

Hermon Laboratories Ltd. 66 HaTachana str., P.O. Box 23, Binyamina 3055001, Israel Tel. +972 4628 8001 Fax. +972 4628 8277 E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC 47CFR part 15 subpart C §15.247 (DTS), RSS-247 Issue 3:2023, RSS-Gen Issue 5

FOR:

Essence Future Living 2010 LTD Indoor personal home device Model: ES901BUL2 FCC ID: 2BEYK-ES901BUL2 IC: 33363-ES901BUL2

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	3
2	Equipment under test attributes	3
3	Manufacturer information	
4	Test details	
5	Tests summary	4
6	EUT description	5
6.1	General information	
6.2	Test configuration	5
6.3	Transmitter characteristics	6
7	Transmitter tests according to 47CFR part 15 subpart C and RSS-247 requirements	7
7.1	Minimum 6 dB bandwidth	7
7.2	Peak output power	13
7.3	Field strength of spurious emissions	20
7.4	Band edge radiated emissions	39
7.5	Peak spectral power density	45
7.6	Antenna requirements	
8	APPENDIX A Test equipment and ancillaries used for tests	53
9	APPENDIX B Test equipment correction factors	54
10	APPENDIX C Measurement uncertainties	57
11	APPENDIX D Test laboratory description	58
12	APPENDIX E Specification references	
13	APPENDIX F Abbreviations and acronyms	60

1 Applicant information

Client name:	Essence Future Living 2010 LTD
Address:	12 Abba Eban Avenue, Ackerstein Towers Bldg. D, P.O.Box 2073, Herzliya 4612001, Israel
Telephone:	+972(73)2447-742
E-mail:	lgalze@essence-grp.com
Contact name:	Mr. Igal Zertser

2 Equipment under test attributes

Product name:	Indoor personal home device
Product type:	Transmitter
Model(s):	ES901BUL2
Serial number:	3124095E0000336C
Hardware version:	3.C
Software release:	0.5
Receipt date	27-Aug-24

3 Manufacturer information

Manufacturer name:	Essence Future Living 2010 LTD
Address:	12 Abba Eban Avenue, Ackerstein Towers Bldg. D, P.O.Box 2073, Herzliya 4612001, Israel
Telephone:	+972 732 447 735
E-Mail:	israelgo@essence-grp.com
Contact name:	Mr. Israel Gottesman

4 Test details

Project ID:	55235
Location:	Hermon Laboratories Ltd. 66 HaTachana str., P.O. Box 23, Binyamina 3055001, Israel
Test started:	03-Nov-24
Test completed:	12-Nov-24
Test specification(s):	FCC 47CFR part 15 subpart C §15.247 (DTS)
	RSS-247 Issue 3:2023, RSS-Gen Issue 5

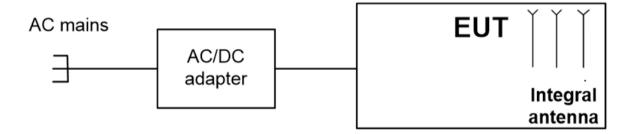
5 Tests summary

Test	Status
Transmitter characteristics	
FCC Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth	Pass
FCC Section 15.247(b)3/ RSS-247 section 5.4(4), Peak output power	Pass
FCC section 15.247(i) / RSS-102 section 2.5.1, RF exposure	Pass, the exhibit to the application of certification is provided
FCC Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions	Pass
FCC Section 15.247(d)/ RSS-247 section 5.5, Emissions at band edges	Pass
FCC Section 15.247(e) / RSS-247 section 5.2(2), Peak power density	Pass
FCC section 15.203 / RSS-Gen section 8.3, Antenna requirement	Pass

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mrs. E. Pitt, test engineer, EMC & Radio Mr. S. Sugatov, test engineer, EMC & Radio	03-Nov-24 – 12-Nov-24	BH
Reviewed by:	Mrs. S. Peysahov Sheynin, certification engineer, EMC & Radio	28-Nov-24	<u>Fa</u>
Approved by:	Mr. M. Nikishin, group leader, EMC & Radio	01-Jan-25	ff of

6 EUT description


Note: The following data in this clause is provided by the customer and represents his sole responsibility

6.1 General information

The EUT is ES901BUL2 is Indoor personal home devices powered from 5 VDC external AC/DC adaptor through USD-C type connector and it is dedicated for indoor table-top home/domestic operation, assuming declared separation distance to humans is 20cm.

The device contains the following RF connections: BLE/WiFi used for maintenance and 5 GHz ASK, used as RF technology to support human day balance, and body resonance by light.

6.2 Test configuration

6.3 Transmitter characteristics

Type of equipment									
V Stand-alone (Equipment with or without its own control provisions)									
Combined equipment (Equipment where the radio part is fully integrated within another type of equipment)									
Plug-in card (Equipmer	nt intended for	a varie	ety of h	nost sys	stems)				
Assigned frequency range		2400 ·	-2483.	.5 MHz					
Operating frequencies		2402-2	2480 I	MHz					
Maximum rated output power		Peak	output	t power	12.22 d	Bm at 1 Mbps			
		Peak	output	t power	12.60 d	Bm at 2 Mbps			
		٧	No						
						continuous varial	ole		
Is transmitter output power va	ariable?		Yes			stepped variable	with steps	size	dB
			103			RF power			dBm
				n	naximum	RF power			dBm
Antenna connection									
unique coupling	star	ndard co	onnec	tor V Integ	Integral	with temporary RF connector			
	ota		0			V without temporary RF connector			
Antenna/s technical character	ristics								
Туре	Manufac		<u> </u>			Gain			
Integral	Essence	e Securi	ity		printed			Typ peak ga	ain: 2.5 dBi
BLE interface									
Transmitter aggregate data ra	te/s			1/2N	1bps				
Type of modulation				GFSK					
Modulating test signal (baseband)				NA					
Transmitter power source									
	nal rated volt	tage				Battery type			
	nal rated volt								
V AC mains Nomi	nal rated volt	tage		120		Frequency	60	Hz	

Test specification:	Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth				
Test procedure:	ANSI C63.10 section 11.8.1				
Test mode:	Compliance	- Verdict: PASS			
Date(s):	03-Nov-24 - 07-Nov-24				
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz		
Remarks: BLE					

7 Transmitter tests according to 47CFR part 15 subpart C and RSS-247 requirements

7.1 Minimum 6 dB bandwidth

7.1.1 General

This test was performed to measure 6 dB bandwidth of the EUT carrier frequency. Specification test limits are given in Table 7.1.1.

Table 7.1.1 6 dB bandwidth limits

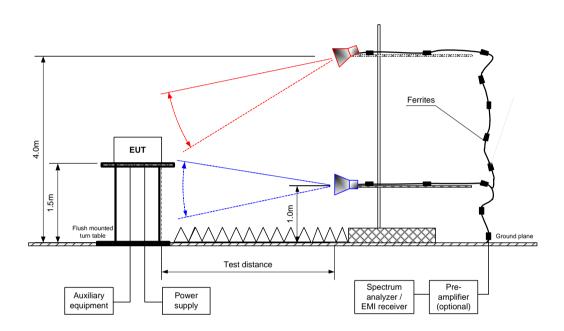
Assigned frequency, MHz	Modulation envelope reference points*, dBc	Minimum bandwidth, kHz
2400.0 - 2483.5	6.0	500.0

* - Modulation envelope reference points provided in terms of attenuation below the peak of modulated carrier.

Table 7.1.2 The 99% bandwidth limits

Assigned frequency, MHz	Modulation envelope reference points	Limit, kHz
2400.0 – 2483.5	99%	NA

* - Modulation envelope reference points provided in terms of attenuation below the peak of modulated carrier.


7.1.2 Test procedure

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- 7.1.2.2 The EUT was set to transmit modulated carrier.
- **7.1.2.3** The transmitter minimum 6 dB bandwidth was measured with spectrum analyzer as frequency delta between reference points on modulation envelope and provided in Table 7.1.3 and associated plot.

Test specification:	tion: Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth					
Test procedure:	ANSI C63.10 section 11.8.1					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	03-Nov-24 - 07-Nov-24	verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz			
Remarks: BLF						

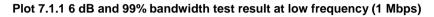
Figure 7.1.1 6 dB bandwidth test setup

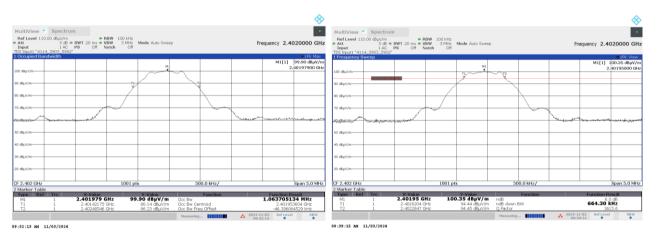
Test specification:	Section 15.247(a)2 / RSS-24	Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth					
Test procedure:	ANSI C63.10 section 11.8.1						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	03-Nov-24 - 07-Nov-24	verdict:	PA33				
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz				
Remarks: BLE							

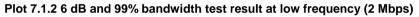
Table 7.1.3 6 dB bandwidth test results

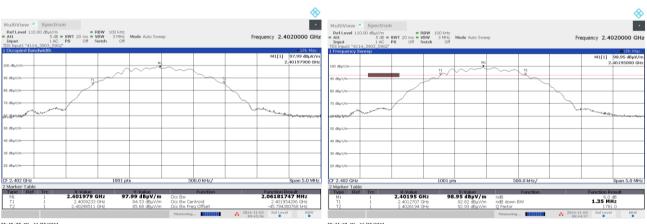
ASSIGNED FREQUE DETECTOR USED: SWEEP MODE: SWEEP TIME: RESOLUTION BAND VIDEO BANDWIDTH MODULATION ENVE MODULATION: BIT RATE:	WIDTH:	ce points:	2402 – 2483. M Peak Single Auto 100 kHz 3000 kHz 6.0 dBc GFSK 1 Mbps	IHz	
Carrier frequency, MHz	6 dB bandwidth, kHz	99% bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict
Low frequency					
2402	664.3	1063.7	500	-164.3	Pass
Mid frequency					
2440	689.3	1174.5	500	-189.3	Pass
High frequency					
2480	709.3	1132.8	500	-209.3	Pass
BIT RATE:			2 Mbps		

Carrier frequency, MHz	6 dB bandwidth, kHz	99% bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict
Low frequency					
2402	1350.0	2061.8	500	-850.0	Pass
Mid frequency					
2440	1420.0	2114.5	500	-920.0	Pass
High frequency					
2480	1400.0	2106.1	500	-900.0	Pass

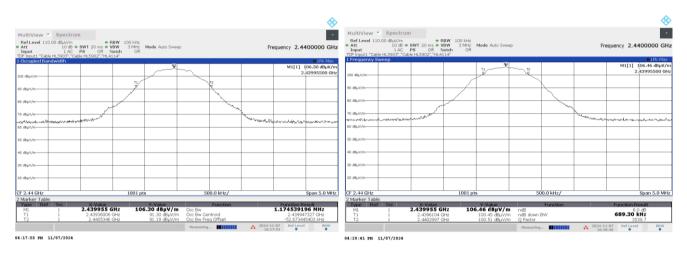

Reference numbers of test equipment used


HL 3903 HL 4114 HL 5902 HL 7585

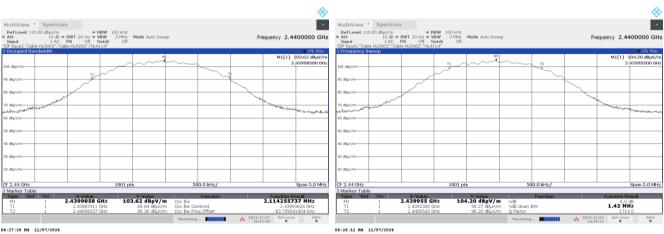

Full description is given in Appendix A.



Test specification:	Section 15.247(a)2 / RSS-2	47 section 5.2(1), 6 dB ban	dwidth
Test procedure:	ANSI C63.10 section 11.8.1		
Test mode:	Compliance	Verdict:	PASS
Date(s):	03-Nov-24 - 07-Nov-24	verdict:	PASS
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz
Remarks: BLE			


09:45:37 AM 11/03/2024

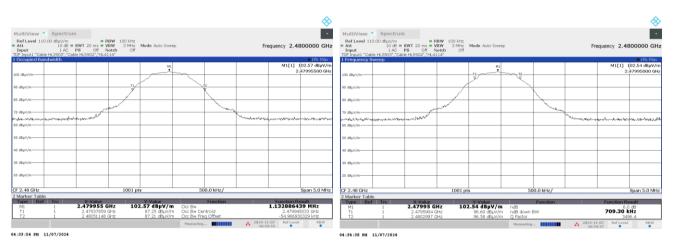
09:44:27 MM 11/03/2024

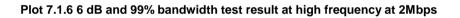


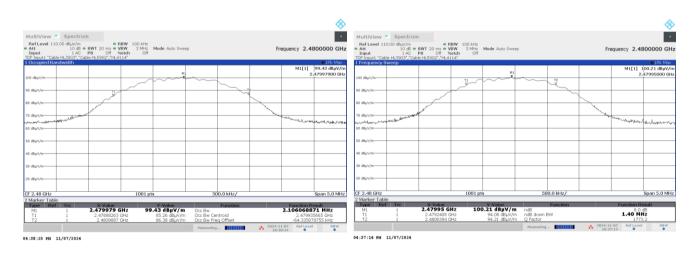
Test specification:	Section 15.247(a)2 / RSS-	247 section 5.2(1), 6 dB ban	dwidth
Test procedure:	ANSI C63.10 section 11.8.1		
Test mode:	Compliance	Verdict:	PASS
Date(s):	03-Nov-24 - 07-Nov-24	verdict:	PASS
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz
Remarks: BLF	•		

Plot 7.1.3 6 dB and 99% bandwidth test result at mid frequency (1 Mbps)

Plot 7.1.4 6 dB and 99% bandwidth test result at mid frequency 2Mbps




04:27:29 PM 11/07/2024



Test specification:	Section 15.247(a)2 / RSS-2	47 section 5.2(1), 6 dB ban	dwidth
Test procedure:	ANSI C63.10 section 11.8.1		
Test mode:	Compliance	Verdict:	PASS
Date(s):	03-Nov-24 - 07-Nov-24	verdict:	PASS
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz
Remarks: BLE			

Plot 7.1.5 6 dB and 99% bandwidth test result at high frequency at 1Mbps

Test specification:	Section 15.247(b)3 / RSS-24	47 section 5.4(4), Maximum	output power
Test procedure:	ANSI C63.10 sections 11.9.2.2.4	1	
Test mode:	Compliance	Verdict:	PASS
Date(s):	03-Nov-24	veraici.	FA33
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz
Remarks: BLE			

7.2 Peak output power

7.2.1 General

This test was performed to measure the maximum peak output power radiated by transmitter. Specification test limits according to FCC part 15 section 15.247(b)(3) and RSS-210 section A8.4(4) are given in Table 7.2.1.

Table 7.2.1 Peak output power limits

Assigned frequency	Maximum antenna	Peak outpu	it power*	Equivalent field strength
range, MHz	gain, dBi	W	dBm	limit @ 3m, dB(µV/m)**
2400.0 - 2483.5	6.0	1.0	30.0	131.2

*- The limit is provided in terms of conducted RF power at the antenna connector. If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power limit shall be reduced below the stated value as follows:

by 1 dB for every 3 dB that the directional gain of antenna exceeds 6 dBi for fixed point-to-point transmitters operate in 2400-2483.5 MHz band;

without any corresponding reduction for fixed point-to-point transmitters operate in 5725-5850 MHz band; by the amount in dB that the directional gain of antenna exceeds 6 dBi for the rest of transmitters.

**- Equivalent field strength limit was calculated from the peak output power as follows: E=sqrt(30×P×G)/r, where P is peak output power in Watts, r is antenna to EUT distance in meters and G is transmitter antenna gain in dBi.

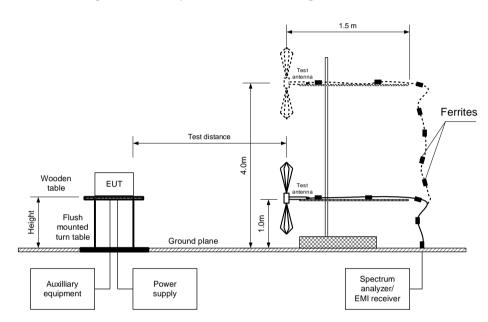
7.2.2 Test procedure

- **7.2.2.1** The EUT was set up as shown in Figure 7.2.1, energized and its proper operation was checked.
- 7.2.2.2 The EUT was adjusted to produce maximum available to end user RF output power.
- **7.2.2.3** The resolution bandwidth of spectrum analyzer was set wider than 6 dB bandwidth of the EUT and the field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360^o and the measuring antenna height was swept in both vertical and horizontal polarizations.
- **7.2.2.4** The maximum field strength of the EUT carrier frequency was measured as provided in Table 7.2.2 and associated plots.
- **7.2.2.5** The maximum peak output power was calculated from the field strength of carrier as follows:

 $P = (E \times d)^2 / (30 \times G),$

where P is the peak output power in W, E is the field strength in V/m, d is the test distance and G is the transmitter numeric antenna gain over an isotropic radiator.

The above equation was converted in logarithmic units for 3 m test distance:


Peak output power in dBm = Field strength in dB(μ V/m) - Transmitter antenna gain in dBi – 95.2 dB

7.2.2.6 The worst test results (the lowest margins) were recorded in Table 7.2.2.

Test specification:	Section 15.247(b)3 / RSS-2	Section 15.247(b)3 / RSS-247 section 5.4(4), Maximum output power					
Test procedure:	ANSI C63.10 sections 11.9.2.2.	4					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	03-Nov-24	verdict:	PASS				
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz				
Remarks: BLE							

Figure 7.2.1 Setup for carrier field strength measurements

Test specification:	Section 15.247(b)3 / RSS-2	Section 15.247(b)3 / RSS-247 section 5.4(4), Maximum output power					
Test procedure:	ANSI C63.10 sections 11.9.2.2	.4					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	03-Nov-24	verdict:	PASS				
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz				
Remarks: BLE	-						

Table 7.2.2 Peak output power test results

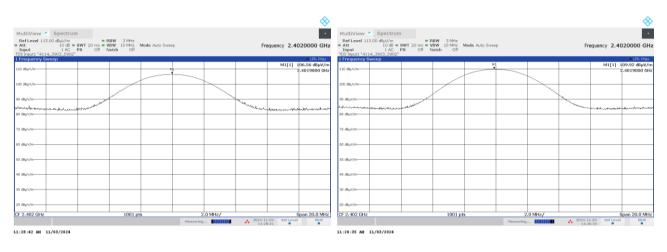
TEST DISTA TEST SITE: EUT HEIGH DETECTOR TEST ANTE MODULATIO TRANSMITT	T: USED: NNA TYPE: DN: TER OUTPUT P DN BANDWIDTH		INGS:	3 m Semi a 1.5 m Peak	ium	nber (above 1000 M	Hz)		
Frequency, MHz	Field strength, dB(µV/m)	Antenna polarization	Antenna height, m	Azimuth, degrees*	EUT antenna gain, dBi	Peak output power, dBm**	Limit, dBm	Margin, dB***	Verdict
BIT RATE: 1	Mbps								
2402	109.92	Horizontal	2.46	-35	2.5	12.22	30	-17.78	Pass
2440	109.91	Horizontal	2.74	-40	2.5	12.21	30	-17.79	Pass
2480	107.36	Horizontal	2.55	-40	2.5	9.66	30	-20.34	Pass
BIT RATE: 2	2 Mbps								
2402	109.48	Horizontal	2.43	-40	2.5	11.78	30	-18.22	Pass
2440	110.30	Horizontal	2.70	-30	2.5	12.60	30	-17.40	Pass
2480	107.46	Horizontal	2.49	-40	2.5	9.76	30	-20.24	Pass

*- EUT front panel refer to 0 degrees position of turntable.

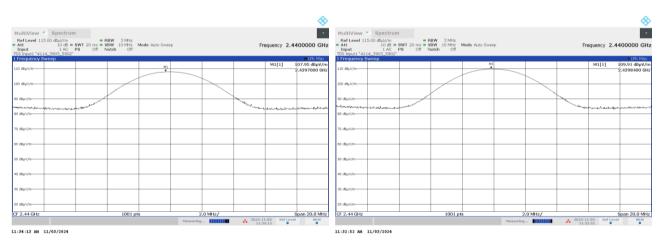
- Peak output power was calculated from the field strength of carrier as follows: $P = (E \times d)^2 / (30 \times G)$, where P is the peak output power in W, E is the field strength in V/m, d is the test distance in meters and G is the transmitter numeric antenna gain over an isotropic radiator. The above equation was converted in logarithmic units for 3 m test distance: Peak output power in dBm = Field strength in dB(μ V/m) - Transmitter antenna gain in dBi – 95.2 dB *- Margin = Peak output power – specification limit.

Note: Maximum peak output power was obtained at Unom (115%Unom, 85%Unom) input power voltage.

Reference numbers of test equipment used

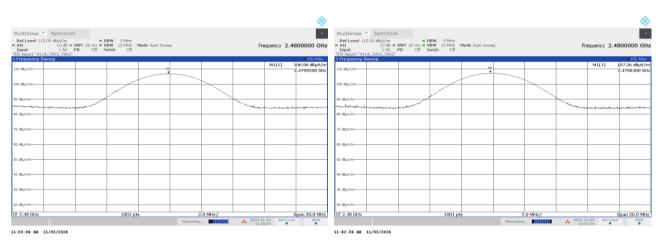

HL	3903	HL 4114	HL 5902	HL 7585				
----	------	---------	---------	---------	--	--	--	--

Full description is given in Appendix A.

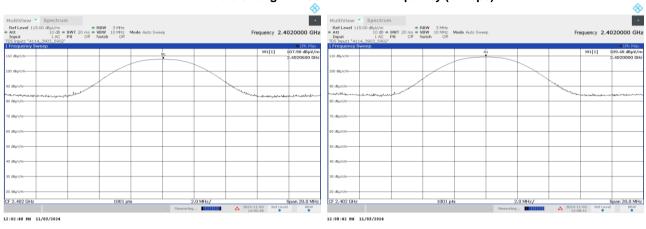


Test specification:	Section 15.247(b)3 / RSS-247 section 5.4(4), Maximum output power					
Test procedure:	ANSI C63.10 sections 11.9.2.2.4					
Test mode:	Compliance	Verdict: PASS				
Date(s):	03-Nov-24	verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz			
Remarks: BLE						

Plot 7.2.1 Field strength of carrier at low frequency (1 Mbps)

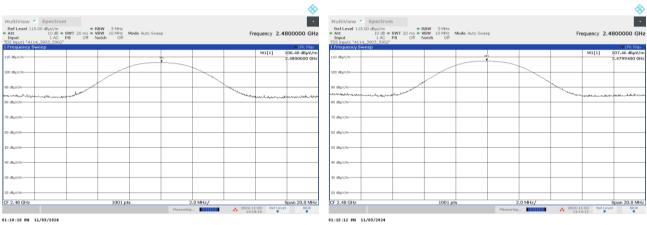

Plot 7.2.2 Field strength of carrier at mid frequency (1 Mbps)

Test specification:	Section 15.247(b)3 / RSS-247 section 5.4(4), Maximum output power					
Test procedure:	ANSI C63.10 sections 11.9.2.2.4					
Test mode:	Compliance	Verdict: PASS				
Date(s):	03-Nov-24	verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz			
Remarks: BLE						


Plot 7.2.3 Field strength of carrier at high frequency (1 Mbps)

Test specification:	Section 15.247(b)3 / RSS-247 section 5.4(4), Maximum output power					
Test procedure:	ANSI C63.10 sections 11.9.2.2.4					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	03-Nov-24	verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz			
Remarks: BLE						

Plot 7.2.4 Field strength of carrier at low frequency (2 Mbps)


Plot 7.2.5 Field strength of carrier at mid frequency (2 Mbps)

			*
MultiView Spectrum Ref Level 115.00 dbs//m RBW 3 MHz Att 10 db 9 SWT 20 ms • VBW 10 MHz Input LAC PS Off ToS Input 1414_3903_902* Off Notch	Frequency 2.4400000 GHz	MultiView Spectrum Ref Level 115.00 Gs//m RBW 3 MHz Att 10 dB e SWT 20 rss + WW 10 MHz Input 1 AC PS Off Notch Off TDS input: "4114_3903_S902" Off Notch Off	Frequency 2.4400000 GHz
17 Prepundo Sweep	(19, Max) M1[1] 100.05.8 dbpV/m 2.4396800 GHz	1 Γεομοιοχ Switep 6 120 αμ/η 6 120 αμ/η 6 120 αμ/η 6	
00 db//m 10 db/		9 digr/m 19 digr/m 19 digr/m 19 digr/m	
50 dbgv/m		65 dqu/m	
0 dbjv/m		40 dbjv/)m	
22 db///m CF 2.44 GHz 1001 pts 1:02:51 pt: 11/03/2024	2.0 MHz/ Span 20.0 MHz Messuring * 2024-11-03 13:02:50 Ref over RW	20 dip//in-	2.0 MHz/ Span 20.0 MHz/ Measuring * ^{2024-11:03} Ref Level RBW

Test specification:	Section 15.247(b)3 / RSS-247 section 5.4(4), Maximum output power					
Test procedure:	ANSI C63.10 sections 11.9.2.2.4					
Test mode:	Compliance	Verdict: PASS				
Date(s):	03-Nov-24	verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz			
Remarks: BLE						

Plot 7.2.6 Field strength of carrier at high frequency (2 Mbps)

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions					
Test procedure:	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	04-Nov-24	verdict:	PASS			
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz			
Remarks: BLE						

7.3 Field strength of spurious emissions

7.3.1 General

This test was performed to measure field strength of spurious emissions from the EUT. Specification test limits are given in Table 7.3.2.

Frequency, MHz	Field streng	th at 3 m within res dB(μV/m)*	Attenuation of field strength of spurious versus	
r requeriey, milz	Peak	Quasi Peak	Average	carrier outside restricted bands, dBc***
0.009 - 0.090	148.5 – 128.5	NA	128.5 - 108.5**	
0.090 – 0.110	NA	108.5 – 106.8**	NA	
0.110 - 0.490	126.8 – 113.8	NA	106.8 - 93.8**	
0.490 - 1.705		73.8 - 63.0**		
1.705 - 30.0*		69.5		20.0
30 – 88	NA	40.0		20.0
88 – 216	INA	43.5	NA	
216 - 960		46.0		
960 - 1000		54.0		
1000 – 10 th harmonic	74.0	NA	54.0	

Table 7.3.1 Radiated spurious emissions limits

*- The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows:

 $Lim_{S2} = Lim_{S1} + 40 \log (S_1/S_2),$

where S_1 and S_2 – standard defined and test distance respectively in meters.

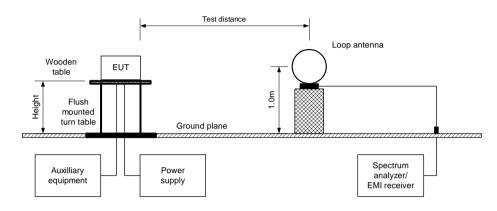
**- The limit decreases linearly with the logarithm of frequency.

*** - The field strength limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency.

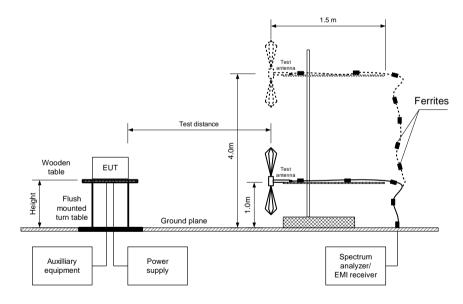
7.3.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.3.2.1 The EUT was set up as shown in Figure 7.3.1, energized and the performance check was conducted.
- **7.3.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna was rotated around its vertical axis.
- 7.3.2.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

7.3.3 Test procedure for spurious emission field strength measurements above 30 MHz

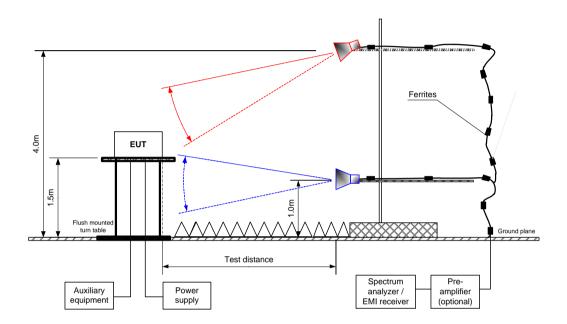

The EUT was set up as shown in Figure 7.3.2, Figure 7.3.3, energized and the performance check was conducted.

- **7.3.3.1** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360^o, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- 7.3.3.2 The worst test results (the lowest margins) were recorded and shown in the associated plots.



Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions						
Test procedure:	FR Vol. 62, page 26243, Section	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	04-Nov-24	verdict:	PA33				
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz				
Remarks: BLE	-	·					

Figure 7.3.1 Setup for spurious emission field strength measurements below 30 MHz



Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions						
Test procedure:	FR Vol. 62, page 26243, Section	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	04-Nov-24	verdict:	PASS				
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz				
Remarks: BLE		-					

Figure 7.3.3 Setup for spurious emission field strength measurements above1000 MHz

Test specification:	FCC section 15.247(d), RSS	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions					
Test procedure:	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	04-Nov-24	verdict:	PASS				
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz				
Remarks: BLE							

Table 7.3.2 Field strength of emissions outside restricted bands

	Field strength of spurious,	Antenna polarization	Antenna height, m	Azimuth, degrees*	Field strength of carrier,	· · · · · · · · · · · · · · · · · · ·	Limit, dBc	Margin, dB**	Verdict
						lz – 1000 MHz) iide (above 1000) MHz)		
TEST ANTEN	INA TYPE:				ctive loop (9 kH	,			
VIDEO BAND					300 kHz				
RESOLUTION	RESOLUTION BANDWIDTH:				100 kHz				
DETECTOR USED:				Pe	Peak				
DUTY CYCLE	:				0 %				
BIT RATE:				1 Mbps					
MODULATION:				GFSK					
TEST DISTAN		ICTINANCE.		3		12			
ASSIGNED F				_	100-2483.5 MH 009 - 25000 MI	_			

Frequency, MHz	of spurious, dB(μV/m)	Antenna polarization	Antenna height, m	Azimuth, degrees*	of carrier, dB(μV/m)	below carrier, dBc	Limit, dBc	dB**	Verdict
Low, mid, hi	Low, mid, high carrier frequency								
No emissions were found							Pass		

*- EUT front panel refers to 0 degrees position of turntable. **- Margin = Attenuation below carrier – specification limit.

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions				
Test procedure:	FR Vol. 62, page 26243, Section	on 15.247(c) / ANSI C63.4, Secti	on 13.1.4		
Test mode:	Compliance	Verdict:	PASS		
Date(s):	04-Nov-24	verdict:	PASS		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz		
Remarks: BLE			·		

Table 7.3.3 Field strength of spurious emissions above 1 GHz within restricted bands

INVESTIG/ TEST DIST MODULAT BIT RATE: DUTY CYC TRANSMIT DETECTO RESOLUTI	ION: CLE: TER OUTPI	UENCY JT POW IDTH:		INGS:	10 3 1 1 10 Ma Pe 10	00-2483. 000 -2500 m FSK Mbps 00 % aximum eak 000 kHz buble ridg	0 MHz				
F	Anten	na	A - i waa af h	Peak	c field stren	gth	4	Average field	strength		
Frequency, MHz	Polarization	Height, m	Azimuth, degrees*	Measured, dB(μV/m)	.,	Margin, dB**	Measured, dB(μV/m)	Calculated, dB(μV/m)	Limit, dB(µV/m)	Margin, dB**	Verdict
Low carrie	r frequency										
4804	Horizontal	1.5	-44	48.1	74	-25.9	41.4	NA	54	-12.6	Pass
7206	Horizontal	1.5	180	50.3	74	-23.7	44.7	NA	54	-9.3	F d 5 5
Mid carrier	frequency										
4880	Horizontal	1.5	-60	46.4	74	-27.6	39.8	NA	54	-12.2	Deee
7320	Horizontal	1.5	180	50.1	74	-23.9	44.3	NA	54	-9.7	Pass
Link comin	er frequency										
High carrie											
4960	Horizontal	1.6	45	45.6	74	-28.4	41.5	NA	54	-12.5	Pass

*- EUT front panel refers to 0 degrees position of turntable.

**- Margin = Measured field strength - specification limit.

.

Table 7.3.4 Average factor calculation

	Transmis	sion pulse	Transmiss	sion burst	Transmission train	Average factor,
	Duration, ms	Period, ms	Duration, ms	Period, ms	duration, ms	dB
	NA	NA	NA	NA	NA	NA
*-	for pulse train		Average factor = $20 \times \log_1$	$_{0}\left(\frac{Pulseduration}{Pulse period} \times \frac{Burstandon}{Traina}\right)$	luration Number of bursts luration	within pulse train)
	for pulse train	longer than 100 ms:	Average factor = $20 \times \log_1$	$_{0}\left(\frac{Pulseduration}{Pulseperiod} \times \frac{Burston}{100}\right)$	duration Oms × Number of bursts	within 100ms

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions			
Test procedure:	FR Vol. 62, page 26243, Secti	on 15.247(c) / ANSI C63.4, Secti	ion 13.1.4	
Test mode:	Compliance	Verdict:	PASS	
Date(s):	04-Nov-24	verdict:	PASS	
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz	
Remarks: BLE	-			

Table 7.3.5 Field strength of spurious emissions below 1 GHz within restricted bands

ASSIGNED FREQUENCY: 2400-2483.5 MHz INVESTIGATED FREQUENCY RANGE: 0.009 - 1000 MHz TEST DISTANCE: 3 m MODULATION: GFSK BIT RATE: 1 Mbps DUTY CYCLE: 100 % **RESOLUTION BANDWIDTH:** 0.2 kHz (9 kHz – 150 kHz) 9.0 kHz (150 kHz - 30 MHz) 120 kHz (30 MHz - 1000 MHz) > Resolution bandwidth VIDEO BANDWIDTH: TEST ANTENNA TYPE: Active loop (9 kHz - 30 MHz) Biconilog (30 MHz - 1000 MHz)

Frequency	Peak	Quasi-peak			Antonno	Antonno	Turn-table	
Frequency, MHz	emission, dB(μV/m)	Measured emission, dB(μV/m)	Limit, dB(µV/m)	Margin, dB*	Antenna polarization	Antenna height, m	position**, degrees	Verdict
Low.mid, hi	gh carrier fre	quency						
35.2	29.7	20.4	40	-19.6	Vertical	1.0	-22	
45.8	30.3	21.6	40	-18.4	Vertical	1.0	-22	Pass
90.5	30.2	27.4	40	-12.6	Vertical	1.0	89	Pass
74.7	29.3	21.6	40	-18.4	Vertical	1.0	-22	

*- Margin = Measured emission - specification limit.

**- EUT front panel refer to 0 degrees position of turntable.

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions			
Test procedure:	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	04-Nov-24	verdict:	PASS	
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz	
Remarks: BLE				

Table 7.3.6 Restricted bands according to FCC section 15.205

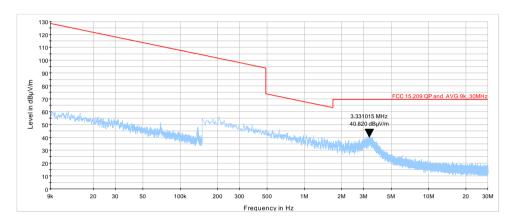
MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.37625 - 8.38675	73 - 74.6	399.9 - 410	2690 - 2900	10.6 - 12.7
0.495 - 0.505	8.41425 - 8.41475	74.8 - 75.2	608 - 614	3260 - 3267	13.25 - 13.4
2.1735 - 2.1905	12.29 - 12.293	108 - 121.94	960 - 1240	3332 - 3339	14.47 - 14.5
4.125 - 4.128	12.51975 - 12.52025	123 - 138	1300 - 1427	3345.8 - 3358	15.35 - 16.2
4.17725 - 4.17775	12.57675 - 12.57725	149.9 - 150.05	1435 - 1626.5	3600 - 4400	17.7 - 21.4
4.20725 - 4.20775	13.36 - 13.41	156.52475 - 156.52525	1645.5 - 1646.5	4500 - 5150	22.01 - 23.12
6.215 - 6.218	16.42 - 16.423	156.7 - 156.9	1660 - 1710	5350 - 5460	23.6 - 24
6.26775 - 6.26825	16.69475 - 16.69525	162.0125 - 167.17	1718.8 - 1722.2	7250 - 7750	31.2 - 31.8
6.31175 - 6.31225	16.80425 - 16.80475	167.72 - 173.2	2200 - 2300	8025 - 8500	36.43 - 36.5
8.291 - 8.294	25.5 - 25.67	240 - 285	2310 - 2390	9000 - 9200	Above 38.6
8.362 - 8.366	37.5 - 38.25	322 - 335.4	2483.5 - 2500	9300 - 9500	AD0VE 30.0

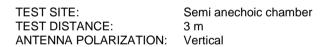
Table 7.3.7 Restricted bands according to RSS-Gen

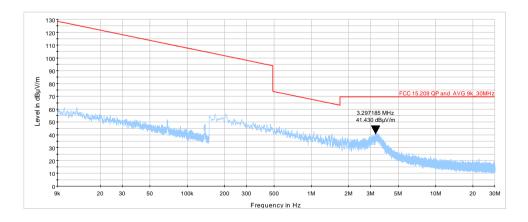
MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.291 - 8.294	16.80425 - 16.80475	399.9 - 410	3260 - 3267	10.6 - 12.7
2.1735 - 2.1905	8.362 - 8.366	25.5 - 25.67	608 - 614	3332 - 3339	13.25 - 13.4
3.020 - 3.026	8.37625 - 8.38675	37.5 - 38.25	960 - 1427	3345.8 - 3358	14.47 – 14.5
4.125 - 4.128	8.41425 - 8.41475	73 - 74.6	1435 – 1626.5	3500 - 4400	15.35 – 16.2
4.17725 – 4.17775	12.29 – 12.293	74.8 - 75.2	1645.5 – 1646.5	4500 – 5150	17.7 – 21.4
4.20725 - 4.20775	12.51975 - 12.52025	108 – 138	1660 - 1710	5350 - 5460	22.01 – 23.12
5.677 - 5.683	12.57675 - 12.57725	156.52475 - 156.52525	1718.8 - 1722.2	7250 - 7750	23.6 - 24
6.215 - 6.218	13.36 – 13.41	156.7 - 156.9	2200 - 2300	8025 - 8500	31.2 - 31.8
6.26775 - 6.26825	16.42 - 16.423	240 - 285	2310 - 2390	9000 - 9200	36.43 - 36.5
6.31175 - 6.31225	16.69475 - 16.69525	322 - 335.4	2655 - 2900	9300 - 9500	Above 38.6

Reference numbers of test equipment used

	HL 446	HL 5288	HL4933	HL4956	HL 3903	HL 5902	HL 5112	HL 4338
_		· · •						

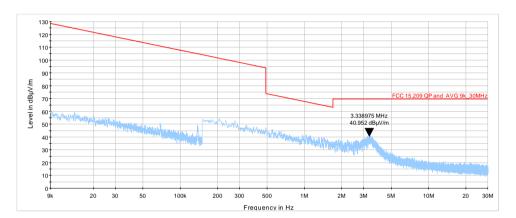

Full description is given in Appendix A.


Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions			
Test procedure:	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	04-Nov-24	verdict:	PASS	
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz	
Remarks: BLE	· · · ·		·	


Plot 7.3.1 Radiated emission measurements from 9 kHz to 30 MHz at the low carrier frequency

TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical

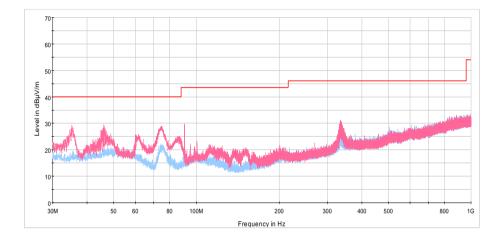
Plot 7.3.2 Radiated emission measurements from 9 kHz to 30 MHz at the mid carrier frequency

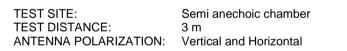


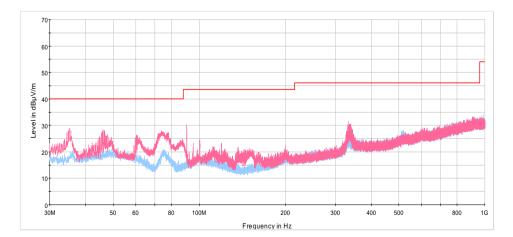
Test specification:	FCC section 15.247(d), RS	S-210 section A8.5, Radiate	ed spurious emissions
Test procedure:	FR Vol. 62, page 26243, Section	on 15.247(c) / ANSI C63.4, Secti	on 13.1.4
Test mode:	Compliance	Verdict:	PASS
Date(s):	04-Nov-24	verdict:	PASS
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz
Remarks: BLE			

Plot 7.3.3 Radiated emission measurements from 9 kHz to 30 MHz at the high carrier frequency

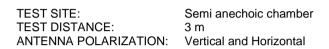
TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical

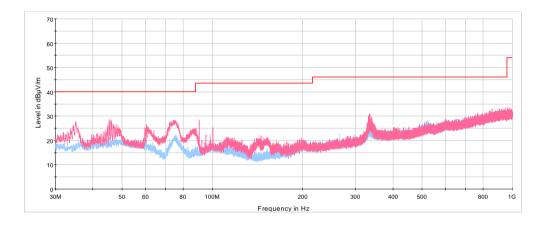



Test specification:	FCC section 15.247(d), RSS	S-210 section A8.5, Radiate	ed spurious emissions		
Test procedure:	FR Vol. 62, page 26243, Section	n 15.247(c) / ANSI C63.4, Sectio	on 13.1.4		
Test mode:	Compliance	Verdict:	PASS		
Date(s):	04-Nov-24	verdict:	PASS		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz		
Remarks: BLE	-	·			


Plot 7.3.4 Radiated emission measurements from 30 to 1000 MHz at the low carrier frequency

TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal





Test specification:	FCC section 15.247(d), RS	S-210 section A8.5, Radiate	ed spurious emissions
Test procedure:	FR Vol. 62, page 26243, Section	n 15.247(c) / ANSI C63.4, Sectio	on 13.1.4
Test mode:	Compliance	Verdict:	PASS
Date(s):	04-Nov-24	verdict.	FA35
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz
Remarks: BLE			

Plot 7.3.6 Radiated emission measurements from 30 to 1000 MHz at the high carrier frequency

Plot 7.3.7 Radiated emission measurements from 1000 to 8000 MHz at the low carrier frequency

TEST SITE: TEST DISTANCE: ANTENNA POLARIZATION Semi anechoic chamber 3 m

ANTENNA POLARIZATION: Vertical and Horizontal

Ref Level 72.00 d	BµW/m		W 1 MHz						
Att Input N Amplifier TDF Inpu	10 dB • SWT 2 1 AC PS	On No	tch On	de Auto Sweep			Fre	equency 4.50	000000 G
Frequency Swee		; , Cable HL.	5903 , HE4955						●1Pk Ma
0 dBµ∀/m	H1 74.000 dBuV/m						N	1[1]	45.59 dBµV
									4.80400 0
							N	2[1]	48.86 dBµV
0 dBµV/m									7.20600 0
		-H2 54.000	d8µV/m						
0 dBµV/m					M1			M2	
	2 100Hz 2.4830Hz				T			-	- Marian
					10	American	and a source of a starting of	and a call of the second of the second	
0 dBµV/m		www	. Martin and a	my many	My Martine	1			
of dBuv/m	mound Me	an work	₩° ~	÷ 1.					
and a start of the									
io uspv/m									
0 dBµV/m	Endurion Bo	nd							
0 dBµV/m									
dBµV/m-									
10 dBµV/m									
an in the									
20 dBµV/m									
.0 GHz			1001 pt	0	70	0.0 MHz/			8.0 G

11:57:15 AM 11/04/2024

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions						
Test procedure:	FR Vol. 62, page 26243, Section	on 15.247(c) / ANSI C63.4, Secti	on 13.1.4				
Test mode:	Compliance	Verdict:	PASS				
Date(s):	04-Nov-24	verdict:	PASS				
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz				
Remarks: BLE		-					

Plot 7.3.8 Radiated emission measurements from 1000 to 8000 MHz at the mid carrier frequency

TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal

MultiView									
Ref Level 72.00 d Att		7 ms 🖷 VBV	1 MHz 3 MHz Mod	le Auto Sweep			Fr	equency 4.5	000000 GH
Input N Amplifier TDF Inpu	t1 "Cable HL59	On Note 02","Cable HL	h On .3903","HL4933'						
Frequency Swee	p H1 74.000 dkuv	(m)						1[1]	● 1Pk Ma) 45.17 dBµV/
o asha/u	∆ 20.000 dB							1[1]	4.88000 G
								12[1]	48.03 dBµV/
i0 dBµV/m−									7.32000 G
		H2 54.00	dBµV/m ───						-
i0 dBµV/m	2.40	U.			M1				M2
	2,413				T		4	and the second	Anortown
10 dBµV/m			, A	mynorman	the malither	mmonoutre 1	and the second second	Server Start	
	mound	Myony	www.www	Marken and	1 m m				
B ^{rance} dBpv/m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
ið dBt/V/m									
20 dBµV/m	Endugion	Bond							-
0 dBµV/m									_
) dBµV/m									
uspv/m									
10 dBµV/m-				1					1
20 dBµV/m-									
			1	1	1	1		1	

01:07:57 FM 11/04/2024

Plot 7.3.9 Radiated emission measurements from 1000 to 8000 MHz at the high carrier frequency

TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal

	pectrum	= DRW	1 MHz						
Ref Level 72.00 df Att Input N Amplifier TDF Input	0 dB SWT 7 1 AC PS	ms = VBW On Note	3 MHz Mod h On				Fr	equency 4.	.5000000 Gł
Frequency Swee		2, Gable HL	5905 , HL4955						●1Pk Ma
10 dBµV/m	H1 74,000 dBuV/r						N	11[1]	42.94 dBuV/
	0.501000.00							1	4.96000 G
							N	2[1]	47.05 dBµV/
i0 dBµ∀/m									7.44000 G
		H2 54.000	d8µV/m ───						
0 dBµ∀/m	2.40044								M2
	2,43314				M1		Am	. Auropen	and all and the
0 dBµV/m				and a state of the	- Mulas	unhaman	www.m	and the second s	
o approx		in America	and show the	a for any most of	w - w				
deux/m	www.www.	-40 ·							
30 dBµV/m									
0 dBµ∀/m	Exclusions	brid							
0 d8µV/m									
dBµV/m-									
10 dBµV/m				1					
20 00007700									
				1					
20 dBµ∀/m				-					_
				1					
			1001						
1.0 GHz			1001 p	ts	//	00.0 MHz/	2024-1	1-04 Ref Le	8.0 GH

03:20:12 PM 11/04/2024

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions						
Test procedure:	FR Vol. 62, page 26243, Sectio	n 15.247(c) / ANSI C63.4, Secti	on 13.1.4				
Test mode:	Compliance	Verdict:	PASS				
Date(s):	04-Nov-24	verdict.	PA35				
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz				
Remarks: BLE							

Plot 7.3.10 Radiated emission measurements from 8000 to 18000MHz at the low carrier frequency

Semi anechoic chamber

A 117-01								
Input 1 A LN Amplifier TDF Input1 "Co	n ● RBV 3 SWT 40 ms ● VBV C PS On Not	ch On				Frec	uency 13	
1 Frequency Sweep	CONT of LOCATION		1					●1P
70 dBµV/m 420	000 dB					N	1[1]	49.01
60 - 10 - 11 fr								11150
60 dBµV/m-								
PR dBuilder	H2 54.000	dBµV/m						
S0 dBµV/m					monor more that	~~~···		
40 dBuV/m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	m	~~~···		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	manne	mur
40 ubpv/m								
30 dBµV/m								
30 ubpv/m								
20 dBµV/m								
20 0001111								
10 dBµV/m								
0 dBµV/m								
-10 dBµV/m-								
	1		1					
-20 dBµV/m								_

03:28:26 PM 11/04/2024

TEST SITE:

Plot 7.3.11 Radiated emission measurements from 8000 to 18000 MHz at the mid carrier frequency

TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal

Input 1	dB SWT 40 ms = VI AC PS On N	otch On				Frec	quency 13.	0000000 GI
N Amplifier TDF Input1 * Frequency Sweep	Cable HL5902","Cable h	1L3903","HL4933"						●1Pk Viev
70 dBµV/m	0.000 dB					Ň	1[1]	49.35 dBµV/ 17.98500 G
50 dBµV/m-								
as asperin								
50 dBuV/m	H2 54.0	00 d8µ∨/m						
			ann	man	annow	min		man
FD dBµV/m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim\sim\sim\sim$	00.0000	* * .		~~~		within the second s
30 dBµV/m								
20 dBµV/m								
LO dBµV/m								
) dBµV/m								
10 dBµV/m		1						
20 dBµV/m								
8.0 GHz		1001 p	ts		.0 GHz/	2024-1:	1-04 Ref Le	18.0 vel RB

03:26:40 PH 11/04/2024

~

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions					
Test procedure:	FR Vol. 62, page 26243, Secti	on 15.247(c) / ANSI C63.4, Secti	on 13.1.4			
Test mode:	Compliance	Verdict:	PASS			
Date(s):	04-Nov-24	verdict:	PASS			
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz			
Remarks: BLE	-					

Plot 7.3.12 Radiated emission measurements from 8000 to 1800 MHz at the high carrier frequency

TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal

Ref Level 72.00 dBµV/	ctrum /m • Ri dB SWT 40 ms • Vi	3W 1 MHz 3W 3 MHz Mo	de Auto Sween			Free	mency 13.0	000000 GH
Input 17 LN Amplifier TDF Input1	AC PS On N	otch On				1100	dency 15.0	
1 Frequency Sweep	74.000 dkuV/m						1[1]	● 1Pk View 48.72 dBµV/
	0.000 dB					14		17.98500 G
60 dBµV/m								
	H2 54.0	00 dBµV/m						
50 dBµV/m								
manda	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	him	mm	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man	and a second second
40 dBµV/m								
30 dBµV/m-								
20 dBµV/m-								
20 0001/11								
10 dBµV/m								
D dBµV/m								
-10 dBµV/m								
-20 dBµV/m								
8.0 GHz		1001 pt			.0 GHz/			18.0 Gł

03:24:35 PM 11/04/2024

Plot 7.3.22 Radiated emission measurements from 18000 to 25000 MHz at the low carrier frequency

TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal

Input 1 AC	SWT 28 ms = VBV PS On Not	ch Off				Free	quency 21.	5000000 G
reamp TDF Input1 "Cable H Frequency Sweep	L3903","CABLE HL51:	L2","Antenna HL	.4956"					●1Pk View
70 dBµV/m	300 dbuv/m 30 db					M	[1]	46.01 dBµV/ 21.30420 G
i0 dBµV/m								21.30420 6
o asha/w	H2 54.000							
0 dBµV/m	H2 54.000	авµv/m —	M1					
mennomena	and the second		may more the	man mar				
0 dBµV/m				~~~~		have the second		
0 dBµ∀/m								
0 dBµV/m								
0 dBµV/m								_
dBµV/m								
10 dBµV/m-								
10 00007711								
20 dBµV/m								_
18.0 GHz		1001 p	ts	70	i0.0 MHz/	2024-1	1-04 Ref Le	25.0 G

04:18:26 PM 11/04/2024

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions					
Test procedure:	FR Vol. 62, page 26243, Secti	on 15.247(c) / ANSI C63.4, Secti	on 13.1.4			
Test mode:	Compliance	Verdict:	PASS			
Date(s):	04-Nov-24	verdict:	PASS			
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz			
Remarks: BLE	-					

Plot 7.3.23 Radiated emission measurements from 18000 to 25000 MHz at the mid carrier frequency

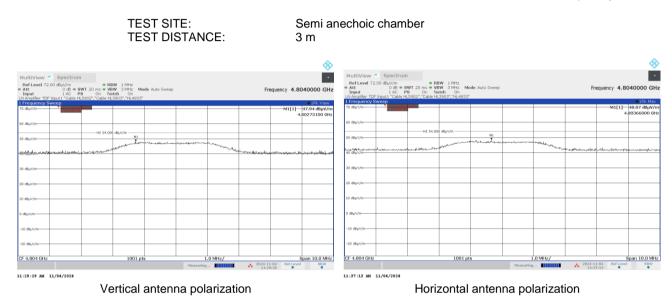
TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal

Input 1	dB SWT 28 ms = VB AC PS On No le HL3903","CABLE HL51	tch Off	lode Auto Sweep			Fred	quency 21.	5000000 G
Frequency Sweep		12 , Antenna r	L4956"					●1Pk View
70 dBµV/m	24.000 dkµV/m 0.000 dB					M	[1]	46.21 dBµV/ 18.00350 G
50 dBµV/m-								18.00350 G
50 dBµV/m								
Ø dBµV/m	H2 54.00) dBµV/m						
			mana	www.				
40 dBµV/m		And the second		and the	mound my	the second and the second s	unal m	The water and the second
30 dBµV/m								
20 dBµV/m								
0 dBµV/m								
) dBµV/m								
10 dBµV/m								_
20 dBµV/m								

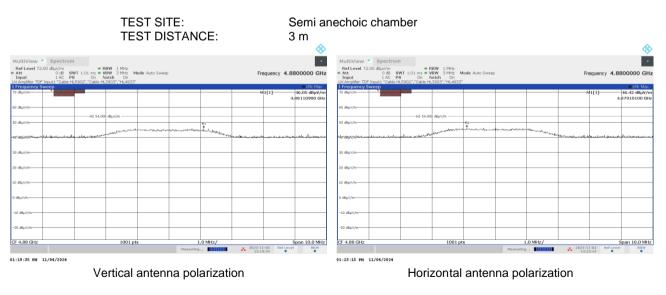
04:00:52 PM 11/04/2024

Plot 7.3.24 Radiated emission measurements from 18000 to 25000 MHz at the high carrier frequency

TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal


Ref Level 72.00 dBµV/m Att 0 dE	n • RBV 8 SWT 28 ms • VBV	W 1 MHz				-		
Input 1 AC reamp TDF Input1 "Cable	C PS On Not	ch Off				Fred	uency 21.	5000000 G
Frequency Sweep	CONT of Loss on							●1Pk Vie
0 dBµV/m 6 20.	000 dB					M	[1]	45.86 dBµV 21.26920 G
								21.20920 0
0 dBµV/m								-
	H2 54.000	dBµV/m						
0 dBµV/m			M1					
	- mar an	and the second	montone	man pursue	in the second			
0 dBµV/m				~~~~	warden and and and and and and and and and an		and a second second	- All and a second
0 dBµV/m								
e approx								
D dBµV/m								
0 dBµV/m								
dBµV/m								
10 dBµV/m								_
20 dBµV/m-								
		1001 p			0.0 MHz/			25.0 0

03:55:31 PM 11/04/2024



Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions					
Test procedure:	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	04-Nov-24	verdict.	LA22			
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz			
Remarks: BLE						

Plot 7.3.13 Radiated emission measurements at the second harmonic of low carrier frequency

Plot 7.3.14 Radiated emission measurements at the second harmonic of mid carrier frequency

