Testing the Future LABORATORIES, INC.

Nalloy, LLC

REVISED TEST REPORT TO 106997-52

JU3NF9

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.225 (13.110-14.010MHz)

Report No.: 106997-52A

Date of issue: November 17, 2022

Test Certificate # 803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 42 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	8
15.215(c) Occupied Bandwidth (20dB BW)	8
15.225(a)-(c) Field Strength of Fundamental	11
15.225(e) Frequency Stability	17
15.225(d) Radiated Emissions & Band Edge	20
15.207 AC Conducted Emissions	30
Supplemental Information	41
Measurement Uncertainty	41
Emissions Test Details	41

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Nalloy, LLC
2301 5th Avenue
CKC Laboratories, Inc.
Seattle, WA 98108
5046 Sierra Pines Drive
Mariposa, CA 95338

REPRESENTATIVE: Naga Suryadevara Project Number: 106997 Customer Reference Number: 2D-08401347

DATE OF EQUIPMENT RECEIPT: August 18, 2022

DATE(S) OF TESTING: August 18 and 22 and September 9 and 15, 2022

Revision History

Original: Testing of JU3NF9 to FCC Part 15 Subpart C Section(s) 15.207 & 15.225 (13.110-14.010MHz). **Revision A:** Updated 15.225(a)-(c) Field Strength of Fundamental Test Data Summary Tables. Updated Radiated Band Edge Summary Table. Updated Datasheets throughout report.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services

CKC Laboratories, Inc.

Page 3 of 42 Report No.: 106997-52A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. Canyon Park 22116 23rd Drive S.E., Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 42 Report No.: 106997-52A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.225

Test Procedure	Description	Modifications	Results
15.215(c)	Occupied Bandwidth	NA	Pass
15.225(a)-(c)	Field Strength of Fundamental	NA	Pass
15.225(e)	Frequency Stability	NA	Pass
15.225(d)	Field Strength of Spurious Emissions	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

	Summary	of	Conditions
--	---------	----	------------

None

Page 5 of 42 Report No.: 106997-52A

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

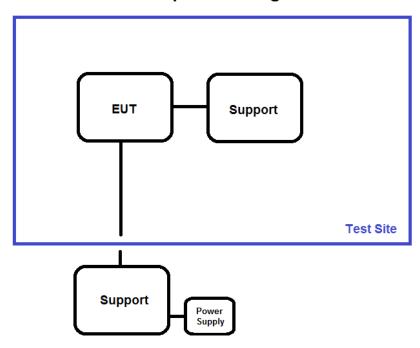
Device	Manufacturer	Model #	S/N
None	Nalloy LLC, Amazon retail LLC	JU3NF9	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
AC Adapter	Delta Electronics, Inc.	MDS-090AAS15B	NA
Headphones	Poly	M3-C5220T	NA
Laptop	Chuwi	CWI514	NA
USB to Ethernet Adapter	Amazon	Gigabit Ethernet Adapter	0050B6E212BA

General Product Information:

Product Information	Manufacturer-Provided Details			
Equipment Type:	Stand-Alone Equipment			
Modulation Type(s):	NFC, RFID			
Maximum Duty Cycle:	Tested as 100%			
Antenna Type(s) and Gain:	NA			
Antenna Connection Type:	Integral			
Nominal Input Voltage:	120VAC/60Hz			
	IGT FW Version: 2229			
Firmura / Saftware used for	Wisepad – WPS33.01-41027			
Firmware / Software used for	Baxter - 1.0.62.0			
Test:	RFIdeas configuration utility – 6.0.5			
	Putty – 0.77			
The validity of results is dependent on the stated product details, the accuracy of which the manufacturer				


The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.

Page 6 of 42 Report No.: 106997-52A

Block Diagram of Test Setup(s)

Test Setup Block Diagram

Radiated test setup

Antenna

Laptop

EUT

Turntable

Test Site

Test Site

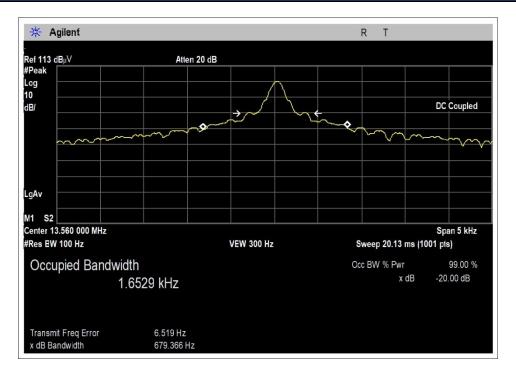
Page 7 of 42 Report No.: 106997-52A

FCC Part 15 Subpart C

15.215(c) Occupied Bandwidth (20dB BW)

Test Setup/Conditions				
Test Location:	Bothell Lab C3	Test Engineer:	M. Harrison	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	9/15/2022	
Configuration:	Configuration: 1			
Test Setup:	Test Setup: The EUT is on a test bench inside a semi anechoic chamber.			
Reported data represents maximum measured emissions with both NFC and RFID				
	transmitters operating simultaneously.			

Environmental Conditions				
Temperature (ºC)	23	Relative Humidity (%):	53	


Test Equipment						
Asset# Description Manufacturer Model Cal Date Cal Due						
00052	Loop Antenna	EMCO	6502	5/11/2022	5/11/2024	
02872	Spectrum Analyzer	Agilent	E4440A	11/29/2021	11/29/2023	

Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (Hz)	Limit (Hz)	Results
13.56	NA	NFC / RFID	680	None	NA

Page 8 of 42 Report No.: 106997-52A

Plot(s)

Page 9 of 42 Report No.: 106997-52A

Test Setup Photo(s)

Below 1GHz; View 1

Below 1GHz; View 2

15.225(a)-(c) Field Strength of Fundamental

	Test Setup/Conditions							
Test Location:	Bothell Lab Bench	Test Engineer:	M. Harrison					
Test Method:	ANSI C63.10 (2013)	Test Date(s):	8/22/2022					
Configuration:	1							
Test Setup:	The EUT is on a test bench inside a semi anechoic chamber. Measurements are made at 3m test distance with distance correction applied to correct to a 10m measurement. XYZ EUT axes investigated, 3 x orthogonal antenna polarities investigated, worst case reported.							
Reported data represents maximum measured emissions with both NFC and RFID transmitters operating simultaneously.								

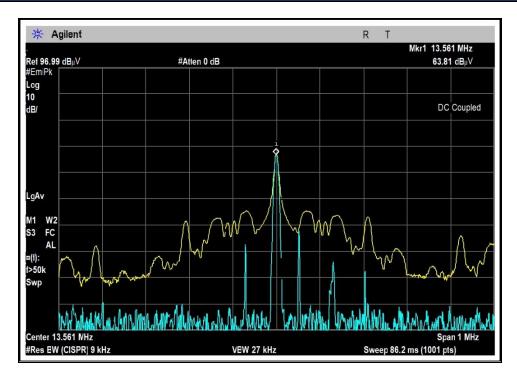
Test Equipment							
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due		
00052	Loop Antenna	EMCO	6502	5/11/2022	5/11/2024		
02872 Spectrum Analyzer		Agilent	E4440A	11/29/2021	11/29/2023		

Test Data Summary - Voltage Variations							
Frequency (MHz) Modulation		V _{Minimum} V _{Nominal} (dBuV/m@3m)		V _{Maximum} (dBuV/m@3m)	Max Deviation from V _{Nominal} (dB)		
13.56	NFC/RFID	32.6	32.6	32.6	0.0		

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

 $\underline{\text{Measurements performed at input voltage Vnominal \pm 15\%}.$


	1 0
Parameter	Value
V _{Nominal} :	120 VAC
V _{Minimum} :	102.00 VAC
V _{Maximum} :	138.00 VAC

Test Data Summary – Radiated Field Strength Measurement						
Frequency (MHz) Modulation		Ant. Type Measured (dBuV/m @ 3m)		Limit (dBuV/m @ 3m)	Results	
13.56	NFC/RFID	NA	32.6	≤84	Pass	

Page 11 of 42 Report No.: 106997-52A

Plot(s)

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Nalloy, LLC

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 106997 Date: 8/22/2022
Test Type: Radiated Scan Time: 14:54:43
Tested By: Matt Harrison Sequence#: 35

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 25°C Humidity: 45% Pressure: 101.4kPa

Frequency Range: 9k-30MHz

Highest Clock: 3.6GHz

Test Setup: EUT is Method: ANSI C63.4: 2013

Frequency range: 9k-30MHz

Highest Clock: 3.6 GHz

Setup:

EUT is setup in a combination of floor-standing and tabletop configuration. It is connected to a power supply, headphones, and a remote laptop via Ethernet Cable.

Mode 1:

Honecrisp:

Fuji- CPU DDR MMC Stress

Audio 1kHz Tone on Headphone at 100% Volume

Display Max Brightness USB to Caramel 480Mbps

Opal: No Stressor

Caramel:

Ethernet 100Mbps

USB 2.0 x1 12Mbps to Wisepad USB B No Stressor to Baxter

Wisepad:

Tap Mode at 13.56MHz

Page 13 of 42 Report No.: 106997-52A

USB 2.0 12Mbps

Baxter:

Ethernet 100Mbps

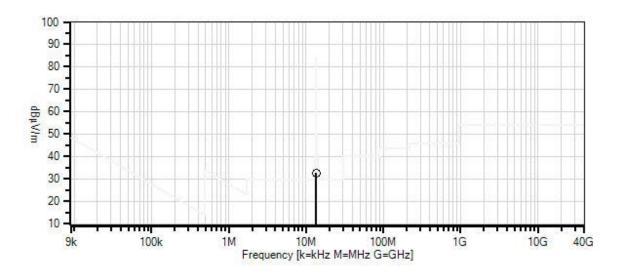
Prefect- Stressors on CPU DDR MMC

Relay continuously cycling

Tamper sensor enabled

Audio over speaker playing representative tone

Microphone on


USB on Baxter Mass Storage devices no cable USB A to B from Baxter to Caramel No Stressor

Badge Reader: On at 13.56MHz

> Page 14 of 42 Report No.: 106997-52A

Nalloy, LLC WO#: 106997 Sequence#: 35 Date: 8/22/2022 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Para

--- Readings

- > Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.20

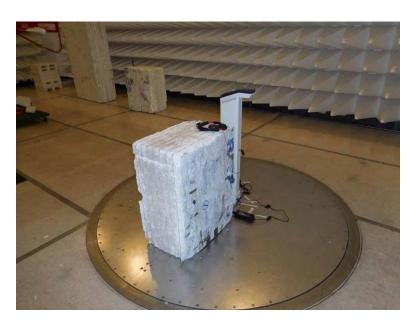
1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06515	Cable	Heliax	5/23/2022	5/23/2024
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T3	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

#		Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1	13.561M	63.8	+0.2	+0.0	+8.6		-40.0	32.6	84.0	-51.4	Para


Page 15 of 42 Report No.: 106997-52A

Test Setup Photo(s)

Below 1GHz; View 1

Below 1GHz; View 2

15.225(e) Frequency Stability

Test Setup/Conditions					
Test Location:	Bothell Lab Bench	Test Engineer:	M. Harrison		
Test Method:	Test Method: ANSI C63.10 (2013)		9/9/2022		
Configuration:	1				
Test Setup:	EUT is setup in a temperature chamber.				

	Environmental Conditions						
ſ	Temperature (ºC)	22	Relative Humidity (%):	48			

Test Equipment									
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due				
02673	Spectrum Analyzer	Agilent	E4446A	2/3/2021	2/3/2023				
03029	Thermometer, Digital Infrared	Fluke	566	3/11/2021	3/11/2023				
D06024	Walk-In Temp/Humidity Chamber	Hastest	HPCH(R1.5)- 2600NSUH	NCR	NCR				

NCR = No Calibration Required

Test Data Summary Card Reader

Temperature (ºC)	Voltage	Frequency (MHz)	Deviation (%)	Limit (%)	Results
-20	$V_{Nominal}$	13.5603	0.0014	±0.01	
-10	$V_{Nominal}$	13.5605	0.0000	±0.01	
0	$V_{Nominal}$	13.5605	0.0000	±0.01	
10	$V_{Nominal}$	13.5604	0.0007	±0.01	
20	$V_{Minimum}$	13.5605	0.0000	±0.01	Pass
20	$V_{Nominal}$	13.5605	0.0000	±0.01	Pass
20	$V_{Maximum}$	13.5605	0.0000	±0.01	
30	$V_{Nominal}$	13.5603	0.0014	±0.01	
40	$V_{Nominal}$	13.5604	0.0007	±0.01	
50	$V_{Nominal}$	13.5604	0.0007	±0.01	
Nominal Frequency:		13.560500			

Page 17 of 42 Report No.: 106997-52A

Test Data Summary Badge Reader

Temperature	Voltage	Frequency	Deviation	Limit	Results	
(ºC)	Voltage	(MHz)	(MHz) (%) (%)		Results	
-20	$V_{Nominal}$	13.5600	0.00	±0.01		
-10	V _{Nominal}	13.5600	0.00	±0.01		
0	V _{Nominal}	13.5600	0.00	±0.01		
10	V _{Nominal}	13.5600	0.00	±0.01		
20	$V_{Minimum}$	13.5600	0.00	±0.01	Pass	
20	V _{Nominal}	13.5600	0.00	±0.01	Pd55	
20	V _{Maximum}	13.5600	0.00	±0.01		
30	V _{Nominal}	13.5600	0.00	±0.01		
40	V _{Nominal}	13.5600	0.00	±0.01		
50	V _{Nominal}	13.5600	0.00	±0.01		
Nominal Frequency:		13.560000				

<u>Parameter Definitions:</u>
Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	120 VAC
V _{Minimum} :	102.00 VAC
V _{Maximum} :	138.00 VAC

Page 18 of 42 Report No.: 106997-52A

Test Setup Photo(s)

Inside View

Outside View

15.225(d) Radiated Emissions & Band Edge

Test Setup / Conditions/ Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC

Customer: Nalloy, LLC

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 106997 Date: 9/15/2022
Test Type: Radiated Scan Time: 08:32:11
Tested By: Matt Harrison Sequence#: 38

Software: EMITest 5.03.20

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 25°C Humidity: 45% Pressure: 101.4kPa

Method: ANSI C63.4: 2013

Frequency range: 9k-1000MHz

Highest Clock: 3.6 GHz

Setup:

EUT is setup in a combination of floor-standing and tabletop configuration. It is connected to a power supply, headphones, and a remote laptop via Ethernet Cable.

Mode 1:

Honecrisp:

Fuji- CPU DDR MMC Stress

Audio 1kHz Tone on Headphone at 100% Volume

Display Max Brightness USB to Caramel 480Mbps

Opal: No Stressor

Caramel:

Ethernet 100Mbps

USB 2.0 x1 12Mbps to Wisepad USB B No Stressor to Baxter

Wisepad:

Page 20 of 42 Report No.: 106997-52A

Tap Mode at 13.56MHz USB 2.0 12Mbps

Baxter:

Ethernet 100Mbps

Prefect- Stressors on CPU DDR MMC

Relay continuously cycling

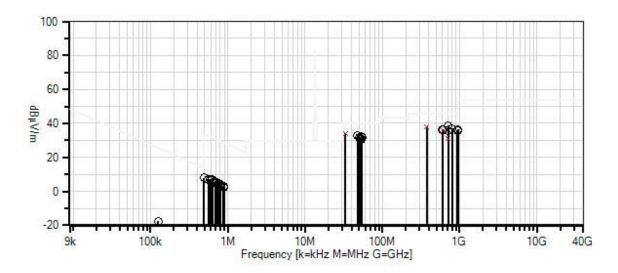
Tamper sensor enabled

Audio over speaker playing representative tone

Microphone on

USB on Baxter Mass Storage devices no cable

USB A to B from Baxter to Caramel No Stressor


Badge Reader:

On at 13.56MHz

Page 21 of 42 Report No.: 106997-52A

Nalloy, LLC WO#: 106997 Sequence#: 38 Date: 9/15/2022 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Para

Readings

- Peak Readings QP Readings
- Average Readings
- Ambient

Software Version: 5.03.20

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

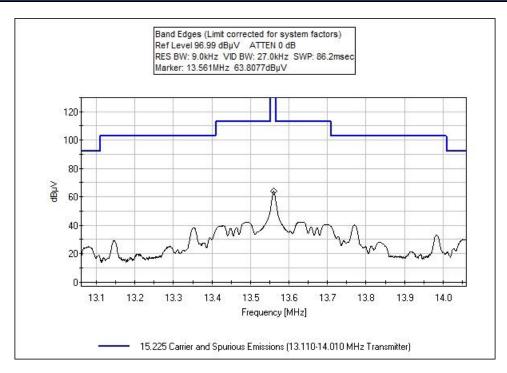
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T2	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T3	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
T4	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T5	AN02307	Preamp	8447D	1/6/2022	1/6/2024
Т6	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T7	ANP05360	Cable	RG214	2/4/2022	2/4/2024

Page 22 of 42 Report No.: 106997-52A

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	33.395M	41.5	+0.1	+0.0	+0.0	+0.3	+0.0	34.0	40.0	-6.0	Vert
	QP		-27.8	+19.5	+0.4						
^	33.395M	45.1	+0.1	+0.0	+0.0	+0.3	+0.0	37.6	40.0	-2.4	Vert
			-27.8	+19.5	+0.4						
3	47.968M	47.1	+0.1	+0.0	+0.0	+0.3	+0.0	33.0	40.0	-7.0	Vert
			-27.8	+12.8	+0.5						
4	710.002M	34.4	+0.3	+0.0	+0.0	+1.3	+0.0	38.6	46.0	-7.4	Vert
	52.550).6	47.0	-27.9	+28.4	+2.1	0.0	0.0	22.4	40.0	7.6	T 7 .
5	53.558M	47.0	+0.1	+0.0	+0.0	+0.3	+0.0	32.4	40.0	-7.6	Vert
	274 00114	41.4	-27.8	+12.3	+0.5	+1.0	. 0. 0	20.2	460	7.0	XI =t
6		41.4	+0.2	+0.0	+0.0	+1.0	+0.0	38.2	46.0	-7.8	Vert
^	QP 374.991M	43.8	-27.4	+21.7	+1.3	+1.0	+0.0	40.6	16.0	-5.4	Vont
	374.991W	43.8	+0.2 -27.4	+0.0 +21.7	+0.0 +1.3	+1.0	+0.0	40.6	46.0	-3.4	Vert
8	54.024M	46.5	+0.1	+0.0	+0.0	+0.3	+0.0	31.9	40.0	-8.1	Vert
0	34.024WI	40.5	-27.8	+12.3	+0.5	+0.3	+0.0	31.9	40.0	-0.1	v ert
9	50.431M	46.2	+0.1	+0.0	+0.0	+0.3	+0.0	31.7	40.0	-8.3	Vert
	30. 4 31 11	40.2	-27.8	+12.4	+0.5	10.5	10.0	31.7	40.0	0.5	VCIt
10	50.098M	46.1	+0.1	+0.0	+0.0	+0.3	+0.0	31.6	40.0	-8.4	Vert
10	00.00001.1		-27.8	+12.4	+0.5	. 0.2	. 0.0	01.0		0	, 010
11	50.896M	46.1	+0.1	+0.0	+0.0	+0.3	+0.0	31.5	40.0	-8.5	Vert
			-27.8	+12.3	+0.5						
12	52.094M	45.8	+0.1	+0.0	+0.0	+0.3	+0.0	31.2	40.0	-8.8	Vert
			-27.8	+12.3	+0.5						
13	803.695M	31.5	+0.3	+0.0	+0.0	+1.4	+0.0	36.9	46.0	-9.1	Vert
			-27.7	+29.2	+2.2						
14	803.095M	31.5	+0.3	+0.0	+0.0	+1.4	+0.0	36.9	46.0	-9.1	Vert
			-27.7	+29.2	+2.2						
15	796.248M	31.6	+0.3	+0.0	+0.0	+1.4	+0.0	36.9	46.0	-9.1	Vert
			-27.7	+29.1	+2.2						
16	53.026M	45.3	+0.1	+0.0	+0.0	+0.3	+0.0	30.7	40.0	-9.3	Vert
15	600 0013 5	212	-27.8	+12.3	+0.5			25.4	45.0	10.5	TT :
17	608.981M	34.2	+0.3	+0.0	+0.0	+1.2	+0.0	36.4	47.0	-10.6	Horiz
10	050 07634	20.2	-28.1	+26.9	+1.9	. 1 =	, 0.0	26.4	47.0	10.6	II'
18	950.976M	28.3	+0.3 -27.2	+0.0 +31.1	$+0.0 \\ +2.4$	+1.5	+0.0	36.4	47.0	-10.6	Horiz
19	596.969M	34.3	+0.3	+31.1	+2.4 +0.0	+1.2	+0.0	36.0	47.0	-11.0	Horiz
19	J70.7071VI	54.5	+0.3 -28.1	+0.0	+0.0 +1.9	+1.2	+0.0	50.0	47.0	-11.0	HOHZ
20	952.416M	27.9	+0.3	+0.0	+0.0	+1.5	+0.0	36.0	47.0	-11.0	Horiz
20	752.710W	21.3	-27.2	+31.1	+0.0	11.3	10.0	50.0	→ / .U	-11.0	110112
21	710.963M	31.7	+0.3	+0.0	+0.0	+1.3	+0.0	35.9	47.0	-11.1	Horiz
	, 10., 00111	51.7	-27.9	+28.4	+2.1	. 1.3	. 0.0	33.7	17.0	1111	0112
22	711.323M	31.6	+0.3	+0.0	+0.0	+1.3	+0.0	35.8	47.0	-11.2	Horiz
			-27.9	+28.4	+2.1	5					
23	938.954M	27.8	+0.3	+0.0	+0.0	+1.5	+0.0	35.8	47.0	-11.2	Horiz
			-27.3	+31.1	+2.4						
-											

Page 23 of 42 Report No.: 106997-52A

	602.995M	33.6	+0.3	+0.0	+0.0	+1.2	+0.0	35.5	47.0	-11.5	Horiz
	QP	25.7	-28.1	+26.6	+1.9	. 1.0	. 0. 0	27.6	47.0	0.4	77 '
	602.995M	35.7	+0.3	+0.0	+0.0	+1.2	+0.0	37.6	47.0	-9.4	Horiz
26	711 700) /	27.2	-28.1	+26.6	+1.9	. 1.2	. 0. 0	21.2	46.0	147	T 7 4
26	711.782M	27.2	+0.3	+0.0	+0.0	+1.3	+0.0	31.3	46.0	-14.7	Vert
-	QP	262	-27.9	+28.3	+2.1	1.0	0.0	40.0	46.0		T.7 .
^	711.782M	36.2	+0.3	+0.0	+0.0	+1.3	+0.0	40.3	46.0	-5.7	Vert
20	555 1101	27.2	-27.9	+28.3	+2.1	0.0	10.0	4.0	20.0	210	
28	775.119k	35.2	+0.1	+0.0	+9.6	+0.0	-40.0	4.9	29.8	-24.9	Para
			+0.0	+0.0	+0.0						
29	630.861k	37.2	+0.1	+0.0	+9.4	+0.0	-40.0	6.7	31.6	-24.9	Para
			+0.0	+0.0	+0.0						
30	689.401k	36.2	+0.1	+0.0	+9.5	+0.0	-40.0	5.8	30.8	-25.0	Para
			+0.0	+0.0	+0.0						
31	704.036k	35.9	+0.1	+0.0	+9.5	+0.0	-40.0	5.5	30.6	-25.1	Para
			+0.0	+0.0	+0.0						
32	714.489k	35.8	+0.1	+0.0	+9.5	+0.0	-40.0	5.4	30.5	-25.1	Para
			+0.0	+0.0	+0.0						
33	597.410k	37.5	+0.1	+0.0	+9.4	+0.0	-40.0	7.0	32.1	-25.1	Para
			+0.0	+0.0	+0.0						
34	559.777k	37.7	+0.1	+0.0	+9.4	+0.0	-40.0	7.2	32.6	-25.4	Para
			+0.0	+0.0	+0.0						
35	798.117k	34.2	+0.1	+0.0	+9.6	+0.0	-40.0	3.9	29.5	-25.6	Para
			+0.0	+0.0	+0.0						
36	494.965k	38.7	+0.1	+0.0	+9.3	+0.0	-40.0	8.1	33.7	-25.6	Para
			+0.0	+0.0	+0.0						
37	745.850k	34.8	+0.1	+0.0	+9.5	+0.0	-40.0	4.4	30.1	-25.7	Para
			+0.0	+0.0	+0.0						
38	791.845k	34.0	+0.1	+0.0	+9.6	+0.0	-40.0	3.7	29.6	-25.9	Para
			+0.0	+0.0	+0.0						
39	873.382k	33.1	+0.1	+0.0	+9.6	+0.0	-40.0	2.8	28.7	-25.9	Para
			+0.0	+0.0	+0.0						
40	693.582k	35.3	+0.1	+0.0	+9.5	+0.0	-40.0	4.9	30.8	-25.9	Para
			+0.0	+0.0	+0.0						
41	890.108k	32.9	+0.1	+0.0	+9.6	+0.0	-40.0	2.6	28.6	-26.0	Para
			+0.0	+0.0	+0.0						
42	808.571k	33.6	+0.1	+0.0	+9.6	+0.0	-40.0	3.3	29.4	-26.1	Para
			+0.0	+0.0	+0.0						
43	124.997k	53.0	+0.1	+0.0	+9.3	+0.0	-80.0	-17.6	25.7	-43.3	Para
			+0.0	+0.0	+0.0						


Page 24 of 42 Report No.: 106997-52A

Band Edge

	Band Edge Summary								
Frequency (MHz) Modulation Ant. Type Field Strength (dBuV/m @30m) Results									
13.110	NCF / RFID	NA	-11.6	≤29.5	Pass				
14.010	NCF / RFID	NA	-11.2	≤29.5	Pass				

Band Edge Plots

Page 25 of 42 Report No.: 106997-52A

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Nalloy, LLC

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 106997 Date: 8/22/2022
Test Type: Radiated Scan Time: 14:54:43
Tested By: Matt Harrison Sequence#: 35

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 25°C Humidity: 45% Pressure: 101.4kPa

Method: ANSI C63.4: 2013

Frequency range: 9k-30MHz

Highest Clock: 3.6 GHz

Setup:

EUT is setup in a combination of floor-standing and tabletop configuration. It is connected to a power supply, headphones, and a remote laptop via Ethernet Cable.

Mode 1:

Honecrisp:

Fuji- CPU DDR MMC Stress

Audio 1kHz Tone on Headphone at 100% Volume

Display Max Brightness USB to Caramel 480Mbps

Opal: No Stressor

Caramel:

Ethernet 100Mbps

USB 2.0 x1 12Mbps to Wisepad USB B No Stressor to Baxter

Wisepad:

Tap Mode at 13.56MHz USB 2.0 12Mbps

> Page 26 of 42 Report No.: 106997-52A

Baxter:

Ethernet 100Mbps

Prefect- Stressors on CPU DDR MMC

Relay continuously cycling

Tamper sensor enabled

Audio over speaker playing representative tone

Microphone on

USB on Baxter Mass Storage devices no cable

USB A to B from Baxter to Caramel No Stressor

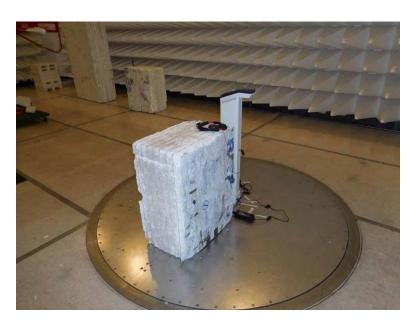
Badge Reader:

On at 13.56MHz

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06515	Cable	Heliax	5/23/2022	5/23/2024
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T3	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024

Me	asur	ement Data:	Reading listed by margin.				Test Distance: 3 Meters					
#	#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	1	14.010M	20.0	+0.2	+0.0	+8.6		-40.0	-11.2	29.5	-40.7	Para
	2	13.110M	19.5	+0.2	+0.0	+8.7		-40.0	-11.6	29.5	-41.1	Para
	3	13.561M	63.8	+0.2	+0.0	+8.6		-40.0	32.6	84.0	-51.4	Para


Page 27 of 42 Report No.: 106997-52A

Test Setup Photo(s)

Below 1GHz; View 1

Below 1GHz; View 2

Page 29 of 42 Report No.: 106997-52A

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Nalloy, LLC

Specification: 15.207 AC Mains - Quasi-peak

Work Order #: 106997 Date: 8/18/2022
Test Type: Conducted Emissions Time: 10:19:28
Tested By: Matt Harrison Sequence#: 10

Software: EMITest 5.03.20 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 25°C Humidity: 45% Pressure: 101.4kPa

Method: ANSI C63.10: 2013

Frequency range: 150k-30MHz

Highest Clock: 3.6 GHz

Setup:

EUT is setup in a combination of floor-standing and tabletop configuration. It is connected to a power supply and a remote laptop via Ethernet Cable.

Mode 1:

Honecrisp:

Fuji- CPU DDR MMC Stress

Audio 1kHz Tone on Headphone at 100% Volume

Display Max Brightness USB to Caramel 480Mbps

Opal: No Stressor

Caramel:

Ethernet 100Mbps

USB 2.0 x1 12Mbps to Wisepad USB B No Stressor to Baxter

Wisepad:

Tap Mode at 13.56MHz

Page 30 of 42 Report No.: 106997-52A

USB 2.0 12Mbps

Baxter:

Ethernet 100Mbps

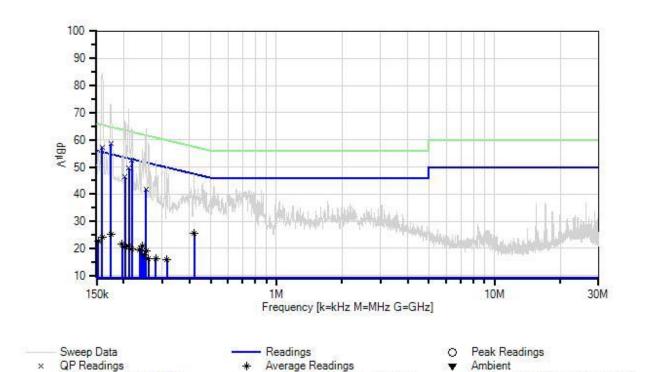
Prefect- Stressors on CPU DDR MMC

Relay continuously cycling

Tamper sensor enabled

Audio over speaker playing representative tone

Microphone on


USB on Baxter Mass Storage devices no cable USB A to B from Baxter to Caramel No Stressor

Badge Reader: On at 13.56MHz

> Page 31 of 42 Report No.: 106997-52A

Nalloy, LLC WO#: 106997 Sequence#: 10 Date: 8/18/2022 15.207 AC Mains - Quasi-peak Test Lead: 120V 60Hz Line

Test Equipment:

Software Version: 5.03.20

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	3/23/2022	3/23/2024
T2	ANP06515	Cable	Heliax	5/23/2022	5/23/2024
T3	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T4	AN02611	High Pass Filter	HE9615-150K-	1/5/2022	1/5/2024
			50-720B		
T5	AN01311	50uH LISN-Line1 (L)	3816/2	2/23/2022	2/23/2024
	AN01311	50uH LISN-Line2	3816/2	2/23/2022	2/23/2024
		(N)			

1 - 15.207 AC Mains - Average

Page 32 of 42 Report No.: 106997-52A

2 - 15.207 AC Mains - Quasi-peak

	rement Data:		eading lis	ted by ma	argin.			Test Lead			
#	Freq	Rdng	T1 T5	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	174.724k	49.0	+9.1	+0.0	+0.1	+0.3	+0.0	58.6	64.7	-6.1	Line
	QP		+0.1								
2	159.453k	47.5	+9.1	+0.0	+0.1	+0.5	+0.0	57.3	65.5	-8.2	Line
	QP		+0.1								
3		43.0	+9.1	+0.0	+0.1	+0.1	+0.0	52.4	62.9	-10.5	Line
	QP		+0.1								
4		40.1	+9.1	+0.0	+0.1	+0.1	+0.0	49.5	63.2	-13.7	Line
	QP		+0.1								
5		36.9	+9.1	+0.0	+0.1	+0.1	+0.0	46.3	63.5	-17.2	Line
	QP	20.4	+0.1	.00	. 0.1	. 0.1	. 0. 0	41.0	<i>C</i> 1 <i>C</i>	10.0	т
6	253.262k QP	32.4	+9.1	+0.0	+0.1	+0.1	+0.0	41.8	61.6	-19.8	Line
7	` _	16.1	+0.1	+0.0	+0.1	+0.1	+0.0	25.5	47.5	-22.0	Line
	Ave Ave	10.1	+0.1	+0.0	+0.1	+0.1	+0.0	23.3	47.3	-22.0	Lille
٨	419.792k	37.7	+9.1	+0.0	+0.1	+0.1	+0.0	47.1	47.5	-0.4	Line
	117.772K	31.1	+0.1	10.0	10.1	10.1	10.0	17.1	17.5	0.1	Line
9	174.724k	15.5	+9.1	+0.0	+0.1	+0.3	+0.0	25.1	54.7	-29.6	Line
	Ave		+0.1								
٨	174.724k	63.6	+9.1	+0.0	+0.1	+0.3	+0.0	73.2	54.7	+18.5	Line
			+0.1								
11	243.081k	11.5	+9.1	+0.0	+0.1	+0.1	+0.0	20.9	52.0	-31.1	Line
	Ave		+0.1								
^	243.081k	47.3	+9.1	+0.0	+0.1	+0.1	+0.0	56.7	52.0	+4.7	Line
			+0.1								
13	159.453k	14.2	+9.1	+0.0	+0.1	+0.5	+0.0	24.0	55.5	-31.5	Line
	Ave		+0.1								
٨	159.452k	74.8	+9.1	+0.0	+0.1	+0.5	+0.0	84.6	55.5	+29.1	Line
1.7	106 7 101	10.0	+0.1	0.0	0.1	0.1	0.0	21.6	50.0	22.2	T ·
15	196.540k	12.2	+9.1	+0.0	+0.1	+0.1	+0.0	21.6	53.8	-32.2	Line
٨	Ave	45.1	+0.1	.00	. 0.1	. 0.1	. 0. 0	515	52.0	.07	т
,	196.540k	45.1	+9.1 +0.1	+0.0	+0.1	+0.1	+0.0	54.5	53.8	+0.7	Line
17	211.084k	11.5	+0.1	+0.0	+0.1	+0.1	+0.0	20.9	53.2	-32.3	Line
	Ave	11.5	+0.1	10.0	10.1	10.1	10.0	20.9	JJ.4	-34.3	Lille
٨		61.8	+9.1	+0.0	+0.1	+0.1	+0.0	71.2	53.2	+18.0	Line
	211.00 IX	31.0	+0.1	10.0	. 0.1	. 0.1	. 3.0	, 1.2	55.2	1 10.0	Line
19	253.262k	9.8	+9.1	+0.0	+0.1	+0.1	+0.0	19.2	51.6	-32.4	Line
	Ave		+0.1							•	-
٨		54.7	+9.1	+0.0	+0.1	+0.1	+0.0	64.1	51.6	+12.5	Line
			+0.1								
21	236.537k	9.9	+9.1	+0.0	+0.1	+0.1	+0.0	19.3	52.2	-32.9	Line
	Ave		+0.1								
٨	236.536k	43.5	+9.1	+0.0	+0.1	+0.1	+0.0	52.9	52.2	+0.7	Line
			+0.1								

Page 33 of 42 Report No.: 106997-52A

23	152.908k	12.8	+9.1	+0.0	+0.1	+0.7	+0.0	22.8	55.8	-33.0	Line
	Ave		+0.1								
٨	152.907k	45.7	+9.1	+0.0	+0.1	+0.7	+0.0	55.7	55.8	-0.1	Line
			+0.1								
25	217.629k	10.4	+9.1	+0.0	+0.1	+0.1	+0.0	19.8	52.9	-33.1	Line
	Ave		+0.1								
^	217.629k	55.0	+9.1	+0.0	+0.1	+0.1	+0.0	64.4	52.9	+11.5	Line
			+0.1								
27	202.358k	10.9	+9.1	+0.0	+0.1	+0.1	+0.0	20.3	53.5	-33.2	Line
	Ave		+0.1								
^	202.357k	57.4	+9.1	+0.0	+0.1	+0.1	+0.0	66.8	53.5	+13.3	Line
			+0.1								
29	315.075k	6.5	+9.1	+0.0	+0.1	+0.0	+0.0	15.8	49.8	-34.0	Line
	Ave		+0.1								
^	315.074k	40.7	+9.1	+0.0	+0.1	+0.0	+0.0	50.0	49.8	+0.2	Line
			+0.1								
31	248.172k	8.3	+9.1	+0.0	+0.1	+0.1	+0.0	17.7	51.8	-34.1	Line
	Ave		+0.1								
^	248.171k	46.1	+9.1	+0.0	+0.1	+0.1	+0.0	55.5	51.8	+3.7	Line
			+0.1								
33	280.169k	6.9	+9.1	+0.0	+0.1	+0.0	+0.0	16.2	50.8	-34.6	Line
	Ave		+0.1								
^	280.168k	42.9	+9.1	+0.0	+0.1	+0.0	+0.0	52.2	50.8	+1.4	Line
			+0.1								
35	259.807k	6.9	+9.1	+0.0	+0.1	+0.1	+0.0	16.3	51.4	-35.1	Line
	Ave		+0.1								
^	259.807k	49.8	+9.1	+0.0	+0.1	+0.1	+0.0	59.2	51.4	+7.8	Line
			+0.1								

Page 34 of 42 Report No.: 106997-52A

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Nalloy, LLC

Specification: 15.207 AC Mains - Average

Work Order #: 106997 Date: 8/18/2022
Test Type: Conducted Emissions Time: 10:30:15
Tested By: Matt Harrison Sequence#: 11

Software: EMITest 5.03.20 120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 25°C Humidity: 45% Pressure: 101.4kPa

Method: ANSI C63.10: 2013

Frequency range: 150k-30MHz

Highest Clock: 3.6 GHz

Setup:

EUT is setup in a combination of floor-standing and tabletop configuration. It is connected to a power supply and a remote laptop via Ethernet Cable.

Mode 1:

Honecrisp:

Fuji- CPU DDR MMC Stress

Audio 1kHz Tone on Headphone at 100% Volume

Display Max Brightness USB to Caramel 480Mbps

Opal: No Stressor

Caramel:

Ethernet 100Mbps

USB 2.0 x1 12Mbps to Wisepad USB B No Stressor to Baxter

Wisepad:

Tap Mode at 13.56MHz USB 2.0 12Mbps

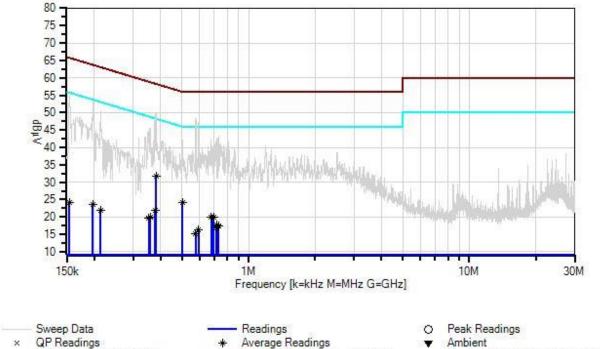
Baxter:

Ethernet 100Mbps

Prefect- Stressors on CPU DDR MMC

Relay continuously cycling

Page 35 of 42 Report No.: 106997-52A


Tamper sensor enabled Audio over speaker playing representative tone Microphone on USB on Baxter Mass Storage devices no cable USB A to B from Baxter to Caramel No Stressor

Badge Reader: On at 13.56MHz

> Page 36 of 42 Report No.: 106997-52A

Nalloy, LLC WO#: 106997 Sequence#: 11 Date: 8/18/2022 15.207 AC Mains - Average Test Lead: 120V 60Hz Neutral

Software Version: 5.03.20

Average Readings 1 - 15.207 AC Mains - Average

Ambient 2 - 15.207 AC Mains - Quasi-peak

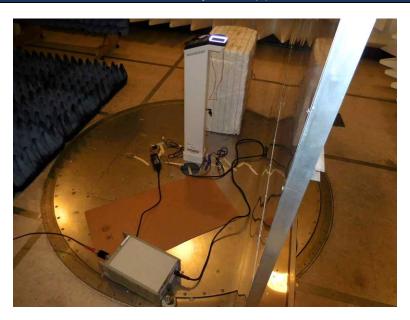
Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	3/23/2022	3/23/2024
T2	ANP06515	Cable	Heliax	5/23/2022	5/23/2024
T3	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T4	AN02611	High Pass Filter	HE9615-150K-	1/5/2022	1/5/2024
			50-720B		
	AN01311	50uH LISN-Line1 (L)	3816/2	2/23/2022	2/23/2024
T5	AN01311	50uH LISN-Line2	3816/2	2/23/2022	2/23/2024
		(N)			

Page 37 of 42 Report No.: 106997-52A

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	381.979k	22.4	+9.1	+0.0	+0.1	+0.1	+0.0	31.8	48.2	-16.4	Neutr
	Ave		+0.1								
2	502.695k	14.7	+9.1	+0.0	+0.1	+0.1	+0.0	24.1	46.0	-21.9	Neutr
	Ave		+0.1								
^	502.694k	32.6	+9.1	+0.0	+0.1	+0.1	+0.0	42.0	46.0	-4.0	Neutr
		10.7	+0.1	0.0	0.1	0.0	0.0	20.0	450	2.5.0	
4	695.405k	10.5	+9.1	+0.0	+0.1	+0.2	+0.0	20.0	46.0	-26.0	Neutr
^	Ave	22.9	+0.1	.00	ι O 1	.0.2	.00	42.2	46.0	2.7	Massass
,	695.404k	32.8	+9.1 +0.1	+0.0	+0.1	+0.2	+0.0	42.3	46.0	-3.7	Neutr
6	677.952k	10.4	+9.1	+0.0	+0.1	+0.2	+0.0	19.9	46.0	-26.1	Neutr
	Ave	10	+0.1	. 0.0			. 0.0	17.7		20.1	11000
^	677.951k	32.7	+9.1	+0.0	+0.1	+0.2	+0.0	42.2	46.0	-3.8	Neutr
			+0.1								
8	377.615k	12.5	+9.1	+0.0	+0.1	+0.1	+0.0	21.9	48.3	-26.4	Neutr
	Ave		+0.1								
^	377.615k	40.6	+9.1 +0.1	+0.0	+0.1	+0.1	+0.0	50.0	48.3	+1.7	Neutr
^	381.978k	40.2	+9.1	+0.0	+0.1	+0.1	+0.0	49.6	48.2	+1.4	Neutr
			+0.1								
11	715.039k	8.3	+9.1	+0.0	+0.1	+0.2	+0.0	17.8	46.0	-28.2	Neutr
	Ave		+0.1								
12	732.492k	7.9	+9.1	+0.0	+0.1	+0.1	+0.0	17.3	46.0	-28.7	Neutr
	Ave		+0.1								
^	732.492k	33.9	+9.1	+0.0	+0.1	+0.1	+0.0	43.3	46.0	-2.7	Neutr
1.4	257 0011	10.6	+0.1	.00	. 0.1	. 0. 0	.00	10.0	40.0	20.0	NT. 4
14	357.981k	10.6	+9.1 +0.1	+0.0	+0.1	+0.0	+0.0	19.9	48.8	-28.9	Neutr
^	Ave 357.980k	36.4	+9.1	+0.0	+0.1	+0.0	+0.0	45.7	48.8	-3.1	Neutr
	337.960K	30.4	+0.1	+0.0	+0.1	+0.0	+0.0	43.7	40.0	-3.1	Neuti
16	719.402k	7.3	+9.1	+0.0	+0.1	+0.2	+0.0	16.8	46.0	-29.2	Neutr
	Ave	,,,	+0.1	. 0.0			. 0.0	10.0		->	11000
^	715.039k	33.3	+9.1	+0.0	+0.1	+0.2	+0.0	42.8	46.0	-3.2	Neutr
			+0.1								
^	719.402k	33.3	+9.1	+0.0	+0.1	+0.2	+0.0	42.8	46.0	-3.2	Neutr
			+0.1								
19	352.890k	10.3	+9.1	+0.0	+0.1	+0.0	+0.0	19.6	48.9	-29.3	Neutr
	Ave		+0.1								
^	352.890k	35.5	+9.1	+0.0	+0.1	+0.0	+0.0	44.8	48.9	-4.1	Neutr
21	502 9691	<i>C</i> 0	+0.1	.0.0	.0.1	. 0.1	.00	16.0	46.0	20.0	Ma. 4.
21	592.868k Ave	6.8	+9.1	+0.0	+0.1	+0.1	+0.0	16.2	46.0	-29.8	Neutr
٨		37.8	+0.1	+0.0	+0.1	+0.1	+0.0	47.2	46.0	+1.2	Neutr
	392.000K	31.0	+0.1	+0.0	+0.1	+0.1	+0.0	41.4	40.0	⊤1.∠	redu
			10.1								

Page 38 of 42 Report No.: 106997-52A



23	197.268k	14.1	+9.1	+0.0	+0.1	+0.1	+0.0	23.5	53.7	-30.2	Neutr
1	Ave		+0.1								
^	197.268k	43.6	+9.1	+0.0	+0.1	+0.1	+0.0	53.0	53.7	-0.7	Neutr
			+0.1								
25	576.143k	5.8	+9.1	+0.0	+0.1	+0.1	+0.0	15.2	46.0	-30.8	Neutr
	Ave		+0.1								
^	576.142k	39.1	+9.1	+0.0	+0.1	+0.1	+0.0	48.5	46.0	+2.5	Neutr
			+0.1								
27	213.994k	12.6	+9.1	+0.0	+0.1	+0.1	+0.0	22.0	53.0	-31.0	Neutr
1	Ave		+0.1								
^	213.994k	41.1	+9.1	+0.0	+0.1	+0.1	+0.0	50.5	53.0	-2.5	Neutr
			+0.1								
29	154.363k	14.2	+9.1	+0.0	+0.1	+0.7	+0.0	24.2	55.8	-31.6	Neutr
	Ave		+0.1								
^	154.363k	44.9	+9.1	+0.0	+0.1	+0.7	+0.0	54.9	55.8	-0.9	Neutr
			+0.1								

Page 39 of 42 Report No.: 106997-52A

Test Setup Photo(s)

Page 40 of 42 Report No.: 106997-52A

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2.

Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS									
	Meter reading (dBμV)									
+	Antenna Factor	(dB/m)								
+	Cable Loss	(dB)								
-	Distance Correction	(dB)								
-	Preamplifier Gain	(dB)								
=	Corrected Reading	(dBμV/m)								

Page 41 of 42

Report No.: 106997-52A

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE									
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING						
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz						
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz						
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz						

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 42 of 42 Report No.: 106997-52A