

Page 1 of 44 Report No.: EED32P80738601

TEST REPORT

Product Portable Electronic Piano

Trade mark N/A

Model/Type reference PH88C, PH61A, PH88A, PH61C, PH88CL,

> PH49S, PH61S, PH88S, PH88Y, PH88Q, PH88T, PJ88A, PJ61B, PJ88B, PJ61C,

PJ88C, PJ88CD, PJ88CE, PJ88CF, PJ88CH, PJ88CT, PJ88CX, PJ61D, PJ88D, PJ88DL, PJ88DT, PJ61S, PJ88S, PJ49Z, PJ61Z, PJ88Z, PJ49T, PJ61T, PJ88T, PZ49, PZ61.

Serial Number N/A

Report Number EED32P80738601

FCC ID 2AX4N-PIANOKEYBOARD

Date of Issue Jul. 19, 2023

Test Standards 47 CFR Part 15 Subpart C

Test result PASS

Prepared for:

Shenzhen Konix Technology Co., Ltd 2nd & 6th Floor, 201 plant No.3 Building, Yufeng Industrial Area, Xitou New Village, Shangfen Community, Minzhi Street, Longhua District, Shenzhen

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Sea

Mark Chen

CAVOV

Aaron Ma

Reviewed by:

Tom Chen

Date:

Jul. 19, 2023

Report No.: EED32P80738601

Content

1 COVER PAGE	•••••	1
2 CONTENT2		
3 VERSION		3
4 TEST SUMMARY		4
5 GENERAL INFORMATION		5
5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 TEST LOCATION 5.7 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)		5 7 7 7
6 EQUIPMENT LIST		9
7 TEST RESULTS AND MEASUREMENT DATA		12
7.1 ANTENNA REQUIREMENT 7.2 CONDUCTED EMISSIONS 7.3 MAXIMUM CONDUCTED OUTPUT POWER 7.4 DTS BANDWIDTH 7.5 MAXIMUM POWER SPECTRAL DENSITY 7.6 BAND EDGE MEASUREMENTS AND CONDUCTED SPURIOUS EMISSION 7.7 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS		13 16 17 18
8 APPENDIX BLE	•••••	31
9 PHOTOGRAPHS OF TEST SETUP		32
10 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS		34

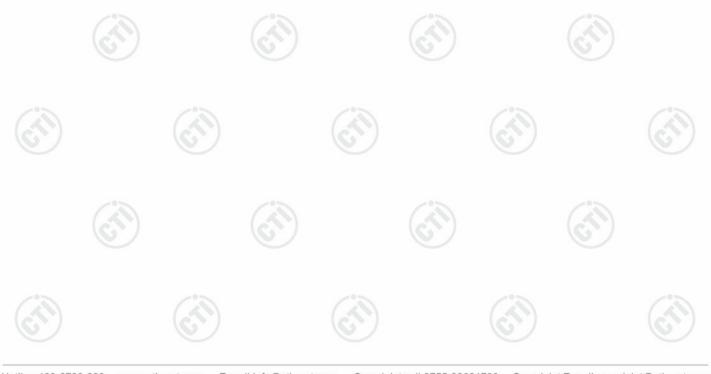
Report No.: EED32P80738601

3 Version

Version No.	Date	6	Description	9
00	Jul. 19, 2023	Original		
		10		/3
(,	(50)	(60)	(62)	(67)

Report No. : EED32P80738601 Page 4 of 44

4 Test Summary


Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: PH88C, PH61A, PH88A, PH61C, PH88CL, PH49S, PH61S, PH88S, PH88Y, PH88Q, PH88T, PJ88A, PJ61B, PJ88B, PJ61C, PJ88C, PJ88CD, PJ88CE, PJ88CF, PJ88CH, PJ88CT, PJ88CX, PJ61D, PJ88D, PJ88DL, PJ88DT, PJ61S, PJ88S, PJ49Z, PJ61Z,PJ88Z, PJ49T, PJ61T, PJ88T, PZ49, PZ61.

Only the model PH88C was tested. Theses models are identical on circuitry design, PCB layout, electrical components used, internal wiring and functions with the model/item No.PH88C.

General Information 5

5.1 Client Information

Applicant:	Shenzhen Konix Technology Co., Ltd
Address of Applicant:	2nd & 6th Floor, 201 plant No.3 Building, Yufeng Industrial Area, Xitou New Village, Shangfen Community, Minzhi Street, Longhua District, Shenzhen
Manufacturer:	Guangdong Konix Technology Co., Ltd
Address of Manufacturer:	Room 401,Building 3, No. 76 Qingxi Baijia Road, Qingxi Town, Dongguan,Guangdong
Factory:	Guangdong Konix Technology Co., Ltd
Address of Factory:	Room 401,Building 3, No. 76 Qingxi Baijia Road, Qingxi Town, Dongguan,Guangdong

5.2 General Description of EUT

Product Name:	Portable Ele	ectronic Piano				
Model No.(EUT):	PH88Y, PH PJ88CE, P	61A, PH88A, F 88Q, PH88T, F J88CF, PJ88CH J61S, PJ88S, P I.	7J88A, PJ61E H, PJ88CT, P	3, PJ88B, PJ6 J88CX, PJ61	1C, PJ88C, D, PJ88D, P	PJ88CD, J88DL,
Test Model No.:	PH88C		(41)			
Trade Mark:	N/A					
Product Type:	☐ Mobile	⊠ Portable	☐ Fix Loc	ation		
Operation Frequency:	2402MHz~2	2480MHz				
Modulation Type:	GFSK	(41)		(41)		(41)
Transfer Rate:	⊠ 1Mbps	☐ 2Mbps		(6)		(6)
Number of Channel:	40					
Antenna Type:	PCB Anteni	na				
Antenna Gain:	-0.58dBi					
Power Supply:	Adapter	INPUT:100-	0601A-05010 240V~50/60I V 1000mA	Hz 0.2A Max		
(2)	Battery DC	3.7V				
Test Voltage:	DC 3.7V	(0,		(0,)		(0,
Sample Received Date:	May 19, 20	23				
Sample tested Date:	May 19, 20	23 to Jul. 06, 20	023			

Page 6 of 44 Report No.: EED32P80738601

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

EUT Test Software	Settings:					
Test Software of EU	T: FCC_assis	st_1.0.0.2	(7)	(25)		
EUT Power Grade:	Default(Po selected)	Default(Power level is built-in set parameters and cannot be changed a selected)				
Use test software to transmitting of the E	set the lowest frequenc UT.	y, the middle freque	ncy and the highest	frequency keep		
Test Mode	Modulation	Rate	Channel	Frequency(MHz)		
Mode a	GFSK	1Mbps	CH0	2402		
Mode b GFSK		1Mbps	CH19	2440		
Mode c	GFSK	1Mbps	CH39	2480		

Report No. : EED32P80738601 Page 7 of 44

5.4 Test Environment

Operating Environment	t:					
Radiated Spurious Emi	ssions:					
Temperature:	22~25.0 °C	(40)		(41)		(4)
Humidity:	50~55 % RH	0		(0)		6
Atmospheric Pressure:	1010mbar					
Conducted Emissions:						
Temperature:	22~25.0 °C		(2)		(3)	
Humidity:	50~55 % RH		(0,)		(0,)	
Atmospheric Pressure:	1010mbar					
RF Conducted:						
Temperature:	22~25.0 °C	/°		(°)		(3)
Humidity:	50~55 % RH	(6,2)		(6,7)		(C)
Atmospheric Pressure:	1010mbar					
	Radiated Spurious Emi Temperature: Humidity: Atmospheric Pressure: Conducted Emissions: Temperature: Humidity: Atmospheric Pressure: RF Conducted: Temperature: Humidity:	Humidity: 50~55 % RH Atmospheric Pressure: 1010mbar Conducted Emissions: Temperature: 22~25.0 °C Humidity: 50~55 % RH Atmospheric Pressure: 1010mbar RF Conducted: Temperature: 22~25.0 °C Humidity: 50~55 % RH	Radiated Spurious Emissions: Temperature: 22~25.0 °C Humidity: 50~55 % RH Atmospheric Pressure: 1010mbar Conducted Emissions: Temperature: 22~25.0 °C Humidity: 50~55 % RH Atmospheric Pressure: 1010mbar RF Conducted: Temperature: 22~25.0 °C Humidity: 50~55 % RH	Radiated Spurious Emissions: Temperature: 22~25.0 °C Humidity: 50~55 % RH Atmospheric Pressure: 1010mbar Conducted Emissions: Temperature: 22~25.0 °C Humidity: 50~55 % RH Atmospheric Pressure: 1010mbar RF Conducted: Temperature: 22~25.0 °C Humidity: 50~55 % RH	Radiated Spurious Emissions: Temperature: 22~25.0 °C Humidity: 50~55 % RH Atmospheric Pressure: 1010mbar Conducted Emissions: Temperature: 22~25.0 °C Humidity: 50~55 % RH Atmospheric Pressure: 1010mbar RF Conducted: Temperature: 22~25.0 °C Humidity: 50~55 % RH	Radiated Spurious Emissions: Temperature: 22~25.0 °C Humidity: 50~55 % RH Atmospheric Pressure: 1010mbar Conducted Emissions: Temperature: 22~25.0 °C Humidity: 50~55 % RH Atmospheric Pressure: 1010mbar RF Conducted: Temperature: 22~25.0 °C Humidity: 50~55 % RH

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	СТІ

5.6 Test Location

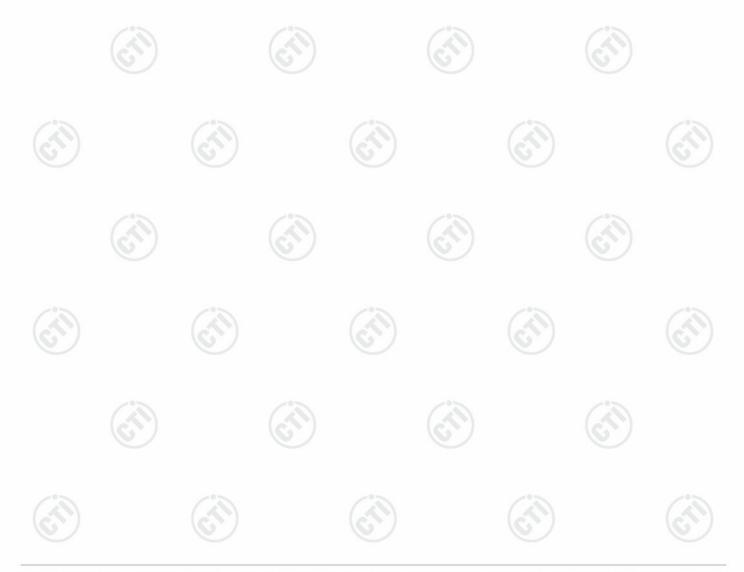
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



5.7 Measurement Uncertainty (95% confidence levels, k=2)

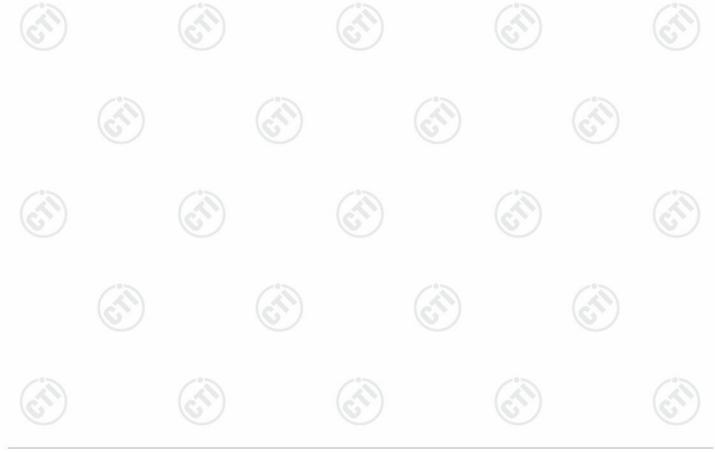
No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
(P)		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No.: EED32P80738601 Page 9 of 44

6 Equipment List

		RF te	st system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Communication tset set	R&S	CMW500	107929	07-06-2022 06-28-2023	07-05-2023 06-27-2024
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-09-2022	09-08-2023
Spectrum Analyzer	R&S	FSV40	101200	08-01-2022	07-31-2023
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	07-06-2022 06-28-2023	07-05-2023 06-27-2024
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022 06-01-2023	06-15-2023 05-31-2024
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0		

Conducted disturbance Test						
			Serial	Cal. date	Cal. Due date	
Equipment	Manufacturer			(mm-dd-yyyy)	(mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-25-2023	04-24-2024	
Temperature/ Humidity Indicator	Defu	TH128	/		(
LISN	R&S	ENV216	100098	09-27-2022	09-26-2023	
Barometer	changchun	DYM3	1188		/° 	
Test software	Fara	EZ-EMC	EMC-CON 3A1.1			



Page 10 of 44 Report No.: EED32P80738601

	3M Semi-ar	nechoic Chamber (2)-	Radiated disturba	ance Test		
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date	
3M Chamber & Accessory Equipment	TDK	SAC-3	<u> </u>	05/22/2022	05/21/2025	
Receiver	R&S	ESCI7	100938-003	09/28/2022	09/27/2023	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/15/2021	04/14/2024	
Multi device Controller	maturo	NCD/070/10711112	<u> </u>			
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024	
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022 06/20/2023	06/19/2023 06/19/2024	
Test software	Fara	EZ-EMC	EMEC-3A1-Pre			

Report No. : EED32P80738601 Page 11 of 44

	9				
		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	(i)	- 6
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-13-2023	04-12-2024
Preamplifier	EMCI	EMC001330	980563	03-28-2023	03-27-2024
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-29-2022	07-28-2023
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023
Temperature/	biaozhi	GM1360	EE1186631	04-11-2023	04-10-2024
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	()
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	(i)	(2
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	(6,)	
Cable line	Times	EMC104-NMNM-1000	SN160710		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	/	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		<u> </u>
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001	CiD.	(2

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No. : EED32P80738601 Page 12 of 44

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

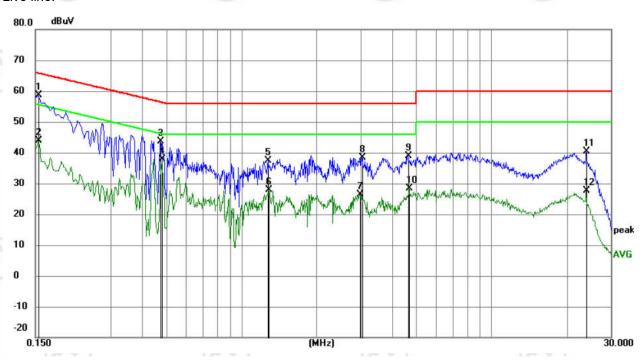
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is -0.58dBi.

Report No.: EED32P80738601 Page 13 of 44

7.2 Conducted Emissions


	10.7	(C) (C)	10.7				
Test Requirement:	47 CFR Part 15C Section 15.	207					
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz	==					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
Limit:	Frequency range (MHz)	Limit (dBuV)					
	Frequency range (wiriz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithr	n of the frequency.					
	Shielding Room EUT AE AC Mains LISN1	Test Rec LISN2 → AC Mains und Reference Plane					
Test Procedure:	 The mains terminal disturbance voltage test was conducted in a shielder room. The EUT was connected to AC power source through a LISN 1 (Lir Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω line impedance. The power cables of all other units of the EUT we connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. multiple socket outlet strip was used to connect multiple power cables to single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The test was performed with a vertical ground reference plane. The rear the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EU and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 						
Test Mode:	All modes were tested, only recorded in the report.	the worst case lowes	t channel for GFSK was				
Test Results:	Pass						

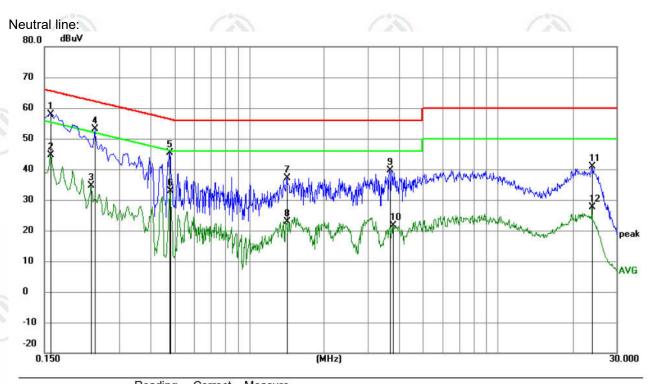
Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1545	48.75	9.87	58.62	65.75	-7.13	QP	
2		0.1545	33.89	9.87	43.76	55.75	-11.99	AVG	
3		0.4740	33.73	9.96	43.69	56.44	-12.75	QP	
4		0.4830	27.88	9.95	37.83	46.29	-8.46	AVG	
5		1.2795	27.62	9.82	37.44	56.00	-18.56	QP	
6		1.2885	18.03	9.82	27.85	46.00	-18.15	AVG	
7		2.9760	16.64	9.79	26.43	46.00	-19.57	AVG	
8		3.0255	28.60	9.79	38.39	56.00	-17.61	QP	
9		4.6230	29.07	9.78	38.85	56.00	-17.15	QP	
10		4.6725	18.70	9.78	28.48	46.00	-17.52	AVG	
11		24.0045	30.39	9.99	40.38	60.00	-19.62	QP	
12		24.0045	17.67	9.99	27.66	50.00	-22.34	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1590	48.13	9.87	58.00	65.52	-7.52	QP	
2		0.1590	34.82	9.87	44.69	55.52	-10.83	AVG	
3		0.2310	24.74	9.93	34.67	52.41	-17.74	AVG	
4		0.2400	43.12	9.95	53.07	62.10	-9.03	QP	
5		0.4785	35.33	9.95	45.28	56.37	-11.09	QP	
6		0.4830	22.91	9.95	32.86	46.29	-13.43	AVG	
7		1.4189	27.40	9.81	37.21	56.00	-18.79	QP	
8		1.4189	13.18	9.81	22.99	46.00	-23.01	AVG	
9		3.6780	29.95	9.78	39.73	56.00	-16.27	QP	
10		3.7950	11.83	9.78	21.61	46.00	-24.39	AVG	
11		24.0090	30.93	9.99	40.92	60.00	-19.08	QP	-
12		24.0090	17.56	9.99	27.55	50.00	-22.45	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

7.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)						
Test Method:	ANSI C63.10 2013						
Test Setup:							
	Control Computer Power Supply Power port Table RF test System Instrument Table						
	Remark: Offset=Cable loss+ attenuation factor.						
Test Procedure:	a) Set the RBW ≥ DTS bandwidth.b) Set VBW ≥ 3 × RBW.	(0,					
	 c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 						
Limit:	30dBm	/3>					
Test Mode:	Refer to clause 5.3	(12)					
Test Results:	Refer to Appendix BLE						
	Test Method: Test Setup: Test Procedure: Limit: Test Mode:	Test Method: Test Setup: RF test System Instrument Remark: Offset=Cable loss+ attenuation factor. Test Procedure: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. Limit: 30dBm Test Mode: RF test System Instrument RIF test System Instrument Instrument Refer to clause 5.3					

Report No. : EED32P80738601 Page 17 of 44

7.4 DTS Bandwidth

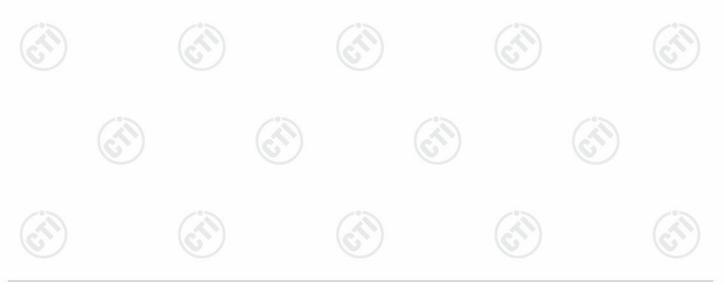
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10 2013					
Test Setup:						
	Control Computer Control Computer Actenna portity Actenna portity Actenna portity Actenna portity Attenuator Temperature cabnet Table RF test System Instrument					
	Remark: Offset=Cable loss+ attenuation factor.					
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. 					
Limit:	≥ 500 kHz					
Test Mode:	Refer to clause 5.3					
Test Results:	Refer to Appendix BLE					

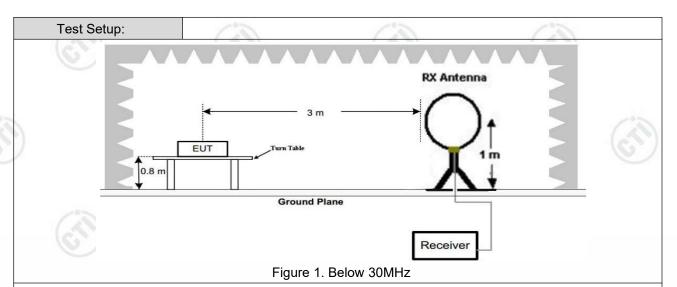
7.5 Maximum Power Spectral Density

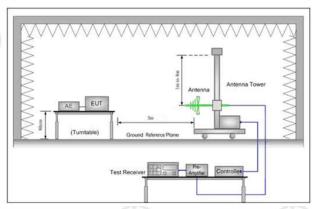
Test Requirement:	47 CFR Part 15C Section 15.247 (e)				
Test Method:	ANSI C63.10 2013				
Test Setup:					
	Control Control Control Power Supply Power Temperature Casnet	RF test - System Instrument			
	 Remark: Offset=Cable loss+ attenua	ation factor.			
Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat. 				
Limit:	≤8.00dBm/3kHz				
Test Mode:	Refer to clause 5.3	-05			
Test Results:	Refer to Appendix BLE				

7.6 Band Edge measurements and Conducted Spurious Emission

	160	
	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10 2013
	Test Setup:	Control Control Control Control Pottey Power Supply Power Pool Table RF test System System Instrument
,		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix BLE




7.7 Radiated Spurious Emission & Restricted bands


Test Requirement:	47 CFR Part 15C Secti	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10 2013	ANSI C63.10 2013						
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver Setup:	Frequency	1	Detector	RBW	VBW	Remark		
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak		
	0.110MHz-0.490MH	Z	Peak	10kHz	30kHz	Peak		
	0.110MHz-0.490MH	Z	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak		
	Above 4015		Peak	1MHz	3MHz	Peak		
	Above 1GHz		Peak	1MHz	10kHz	Average		
Limit:	Frequency	l	eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m		
	() ()		400/F(kHz)	-	-/%	300		
			000/F(kHz)	-	(()	30		
	1.705MHz-30MHz		30	-	-6	30		
	30MHz-88MHz		100	40.0	Quasi-peak	3		
	88MHz-216MHz	150		43.5 Quasi-pea		3		
	216MHz-960MHz	9	200	46.0	Quasi-peak	3		
	960MHz-1GHz	1	500	54.0	Quasi-peak	3		
	Above 1GHz		500	54.0	Average	3		
	Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rad	20d quip	B above the i	maximum est. This p	permitted ave	erage emission		

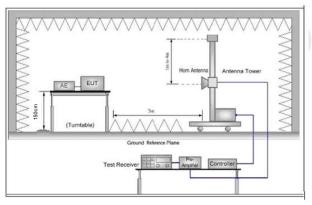


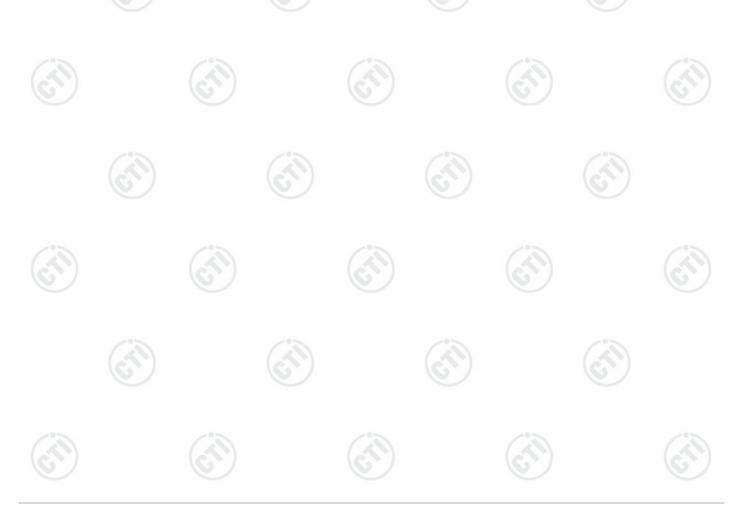
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

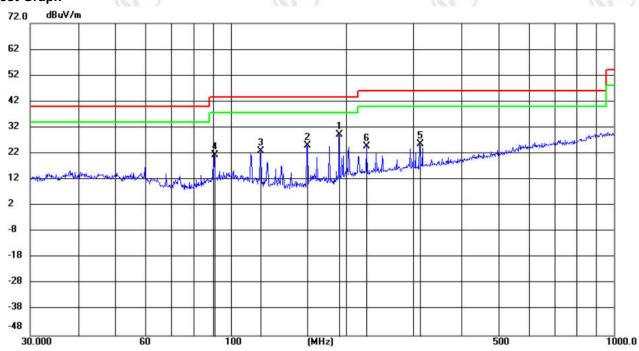
- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.



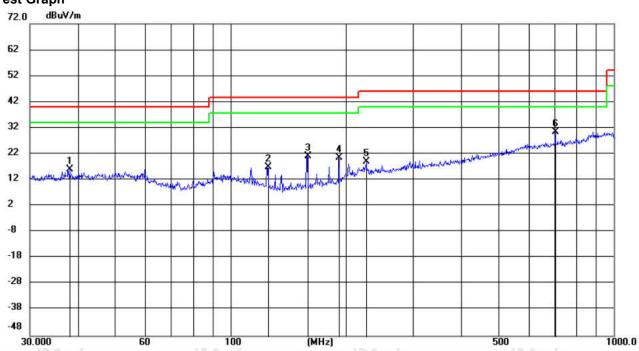
Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel for GFSK was recorded in the report.

Horizontal:

Test Graph

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
*	192.0141	17.04	12.15	29.19	43.50	-14.31	QP	200	352	
	158.5009	15.32	9.86	25.18	43.50	-18.32	QP	200	34	
	119.8556	11.80	11.28	23.08	43.50	-20.42	QP	200	352	
	90.7280	8.56	12.77	21.33	43.50	-22.17	QP	200	172	
	312.0152	8.23	17.51	25.74	46.00	-20.26	QP	100	59	
	226.6948	10.14	14.71	24.85	46.00	-21.15	QP	100	164	
	*	MHz * 192.0141 158.5009 119.8556 90.7280	Mk. Freq. Level MHz dBuV * 192.0141 17.04 158.5009 15.32 119.8556 11.80 90.7280 8.56 312.0152 8.23	Mk. Freq. Level Factor MHz dBuV dB * 192.0141 17.04 12.15 158.5009 15.32 9.86 119.8556 11.80 11.28 90.7280 8.56 12.77 312.0152 8.23 17.51	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m * 192.0141 17.04 12.15 29.19 158.5009 15.32 9.86 25.18 119.8556 11.80 11.28 23.08 90.7280 8.56 12.77 21.33 312.0152 8.23 17.51 25.74	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m * 192.0141 17.04 12.15 29.19 43.50 158.5009 15.32 9.86 25.18 43.50 119.8556 11.80 11.28 23.08 43.50 90.7280 8.56 12.77 21.33 43.50 312.0152 8.23 17.51 25.74 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dBuV/m dB * 192.0141 17.04 12.15 29.19 43.50 -14.31 158.5009 15.32 9.86 25.18 43.50 -18.32 119.8556 11.80 11.28 23.08 43.50 -20.42 90.7280 8.56 12.77 21.33 43.50 -22.17 312.0152 8.23 17.51 25.74 46.00 -20.26	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB v/m dB v/	Mk. Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm * 192.0141 17.04 12.15 29.19 43.50 -14.31 QP 200 158.5009 15.32 9.86 25.18 43.50 -18.32 QP 200 119.8556 11.80 11.28 23.08 43.50 -20.42 QP 200 90.7280 8.56 12.77 21.33 43.50 -22.17 QP 200 312.0152 8.23 17.51 25.74 46.00 -20.26 QP 100	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree * 192.0141 17.04 12.15 29.19 43.50 -14.31 QP 200 352 158.5009 15.32 9.86 25.18 43.50 -18.32 QP 200 34 119.8556 11.80 11.28 23.08 43.50 -20.42 QP 200 352 90.7280 8.56 12.77 21.33 43.50 -22.17 QP 200 172 312.0152 8.23 17.51 25.74 46.00 -20.26 QP 100 59



Vertical:

Test Graph

No. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	38.1451	1.91	14.20	16.11	40.00	-23.89	QP	100	289	
2	125.0066	6.40	10.43	16.83	43.50	-26.67	QP	200	292	
3	158.6956	11.18	9.85	21.03	43.50	-22.47	QP	200	102	
4	192.0142	8.33	12.15	20.48	43.50	-23.02	QP	200	91	
5	226.6948	4.48	14.71	19.19	46.00	-26.81	QP	200	271	
6 *	705.2146	5.65	24.83	30.48	46.00	-15.52	QP	100	142	

Radiated Spurious Emission above 1GHz:

П										
	Mode	:		BLE GFSK Tra	nsmitting		Channel:		2402 MHz	7
100	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
٦	1	1237.8238	0.90	39.93	40.83	74.00	33.17	Pass	Н	PK
	2	1742.2742	3.08	38.91	41.99	74.00	32.01	Pass	Н	PK
	3	4803.1202	-16.23	66.32	50.09	74.00	23.91	Pass	Н	PK
Ī	4	7205.2804	-11.83	66.96	55.13	74.00	18.87	Pass	Н	PK
	5	9607.4405	-7.37	49.73	42.36	74.00	31.64	Pass	Н	PK
	6	12008.6006	-5.30	50.71	45.41	74.00	28.59	Pass	Н	PK
	7	7206.2804	-11.83	57.85	46.02	54.00	7.98	Pass	Н	AV
	8	1244.8245	0.91	39.78	40.69	74.00	33.31	Pass	V	PK
3	9	1663.2663	2.70	37.98	40.68	74.00	33.32	Pass	V	PK
	10	4803.1202	-16.23	64.11	47.88	74.00	26.12	Pass	V	PK
	11	7205.2804	-11.83	59.82	47.99	74.00	26.01	Pass	V	PK
	12	9608.4406	-7.37	51.92	44.55	74.00	29.45	Pass	V	PK
	13	12010.6007	-5.31	50.43	45.12	74.00	28.88	Pass	V	PK

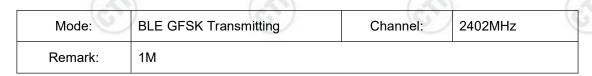
Mode) :		BLE GFSK Tra	nsmitting		Channel:		2440 MHz	<u>z</u>
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1318.6319	1.12	38.86	39.98	74.00	34.02	Pass	Н	PK
2	1755.4755	3.13	37.85	40.98	74.00	33.02	Pass	Н	PK
3	4880.1253	-16.21	66.54	50.33	74.00	23.67	Pass	Н	PK
4	7319.288	-11.65	51.03	39.38	74.00	34.62	Pass	Н	PK
5	9761.4508	-7.51	51.20	43.69	74.00	30.31	Pass	Н	PK
6	12198.6132	-5.13	54.78	49.65	74.00	24.35	Pass	Н	PK
7	1329.4329	1.16	38.53	39.69	74.00	34.31	Pass	V	PK
8	1805.0805	3.31	37.98	41.29	74.00	32.71	Pass	V	PK
9	4879.1253	-16.21	63.65	47.44	74.00	26.56	Pass	V	PK
10	7319.288	-11.65	57.08	45.43	74.00	28.57	Pass	V	PK
11	9758.4506	-7.52	51.80	44.28	74.00	29.72	Pass	V	PK
12	12200.6134	-5.12	54.50	49.38	74.00	24.62	Pass	V	PK

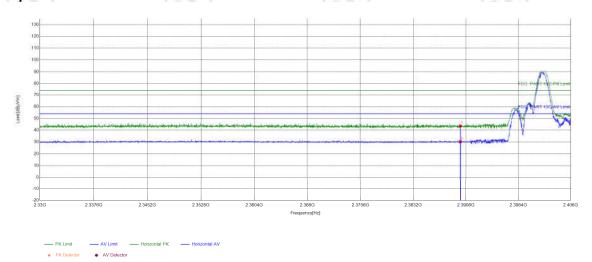
Report No.: EED32P80738601 Page 26 of 44

	200		200		200				
Mod	e:		BLE GFSK Trai	nsmitting		Channel:		2480 MHz	7
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1280.028	1.01	39.05	40.06	74.00	33.94	Pass	Н	PK
2	1659.4659	2.67	38.03	40.70	74.00	33.30	Pass	Н	PK
3	4960.1307	-15.97	62.81	46.84	74.00	27.16	Pass	Н	PK
4	7439.296	-11.34	62.82	51.48	74.00	22.52	Pass	Н	PK
5	9245.4164	-7.91	48.22	40.31	74.00	33.69	Pass	Н	PK
6	12398.6266	-4.70	53.49	48.79	74.00	25.21	Pass	Н	PK
7	1331.0331	1.16	39.00	40.16	74.00	33.84	Pass	V	PK
8	1731.4731	3.05	39.59	42.64	74.00	31.36	Pass	V	PK
9	4959.1306	-15.98	65.88	49.90	74.00	24.10	Pass	V	PK
10	7440.296	-11.34	67.37	56.03	74.00	17.97	Pass	V	PK
11	9918.4612	-7.10	53.65	46.55	74.00	27.45	Pass	V	PK
12	12398.6266	-4.70	53.39	48.69	74.00	25.31	Pass	V	PK
13	7440.296	-11.34	55.85	44.51	54.00	9.49	Pass	V	AV

Remark:

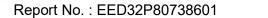
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

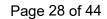




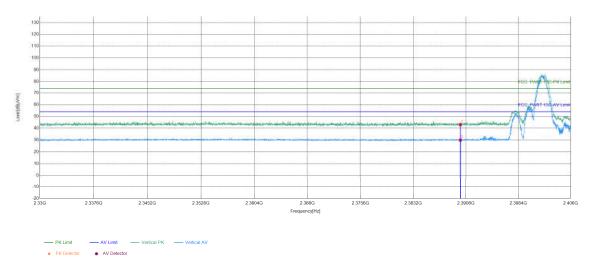
Restricted bands:

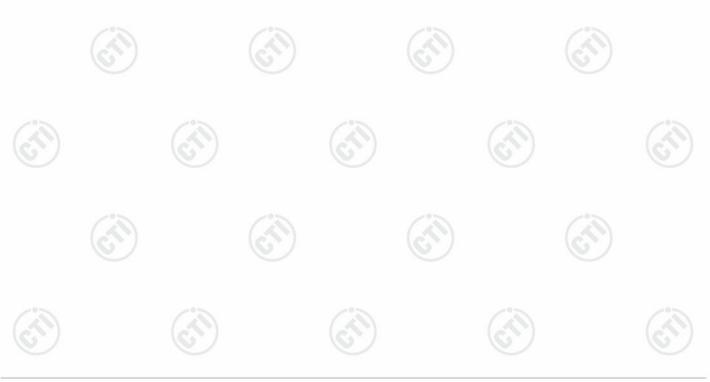
Test plot as follows:


Test Graph



Suspected List Factor Limit Reading Level Margin Freq. [dB] NO Result **Polarity** Remark [MHz] [dBµV] $[dB\mu V/m]$ $[dB\mu V/m]$ [dB] 1 2390 5.77 37.89 43.66 74.00 30.34 **PASS** Horizontal PΚ 2 2390 5.77 24.41 30.18 54.00 23.82 **PASS** Horizontal ΑV

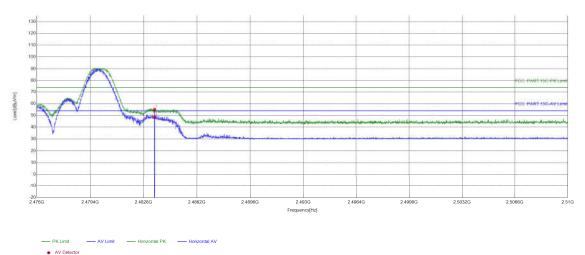




Mode:	BLE GFSK Transmitting	Channel:	2402MHz
Remark:	1M		

Test Graph

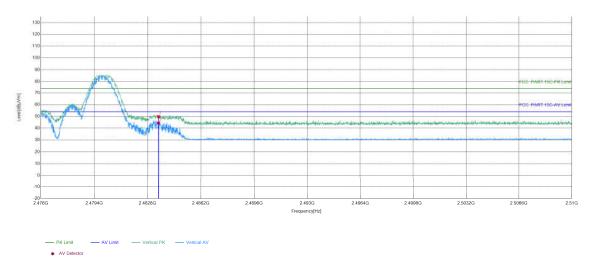
	Suspecte	d List								
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	5.77	37.28	43.05	74.00	30.95	PASS	Vertical	PK
	2	2390	5.77	24.17	29.94	54.00	24.06	PASS	Vertical	AV



Mode:	BLE GFSK Transmitting	Channel:	2480MHz
Remark:	1M		

Test Graph

	Suspecte	d List								
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	6.57	48.50	55.07	74.00	18.93	PASS	Horizontal	PK
	2	2483.5	6.57	41.91	48.48	54.00	5.52	PASS	Horizontal	AV



Report No.: EED32P80738601 Page 30 of 44

Mode:	BLE GFSK Transmitting	Channel:	2480MHz
Remark:	1M		

Test Graph

	Suspecte	d List								
-	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	6.57	43.29	49.86	74.00	24.14	PASS	Vertical	PK
	2	2483.5	6.57	37.79	44.36	54.00	9.64	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix BLE

Refer to Appendix: Bluetooth LE of EED32P80738601

