6 %
AAE	1 - 1	Y	14.03	84.82	18.92			
		1 1	[4.0.5	04.87	ו לפאר ו		80.0	

10477- AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	x	100.00	105.36	23.51	3.23	80.0	± 9.6 %
		Y	37.47	97.45	22.82		80.0	
		Z	100.00	107.23	24.17		80.0	
10478- AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	Х	17.45	85.46	18.04	3.23	80.0	± 9.6 %
		Y	13.87	84.66	18.87		80.0	
		Z	100.00	104.09	22.68		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	19.39	97.98	26.98	3.23	80.0	±9.6 %
		Y	9.97	87.11	23.93		80.0	
		Ζ	31.86	106.57	29.32		80.0	
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	21.21	93.58	24.05	3.23	80.0	±9.6 %
		Y	10.89	84.18	21.64		80.0	
		Ζ	36.29	101.38	25.98		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	17.21	89.86	22.63	3.23	80.0	± 9.6 %
		Y	9.94	82.29	20.73		80.0	
		Z	25.83	95.66	24.06		80.0	
10482- AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.29	82.03	20.94	2.23	80.0	± 9.6 %
		Y	4.92	75.71	18.70		80.0	
		Z	6.76	81.31	20.47		80.0	
10483- AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	10.85	84.57	21.63	2.23	80.0	± 9.6 %
		Y	7.87	79.68	20.28		80.0	
		Z	11.75	85.89	21.77		80.0	
10484- AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	9.90	83.05	21.15	2.23	80.0	± 9.6 %
		Y	7.49	78.74	19.95		80.0	
		Z	10.27	83.81	21.11		80.0	
10485- AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.24	82.21	21.64	2.23	80.0	± 9.6 %
		Y	5.20	76.44	19.53		80.0	
		Z	6.79	81.80	21.44		80.0	
10486- AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.34	74.77	18.72	2.23	80.0	± 9.6 %
		Y	4.58	71.87	17.58		80.0	
		Z	5.06	74.40	18.37		80.0	
10487- AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.26	74.21	18.50	2.23	80.0	± 9.6 %
		Y	4.59	71.54	17.46		80.0	
		Z	4.97	73.79	18.13		80.0	
10488- AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.65	79.53	21.12	2.23	80.0	± 9.6 %
		Y	5.36	75.42	19.52		80.0	
		Z.	6.19	79.05	21.03		80.0	
10489- AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.18	73.29	18.99	2.23	80.0	± 9.6 %
		Y	4.74	71.24	18.12		80.0	
		Z	4.94	73.02	18.87		80.0	
10490- AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.20	72.84	18.84	2.23	80.0	± 9.6 %
		Y	4.81	70.96	18.04		80.0	
		Z	4.98	72.63	18.73		80.0	
10491- AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.09	76.27	20.02	2.23	80.0	± 9.6 %
		Y	5.32	73.47	18.88		80.0	
		Z	5.74	75.88	19.98		80.0	
10492- AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.29	71.86	18.63	2.23	80.0	± 9.6 %
		Y	5.01	70.36	17.98		80.0	
		Z	5.08	71.61	18.56	1	80.0	

40.400					·····			
10493- AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.33	71.59	18.55	2.23	80.0	± 9.6 %
		Y	5.07	70.18	17.93		80.0	1
		Z	5.12	71.37	18.48		80,0	1
10494- AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	7.00	78.56	20.67	2,23	80.0	± 9.6 %
		Y	5.85	75.11	19.32		80.0	
		Z	6.51	77.97	20.58		80.0	-
10495- AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.43	72.52	18.88	2.23	80.0	± 9.6 %
		Y	5.10	70.90	18.18		80.0	
		Z	5.18	72.18	18.80	v.,	80.0	
10496- AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.43	71.99	18.72	2.23	80.0	± 9.6 %
		Y	5.15	70.54	18.08		80.0	
		Z	5.20	71.70	18.65		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.92	78.88	19.20	2.23	80.0	± 9.6 %
		Y	4.08	73.19	17.18		80.0	
		Z	5.11	76.97	18.12		80.0	1
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.00	70.80	15.33	2.23	80.0	± 9.6 %
		Y	3.45	68.39	14.47		80.0	
		Z	3.24	68.34	13.80		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.89	70.09	14.92	2.23	80.0	± 9.6 %
		Y	3.42	67.98	14.18		80.0	
		Z	3.10	67.51	13.31		80.0	-
10500- AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.64	80.28	21.17	2.23	80.0	±9.6 %
		Y	5.11	75.52	19.37		80.0	
		Z	6.26	79.98	21.06		80.0	
10501- AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.23	73.99	18.74	2.23	80.0	± 9.6 %
		Y	4.64	71.50	17.74		80.0	
		Z	4.99	73.73	18.51		80.0	
10502- AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Х	5.24	73.65	18.58	2.23	80.0	±9.6%
		Y	4.68	71.29	17.63		80.0	
		Z	5.01	73.41	18.34		80.0	
10503- AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.55	79.28	21.02	2.23	80.0	± 9.6 %
		Y	5.29	75.23	19.44		80.0	
		Z	6.10	78.82	20.93		80.0	
10504- AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.15	73.20	18.93	2.23	80.0	± 9.6 %
		Y	4.72	71.16	18.07		80.0	
1		Z	4.91	72.93	18.81		80.0	
10505- AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.17	72.74	18.78	2.23	80.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	4.79	70.88	17.99		80.0	
10705		Z	4.95	72,53	18.68		80.0	
10506- AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.92	78.38	20.59	2.23	80.0	± 9.6 %
		Y	5.80	74.97	19.25		80.0	
10-0-		Z	6.45	77.80	20.51		80.0	
10507- AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.40	72.45	18.84	2.23	80.0	± 9.6 %
		Y	5.08	70.84	18.14		80.0	[

10508- AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.41	71.92	18.67	2.23	80.0	± 9.6 %
		Y	5.13	70.47	18.04		80.0	
		Z	5.18	71.63	18.60		80.0	
10509- AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.58	75.63	19.59	2.23	80.0	±9.6 %
		Y	5.87	73.25	18.62		80.0	
		Z	6.22	75.16	19.53		80.0	
10510- AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.77	71.69	18.60	2.23	80.0	± 9.6 %
		Y	5.53	70.43	18.05		80.0	
		Z	5.54	71.36	18.54		80.0	
10511- AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.76	71.27	18.48	2.23	80.0	± 9.6 %
		Y	5.55	70.11	17.98		80.0	
		Z	5.55	70.97	18.43		80,0	
10512- AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.41	78.14	20.36	2.23	80.0	±9.6 %
		Y	6.29	75.00	19.14		80.0	
		Z	6.91	77.49	20.25		80.0	
10513- AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	5.76	72.30	18.82	2.23	80.0	± 9.6 %
		Y	5.46	70.89	18.20		80.0	
		Z	5.50	71.88	18.73		80.0	
10514- AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.67	71.64	18.62	2.23	80.0	± 9.6 %
		Y	5.42	70.37	18.07		80.0	
		Z	5.44	71.27	18.55		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	1.02	65.05	16.27	0.00	150.0	± 9.6 %
		Y	0.92	62.47	13.97		150.0	
		Z	0.96	63.65	14.96		150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	2.27	97.97	29.12	0.00	150.0	± 9.6 %
		Y	0.48	66.91	14.54		150.0	
10515		Z	0.71	74.58	19.09	0.00	150.0	
10517- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.95	69.11	18.10	0.00	150.0 150.0	± 9.6 %
		Y Z	0.76	63.96	14.22	<b> </b>	150.0	
10518- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	<u>0.83</u> 4.70	<u>66.01</u> 67.26	<u>15.81</u> 16.52	0.00	150.0	± 9.6 %
		Y	4.65	66.61	16.07		150.0	
		Z	4.58	66.98	16.26		150.0	
10519- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.92	67.55	16.65	0.00	150.0	± 9.6 %
		Y	4.88	66.92	16.23	L	150.0	
		Z	4.78	67.24	16.39		150.0	
10520- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.77	67.56	16.60	0.00	150.0	± 9.6 %
		Y	4.73	66.89	16.14		150.0	
10521- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	Z X	<u>4.63</u> 4.71	67.21 67.58	16.32 16.60	0.00	150.0 150.0	± 9.6 %
		Y	4.66	66.89	16.12	1	150.0	
		Z	4.57	67.22	16.30		150.0	
10522- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.75	67.52	16.61	0.00	150.0	± 9.6 %
		Y	4.70	66.83	16.14		150.0	
		Z	4,62	67.26	16.37		150.0	

					,		r	
10523- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.62	67.46	16.49	0.00	150.0	± 9.6 %
		Y	4.57	66.74	16.00		150.0	
		Z	4.50	67.13	16.21		150.0	
10524- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.70	67.49	16.61	0.00	150.0	± 9.6 %
		Y	4.65	66.81	16.14		150.0	
		Z	4.57	67.19	16.34		150.0	
10525- AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	4.66	66.53	16.20	0.00	150.0	±9.6 %
		Y	4.60	65.83	15.72		150.0	
		Z	4.54	66.22	15.93		150.0	
10526- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.87	66.95	16.34	0.00	150.0	± 9.6 %
		Y	4.81	66.24	15.87		150.0	
		Z	4.73	66.61	16.08		150.0	
10527- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.78	66.94	16.31	0.00	150.0	± 9.6 %
		Y	4.72	66.21	15.82		150.0	
		Z	4.64	66.58	16.02		150.0	
10528- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.80	66.96	16.34	0.00	150.0	± 9.6 %
		Y	4.74	66.23	15.85		150.0	
		Z	4.66	66.60	16.06		150.0	
10529- AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.80	66.96	16.34	0.00	150.0	± 9.6 %
		Y	4.74	66.23	15.85		150,0	
		Z	4.66	66.60	16.06		150.0	
10531- AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.82	67.12	16.37	0.00	150.0	± 9.6 %
		Y	4.76	66.38	15.88		150.0	
		Ż	4,66	66.73	16.08		150.0	
10532- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.67	67.01	16.33	0.00	150.0	± 9.6 %
		Y	4.60	66.25	15.82	··	150.0	
		Z	4.52	66.59	16.02		150.0	
10533- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.82	66.98	16.32	0.00	150.0	± 9.6 %
		Y	4.75	66.24	15.83		150.0	
		Z	4.67	66.63	16.04		150.0	
10534- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.30	67.05	16.34	0.00	150.0	± 9.6 %
		Y	5.26	66.45	15.95		150.0	h
		z	5.18	66.72	16.10		150.0	
10535- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.37	67.19	16.39	0.00	150.0	± 9.6 %
		Y	5.33	66.59	16.00	-	150.0	
		Z	5.25	66.87	16.17		150.0	
10536- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.25	67.20	16.39	0.00	150.0	±9.6 %
		Y	5.19	66.57	15.97		150.0	
		Z	5.12	66.85	16.14		150.0	
10537- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.31	67.16	16.37	0.00	150.0	± 9.6 %
		Y	5.26	66.55	15.97		150.0	
		Z	5.18	66.81	16.12		150.0	
10538- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	Х	5.42	67.22	16.43	0.00	150.0	±9.6 %
		Y	5.38	66.65	16.06		150.0	
		Z	5.28	66.86	16.19		150.0	
10540- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.32	67.17	16.43	0.00	150.0	±9.6 %
		Y	5.28	66.57	16.03	1	150.0	
		Z	5.20	66.84	16.19		150.0	
			0.20	00101	1 10.10	1	1 100.0	1

10541- AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	5.31	67.10	16.39	0.00	150.0	± 9.6 %
		TY T	5.26	66.51	16.00		150.0	
		z	5.17	66.72	16.13		150.0	
10542- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.45	67.10	16.40	0.00	150.0	±9.6 %
		Y	5.41	66.53	16.03		150.0	
		Z	5.33	66.78	16.17		150.0	
10543- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.54	67.11	16.42	0.00	150.0	±9.6 %
		Y	5.50	66.55	16.05		150.0	
		Z	5.41	66.81	16.20		150.0	······································
10544- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.58	67.14	16.31	0.00	150.0	±9.6 %
		Y	5.53	66.57	15.94		150.0	
		Z	5.48	66.82	16.09		150.0	
10545- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.78	67.52	16.44	0.00	150.0	± 9.6 %
		Y	5.75	66.98	16.08		150.0	
		Z	5.68	67.24	16.24		150.0	
10546- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.68	67.44	16.42	0.00	150.0	± 9.6 %
		Y	5.63	66.87	16.05		150.0	
		Z	5.56	67.08	16.18		150.0	
10547- AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.77	67.50	16.44	0.00	150.0	± 9.6 %
		Y	5.72	66.94	16.07		150.0	
		Z	5.64	67.14	16.20		150.0	
10548- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	6.03	68.45	16.88	0.00	150.0	± 9.6 %
		Y	6.07	68.12	16.63		150.0	
		Z	5.92	68.14	16.67		150.0	
10550- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.70	67.38	16.39	0.00	150.0	± 9.6 %
		Y	5.65	66.81	16.02		150.0	
		Z	5.58	67.05	16.17		150.0	
10551- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.71	67.48	16.40	0.00	150.0	± 9.6 %
		Y	5.68	66.94	16.05		150.0	
		Z	5.59	67.11	16.16		150.0	
10552- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.61	67.24	16.31	0.00	150.0	± 9.6 %
		Y	5.57	66.68	15.94		150.0	
		Z	5.50	66.90	16.07		150.0	
10553- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.71	67.29	16.35	0.00	150.0	± 9.6 %
		Y	5.66	66.72	15.98		150.0	
		Z	5.59	66.95	16.12		150.0	ļ
10554- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.97	67.50	16.39	0.00	150.0	± 9.6 %
		Y	5.93	66.97	16.05		150.0	ļ
		Z	5.88	67.19	16.18		150.0	
10555- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.13	67.85	16.53	0.00	150.0	± 9.6 %
		Y	6.09	67.34	16.20		150.0	
		Z	6.02	67.50	16.31	<u> </u>	150.0	
10556- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.13	67.85	16.53	0.00	150.0	± 9.6 %
		Y	6.09	67.32	16.19		150.0	.
		Z	6.04	67.54	16.32		150.0	
10557- AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	6.12	67.82	16.54	0.00	150.0	± 9.6 %
		Y	6.09	67.31	16.21		150.0	
		Z	6.01	67.47	16.31		150.0	1

10558- AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.18	68.01	16.64	0.00	150.0	± 9.6 %
		Y	6.16	67.51	16.32		150.0	
		Ż	6.06	67.65	16.41	İ	150.0	
10560- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	6.18	67.85	16.60	0.00	150.0	± 9.6 %
		Y	6.14	67.33	16.27		150.0	
		Z	6.06	67.49	16.37		150.0	
10561- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	6.09	67.79	16.61	0.00	150.0	± 9.6 %
		Y	6.05	67.28	16.28		150.0	
		Z	5.98	67.45	16.39		150.0	
10562- AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.24	68.26	16.85	0.00	150.0	± 9.6 %
		Y	6.23	67.81	16.55		150.0	
		Z	6.12	67.89	16.61		150.0	
10563- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	6.53	68.65	16.98	0.00	150.0	± 9.6 %
		Y	6.51	68.18	16.68		150.0	
1055		Z	6.46	68.48	16.85		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	5.03	67.33	16.65	0.46	150.0	± 9.6 %
		Y	5.00	66.77	16.28		150.0	
		Z	4.92	67.10	16.44		150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	X	5.29	67.82	16.98	0.46	150.0	± 9.6 %
		Y	5.27	67.28	16.62		150.0	
		Z	5.16	67.55	16.76		150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	5.13	67.71	16.82	0.46	150.0	± 9.6 %
		Y	5.10	67.14	16.44		150.0	
		Z	5.00	67.42	16.59		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	5.16	68.12	17.17	0.46	150.0	± 9.6 %
		Y	5.12	67.51	16.77		150.0	
		Z	5.02	67.79	16.92		150.0	
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	X	5.03	67.41	16.55	0.46	150.0	± 9.6 %
		Y	5.01	66.85	16.18		150.0	
		Z	4.92	67.21	16.38		150.0	
10569- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	5.10	68.15	17.20	0.46	150.0	± 9.6 %
		Y	5.06	67.52	16.78		150.0	
		Z	4.97	67.85	16.96		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	5.14	67.95	17.12	0.46	150.0	±9.6 %
		Y	5.10	67.36	16.72		150.0	
		Z	5.01	67.70	16.91		150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.44	68.10	17.64	0.46	130.0	±9.6 %
		Y	1.29	65.22	15.55		130.0	
		Z	1.34	66.59	16.56		130.0	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.48	69.02	18.14	0.46	130.0	±9.6 %
		Y	1.31	65.80	15.88		130.0	
		Z	1.37	67.32	16.97		130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	100,00	147.85	39.47	0.46	130.0	±9.6 %
		Y	2.24	82.28	20.72		130.0	
		Z	17.41	116.36	31.42		130.0	
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	2.28	80.74	23.27	0.46	130.0	±9.6 %
		Y	1.50	71.42	18.45		130.0	
		Z	1.74	75.30	20.61		130.0	

October 22, 2018

10575- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 90pc duty cycle)	X	4.83	67.17	16.72	0.46	130.0	±9.6 %
•		Y	4.82	66.65	16.39		130.0	·
		Z	4.74	66.99	16.56		130.0	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	4.86	67.33	16.79	0.46	130.0	±9.6 %
		Y	4.85	66.81	16.45		130.0	
		Z	4.77	67.14	16.61		130.0	
10577- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	5.10	67.66	16.96	0.46	130.0	± 9.6 %
		Y	5.09	67.16	16.64		130.0	
		Z	4.98	67.44	16.78		130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	X	5.00	67.86	17.08	0.46	130.0	±9.6 %
		Y	4.98	67.32	16.73		130.0	
		Z	4.88	67.61	16.88		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.77	67.23	16.44	0.46	130.0	±9.6 %
		Υ	4.76	66.70	16.10		130.0	
		Z	4.66	66.98	16.25		130.0	
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	4.81	67.17	16.42	0.46	130.0	± 9.6 %
		Y	4.81	66.65	16.08		130.0	
		Z	4.70	66.98	16.26		130.0	
10581- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 90pc duty cycle)	X	4.91	67.97	17.05	0.46	130.0	±9.6 %
		Y	4.89	67.40	16.68		130.0	
		Z	4.78	67.68	16.84		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	X	4.72	66.95	16.22	0.46	130.0	±9.6 %
		Y	4.72	66.45	15.89		130.0	
		Z	4.61	66.75	16.05		130.0	
10583- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.83	67.17	16.72	0.46	130.0	± 9.6 %
		Y	4.82	66.65	16.39		130.0	
		Z	4.74	66.99	16.56		130.0	
10584- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.86	67.33	16.79	0.46	130.0	± 9.6 %
		Y	4.85	66.81	16.45		130.0	
		Z	4.77	67.14	16.61		130.0	
10585- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	5.10	67.66	16.96	0.46	130.0	± 9.6 %
		Y	5.09	67.16	16.64		130.0	
		Z	4.98	67.44	16.78		130.0	
10586- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	5.00	67.86	17.08	0.46	130.0	± 9.6 %
		Y	4.98	67.32	16.73		130.0	
		Z	4.88	67.61	16.88		130.0	
10587- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.77	67.23	16.44	0.46	130.0	± 9.6 %
		Y	4.76	66.70	16.10		130.0	
		Z	4.66	66.98	16.25		130.0	
10588- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.81	67.17	16.42	0.46	130.0	± 9.6 %
		Y	4.81	66.65	16.08		130.0	
		Z	4.70	66.98	16.26		130.0	
10589- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.91	67.97	17.05	0.46	130.0	± 9.6 %
		Y	4.89	67.40	16.68		130.0	
		Z	4.78	67.68	16.84		130.0	
10590- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.72	66.95	16.22	0.46	130.0	± 9.6 %
		Y	4.72	66.45	15.89		130.0	

.

10591- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	4.98	67.21	16.80	0.46	130.0	±9.6 %
		Y	4.97	66.72	16.49		130.0	
		Z	4.89	67.03	16.64		130.0	
10592- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.16	67.56	16.92	0.46	130.0	± 9.6 %
		Y	5.15	67.07	16.61		130.0	
		Z	5.05	67.37	16.77		130.0	
10593- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	Х	5.09	67.52	16.84	0.46	130.0	± 9.6 %
		Y	5.09	67.03	16.52		130.0	
		Z	4.98	67.31	16.67		130.0	
10594- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	5.14	67.66	16.97	0.46	130.0	± 9.6 %
		Y	5.13	67.17	16.66		130.0	
		Z	5.03	67.46	16.81		130.0	
10595- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	5.12	67.64	16.89	0.46	130.0	± 9.6 %
		Y	5.12	67.15	16.57		130.0	
		Z	5.00	67.42	16.71		130.0	l
10596- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	5.06	67.64	16.89	0.46	130.0	± 9.6 %
		Y	5.05	67.13	16.56		130.0	
		Z	4.94	67.43	16.72	ĺ	130.0	1
10597- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	5.01	67.59	16.80	0.46	130.0	±9.6 %
		Y	5.00	67.08	16.47		130.0	
		Z	4.89	67.36	16.62		130.0	
10598- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	5.00	67.87	17.08	0.46	130.0	± 9.6 %
		Y	4.98	67.33	16.73		130.0	l
		Z	4.87	67.59	16.87		130.0	
10599- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.63	67.75	16.95	0.46	130.0	± 9.6 %
		Y	5.64	67.37	16.71		130.0	<u>†</u>
		Z	5.54	67.56	16.82		130.0	
10600- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.83	68.33	17.20	0.46	130.0	± 9.6 %
		Y	5.90	68.12	17.06		130.0	<u> </u>
		Z	5.71	68.07	17.05		130.0	
10601- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.69	67.99	17.05	0.46	130.0	± 9.6 %
		Y	5.72	67.66	16.84		130.0	
		Z	5.58	67.77	16.91		130.0	[
10602- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.78	67.98	16.97	0.46	130.0	± 9.6 %
		Y	5.82	67.70	16.78		130.0	
	· · · ·	Z	5.67	67.76	16.83		130.0	
10603- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.89	68.37	17.29	0.46	130.0	± 9.6 %
		Y	5.93	68.09	17.10		130.0	
		Z	5.76	68.08	17.11		130.0	
10604- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.64	67.73	16.96	0.46	130.0	± 9.6 %
		Y	5.66	67.36	16.73		130.0	
		Z	5.55	67.52	16.82		130.0	
10605- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.74	67.99	17.09	0.46	130.0	±9.6%
		Y	5.77	67.65	16.87		130.0	}
		Z	5.66	67.85	16.99		130.0	1
10606- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.53	67.51	16.73	0.46	130.0	± 9.6 %
AAB							•	
		Y	5.54	67.14	16.49		130.0	

10607-	IEEE 802.11ac WiFi (20MHz, MCS0,	X	4.82	66.53	16.43	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)	Y	1 70	65.07	16.07		120.0	
		Z	<u>4.79</u> 4.72	65.97 66.33	16.07 16.26		130.0 130.0	
10608- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	5.04	66.97	16.59	0.46	130.0	± 9.6 %
		Y	5.01	66.40	16.23		130.0	
		Z	4.92	66.75	16.42		130.0	
10609- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.93	66.86	16.46	0.46	130.0	±9.6 %
		Y	4,90	66.28	16.10		130.0	
10610- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	Z X	4.81 4.98	66.62 67.02	16.28 16.62	0.46	130.0 130.0	± 9.6 %
		Y	4.96	66.44	16.25		130.0	
		Z	4.86	66.77	16.43		130.0	
10611- AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	4.90	66.85	16.48	0.46	130.0	± 9.6 %
		Y	4.88	66.29	16.12		130.0	
10010		Z	4.78	66.60	16.29		130.0	
10612- AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	4.92	67.00	16.52	0.46	130.0	± 9.6 %
		Y	4.90	66.42	16.15		130.0	
10613-	IEEE 802.11ac WiFi (20MHz, MCS6,	ZX	4.80 4.94	66.76 66.93	16.34 16.43	0.46	130.0 130.0	± 9.6 %
AAB	90pc duty cycle)	^ Y	4.94	66.35	16.43	0.40	130.0	±9.0 %
		Z	4.91	66.67	16.06		130.0	
10614- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	4.87	67.14	16.68	0.46	130.0	± 9.6 %
		Υ	4.84	66.54	16.29		130.0	
ò		Z	4.74	66.84	16.45		130.0	
10615- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.90	66.65	16.25	0.46	130.0	± 9.6 %
		Y	4,88	66.09	15.90		130.0	
	· · · · · · · · · · · · · · · · · · ·	Z	4,79	66.44	16.08		130.0	
10616- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.46	67.05	16.59	0.46	130.0	± 9.6 %
		Y	5.45	66.60	16.30		130.0	
10617-	IEEE 802.11ac WiFi (40MHz, MCS1,	Z X	5.36 5.52	66.82 67.16	16.44 16.60	0.46	130.0 130.0	± 9.6 %
AAB	90pc duty cycle)	Y	5.52	66.71	16.32		130.0	
		Z	5.42	66.95	16.32	1	130.0	
10618- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.42	67.26	16.68	0.46	130.0	± 9.6 %
	*** {*********************************	Y	5.41	66.77	16.37		130.0	
		Z	5.32	67.01	16.51		130.0	
10619- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	Х	5.44	67.06	16.51	0.46	130.0	± 9.6 %
		<u>Y</u>	5.43	66.58	16.21		130.0	
40000		Z	5.34	66.85	16.37	0.10	130.0	
10620- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.56	67.16	16.61	0.46	130.0	± 9.6 %
······		Y 7	5.56	66.73	16.34		130.0	
10621- AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	Z X	5.44 5.53	66.90 67.24	16.45 16.76	0.46	130.0 130.0	± 9.6 %
~~D		Y	5.52	66.78	16.47	+	130.0	
		Z	5.42	66.97	16.59		130.0	
10622- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.53	67.34	16.81	0.46	130.0	± 9.6 %
		Y	5.52	66.87	16.51	<u>†</u>	130.0	
		Ż	5.43	67.11	16.66	1	130.0	

October 22, 2018

.

10623- AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	X	5.42	66.95	16.50	0.46	130.0	± 9.6 %
		Y	5.42	66.51	16.22		130.0	
		Z	5.31	66.68	16.33		130.0	
10624- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	5.60	67.07	16.62	0.46	130.0	± 9,6 %
		Y	5.60	66.64	16.35		130.0	
		Z	5.51	66.87	16.48		130.0	
10625- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	5.97	68.00	17.12	0.46	130.0	± 9.6 %
		Y	6.00	67.65	16.90		130.0	
		Z	5.91	67.94	17.06		130.0	
10626- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.71	67.08	16.51	0.46	130.0	± 9.6 %
		Y	5.70	66.63	16.24		130.0	
	N	Z	5.64	66.86	16.37		130.0	
10627- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	5.96	67.58	16.71	0.46	130.0	± 9.6 %
		Y	5.96	67.18	16.47		130.0	
		Z	5.89	67.42	16.61		130.0	
10628- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.78	67.26	16.49	0.46	130.0	± 9.6 %
		Y	5.78	66.83	16.23		130.0	
10555		Z	5.69	67.01	16.35		130.0	
10629- 	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	Х	5.87	67.32	16.51	0.46	130.0	± 9.6 %
		Y	5.88	66.93	16.27		130.0	
		Z	5.78	67.09	16.38		130.0	
10630- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	X	6.37	68.98	17.34	0.46	130.0	± 9.6 %
		Y	6.50	68.90	17.25		130.0	
		Z	6.28	68.77	17.22		130.0	
10631- AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	6.28	68.81	17.44	0.46	130.0	±9.6 %
		Y	6.32	68.50	17.24		130.0	
		Z	6.15	68.46	17.24		130.0	
10632- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	×	5.95	67.71	16.91	0.46	130.0	± 9.6 %
		Y	5.94	67.27	16.65		130.0	
		Z	5.85	67.45	16.76		130.0	
10633- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.89	67.53	16.65	0.46	130.0	± 9.6 %
		Y	5.90	67.16	16.42		130.0	
		Z	5.76	67.17	16.45		130.0	
10634- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.86	67.52	16.71	0.46	130.0	± 9.6 %
		Y	5.87	67.11	16,46		130.0	<u> </u>
		Z	5.74	67.18	16.52		130.0	
10635- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.74	66.83	16.11	0.46	130.0	± 9.6 %
		Y	5.74	66.43	15.86		130.0	
		Z	5.63	66.58	15.96		130.0	
10636- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	Х	6.11	67.45	16.59	0.46	130.0	±9.6 %
		Y	6.11	67.04	16.35		130.0	
		Z	6.05	67.24	16.46		130.0	
10637- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.29	67.85	16.76	0.46	130.0	± 9.6 %
		Y	6.30	67.47	16.54		130.0	
		Z	6.21	67.62	16.63		130,0	
10638- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.28	67.80	16.72	0.46	130.0	± 9.6 %
AAC						•		
		Y	6.28	67.40	16.49		130.0	

10639- AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	6.29	67.84	16.79	0.46	130.0	± 9.6 %
		Y	0.00					
			6.29	67.45	16.56	ļ	130.0	
10640-	IEEE 802.11ac WiFi (160MHz, MCS4,	X	6.20 6.31	67.57	16.63	0.40	130.0	
AAC	90pc duty cycle)			67.90	16.76	0.46	130.0	± 9.6 %
		Y	6.33	67.56	16.55		130.0	
10641-		Z	6.21	67.63	16.61	ļ	130.0	
AAC 90	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.30	67.63	16.64	0.46	130.0	± 9.6 %
		Y	6.31	67.25	16.42		130.0	
10642-		Z	6.23	67.43	16.53		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.38	68.00	16.99	0.46	130.0	± 9.6 %
		Y	6.38	67.59	16.75		130.0	
10010		Z	6.28	67.72	16.83		130.0	
10643- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.20	67.66	16.73	0.46	130.0	± 9.6 %
		Y	6.21	67.28	16.50		130.0	
		Z	6.12	67.42	16.59	<b></b>	130.0	
10644- I AAC §	IEEE 802.11ac WIFi (160MHz, MCS8, 90pc duty cycle)	X	6.43	68.34	17.09	0.46	130.0	± 9.6 %
·····		Y	6.47	68.05	16.91		130.0	
		Z	6.32	68.03	16.92		130.0	
10645- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.73	68.76	17.24	0.46	130.0	± 9.6 %
		Y	6.75	68.40	17.03		130.0	
		Z	6.77	68.92	17.31		130.0	
10646- AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	30.32	110.51	35.84	9.30	60.0	± 9.6 %
		Y	21.24	102.23	33.62		60.0	
		Ż	57.15	128.16	41.75		60.0	
10647- AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	31.53	112.13	36.44	9.30	60.0	±9.6 %
		Y	21.67	103.39	34.10		60.0	
		Z	60.26	130.33	42.49	·	60.0	
10648-	CDMA2000 (1x Advanced)	X	1.02	68.95	14.63	0.00	150.0	± 9.6 %
AAA		Y				0.00		19.0 %
		Z	0.73 0.74	63.24	10.94		150.0	
10652- AAD	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	4.61	64.50 69.49	11.46 17.77	2.23	150.0 80.0	± 9.6 %
		Y	4.42	68.17	17.13		80.0	
		Z	4.44	69.19	17.56		80.0	
10653- AAD	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	5.02	68.51	17.69	2.23	80.0	± 9.6 %
		Y	4.91	67.60	17.24	·····	80.0	
		Z	4.88	68.24	17.54		80.0	
10654- AAD	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	4.94	68,17	17.67	2.23	80.0	± 9.6 %
		Y	4.84	67.30	17.24		80.0	
		Z	4.81	67.88	17.53	**	80.0	
10655- AAE	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.99	68.20	17.71	2.23	80.0	± 9.6 %
		Y	4.89	67.36	17.28		80.0	
		Z	4.87	67.89	17.57		80.0	
10658- AAA	Pulse Waveform (200Hz, 10%)	X	10.67	82.28	21.32	10.00	50.0	±9.6 %
		Y	11.44	83.93	22.76		50.0	
		Z	15.38	89.40	23.97		50.0	
10659- AAA	Pulse Waveform (200Hz, 20%)	X	21.33	93.47	23.49	6.99	60.0	± 9.6 %
<u> </u>		Y	21.39	94.92	24.80		60.0	

#### October 22, 2018

10660- AAA	Pulse Waveform (200Hz, 40%)	X	100.00	113.01	26.63	3.98	80.0	± 9.6 %
		Y	100.00	115.25	27.91		80.0	
		Z	100.00	114.49	27.21		80.0	
10661- AAA	Pulse Waveform (200Hz, 60%)	X	100.00	114.40	25.85	2.22	100.0	± 9.6 %
		Y	100.00	114.52	26.06		100.0	
		Z	100.00	115.33	26.15		100.0	
10662- AAA	Pulse Waveform (200Hz, 80%)	X	100.00	122.98	27.56	0.97	120.0	± 9.6 %
		Y	100.00	113.64	23.74		120.0	
		Z	100.00	119.02	25.78		120.0	
10670- AAA	Bluetooth Low Energy	X	100.00	114.95	26.37	2.19	100.0	± 9.6 %
		Y	100.00	115.10	26.57		100.0	1
		Z	100.00	115.80	26.64		100.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: ES3-3319_Mar18

## **CALIBRATION CERTIFICATE**

Object	ES3DV3 - SN:3319
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	March 13, 2018
	uments the traceability to national standards, which realize the physical units of measurements (SI). Incertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been cor	ducted in the closed laboratory facility: environment temperature (22 $\pm$ 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	-1-10
			e ge
Approved by:	Katja Pokovic	Technical Manager	alite
			10000
			Issued: March 15, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### **Calibration Laboratory of** Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura S
  - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### **Glossary:**

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	$\varphi$ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx, v.z: Assessed for E-field polarization  $\vartheta = 0$  (f  $\leq 900$  MHz in TEM-cell: f > 1800 MHz: R22 waveguide). NORMx, v,z are only intermediate values, i.e., the uncertainties of NORMx, v,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$  (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, v,z; DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y, z; Bx, y, z; Cx, y, z; Dx, y, z; VRx, y, z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for  $f \le 800$  MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

# Probe ES3DV3

## SN:3319

Manufactured: Calibrated: January 10, 2012 March 13, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

#### **Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.08	1.05	1.12	± 10.1 %
DCP (mV) ^B	104.0	103.0	104.0	

#### **Modulation Calibration Parameters**

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	197.9	±3.8 %
		Y	0.0	0.0	1.0		198.2	
		Z	0.0	0.0	1.0		200.6	

Note: For details on UID parameters see Appendix.

#### **Sensor Model Parameters**

	C1	C2	α	T1	T2	Т3	T4	T5	T6
	fF	fF	V ⁻¹	ms.V⁻²	ms.V ^{~1}	ms	V⁻²	V ⁻¹	
Х	60.52	430.8	35.08	29.64	3.011	5.10	0.615	0.538	1.010
Y	55.79	400.8	35.48	29.01	2.492	5.10	0.600	0.518	1.009
Z	63.98	455.3	34.93	29.72	3.442	5.10	0.679	0.571	1.011

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

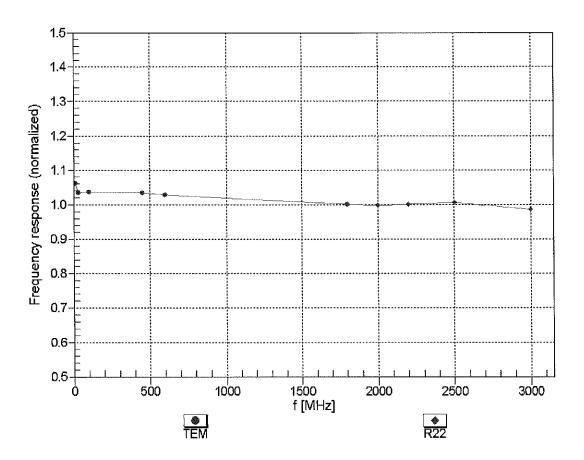
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.70	6.70	6.70	0.80	1.21	± 12.0 %
835	41.5	0.90	6.44	6.44	6.44	0.80	1.17	± 12.0 %
1750	40.1	1.37	5.49	5.49	5.49	0.65	1.43	± 12.0 %
1900	40.0	1.40	5.29	5.29	5.29	0.76	1.30	± 12.0 %
2300	39.5	1.67	5.06	5.06	5.06	0.72	1.29	± 12.0 %
2450	39.2	1.80	4.71	4.71	4.71	0.77	1.30	± 12.0 %
2600	39.0	1.96	4.55	4.55	4.55	0.80	1.31	± 12.0 %

#### **Calibration Parameter Determined in Head Tissue Simulating Media**

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to

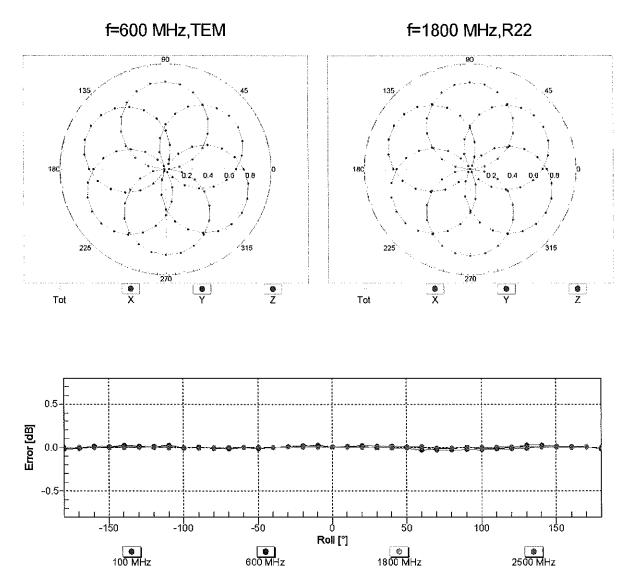
^F At frequencies below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$  1% for frequencies below 3 GHz and below  $\pm$  2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


			-					
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.32	6.32	6.32	0.65	1.26	± 12.0 %
835	55.2	0.97	6.20	6.20	6.20	0.80	1.14	± 12.0 %
1750	53.4	1.49	5.05	5.05	5.05	0.76	1.27	± 12.0 %
1900	53.3	1.52	4.84	4.84	4.84	0.55	1.56	± 12.0 %
2300	52.9	1.81	4.63	4.63	4.63	0.80	1.30	± 12.0 %
2450	52.7	1.95	4.51	4.51	4.51	0.80	1.25	± 12.0 %
2600	52.5	2.16	4.33	4.33	4.33	0.80	1.20	± 12.0 %

#### Calibration Parameter Determined in Body Tissue Simulating Media

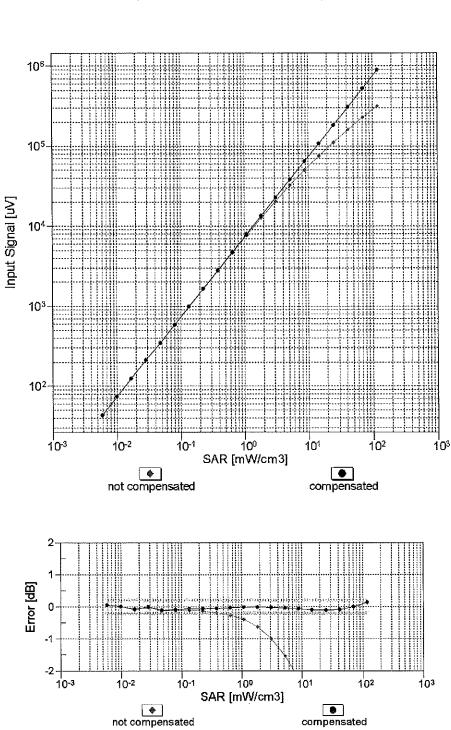
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to


^F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^o Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



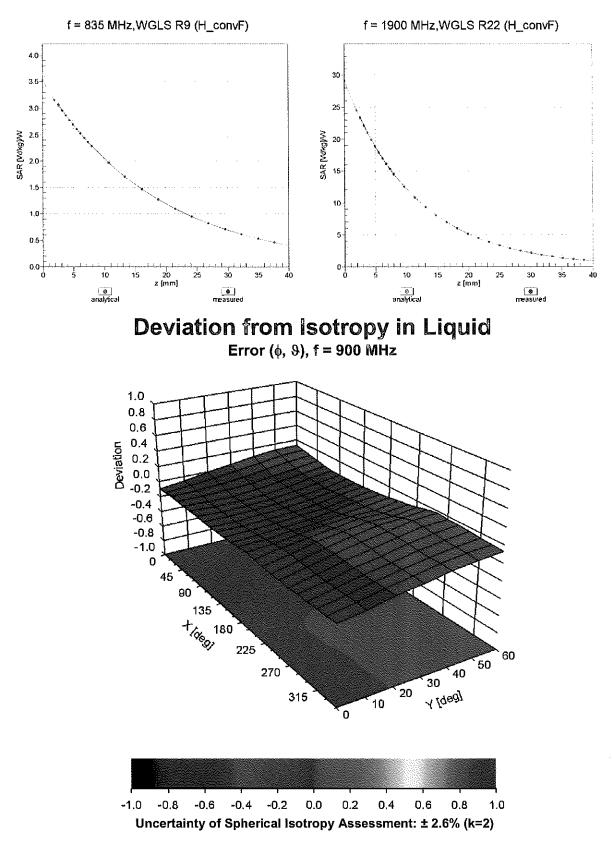
## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



## **Receiving** Pattern (φ), θ = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


March 13, 2018



## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

.



## **Conversion Factor Assessment**

#### **Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	60.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

### **Appendix: Modulation Calibration Parameters**

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	Х	0.00	0.00	1.00	0.00	197.9	± 3.8 %
		Y	0.00	0.00	1.00		198.2	·····
10010-	SAR Validation (Square, 100ms, 10ms)	Z X	0.00 9.56	0.00 81.28	1.00	10.00	200.6	
CAA	Office validation (oquare, rooms, roms)		9.00	01.20	19.98	10.00	25.0	± 9.6 %
		Y	8.09	78.70	18.35		25.0	
		Z	8.70	79.52	19.57		25.0	
10011- CAB	UMTS-FDD (WCDMA)	X	1.34	72.37	18.08	0.00	150.0	± 9.6 %
		Y	0.99	67.12	14.82		150.0	
10012-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1	Z X	1.12 1.37	68.87 66.58	16.00 17.00	0,41	150.0 150.0	± 9.6 %
CAB	Mbps)		1.01	00.50	17.00	0,41	100.0	1 9.0 %
		Y	1.25	64.92	15.59		150.0	
		Z	1.32	65.58	16.11		150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	5.18	67.48	17.64	1.46	150.0	±9.6 %
		<u>Y</u>	5.08	67.20	17.36		150.0	
10021-	GSM-FDD (TDMA, GMSK)	Z X	5.20 20.40	67.32	17.47	0.00	150.0	
DAC		^ Y	20.40	95.52 101.11	26.57 27.60	9.39	50.0	± 9.6 %
		Z	14.66	89.52	24.83		50.0 50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	X	18.37	93.61	26.02	9.57	50.0	± 9.6 %
		Y	24.41	97.95	26.72		50.0	
		Z	13.84	88.39	24.49		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	119.56	31.31	6.56	60.0	± 9.6 %
		Y	100.00	117.39	29.93		60.0	
10025-		Z	47.21	108.31	28.71	10.55	60.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X Y	21.09 17.11	108.48	41.18 38.82	12.57	50.0 50.0	± 9.6 %
		Z	18.44	102.80	38.97		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	21.59	105.09	36.25	9.56	60.0	±9.6 %
		Y	18.95	102.20	35.03		60.0	
		Z	18.49	100.22	34.38		60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	118.49	29.83	4.80	80.0	± 9.6 %
		<u> Υ</u>	100.00	115.83	28.28		80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Z X	100.00 100.00	118.30 118.84	29.89 29.14	3.55	80.0 100.0	± 9.6 %
		Y	100.00	115.36	27.25		100.0	
		Z	100.00	118.10	28.92		100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	15.08	97.16	32.49	7.80	80.0	± 9.6 %
		Y	12.90	93.80	31.06		80.0	
10030- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	13.60 100.00	93.82 118.11	31.09 30.01	5.30	80.0 70.0	± 9.6 %
		Y	100.00	115.58	28.50		70.0	
		Z	100.00	118.16	30.20		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	121.01	28.44	1.88	100.0	± 9.6 %
		Y	100.00	114.03	25.11		100.0	
		Z	100.00	118.73	27.54		100.0	

#### March 13, 2018

10032-	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	127.26	29.88	1.17	100.0	± 9.6 %
CAA		Y	100.00	114.89	24.38		100.0	
		Z	100.00	122.11	24.38		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	21.21	99.84	27.91	5.30	70.0	± 9.6 %
		Y	19.09	97.43	26.61		70.0	
		Ζ	13.98	92.26	25.56		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Х	14.93	98.23	25.94	1.88	100.0	±9.6 %
		Y	7.46	86.71	21.62		100.0	
40005		Z	7.45	87.10	22.42		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	7.98	90,77	23.49	1.17	100.0	±9.6 %
		Y	3.97	79.58	18.90		100.0	
10036-		Z	4.48	81.52	20.27		100.0	
CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	26.12 24.16	103.52	29.04	5.30	70.0	± 9.6 %
				101.42	27.84		70.0	
10037-	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	ZX	15.99 14.25	94.67 97.55	26.38 25.70	1.88	70.0	± 9.6 %
CAA	TEEE 002.13.1 Blueloout (0-DF3K, DH3)	A Y		85.92	25.70	1.00	100.0	± 9.0 %
		Z	7.04 7.24	86.72	21.32		100.0	
10038-	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	8.53	92.07	23.99	1.17	100.0	± 9.6 %
CAA		Y	4.13	80.37	19.27	1.17	100.0	19.0 %
		Z	4.13	82.31	20.62		100.0	
10039-	CDMA2000 (1xRTT, RC1)	X	2.96	79.09	19.43	0.00	150.0	± 9.6 %
CAB		Ŷ	1.75	79.09		0.00		± 9.0 %
		Z	2.10	73.23	15.36 16.92		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	53.77	109.05	28.70	7.78	150.0 50.0	± 9.6 %
0/10		Y	79.10	112.95	28.86		50.0	
		Z	23.46	96.42	25.41	<u> </u>	50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.00	123.18	1.26	0.00	150.0	± 9.6 %
		Y	0.02	127.84	0.07		150.0	
		Z	0.00	110.77	4.52		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	11.41	83.11	24.20	13.80	25.0	± 9.6 %
		Y	12.66	85.48	24.49		25.0	
		Z	10.45	80.79	23.56		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	13.41	87.55	24.40	10.79	40.0	± 9.6 %
		Y	15.25	89.77	24.55		40.0	<b>.</b>
10070		Z	11.61	84.53	23.55		40.0	ļ
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	13.37	87.98	25.03	9.03	50.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	13.72	88.51	24.74	ļ	50.0	<u> </u>
40050		Z	11.72	85.02	24.05		50.0	
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	11.14	91,28	29.72	6.55	100.0	± 9,6 %
		Y	9.52	87.98	28.26	ļ	100.0	ļ
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	Z X	10.41 1.60	88.91 69.38	28.62 18.31	0.61	100.0 110.0	± 9.6 %
UAD		Y	1.43	67.15	16.67		110.0	
		Z	1.43	67.15	17.25	<u> </u>	110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	100.00	133.15	34.60	1.30	110.0	± 9.6 %
		Y	100.00	128.63	32.36		110.0	1
		, '						

#### March 13, 2018

10061- CAB	IEEE 802.11b WIFi 2.4 GHz (DSSS, 11 Mbps)	X	24.68	111.64	31.63	2.04	110.0	± 9.6 %
		Y	11.26	97.49	27.04		110.0	
		Z	10.95	96.57	26.98		110.0	
10062- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	Х	4.90	67.24	16.94	0.49	100.0	± 9.6 %
		Y	4.79	66.94	16.63		100.0	
40000		Z	4.90	67.05	16.74		100.0	
10063- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.95	67.42	17.09	0.72	100.0	± 9.6 %
		Y	4.84	67.10	16.77		100.0	
10064-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12	Z X	4.95	67.23	16.89	0.00	100.0	
CAC	Mbps)	Y	5.28	67.75	17.35	0.86	100.0	± 9.6 %
		Z	5.30	67.43 67.59	17.04 17.17		100.0 100.0	
10065-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18	X	5.19	67.81	17.53	1.21	100.0	± 9.6 %
CAC	Mbps)	Y	5.07	67.47	17.22	1.21	100.0	19.0 %
		z	5.21	67.65	17.35		100.0	
10066- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.25	67.95	17.76	1.46	100.0	± 9.6 %
		Y	5.12	67.61	17.44	[	100.0	
		Z	5.27	67.80	17.59		100.0	·
10067- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	Х	5.57	68.10	18.21	2.04	100.0	± 9.6 %
		Υ	5.44	67.80	17.92		100.0	
		Z	5.60	67.97	18.05		100.0	
10068- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	Х	5.73	68.50	18.60	2.55	100.0	± 9.6 %
		Y	5.58	68.13	18.28		100.0	
40000		Z	5.77	68.41	18.46		100.0	
10069- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.81	68.43	18.78	2.67	100.0	±9.6 %
		Y	5.66	68.09	18.46		100.0	
40074		Z	5.84	68.33	18.64		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.34	67.73	18.04	1.99	100.0	± 9.6 %
		Y	5.22	67.44	17.75		100.0	
10072-		Z	5.35	67.60	17.87		100.0	
CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.42	68.35	18.39	2.30	100.0	± 9.6 %
		Y	5.29	68.00	18.07		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.44 5.57	68.21 68.74	18.22 18.83	2.83	100.0	± 9.6 %
		Y	5.42	68.36	18.50		100.0	
		Z	5.60	68.62	18.66		100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.61	68.84	19.10	3.30	100.0	± 9.6 %
		Y	5.46	68.44	18.75		100.0	
		Ζ	5.65	68.74	18.95		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.79	69.40	19.63	3.82	90.0	± 9.6 %
		Y	5.61	68.91	19.24		90.0	
40070		Z	5.85	69.35	19.51		90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.80	69.20	19.75	4.15	90.0	± 9.6 %
	······································	Y	5.64	68.73	19.37		90.0	1
40077		Z	5.86	69.15	19.63		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.84	69.30	19.86	4.30	90.0	± 9.6 %
		Y	5.68	68.82	19.47		90.0	
		Z	5.90	69.25	19.74	L	90.0	

#### March 13, 2018

10081- CAB	CDMA2000 (1xRTT, RC3)	X	1.29	72.14	16.36	0.00	150.0	±9.6 %
		Y	0.81	65,51	12.24		150.0	
		Ż	0.99	67.68	14.05		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	2.36	64.73	9.48	4.77	80.0	± 9.6 %
		Y	1.97	63.15	8.18		80.0	
		Z	2.45	64.78	9.67		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	×	100.00	119.65	31.37	6.56	60.0	± 9.6 %
		Y	100.00	117.49	29.99		60.0	
40007		Z	45.52	107.81	28.61		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	2.00	69.44	16.95	0.00	150.0	± 9.6 %
•••		Y	1.78	67.32	15.42		150.0	
10098-		Z X	1.87	67.93	15.97	0.00	150.0	
CAB	UMTS-FDD (HSUPA, Subtest 2)		1.97	69.46	16,95	0.00	150.0	± 9.6 %
		Y	1.74	67.28	15.38		150.0	
10099-	EDGE-FDD (TDMA, 8PSK, TN 0-4)	Z X	1.84 21.45	67.91 104.88	15.95 36.18	0.50	150.0	+0.6.0/
DAC			18.89	104.88	36.18	9.56	60.0	± 9.6 %
			18.39	102.07			60.0	
10100-	LTE-FDD (SC-FDMA, 100% RB, 20	$\frac{2}{x}$	3.55		34.32	0.00	60.0	
CAD	MHz, QPSK)	Y		72.46	17.74	0.00	150.0	± 9.6 %
		Z	3.14	70.29	16.48		150.0	
10101-	LTE-FDD (SC-FDMA, 100% RB, 20		3,35	71.19	16.95	0.00	150.0	100%
CAD	MHz, 16-QAM)		3.45	68.62	16.57	0.00	150.0	± 9.6 %
		Y	3.26	67.61	15.85		150.0	
40400		Z	3.39	68.08	16.14		150.0	
10102- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	×	3.54	68.46	16.61	0.00	150.0	± 9.6 %
		Y	3.37	67.56	15.95		150.0	
10100		Z	3.49	67.97	16.20		150.0	
10103- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	8.98	78.82	21.57	3.98	65.0	± 9.6 %
		Y	8.50	78.15	21.17		65.0	
		Z	8.60	77.58	20.95		65.0	
10104- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	8.85	77.44	21.89	3.98	65.0	± 9.6 %
		Y	8.45	76.83	21.49		65.0	
10105		Z	8.72	76.72	21.48		65.0	
10105- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	8.33	76.23	21.66	3.98	65.0	± 9.6 %
		Y	7.79	75.22	21.09		65.0	1
40400		Z	7.71	74.28	20.69		65.0	
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	×	3.11	71.64	17.59	0.00	150.0	± 9.6 %
		Y	2.75	69.54	16.32		150.0	
40400		Z	2.95	70.37	16.78		150.0	
10109- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	3.12	68.50	16.56	0.00	150.0	± 9.6 %
		Y	2.92	67.41	15.75		150.0	
10110- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	Z X	3.06 2.56	67.87 70.84	16.07 17.38	0.00	150.0 150.0	± 9.6 %
		Y	2.04	60.04	15.04		450.0	
			2.24	68.61	15.94		150.0	
10111-	LTE-FDD (SC-FDMA, 100% RB, 5 MHz,	Z	2.42 2.84	69.44	16.48	0.00	150.0	+0.0.0/
CAE	16-QAM)			69.29	16.96	0.00	150.0	± 9.6 %
		<u>Y</u>	2.62	68.02	15.99		150.0	
		Z	2.75	68.36	16.33		150.0	