

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM170700703403 Page: 1 of 41

FCC REPORT

PASS *
2017-07-26
2016-12-28 to 2017-01-12
2016-12-27
47 CFR Part 15, Subpart C (2015)
YOQF23
RIVIERA
F23
Smartphone
Hisense Communications Co., Ltd.
Hisense Communications Co., Ltd.
AUDIOVISION ELECTRONICA AUDIOELEC S.A.
SZEM1707007034RG
-

^{*} In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derde young

Derek Yang Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SZEM170700703403 Page: 2 of 41

2 Version

Revision Record				
Version	Chapter	Date	Modifier	Remark
01		2017-07-26		Original

Authorized for issue by:		
Tested By	Mike Mu	2017-07-10
	(Mike Hu) /Project Engineer	Date
Checked By	Jum Hug) /Reviewer	2017-07-26

Report No.: SZEM170700703403 Page: 3 of 41

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

Remark:

Original report No. is SZEM16120108503:

According to the declaration from the applicant, only the applicant, mode No., trade mark and FCC ID has changed. no other electrical properties changed. The original data was kept in this report SZEM170700703403.

Report No.: SZEM170700703403 Page: 4 of 41

4 Contents

1	CC	DVER PAGE	1
2	VE	ERSION	2
3	TE	EST SUMMARY	
4	C	ONTENTS	4
5	GI	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST ENVIRONMENT	7
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	TEST LOCATION	7
	5.6	TEST FACILITY	7
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	8
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
	5.11E	QUIPMENT LIST	9
6	TE	EST RESULTS AND MEASUREMENT DATA	11
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	15
	6.4	6DB OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7	Spurious RF Conducted Emissions	
	6.8	RADIATED SPURIOUS EMISSION	
		8.1 Radiated Emission below 1GHz	
		8.2 Transmitter Emission above 1GHz	
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7	Pŀ	IOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	41

Report No.: SZEM170700703403 Page: 5 of 41

5 General Information

5.1 Client Information

Applicant:	AUDIOVISION ELECTRONICA AUDIOELEC S.A.	
Address of Applicant:	Km 4 Via Duran Tambo Mz. B2, S. 4	
Manufacturer:	Hisense Communications Co., Ltd.	
Address of Manufacturer: 218 Qianwangang Road, Economic & Technological Developmen Qingdao, Shandong Province, P.R. China		
Factory:	Hisense Communications Co., Ltd.	
Address of Factory:	218 Qianwangang Road, Economic & Technological Development Zone, Qingdao, Shandong Province, P.R.	

5.2 General Description of EUT

Product Name:	Smartphone
Model No.:	F23
Trade Mark:	RIVIERA
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	Bluetooth V4.0 Dual-mode (This test report is for BLE)
Modulation Type:	GFSK
Number of Channel:	40
Sample Type:	Portable Device
Antenna Type:	PIFA
Antenna Gain:	0dBi
Power Supply	DC3.85V (1 x 3.85V Rechargeable battery) 3000mAh Battery: Charge by DC 5V
AC adaptor:	Model: CC10-050200U Input: AC100-240V 50/60Hz 0.35A Output:DC5.0V 2A

Report No.: SZEM170700703403 Page: 6 of 41

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

Report No.: SZEM170700703403 Page: 7 of 41

5.3 Test Environment

Operating Environment		
Temperature:	25.0 °C	
Humidity:	50 % RH	
Atmospheric Pressure:	1010 mbar	

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594 No tests were sub-contracted.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

Report No.: SZEM170700703403 Page: 8 of 41

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Total RF power, conducted	0.75dB
2	RF power density, conducted	2.84dB
3	Spurious emissions, conducted	0.75dB
		4.5dB (30MHz-1GHz)
4 Radi	Radiated Spurious emission test	4.8dB (1GHz-25GHz)
5	Conduct emission test	3.12 dB(9KHz- 30MHz)
6	Temperature test	1 °C
7	Humidity test	3%
8	DC and low frequency voltages	0.5%

Report No.: SZEM170700703403 Page: 9 of 41

5.11Equipment List

	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2016-05-13	2017-05-13
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2016-10-09	2017-10-09
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2016-04-25	2017-04-25
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	EMC0120	2016-09-28	2017-09-28
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	EMC0121	2016-09-28	2017-09-28
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	EMC0122	2016-09-28	2017-09-28
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2016-04-25	2017-04-25
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09

	RF connected test					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
2	Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-17	2017-10-17
3	Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25
4	Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09

Report No.: SZEM170700703403 Page: 10 of 41

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2016-05-13	2017-05-13
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2016-09-16	2017-09-16
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2014-11-01	2017-11-01
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2014-11-24	2017-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2016-04-25	2017-04-25
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEM004-04	2016-04-25	2017-04-25
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2016-10-09	2017-10-09
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

Report No.: SZEM170700703403 Page: 11 of 41

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

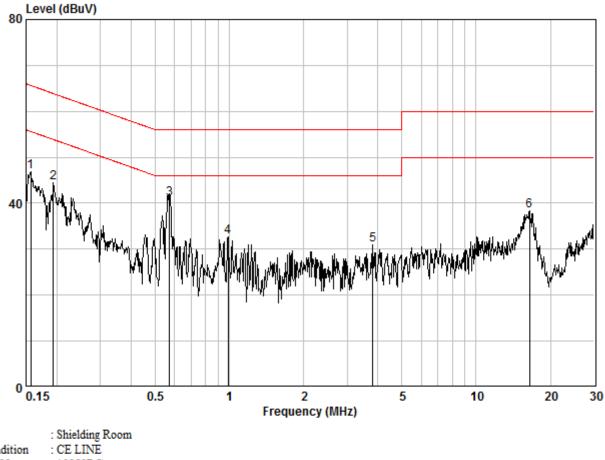
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SZEM170700703403 Page: 12 of 41

Test Requirement:	47 CFR Part 15C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
	Frequency range (MHz)	Limit (dBuV) Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
Limit:	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarith		50	
Test Procedure:	 The mains terminal disturb The EUT was connected Stabilization Network) wh power cables of all other which was bonded to the for the unit being measu multiple power cables to exceeded. The tabletop EUT was plated reference plane. And for horizontal ground reference The test was performed of EUT shall be 0.4 m from reference plane was bond was placed 0.8 m from ground reference plane for This distance was betwee units of the EUT and association 5) In order to find the maxim of the interface cables mu ANSI C63.10: 2013 on co 	to AC power source the nich provides a 50Ω/50 units of the EUT were ground reference plan red. A multiple socket a single LISN provide aced upon a non-meta floor-standing arranger ce plane. with a vertical ground refe led to the horizontal gro the boundary of the up or LISNs mounted on the on the closest points of ociated equipment was uum emission, the relat ust be changed accordi	rough a LISN 1 (Line $D\mu H + 5\Omega$ linear imp e connected to a sec e in the same way a outlet strip was use d the rating of the L ullic table 0.8m above nent, the EUT was p reference plane. The erence plane. The ve bund reference plane unit under test and op of the ground refe the LISN 1 and the E at least 0.8 m from the ive positions of equip ng to	e Impedance edance. The cond LISN 2, s the LISN 1 d to connect ISN was not e the ground laced on the rtical ground . The LISN 1 bonded to a rence plane. UT. All other e LISN 2.
Test Setup:	Shielding Room	AE	Test Receiver	
Test Mode:	Transmitting with GFSK mod Charge +Transmitting mode.	ulation.		
Instruments Used:	Refer to section 5.10 for deta	ils.		

6.2 Conducted Emissions

Inis document is issued by the Company subject to its General Conditions of Service printed overlear, available on request or accessible at http://www.sgs.com/en/lerms-and-Conditions for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/lerms-and-Conditions for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/lerms-and-Conditions for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/lerms-and-Conditions for electronic format documents, subject to Terms and Conditions for Electronic Document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

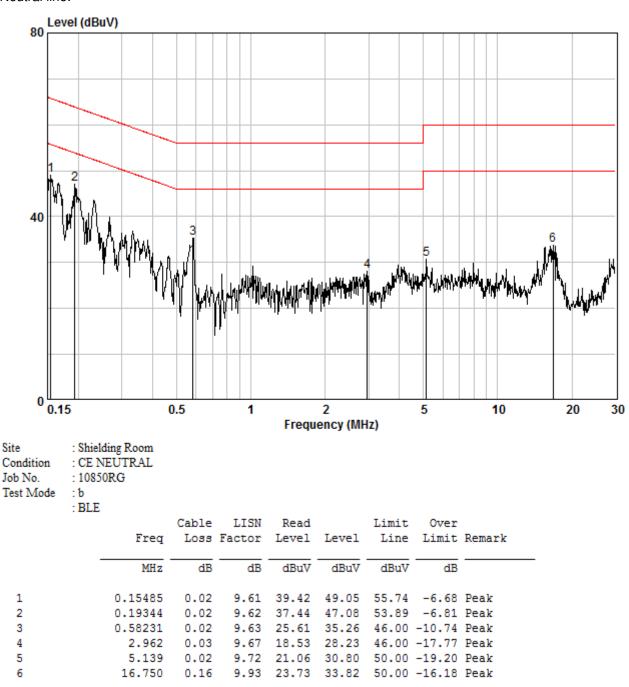

Report No.: SZEM170700703403 Page: 13 of 41

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

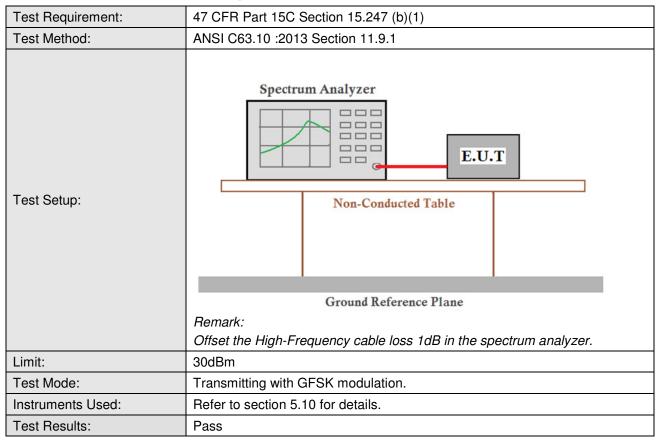
Live line:


Site : Shielding Roo Condition : CE LINE Job No. : 10850RG Test Mode : b : BLE

	Freq		LISN Factor				Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15649	0.02	9.59	37.24	46.85	55.65	-8.80	Peak
2	0.19344	0.02	9.60	34.88	44.50	53.89	-9.39	Peak
3 @	0.57313	0.02	9.60	31.45	41.07	46.00	-4.93	Peak
4	0.98914	0.03	9.63	23.07	32.73	46.00	-13.27	Peak
5	3.820	0.02	9.63	21.21	30.86	46.00	-15.14	Peak
6	16.486	0.16	9.77	28.46	38.39	50.00	-11.61	Peak

Report No.: SZEM170700703403 Page: 14 of 41

Neutral line:


Notes:

The following Quasi-Peak and Average measurements were performed on the EUT:
 Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

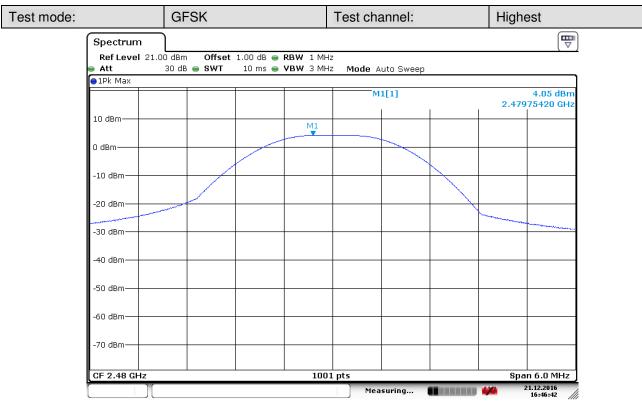
Report No.: SZEM170700703403 Page: 15 of 41

6.3 Conducted Peak Output Power

Measurement Data

GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	4.68	30.00	Pass	
Middle	4.08	30.00	Pass	
Highest	4.05	30.00	Pass	

Report No.: SZEM170700703403 Page: 16 of 41


Test plot as follows:

Date: 21.DEC.2016 16:46:22

Report No.: SZEM170700703403 Page: 17 of 41

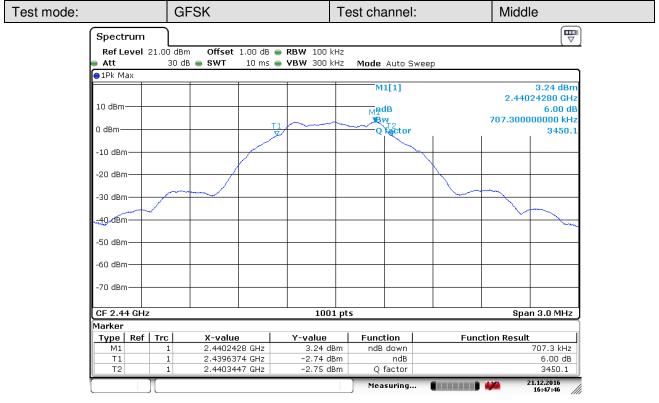
Date: 21.DEC.2016 16:46:42

Report No.: SZEM170700703403 Page: 18 of 41

6.46dB Occupy Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10: 2013 Section 11.8		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Limit:	≥ 500 kHz		
Test Mode:	Transmitting with GFSK modulation.		
Instruments Used:	Refer to section 5.10 for details.		
Test Results:	Pass		

Measurement Data


	GFSK mode		
Test channel	6dB Occupy Bandwidth (kHz)	Limit (kHz)	Result
Lowest	704.3	≥500	Pass
Middle	707.3	≥500	Pass
Highest	713.3	≥500	Pass

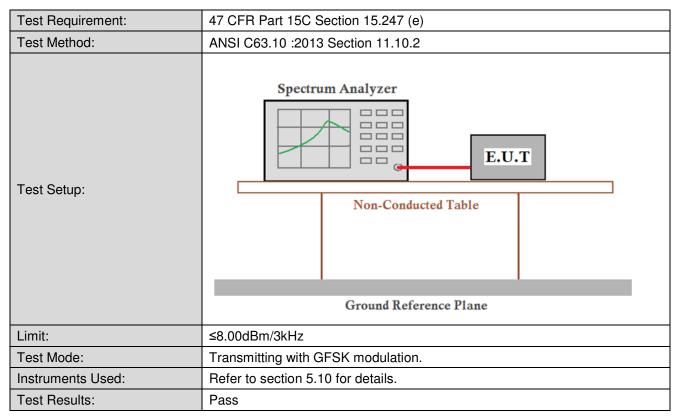
Report No.: SZEM170700703403 Page: 19 of 41

Test plot as follows: Test mode: GFSK Test channel: Lowest [₩ Spectrum Ref Level 21.00 dBm Offset 1.00 dB 🖷 RBW 100 kHz 30 dB 👄 SWT Att 10 ms 👄 VBW 300 kHz Mode Auto Sweep 🔵 1 Pk Max M1[1] 3.79 dBm 2.40224880 GHz 10 dBm· MndB 6.00 dB 704.30000000 kHz Rw 0 dBm-Ofector 3410.9 -10 dBm -20 dBm--30 dBm -40 dBm--50 dBm -60 dBm--70 dBm· Span 3.0 MHz CF 2.402 GHz 1001 pts Marker Type Ref Trc X-value Y-value Function **Function Result** M1 1 2.4022488 GHz 3.79 dBm ndB down 704.3 kHz -2.22 dBm Τ1 1 2.4016404 GHz ndB 6.00 dB Т2 2.4023447 GHz -2.21 dBm Q factor 3410.9 1 21.12.2016 Measuring... 16:48:16

Date: 21.DEC.2016 16:48:17

Date: 21.DEC.2016 16:47:46

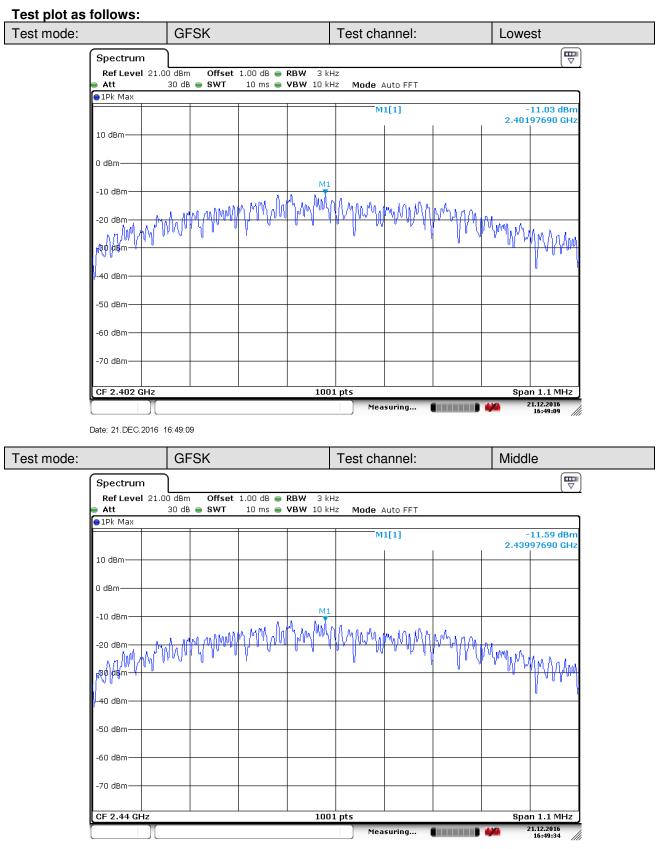
Report No.: SZEM170700703403 Page: 20 of 41


Highest Test mode: GFSK Test channel: **T** Spectrum Ref Level 21.00 dBm Offset 1.00 dB 👄 RBW 100 kHz 10 ms 😑 **VBW** 300 kHz Att 30 dB 😑 SWT Mode Auto Sweep ⊖1Pk Max M1[1] 3.21 dBn 2,47999400 GHz 10 dBm· ndB 6.00 dB Bw Q factor 713.300000000 kHz 0 dBm 3476.9 -10 dBm -20 dBm -30 dBm· -40 dBm--50 dBm· -60 dBm--70 dBm-CF 2.48 GHz 1001 pts Span 3.0 MHz Marker Type Ref Trc X-value Y-value Function Function Result 2.479994 GHz 3.21 dBm 713.3 kHz M1 1 ndB down 2.4796344 GHz -2.80 dBm 6.00 dB ndB Τ1 1 Т2 2.4803477 GHz -2.73 dBm Q factor 3476.9 1 21.12.2016 Measuring... •••• 16:47:09

Date: 21.DEC.2016 16:47:09

Report No.: SZEM170700703403 Page: 21 of 41

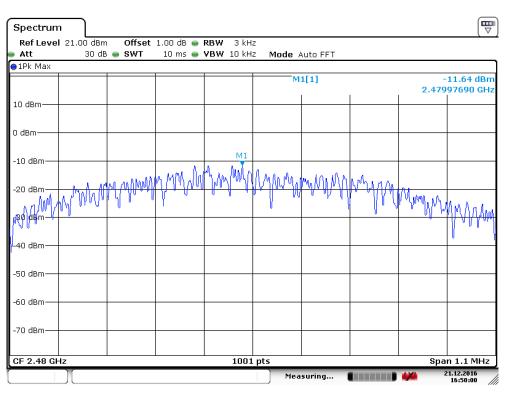
6.5 Power Spectral Density



Measurement Data

	GFSK mode		
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-11.03	≤8.00	Pass
Middle	-11.59	≤8.00	Pass
Highest	-11.64	≤8.00	Pass

Report No.: SZEM170700703403 Page: 22 of 41

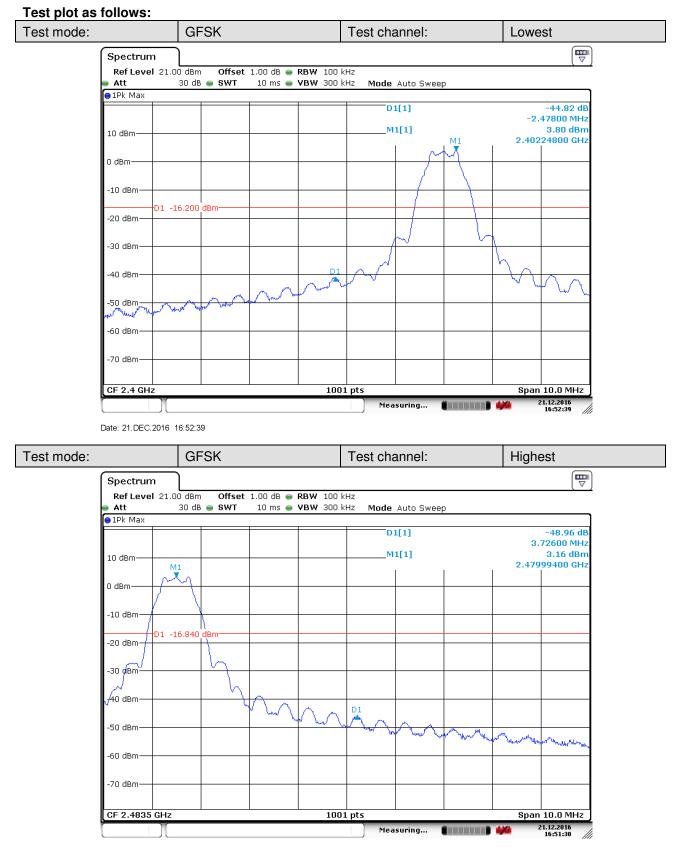


Date: 21.DEC.2016 16:49:34

Report No.: SZEM170700703403 Page: 23 of 41

Test mode: GFSK Test channel: Highest

Date: 21.DEC.2016 16:50:01


Report No.: SZEM170700703403 Page: 24 of 41

Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10: 2013 Section 11.13		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1dB in the spectrum analyzer.		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test Mode:	Transmitting with GFSK modulation.		
Instruments Used:	Refer to section 5.10 for details.		
Test Results:	Pass		

6.6 Band-edge for RF Conducted Emissions

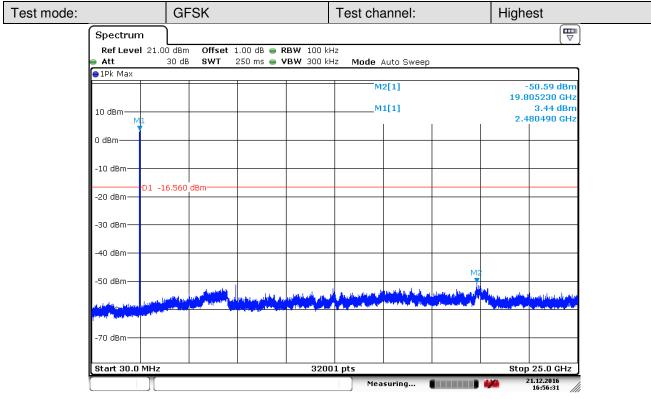
Report No.: SZEM170700703403 Page: 25 of 41

Date: 21.DEC.2016 16:51:30

Report No.: SZEM170700703403 Page: 26 of 41

Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10: 2013 Section 11.11	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark:	
	Offset the High-Frequency cable loss 1dB in the spectrum analyzer.	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test Mode:	Transmitting with GFSK modulation.	
Instruments Used:	Refer to section 5.10 for details.	
Test Results:	Pass	

6.7 Spurious RF Conducted Emissions


Report No.: SZEM170700703403 Page: 27 of 41

Test plot as follows: Test mode: GFSK Test channel: Lowest [₩ Spectrum Ref Level 21.00 dBm Offset 1.00 dB 🖷 RBW 100 kHz 30 dB 250 ms 👄 **VBW** 300 kHz Att SWT Mode Auto Sweep ●1Pk Max 47.06 dBm M2[1] 7.205140 GHz M1[1] 3.32 dBm 10 dBm· 2.401690 GHz M 0 dBm -10 dBm D1 -16.680 dBm -20 dBm--30 dBm -40 dBm-M2 -50 dBm and a l . . فار للاء -70 dBm 32001 pts Stop 25.0 GHz Start 30.0 MHz 21.12.2016 16:54:08 Measuring... Date: 21.DEC.2016 16:54:08 Test mode: GFSK Test channel: Middle ₩ Spectrum Ref Level 21.00 dBm Offset 1.00 dB 👄 RBW 100 kHz Att 30 dB SWT 250 ms 👄 **VBW** 300 kHz Mode Auto Sweep ●1Pk Max M2[1] -50.67 dBm 7.319060 GHz 3.50 dBm M1[1] 10 dBm 2.439920 GHz 0 dBm -10 dBm D1 -16.500 dBm--20 dBm--30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 MHz 32001 pts Stop 25.0 GHz 21.12.2016 16:55:31 Measuring...

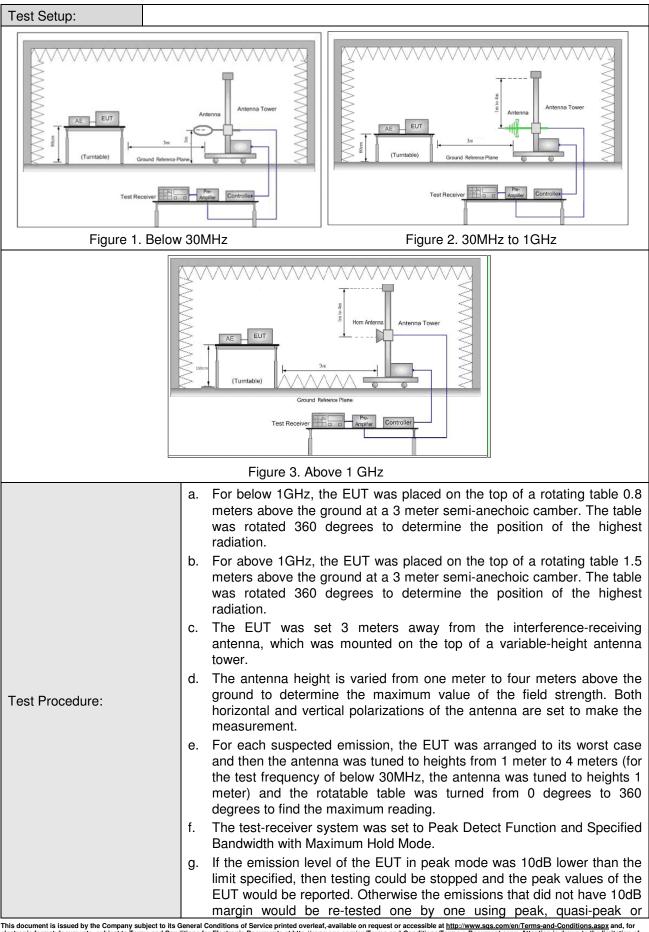
Date: 21.DEC.2016 16:55:31

Report No.: SZEM170700703403 Page: 28 of 41

Date: 21.DEC.2016 16:56:31

Remark:

Scan from 9kHz to 25GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported

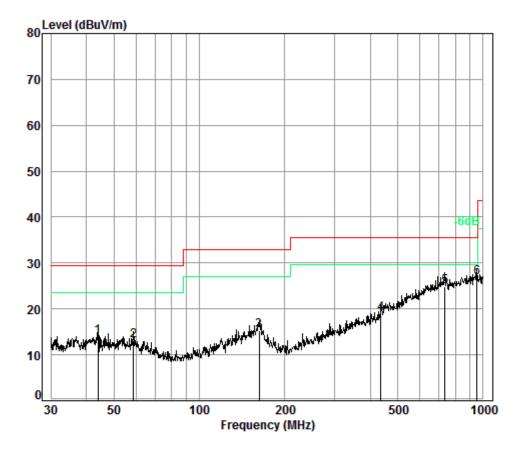

Report No.: SZEM170700703403 Page: 29 of 41

6.8 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10 :2013 Section 11.12							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
	Frequency		Detector	RBW	VBW	Remark		
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak		
Receiver Setup:	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak		
Receiver Setup:	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz		Quasi-peak	100 kHz	300kHz	Quasi-peak		
	Above 1GHz		Peak	1MHz	3MHz	Peak		
			Peak	1MHz	10Hz	Average		
	Frequency		ld strength ovolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)		
	0.009MHz-0.490MHz	24	00/F(kHz)	-	-	300		
	0.009MHz-0.490MHz 0.490MHz-1.705MHz		00/F(kHz)	-	-	300 30		
			· · ·					
	0.490MHz-1.705MHz		000/F(kHz)	- - - 40.0	- - Quasi-pe	30 30		
Limit:	0.490MHz-1.705MHz 1.705MHz-30MHz		000/F(kHz) 30	- - 40.0 43.5	- - Quasi-pe Quasi-pe	30 30 ak 3		
Limit:	0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz		000/F(kHz) 30 100			30 30 ak 3 ak 3		
Limit:	0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz		000/F(kHz) 30 100 150	43.5	Quasi-pe	30 30 ak 3 ak 3 ak 3 ak 3		
Limit:	0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz		000/F(kHz) 30 100 150 200	43.5 46.0	Quasi-pe Quasi-pe	30 30 ak 3 ak 3 ak 3 ak 3 ak 3		

Report No.: SZEM170700703403 Page: 30 of 41

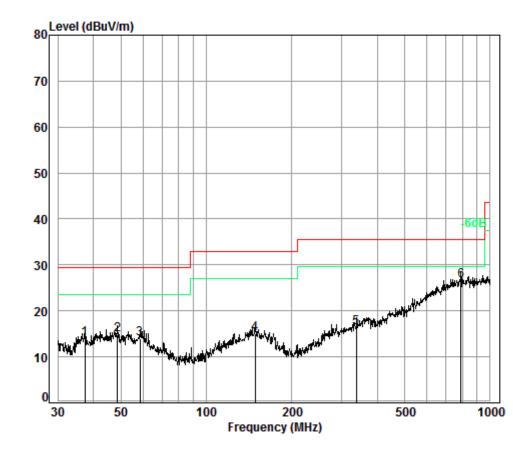
Report No.: SZEM170700703403 Page: 31 of 41


	average method as specified and then reported in a data sheet.			
	h. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)			
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.			
	j. Repeat above procedures until all frequencies measured was complete.			
Exploratory Test Mode:	Transmitting with GFSK modulation.			
Exploratory Test Mode.	Charge + Transmitting mode.			
	Transmitting with GFSK modulation.			
	Pretest the EUT at Charge + Transmitting mode,			
Final Test Mode:	For below 1GHz part, through pre-scan, the worst case is the lowest channel.			
	Only the worst case is recorded in the report.			
Instruments Used:	Refer to section 5.10 for details.			
Test Results:	Pass			

Report No.: SZEM170700703403 Page: 32 of 41

6.8.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical


Condition: 10m VERTICAL Job No. : 10850 Test Mode: BLE

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	43.97	6.80	12.98	32.99	27.10	13.89	29.50	-15.61
2	58.61	7.00	12.10	32.95	26.99	13.14	29.50	-16.36
3	162.61	7.50	13.13	32.73	27.44	15.34	33.00	-17.66
4	435.59	8.39	15.82	32.60	27.40	19.01	35.60	-16.59
5	734.49	9.20	20.58	32.60	27.75	24.93	35.60	-10.67
6 pp	952.09	9.58	22.74	32.50	26.93	26.75	35.60	-8.85

Report No.: SZEM170700703403 Page: 33 of 41

Test mode:	Charge + Transmitting	Horizontal
root mode.	onarge i fransmitting	Tionzontai

Condition: 10m HORIZONTAL Job No. : 10850 Test Mode: BLE

	Freq			Preamp Factor				Over Limit
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5	37.42 48.67 58.41 148.44 338.40	6.87 7.00	12.81 12.12 13.31	32.98 33.00 32.96 32.74 32.60	28.18 27.82 27.05	14.86 13.98 15.06	29.50 29.50 33.00	-14.64 -15.52 -17.94
6 pp	787.85			32.60				

Report No.: SZEM170700703403 Page: 34 of 41

Test mode:		GFSK	Test	channel:	Lowest	Ren	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3781.495	32.83	7.73	37.98	44.49	47.07	74	-26.93	Vertical
4804.000	34.1	8.87	38.4	42.18	46.75	74	-27.25	Vertical
6069.413	34.74	10.47	38.23	43.98	50.96	74	-23.04	Vertical
7206.000	35.6	10.68	37.11	42.08	51.25	74	-22.75	Vertical
9608.000	37.1	12.5	35.1	37.99	52.49	74	-21.51	Vertical
12102.870	37.65	14.47	35.85	37.23	53.50	74	-20.50	Vertical
3842.163	32.94	7.76	37.98	44.76	47.48	74	-26.52	Horizontal
4804.000	34.1	8.87	38.4	42.11	46.68	74	-27.32	Horizontal
6016.949	34.71	10.54	38.28	43.28	50.25	74	-23.75	Horizontal
7206.000	35.6	10.68	37.11	41.87	51.04	74	-22.96	Horizontal
9608.000	37.1	12.5	35.1	37.91	52.41	74	-21.59	Horizontal
12067.890	37.63	14.5	35.76	36.66	53.03	74	-20.97	Horizontal

6.8.2 Transmitter Emission above 1GHz

Test mode:		GFSK	Tes	t channel:	Middle	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3853.298	32.95	7.76	37.99	43.67	46.39	74	-27.61	Vertical
4880.000	34.18	8.97	38.44	43.09	47.80	74	-26.20	Vertical
6078.201	34.74	10.46	38.22	43.33	50.31	74	-23.69	Vertical
7320.000	35.54	10.72	37.01	42.61	51.86	74	-22.14	Vertical
9760.000	37.1	12.58	35.02	37.38	52.04	74	-21.96	Vertical
12137.940	37.67	14.45	35.93	37.73	53.92	74	-20.08	Vertical
3765.116	32.76	7.73	37.98	44.01	46.52	74	-27.48	Horizontal
4880.000	34.18	8.97	38.44	42.80	47.51	74	-26.49	Horizontal
5947.702	34.57	10.42	38.31	43.85	50.53	74	-23.47	Horizontal
7320.000	35.54	10.72	37.01	42.30	51.55	74	-22.45	Horizontal
9760.000	37.1	12.58	35.02	37.99	52.65	74	-21.35	Horizontal
12350.53	37.7	14.27	36.44	37.77	53.30	74	-20.70	Horizontal

Report No.: SZEM170700703403 Page: 35 of 41

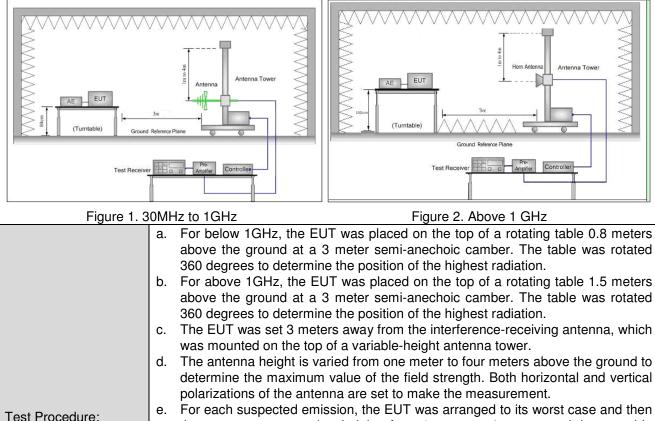
Test mode:		GFSK	Tes	t channel:	Highest	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3759.672	32.74	7.73	37.98	44.27	46.76	74	-27.24	Vertical
4960.000	34.26	9.09	38.48	41.56	46.43	74	-27.57	Vertical
6113.481	34.76	10.41	38.19	43.58	50.56	74	-23.44	Vertical
7440.000	35.6	10.77	36.9	41.61	51.08	74	-22.92	Vertical
9920.000	37.22	12.67	34.94	37.55	52.50	74	-21.50	Vertical
12243.770	37.7	14.36	36.19	37.79	53.66	74	-20.34	Vertical
3732.570	32.64	7.72	37.97	43.77	46.16	74	-27.84	Horizontal
4960.000	34.26	9.09	38.48	42.23	47.10	74	-26.90	Horizontal
6175.716	34.79	10.33	38.12	43.42	50.42	74	-23.58	Horizontal
7440.000	35.6	10.77	36.9	42.24	51.71	74	-22.29	Horizontal
9920.000	37.22	12.67	34.94	37.24	52.19	74	-21.81	Horizontal
12050.440	37.63	14.52	35.72	37.57	54.00	74	-20.00	Horizontal

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Report No.: SZEM170700703403 Page: 36 of 41

6.9 Restricted bands around fundamental frequency

47 CFR Part 15C Section 1 ANSI C63.10: 2013 Section Measurement Distance: 3n	n 11.12							
Measurement Distance: 3n								
	n (Semi-Anechoic Chambe	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Frequency	Limit (dBuV/m @3m)	Remark						
30MHz-88MHz	40.0	Quasi-peak Value						
88MHz-216MHz	43.5	Quasi-peak Value						
216MHz-960MHz	46.0	Quasi-peak Value						
960MHz-1GHz	54.0	Quasi-peak Value						
Above 1011-	54.0	Average Value						
ADOVE IGHZ	74.0	Peak Value						
	30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 54.0						

Test Setup:

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

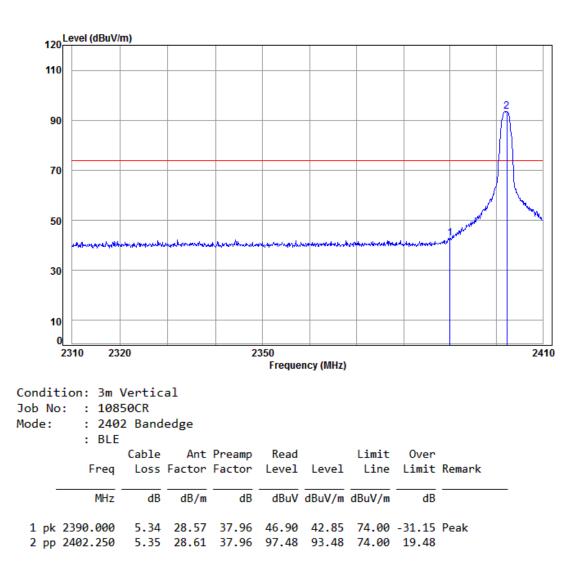
g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel

h. Test the EUT in the lowest channel, the Highest channel

 The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
 Repeat above procedures until all frequencies measured was complete.

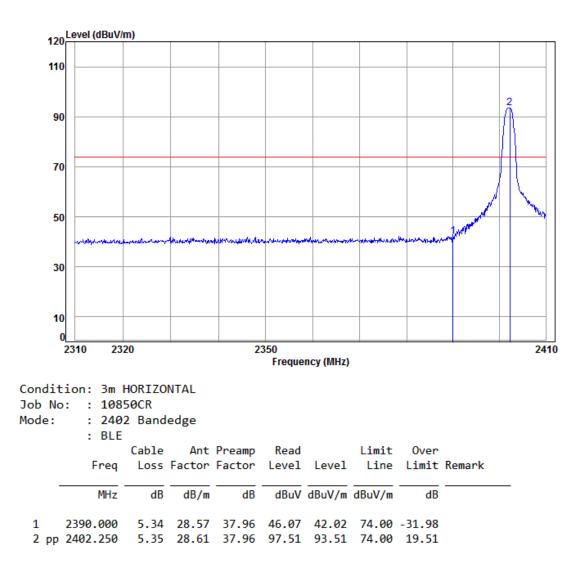
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions-Terms-and-Conditins-Terms-and-Conditions-Terms-and-Conditions-Terms-a

Report No.: SZEM170700703403 Page: 37 of 41

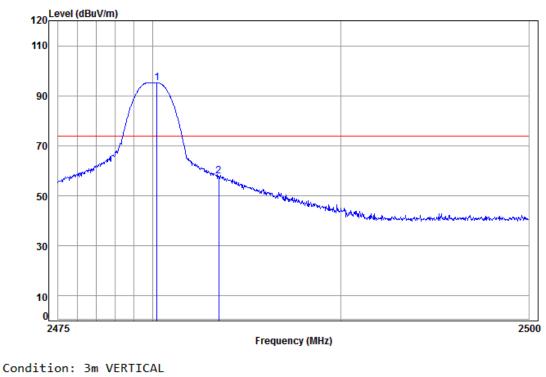

Exploratory Test Mode:	Transmitting with GFSK modulation. Charge + Transmitting mode.
Final Test Mode:	Transmitting with GFSK modulation. Pretest the EUT at Charge + Transmitting mode. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

Report No.: SZEM170700703403 Page: 38 of 41

Test plot as follows:

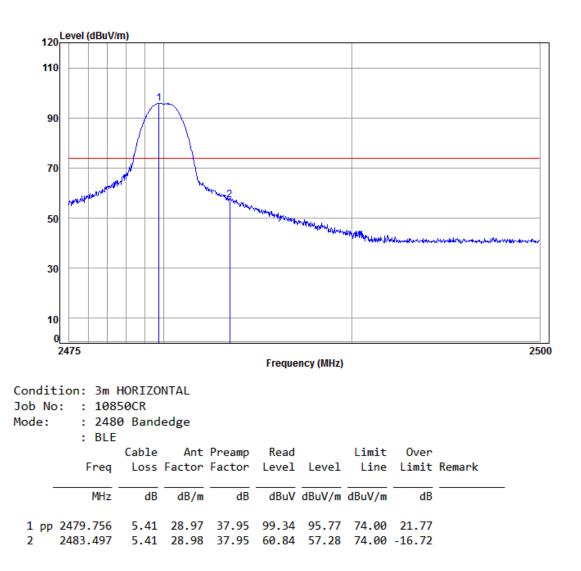

Worse case mode: GFSK	Test channel:	Lowest	Remark:	Peak	Vertical
-----------------------	---------------	--------	---------	------	----------

Report No.: SZEM170700703403 Page: 39 of 41


Worse case mode:	GFSK	Test channel:	Lowest	Remark:	Peak	Horizontal

Report No.: SZEM170700703403 Page: 40 of 41

Worse case mode:	GFSK	Test channel:	Highest	Remark:	Peak	Vertical
		root onannon.	riigiloot	riomant.	1 Out	Vortioui



Job No	: 2480 Bandedge									
mode:	: 240	o banu	eage							
	: BLE									
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 pp	2480.229	5.41	28.97	37.95	98.76	95.19	74.00	21.19		
2	2483.497	5.41	28.98	37.95	61.47	57.91	74.00	-16.09		

Report No.: SZEM170700703403 Page: 41 of 41

Worse case mode:	GESK	Test channel:	Highest	Remark:	Peak	Horizontal
	UU					

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1707007034RG.