

Element Washington DC LLC

18855 Adams Court, Morgan Hill, CA 95037 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.element.com

MEASUREMENT REPORT

FCC Part 96

Applicant Name:

Apple Inc. One Apple Park Way Cupertino, CA 95014 United States

Date of Testing: 5/30/2022-9/13/2022 Test Site/Location: Element Washington DC LLC Morgan Hill, CA, USA Test Report Serial No.: 1C2205090023-09-R1.BCG

FCC ID:

BCGA2757 Apple Inc.

Applicant Name:

Application Type: Model: EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s):

Certification A2757(A2777) Tablet Device Citizens Band End User Devices (CBE) 96 ANSI C63.26-2015, ANSI/TIA-603-E-2016, KDB 971168 D01 v03r01, KDB 940660 D01 v03, WINNF-TS-0122 v1.0.2

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N:1C2205090023-09-R1.BCG) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 1 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 10100
			\/2 1 11/9/2021

TABLE OF CONTENTS

1.1 1.2 1.3 PROI 2.1 2.2	Scope Element Washington DC LLC Test Location Test Facility / Accreditations DUCT INFORMATION Equipment Description	4 4
1.3 PROI 2.1	Test Facility / Accreditations	4
PROI 2.1	DUCT INFORMATION	
2.1		5
	Equipment Description	
2.2		5
	Device Capabilities	5
2.3	Antenna Description	6
2.4	Test Support Equipment	6
2.5	Test Configuration	7
2.6	Software and Firmware	7
2.7	EMI Suppression Device(s)/Modifications	7
DESC	RIPTION OF TESTS	8
3.1	Measurement Procedure	8
3.2	Radiated Spurious Emissions	8
MEAS	SUREMENT UNCERTAINTY	9
TEST	EQUIPMENT CALIBRATION DATA	10
SAMF	PLE CALCULATIONS	11
TEST	RESULTS	12
7.1	Summary	12
7.2	Occupied Bandwidth	14
7.3	Spurious and Harmonic Emissions at Antenna Terminal	31
7.4	Band Edge Emissions at Antenna Terminal	45
7.5	Peak-Average Ratio	54
7.6	Radiated Power (EIRP)	63
7.7	Radiated Spurious Emissions	69
7.8	Frequency Stability / Temperature Variation	81
7.9	End User Device Additional Requirement (CBSD Protocol)	83
CON	CLUSION	86
	2.5 2.6 2.7 DESC 3.1 3.2 MEAS TEST 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	2.5 Test Configuration 2.6 Software and Firmware 2.7 EMI Suppression Device(s)/Modifications DESCRIPTION OF TESTS

FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 2 01 00
			1/2 1 11/0/2021

PART 96 MEASUREMENT REPORT

						EI	RP	Fusianian
Mode	Bandwidth	Modulation	Tx Frequency Range [MHz]	OBW [MHz]	PAR at 0.1% [dB]	Max. Power [W]	Max. Power [dBm]	Emission Designator
		QPSK	3552.5 - 3697.5	4.5263	5.21	0.158	22.00	4M53G7W
	5 MHz	16QAM	3552.5 - 3697.5	4.5184	5.90	0.125	20.98	4M52D7W
	5 101 12	64QAM	3552.5 - 3697.5	4.5257	6.68	0.108	20.34	4M53D7W
		256QAM	3552.5 - 3697.5	4.5342	6.95	0.053	17.25	4M53D7W
		QPSK	3555.0 - 3695.0	9.0225	5.15	0.158	22.00	9M02G7W
	10 MHz	16QAM	3555.0 - 3695.0	9.0012	5.93	0.128	21.08	9M00D7W
		64QAM	3555.0 - 3695.0	8.9977	6.56	0.100	19.98	9M00D7W
LTE Band 48		256QAM	3555.0 - 3695.0	9.0280	6.90	0.051	17.07	9M03D7W
LIE Danu 40		QPSK	3557.5 - 3692.5	13.5190	5.48	0.158	22.00	13M5G7W
	15 MHz	16QAM	3557.5 - 3692.5	13.5045	6.02	0.131	21.17	13M5D7W
		64QAM	3557.5 - 3692.5	13.5094	6.54	0.098	19.92	13M5D7W
		256QAM	3557.5 - 3692.5	13.5383	7.21	0.051	17.11	13M5D7W
	20 MHz	QPSK	3560.0 - 3690.0	17.9723	5.27	0.158	22.00	18M0G7W
		16QAM	3560.0 - 3690.0	17.9947	6.00	0.134	21.26	18M0D7W
		64QAM	3560.0 - 3690.0	17.9566	6.48	0.104	20.15	18M0D7W
		256QAM	3560.0 - 3690.0	18.0080	6.53	0.058	17.60	18M0D7W
		QPSK	3562.5 - 3687.5	23.2337	-	0.157	21.96	23M2G7W
	20 + 5 MHz	16QAM	3562.5 - 3687.5	23.3270	-	0.082	19.15	23M3D7W
	20 + 5 MHZ	64QAM	3562.5 - 3687.5	23.1795	-	0.083	19.17	23M2D7W
		256QAM	3562.5 - 3687.5	23.2020	-	0.052	17.16	23M2D7W
		QPSK	3565.0 - 3685.0	28.0591	-	0.158	21.99	28M1G7W
	20 + 10 MHz	16QAM	3565.0 - 3685.0	28.0135	-	0.083	19.19	28M0D7W
		64QAM	3565.0 - 3685.0	28.0394	-	0.083	19.18	28M0D7W
LTE ULCA		256QAM	3565.0 - 3685.0	28.0291	-	0.052	17.15	28M0D7W
Band 48		QPSK	3567.5 - 3682.5	32.8273	-	0.157	21.97	32M8G7W
	20 + 15 MHz	16QAM	3567.5 - 3682.5	32.8450	-	0.082	19.15	32M8D7W
		64QAM	3567.5 - 3682.5	32.7817	-	0.083	19.17	32M8D7W
		256QAM	3567.5 - 3682.5	32.8527	-	0.051	17.11	32M9D7W
		QPSK	3570.0 - 3680.0	37.7168	-	0.158	22.00	37M7G7W
	20 + 20 MHz	16QAM	3570.0 - 3680.0	37.7118	-	0.083	19.17	37M7D7W
	20 + 20 IVIHZ	64QAM	3570.0 - 3680.0	37.6828	-	0.082	19.15	37M7D7W
		256QAM	3570.0 - 3680.0	37.6791	-	0.052	17.15	37M7D7W

EUT Overview

FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 3 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 5 01 60
			V2.1 11/9/2021

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.2 Element Washington DC LLC Test Location

These measurement tests were conducted at the Element Washington DC LLC facility located at 18855 Adams Court, Morgan Hill, CA 95037. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 and KDB 414788 D01 v01r01.

1.3 Test Facility / Accreditations

Measurements were performed at Element Washington DC LLC located in Morgan Hill, CA 95037, U.S.A.

- Element Washington DC LLC is a CBRS Alliance (OnGo) Approved Test Lab
- Element Washington DC LLC is a WInnForum Approved Test Lab
- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for CBRS Alliance Certification Test Plan and WInnForum Conformance and Performance Test Technical Standard.
- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (22831) test laboratory with the site description on file with ISED.

FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 4 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 4 01 00
			\/2 1 11/0/2021

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element Washington DC LLC. If you have any questions about this or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Apple Table Device FCC ID:BCGA2757**. The test data contained in this report pertains only to the emissions due to the EUT's LTE Band 48 operation in the CBRS band. Per FCC Part 96, this device is evaluated under Citizens Band End User Devices (CBE).

Test Device Serial No.: YG6YDYXRKQ, F32YWYM00Y, 220526CA06

2.2 Device Capabilities

This device contains the following capabilities:

850/1700/1900 WCDMA/HSPA, Multi-band LTE, 5G NR (FR1), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII, Bluetooth (1x, LE1M, LE2M, HDR4, HDR8)

This device supports BT Beamforming

All measurements were performed with NS01 for all antennas.

This device supports simultaneous transmission operations, which allows for multiple transmitters to transmit simultaneously on the same antenna. The table below shows all configurations possible.

		WiFi 2.4GHz	Bluetooth	WiFi 5GHz	WC	DMA/LTE/FR1	l NR
Antenna	Simultaneous Tx Config	802.11 b/g/n/ax	BDR, EDR, HDR4/8, LE1/2M	802.11 a/n/ac/ax	Mid Band	High Band	Ultra High Band
3a	Config 1	×	✓	✓	×	×	×
3a	Config 2	✓	×	×	~	×	×
3a	Config 3	✓	×	×	×	~	×
3a	Config 4	×	✓	\checkmark	✓	×	×
3a	Config 5	×	~	✓	×	✓	×
1b	Config 6	×	×	✓	✓	×	×
1b	Config 7	×	×	✓	×	✓	×
1a	Config 8	✓	×	×	×	×	✓
1a	Config 9	×	~	×	×	×	\checkmark

Table 2-1. Simultaneous Transmission Configurations

 \checkmark = Support; * = Not Support

Note:

All the above simultaneous transmission configurations have been tested and the worst case configuration was found to be Config 3 and is reported in RF WLAN and RF Part 27b test reports.

Wi-Fi 2.4GHz and Bluetooth 2.4 GHz can transmit simultaneously on separate antennas. Specific 2.4GHz Wi-Fi antenna that can only transmit simultaneously with 2.4 GHz Bluetooth antenna is listed in the SAR test report. For BT (2.4 GHz) in connected mode and Wi-Fi (2.4 GHz) – Wi-Fi max power will not exceed minimum of (13.5dBm, SAR max cap, Reg max cap) power. For BT (2.4 GHz) in disconnected mode and Wi-Fi (2.4 GHz) – BT will be using iPA only and Wi-Fi max power will not exceed minimum of (SAR max cap, Reg max cap) power.

FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 5 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 5 01 80
	•		V2.1 11/9/2021

2.3 Antenna Description

The following antenna gains provided by manufacturer were used for testing.

Band	Antenna Gain [dBi]				
Dallu	Antenna 3b	Antenna 2a	Antenna 4	Antenna 1a	
LTE Band 48	2.6	2.2	2.5	0.2	

Table 2-2. Highest Antenna Gain

2.4 Test Support Equipment

1	Apple MacBook Pro	Model: A2141	S/N:	C02DV7VKMD6T
	w/AC/DC Adapter	Model: A2166	S/N:	N/A
2	Apple USB-C Cable	Model: Spartan	S/N:	000MKTR02U
3	USB-C Cable	Model: A246	S/N:	N/A
	w/ AC Adapter	Model: A2305	S/N:	N/A
4	DC Power Supply	Model: KPS3010D	S/N:	N/A
		able 2.2. Test Support Equi	nmont	

Table 2-3. Test Support Equipment

FCC ID: BCGA2757	element 🤤	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 6 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 0 01 00
			\/2 1 11/0/2021

2.5 Test Configuration

The EUT was tested per the guidance of ANSI C63.26 2015, TIA-603-E-2016 and KDB 971168 D01 v03r01. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

For emissions from 1GHz – 18GHz, low, mid, and high channels were tested with highest power and worst case configuration. The emissions below 1GHz and above 18GHz were tested with the highest transmitting power and the worst case channel.

The EUT was manipulated through three orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), and Z-orientation (portrait) during the testing. Only the worst case emissions were reported in this test report.

2.6 Software and Firmware

The test was conducted with firmware version 20A32640u installed on the EUT.

2.7 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 7 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 7 01 00
			V2.1 11/9/2021

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The measurement procedures described in the document titled "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI C63.26-2015, TIA-603-E-2016) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168 D01 v03r01) were used in the measurement of the EUT.

Deviation from Measurement Procedure.....None

3.2 Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated spurious emissions measurements and calculations, conversion method is used per the formulas in KDB 971168 Section 5.8.4. Field Strength (EIRP) is calculated using the following formulas:

 $E_{[dB\mu V/m]} = Measured amplitude level_{[dBm]} + 107 + Cable Loss_{[dB]} + Antenna Factor_{[dB/m]}$

And

 $EIRP_{[dBm]} = E_{[dB\mu V/m]} + 20logD - 104.8$; where D is the measurement distance in meters.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014.

Per KDB 414788 D01 v01r01, radiated emission test sites other than open-field test sites (e.g., shielded anechoic chambers), may be employed for emission measurements below 30MHz if characterized so that the measurements correspond to those obtained at an open-field test site. To determine test site equivalency, a reference sample transmitting at 149kHz was measured on an open field test site (asphalt with no ground plane) and then measured in the 3m semi-anechoic chamber. A calibrated 60cm loop antenna was used while the reference device was rotated through the X, Y and Z axis in order to capture the worst case level. A maximum deviation of 2.77dB at 149kHz was measured when comparing the 3 meter semi-anechoic chamber to the open field site.

Radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI C63.26-2015 and TIA-603-E-2016.

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 9 of 90	
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Page 8 of 86	
<u></u>	·		V2.1 11/9/2021	

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.23-2012. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.77
Radiated Disturbance (<30MHz)	4.38
Radiated Disturbance (30MHz-1GHz)	4.75
Radiated Disturbance (1-18GHz)	5.20
Radiated Disturbance (>18GHz)	4.72

FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 9 01 00
			V2.1 11/9/2021

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent Technologies	N9030A	3Hz-44GHz PXA Signal Analyzer	6/10/2022	Annual	6/10/2023	MY49430244
Agilent Technologies	N9020A	MXA Signal Analyzer	4/26/2022	Annual	4/26/2023	MY56470202
ATM	180-442A-KF	20dB Nominal Gain Horn Antenna	1/19/2022	Annual	1/19/2023	T058701-02
ETS-Lindgren	3142E	Biconilog Antenna (26-6000MHz)	10/21/2021	Annual	10/21/2022	208204
ETS-Lindgren	3117	Double Ridged Guide Horn Antenna (1-18GHz)	10/25/2021	Annual	10/25/2022	227597
ETS-Lindgren	SU-241	Table Top Temperature Chamber	10/6/2021	Annual	10/6/2022	92009574
Keysight Technology	N9040B	UXA Signal Analyzer	2/8/2022	Annual	2/8/2023	MY57212015
Rohde & Schwarz	TS-PR8	Pre-Amplifier (30MHz-6GHz)	1/6/2022	Annual	1/6/2023	102328
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	10/11/2021	Annual	10/11/2022	161616
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	11/4/2021	Annual	11/4/2022	151888
Rohde & Schwarz	ESW26	EMI Test Receiver	5/19/2022	Annual	5/19/2023	101299
Rohde & Schwarz	ESW44	EMI Test Receiver	12/2/2021	Annual	12/2/2022	101570
Rohde & Schwarz	FSV40	Signal Analyzer (10Hz-40GHz)	3/4/2022	Annual	3/4/2023	101619
Rohde & Schwarz	FSVA3044	Signal Analyzer (up to 44 GHz)	5/12/2022	Annual	5/12/2023	101098
Rohde & Schwarz	HFH2-Z2	Loop Antenna	4/3/2022	Annual	4/3/2023	100546
Rohde & Schwarz	TC-TA18	Cross-Polarized Antenna 400MHz-18GHz	1/25/2022	Annual	1/25/2023	101063
Rohde & Schwarz	TS-PR18	Pre-Amplifier (1GHz-18GHz)	1/6/2022	Annual	1/6/2023	101639
Rohde & Schwarz	TS-PR1840	Pre-Amplifier (18GHz-40GHz)	4/18/2022	Annual	4/18/2023	100050

Table 5-1. Test Equipment

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 10 01 00
			V/2 1 11/9/2021

6.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7W BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info W = Combination of Any

QAM Modulation

Emission Designator = 8M45D7W BW = 8.45 MHz D = Amplitude/Angle Modulated 7 = Quantized/Digital Info W = Combination of Any

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 11 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 11 01 00
			V/2 1 11/9/2021

7.0 TEST RESULTS

7.1 Summary

Company Name:	Apple Inc.
FCC ID:	BCGA2757
FCC Classification:	Citizens Band End User Devices (CBE)
Mode(s):	LTE/ULCA

Test Condition	Test Description	FCC Part Section(s)	Test Limit	Test Result	Reference
	Occupied Bandwidth	2.1049	N/A	N/A	Section 7.2
	Conducted Band Edge / Spurious Emissions	2 1051 96 41(e)(ii)	 -13 dBm/MHz at frequencies within 0-B MHz of channel edge (where B is the bandwidth of the assigned channel) -25 dBm/MHz at frequencies greater than B MHz above and below channel edge -40 dBm/MHz at frequencies below 3530 MHz and above 3720 MHz 	PASS	Sections 7.3, 7.4
	Transmitter Conducted Output Power	2.1046	N/A	N/A	See RF Exposure Report
CONDUCTED	Peak-Average Ratio	96.41(g)	< 13 dB	PASS	Section 7.5
	Frequency Stability	2 1055	Fundamental emissions stay within authorized frequency block	PASS	Section 7.8
	End User Device Additional Requirements (CBSD Protocol)	96.47	End User Devices may operate only if they can positively receive and decode an authorization signal transmitted by a CBSD, including the frequencies and power limits for their operation. An End User Device must discontinue operations, change frequencies, or change its operational power level within 10 seconds of receiving instructions from its associated CBSD.	PASS	Section 7.9
	Equivalent Isotropic Radiated Power (EIRP)	96.41(b)	23 dBm/10MHz	PASS	Section 7.6
RADIATED	Radiated Spurious Emissions	2.1053, 96.41(e)	-40 dBm/MHz	PASS	Section 7.7

Table 7-1. Summary of Test Results

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 12 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 12 01 00
			V2.1 11/9/2021

Notes:

- 1. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2. The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3. All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4. All conducted emissions measurements are performed with automated test software to capture the corresponding plots necessary to show compliance. The measurement software utilized was Element Washington DC LLC EMC Software Tool 1.1.

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 13 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 13 01 00
			V2 1 11/9/2021

7.2 Occupied Bandwidth §2.1049

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section. All ports were tested and only the worst case data were reported.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 4.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

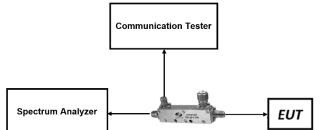


Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None.


FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 14 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 14 01 80
			V2.1 11/9/2021

LTE Band 48

Plot 7-1. Occupied Bandwidth Plot (LTE Band 48 - 5MHz QPSK - Full RB Configuration)

Plot 7-2. Occupied Bandwidth Plot (LTE Band 48 - 5MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 15 of 86	
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 15 01 00	
			V2.1 11/9/2021	

Keysight Spectrum Analyzer - Occupied BW					
<mark>ΙΧΙ</mark> RL RF 50Ω AC (CORREC	SENSE:INT		PM Jul 20, 2022	Trace/Detector
		ter Freq: 3.625000000 GH : Free Run Avg H	z Radio Sto old: 100/100	d: None	
#		en: 36 dB		vice: BTS	
10 dB/div Ref 40.00 dBm			-		
Log 30.0					
					Clear Write
20.0					
10.0	mann	way and many and the	• <mark>•</mark>		
0.00					
			L.		Average
-10.0	ſ				Average
-20.0	1		- Nn		
-30.0					
-30.0 -40.0 mm ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			handressen	mman	
					Max Hold
-50.0					
Center 3.625000 GHz			0		
Res BW 120 kHz		VBW 1.2 MHz		12.50 MHz	
Res BW 120 KH2			5W	eep 1 ms	Min Hold
		Total Power	25.6 dBm		
Occupied Bandwidth		Total Power	25.0 dBm		
4 5	257 MHz				Detector
					Peak▶
Transmit Freq Error	3.283 kHz	% of OBW Po	wer 99.00 %		Auto <u>Man</u>
x dB Bandwidth	4.987 MHz	x dB	-26.00 dB		
MSG			STATUS		

Plot 7-3. Occupied Bandwidth Plot (LTE Band 48 - 5MHz 64-QAM - Full RB Configuration)

Plot 7-4. Occupied Bandwidth Plot (LTE Band 48 - 5MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 16 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 10 01 00
			V2.1 11/9/2021

Keysight Spectrum Analyzer - Occupied BV					
RL RF 50Ω AC	CORREC	SENSE:INT ter Freq: 3.625000000 G	ALIGN AUTO	11:52:30 AM Jul 20, 2022 Radio Std: None	Trace/Detector
			Hold: 100/100	Radio Std. None	
		en: 36 dB		Radio Device: BTS	
					-
0 dB/div Ref 40.00 dBn	<u>ו און און און און און און און און און או</u>		_		
og 30.0					
					Clear Wr
20.0					
10.0	manuloguandus	who we	~~		
).00			1		
0.0	/		ι (Avera
			1		Avera
0.0					
0.0 And the state of the state	~~~		Luhman	whether war ward and all all	
0.0				and the second second second	Max Ho
50.0					
0.0					
enter 3.62500 GHz				Span 25.00 MHz	
es BW 240 kHz		#VBW 750 kHz		Sweep 1 ms	
Occupied Bandwidt	h	Total Power	28.9	dBm	
9.	0225 MHz				Detect
Transmit Frog Error	14.906 kHz	% of OBW P		.00 %	Pea Auto M
Transmit Freq Error	14.900 KHZ		ower 9:	100 %	
x dB Bandwidth	9.800 MHz	x dB	-26.	00 dB	
G			STATU	2	

Plot 7-5. Occupied Bandwidth Plot (LTE Band 48 - 10MHz QPSK - Full RB Configuration)

Plot 7-6. Occupied Bandwidth Plot (LTE Band 48 - 10MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 17 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	022-9/13/2022 Tablet Device	
			V2 1 11/9/2021

🔤 Keysight Spectrum Analyzer - Occupied	BW				
LX/ RL RF 50Ω AC		r Freq: 3.625000000 GHz	Radio Std	M Jul 20, 2022 : None	Trace/Detector
		Free Run Avg Hold n: 36 dB	Radio Dev	vice: BTS	
10 dB/div Ref 40.00 dE	3m				
Log 30.0					
20.0					Clear Write
10.0	pravagentures allenge	abanglanglanglanglang			
0.00					
-10.0					Average
-20.0	A		ļ		
-30.0	Awalyn		March as A		
-40.0			Muran Murale Murally and the	May and a start	Max Hold
-50.0					
Center 3.62500 GHz			Snan 2	5.00 MHz	
Res BW 240 kHz	#	VBW 750 kHz		eep 1 ms	Min Hold
Occupied Bandwid	dth	Total Power	26.1 dBm		
	.9977 MHz				Detector
					Peak▶
Transmit Freq Error	-5.610 kHz	% of OBW Powe	er 99.00 %		Auto <u>Man</u>
x dB Bandwidth	9.724 MHz	x dB	-26.00 dB		
MSG			STATUS		

Plot 7-7. Occupied Bandwidth Plot (LTE Band 48 - 10MHz 64-QAM - Full RB Configuration)

Plot 7-8. Occupied Bandwidth Plot (LTE Band 48 - 10MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 18 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	022-9/13/2022 Tablet Device	
	·		V2.1 11/9/2021

Keysight Spectrum Analyzer	- Occupied 50 Ω AC		FC I		SENSE:INT		ALIGN AUTO	11,27,52.4	M Jul 20, 2022	_	
KL RF :	50 32 AC	CORH	EC	Cente	r Freg: 3.625	000000 GHz	ALIGN AUTO	Radio Std:		Trac	e/Detector
					Free Run	Avg Hol	d: 100/100				
		#IFG	ain:Low	#Atte	n: 36 dB			Radio Dev	ICE: BIS		
	0.00 dE	Зm									
- og 30.0											
											Clear Writ
20.0				a the second	Mill-mary mary						
10.0			1								
0.00											
10.0		r									Averag
20.0							1				
30.0 Amontomore	and the second	mappal					Unanna	And Brywendly	Werbing & ADML		
40.0									al		Max Hol
50.0											Max Hol
50.0										_	
Center 3.62500 GH	z							Span 3	7.50 MHz		
Res BW 360 kHz				#	VBW 1.1	MHz		Swe	ep 1ms		Min Hol
					T - 4 - 1		200	6 dBm			
Occupied Ba					lotal	Power	28.0	o aBm			
	1	3.51	19 M	Hz							Detecto
_	_										Peak
Transmit Freq	Error		-2.451	KHZ	% Of C	BW Pow	ver 9	9.00 %		Auto	Ma
x dB Bandwidt	h		14.70	MHz	x dB		-26.	00 dB			
							07.5				_
G							STATU	5			

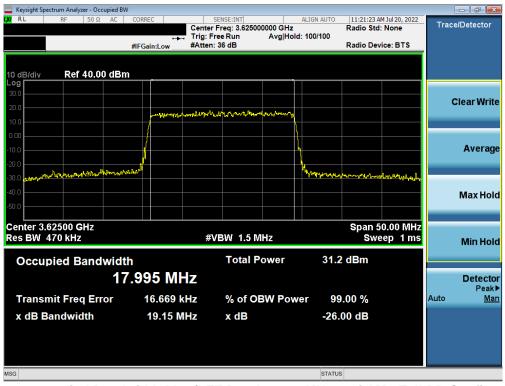
Plot 7-9. Occupied Bandwidth Plot (LTE Band 48 - 15MHz QPSK - Full RB Configuration)

Plot 7-10. Occupied Bandwidth Plot (LTE Band 48 - 15MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 19 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 19 01 00
	-		V2.1 11/9/2021

Keysight Spectrum Analyzer - Occupied BW	CORREC	SENSE:INT	ALIGN AUTO	11:39:18 AM Jul 20, 2022	
KE KF JUS AC		Center Freq: 3.625000	0000 GHz	Radio Std: None	Trace/Detector
		Trig: Free Run #Atten: 36 dB	Avg Hold: 100/100	Radio Device: BTS	
	#IFGain:Low #	Atten: 36 dB		Radio Device. B13	ī
0 dB/div Ref 40.00 dBm					
30.0					
20.0					Clear Writ
10.0	manner	Lange and and the second second	man		
0.00	/				
10.0			\		Averag
20.0					, in the second s
	-and				
10.0 malander and the street of the street o			And the and th	Man Man An An An Anton	
50.0					Max Hol
50.0					
Center 3.62500 GHz				Span 37.50 MHz	
Res BW 360 kHz		#VBW 1.1 M	Hz	Sweep 1 ms	Min Hol
Occupied Bandwidt	h	Total Po	ower 27 :	3 dBm	
			211		
13	.509 MHz	Z			Detecto
Transmit Freq Error	-5.522 kH	z % of OE	W Power 99	9.00 %	Auto <u>Ma</u>
x dB Bandwidth	14.67 MH	z xdB	26	.00 dB	
	14.07 MIN	2	-20	.00 08	
G			STATU	IS	

Plot 7-11. Occupied Bandwidth Plot (LTE Band 48 - 15MHz 64-QAM - Full RB Configuration)


Plot 7-12. Occupied Bandwidth Plot (LTE Band 48 - 15MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	122-9/13/2022 Tablet Device	
	•		V2.1 11/9/2021

	sight Spectrum Analyze	r - Occupied BW									
L <mark>XI</mark> RL	RF	50 Ω AC C	ORREC		SENSE:INT Frea: 3.62500	0000 CH-	ALIGN AUTO	11:21:14 A Radio Std	M Jul 20, 2022	Trac	e/Detector
					ree Run		d: 100/100	Radio Stu	. None		
		#	FGain:Low	#Atten	: 36 dB			Radio Dev	rice: BTS		
10 dE	Vdiv Ref 4	0.00 dBm									
Log											
30.0											Clear Write
20.0				لمراجب واللعجر وما	Luchman	معامد الم					Clear write
10.0			AMA AMA	at da de Montau	Contracted Markada	Construction of					
0.00 -			/				·				
-10.0							l.				Average
			Í				1				Average
-20.0 -	and the state of t	with Mary Mary Mary Mary	/				monteret	malenation			
-30.0	CPN (beneficial and a second s								Munipaper		
-40.0											Max Hold
-50.0											
	er 3.62500 GH	lz		-41					0.00 MHz		
Res	BW 470 kHz			#	VBW 1.5 N	IHZ		SWe	eep 1 ms		Min Hold
0	ccupied Ba	ndwidth			Total P	ower	32	.0 dBm			
	Ccupied Ba				Total I		JL	.o ubm			
		17.	972 N	IHZ							Detector
	onomit Eren	Error	16.251		0/ of O	BW Pow	- C	9.00 %		Auto	Peak▶ Man
	ansmit Freq	Error	10.201	КПΖ	% OF U	BW FOW	er s	9.00 %		Auto	IVIAII
X	dB Bandwidt	th	19.39	MHz	x dB		-26	6.00 dB			
							07.17				
MSG							STAT	US			

Plot 7-13. Occupied Bandwidth Plot (LTE Band 48 - 20MHz QPSK - Full RB Configuration)

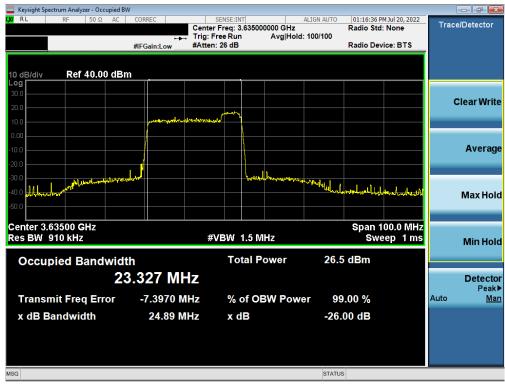
Plot 7-14. Occupied Bandwidth Plot (LTE Band 48 - 20MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	022-9/13/2022 Tablet Device	
			V2 1 11/9/2021

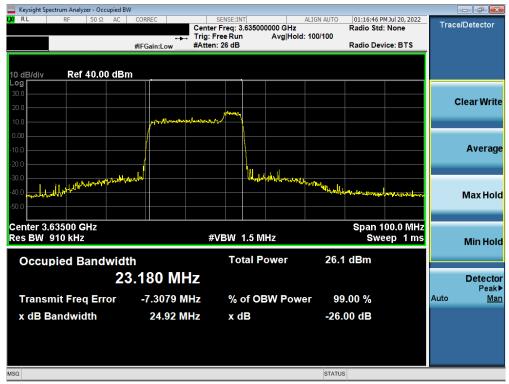
🤤 Keysight Spectrum Analyzer - Occupied E	3W				
LXI RL RF 50Ω AC	CORREC	SENSE:INT nter Freg: 3.625000000 GHz		AM Jul 20, 2022	Trace/Detector
			Id: 100/100	u. None	
	#IFGain:Low #At	tten: 36 dB	Radio De	evice: BTS	
10 dB/div Ref 40.00 dB	m				
Log					
30.0					Clear Write
20.0					Clear write
10.0	ታሳኮቀሎምቤ/የሶስቴኮሎም ለ	www.			
0.00	/				
-10.0					Average
-20.0			V		g .
	www		Carper and		
			. All and the second	พระสินาร์นสีของการเรื่อง	
-40.0					Max Hold
-50.0					
			<u> </u>	50.00 BAU	
Center 3.62500 GHz Res BW 470 kHz		#VBW 1.5 MHz		50.00 MHz /eep 1 ms	
Res BW 470 KH2			54	reep This	Min Hold
Occupied Bandwid	th	Total Power	29.9 dBm		
1	7.957 MHz				Detector Peak▶
Transmit Freq Error	5.306 kHz	% of OBW Pov	ver 99.00 %		Auto Man
· · · · ·					<u></u>
x dB Bandwidth	19.11 MHz	x dB	-26.00 dB		
MSG			STATUS		
MSG			STATUS		

Plot 7-15. Occupied Bandwidth Plot (LTE Band 48 - 20MHz 64-QAM - Full RB Configuration)

Plot 7-16. Occupied Bandwidth Plot (LTE Band 48 - 20MHz 256-QAM - Full RB Configuration)


FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Faye 22 01 00
		-	V2.1 11/9/2021

ULCA LTE Band 48


Plot 7-17. Occupied Bandwidth Plot (ULCA Band 48 - 20+5MHz QPSK - Full RB Configuration)

Plot 7-18. Occupied Bandwidth Plot (ULCA Band 48 - 20+5MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 86	
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 23 01 00	
			V2.1 11/9/2021	

Plot 7-19. Occupied Bandwidth Plot (ULCA Band 48 - 20+5MHz 64-QAM - Full RB Configuration)

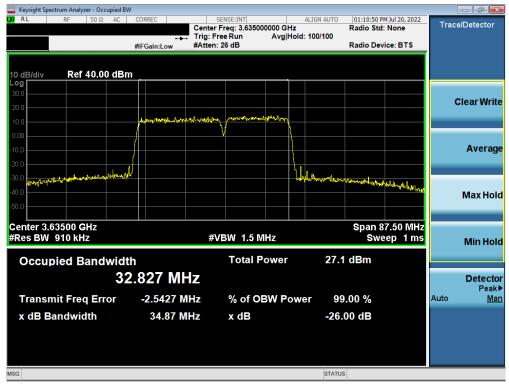

Plot 7-20. Occupied Bandwidth Plot (ULCA Band 48 - 20+5MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 24 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 24 01 80
			V2.1 11/9/2021

Plot 7-21. Occupied Bandwidth Plot (ULCA Band 48 - 20+10MHz QPSK - Full RB Configuration)

Plot 7-22. Occupied Bandwidth Plot (ULCA Band 48 - 20+10MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 25 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 25 01 80
			V2 1 11/9/2021


Plot 7-23. Occupied Bandwidth Plot (ULCA Band 48 - 20+10MHz 64-QAM - Full RB Configuration)

Plot 7-24. Occupied Bandwidth Plot (ULCA Band 48 - 20+10MHz 256-QAM - Full RB Configuration)

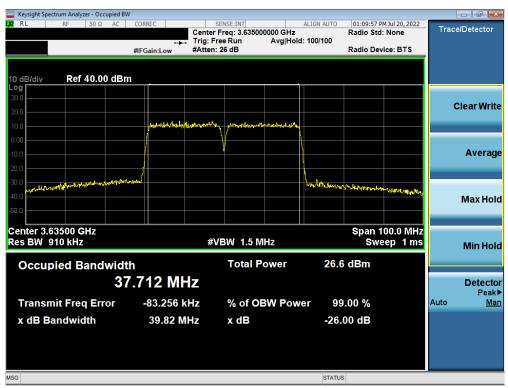
FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 20 01 00
	•		V2.1 11/9/2021

Plot 7-25. Occupied Bandwidth Plot (ULCA Band 48 - 20+15MHz QPSK - Full RB Configuration)

Plot 7-26. Occupied Bandwidth Plot (ULCA Band 48 - 20+15MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 27 of 96
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Page 27 of 86
	-		V2.1 11/9/2021

Plot 7-27. Occupied Bandwidth Plot (ULCA Band 48 - 20+15MHz 64-QAM - Full RB Configuration)


Plot 7-28. Occupied Bandwidth Plot (ULCA Band 48 - 20+15MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 28 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 26 01 66
			V2.1 11/9/2021

🔤 Keysight Spectrum Analyzer - Occi	upied BW									
<mark>LXI</mark> RL RF 50 Ω	AC COR	REC		NSE:INT		ALIGN AUTO	01:05:43 P Radio Std	M Jul 20, 2022	Trac	e/Detector
				req: 3.63500 e Run		d: 100/100	Radio Std	: None		
	#IFG	ain:Low	#Atten: 2				Radio Dev	vice: BTS		
								Í		
10 dB/div Ref 40.00) dBm									
Log										
30.0										
20.0										Clear Write
10.0		mound	the way way	mappin	winner-					
0.00)	(
				ł		Ì				Average
-10.0										Average
-20.0						nli v				
-30.0	manual					hardthighthread	hlatharthan	Nechan L		
-40.0								A CONTRACTOR		Max Hold
-50.0										maxmona
Center 3.63500 GHz								00.0 MHz		
Res BW 910 kHz			#VE	3W 1.5 M	Hz		Swe	eep 1 ms		Min Hold
				Tetel D		07.0	dBm			
Occupied Bandy				Total P	ower	21.3	o aBm			
	37.7	17 MF	-IZ							Detector
										Peak▶
Transmit Freq Erre	or -	166.18 k	(Hz	% of O	3W Pow	/er 99	0.00 %		Auto	<u>Man</u>
x dB Bandwidth		39.80 M	Hz	x dB		-26.	00 dB			
MSG						STATUS	5			

Plot 7-29. Occupied Bandwidth Plot (ULCA Band 48 - 20+20MHz QPSK - Full RB Configuration)

Plot 7-30. Occupied Bandwidth Plot (ULCA Band 48 - 20+20MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 29 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 29 01 80
			V2.1 11/9/2021

Plot 7-31. Occupied Bandwidth Plot (ULCA Band 48 - 20+20MHz 64-QAM - Full RB Configuration)

Plot 7-32. Occupied Bandwidth Plot (ULCA Band 48 - 20+20MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Page 30 01 80
			V2.1 11/9/2021

7.3 Spurious and Harmonic Emissions at Antenna Terminal §2.1051 §96.41(e)

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section. All ports were tested and only the worst case data were reported.

The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/Mhz.

Test Procedure Used

KDB 971168 D01 v03r01 – Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to at least 10 * the fundamental frequency (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = Max Hold
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

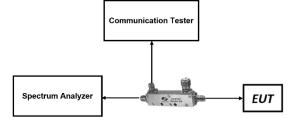
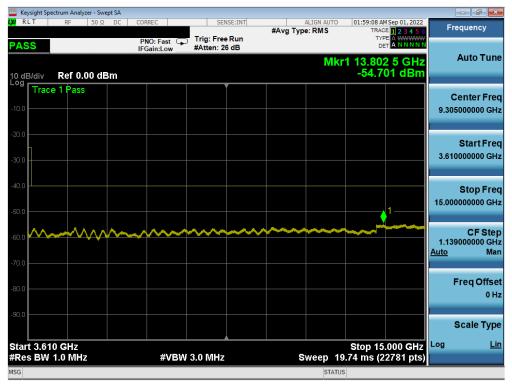


Figure 7-2. Test Instrument & Measurement Setup

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 31 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage ST 01 00
			\/2 1 11/0/2021

Test Notes

- 1. Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1 GHz and 1 MHz or greater for frequencies greater than 1 GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- Uplink carrier aggregation conducted spurious emissions measurements were evaluated for the two contiguous channels using various combinations of RB size, RB offset, modulation, and channel bandwidth. The worst case (highest) powers were found while operating with QPSK modulation with both carriers set to transmit using 1RB.
- 3. Uplink carrier aggregation inter-band emission was investigated and found to not be the worst case


FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 32 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 32 01 80
			V2 1 11/9/2021

LTE Band 48

	ectrum Analyz	er - Swept S	5A									- 6
ASS	RF	50Ω D		PNO: Fa	st 🖵	SI Trig: Fre Atten: 3		#Avg Typ	ALIGN AUTO e: RMS	TRA	M Sep 01, 2022 CE 1 2 3 4 5 6 PE A WWWWW ET A N N N N N	Frequency
I0 dB/div	Ref 26	00 dBr		in Guilli.E					M	(r1 3.14 -49.	2 5 GHz 41 dBm	Auto Tur
-og Trace	e 1 Pass											Center Fre 1.770000000 GH
4.00												Start Fre 30.000000 MH
24.0												Stop Fre 3.510000000 GH
34.0											1	CF Ste 348.000000 MH <u>Auto</u> Ma
54.0		nestan panakatan jur	<u>ليكوف ومتقول ويجمع</u>	l and the second second		ng man kanang balang bang bang bang bang bang bang bang b						Freq Offs 0 H
64.0 Start 30 N	ЛЫ 7 —									Stop-3	.510 GHz	Scale Typ
≉Res BW				#	VBW	3.0 MH:	Z			.640 ms	(6961 pts)	
ISG									STATUS	5		

Plot 7-33. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Low Channel)

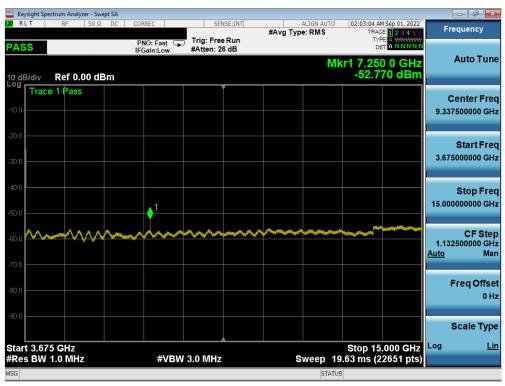
Plot 7-34. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Low Channel)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 86	
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 33 01 00	
			V2.1 11/9/2021	

	ctrum Analyze											F X
L <mark>XI</mark> RLT	RF	50 Ω DC	CORRE	C	SEN	ISE:INT	#Avg Typ	ALIGN AUTO		M Sep 01, 2022	Frequen	су
PASS				:Fast 🖵 n:Low	Trig: Free Atten: 10				TY D		_	
10 dB/div Log	Ref 0.00) dBm						Mk	r1 26.32 -62.8	8 5 GHz 19 dBm	Auto	Tune
-10.0	e 1 Pass										Center 21.00000000	
-20.0											Start 15.00000000	t Freq 00 GHz
-40.0											Stop 27.00000000	o Freq 00 GHz
-60.0						~~~					CF 1.20000000 <u>Auto</u>	Step 00 GHz Man
-80.0											FreqC	Offset 0 Hz
-90.0											Scale	
Start 15.0 #Res BW				#VBW	3.0 MHz		s	weep 2	Stop 27 0.80 ms (2	.000 GHz 4001 pts)	Log	<u>Lin</u>
MSG								STATU				

Plot 7-35. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Low Channel)

	pectrum Analy												- ¢ 💌
RLT	RF	50 Ω D	00 00	ORREC		SEI	NSE:INT		ALIGN AUTO		M Sep 01, 2022	E	requency
ASS				PNO: Fas FGain:Lo	st 😱 w	Trig: Free Atten: 10		#Avg Typ	e: RIVIS	T	CE 1 2 3 4 5 6 PE A WWWWW DET A NNNNN		
0 dB/div	Ref 0.	00 dBm							MI	kr1 39.93 -55	0 1 GHz 50 dBm		Auto Tun
Tra	ce 1 Pass					, ,	Í						Center Fre
10.0													0000000 GH
0.0													Start Fre
30.0												27.00	0000000 GH
0.0													
												40.00	Stop Fr 0000000 G
i0.0											1		
0.0			-	-	-		^			~		1.30 Auto	CF Ste 0000000 G M
'0.0													
30.0													Freq Offs
													01
0.0													Scale Ty
tart 27.	000 GHz									Stop 4	0.000 GHz	Log	Ŀ
	1.0 MH			#	vвw	3.0 MHz		s	weep :	22.40 ms (24001 pts)		
SG									STA	TUS			


Plot 7-36. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Low Channel)

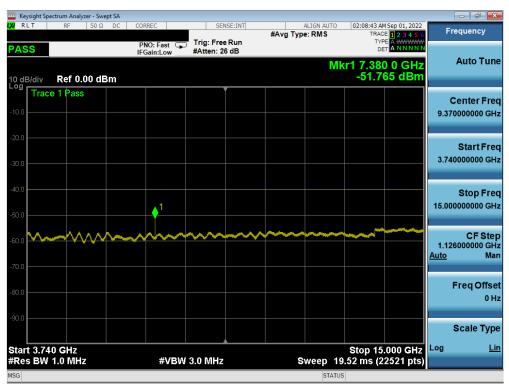
FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 34 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	raye 34 01 00
			\/2 1 11/9/2021

	ctrum Analyzer - S											ð 💌
LXI RLT	RF 50	ΩDC	CORREC		SEN	ISE:INT	#Ava T	ALIGN AUTO		M Sep 01, 2022	Frequen	юу
PASS			PNO: Fast IFGain:Lov		Frig: Free Atten: 20				TYI Di		Auto	Tune
10 dB/div Log	Ref 0.00 c	lBm						M	kr1 3.16 -59.	3 0 GHz 49 dBm	Auto	rune
Trace	1 Pass										Cente	r Freq
-10.0											1.8025000	00 GHz
-20.0												
										Г	Star 30.0000	tFreq
-30.0												
-40.0											Stop	p Freq
-50.0											3.5750000	00 GHz
									▲ I	1		= Step
-60.0								ر و ۲۰۰۰ میلاد کرد.			354.50000	00 MHz
-70.0	۵۰٫۰۰٫۰۰۰ ۵۰٫۰۰۰٬۰۰۵ ۵۰ ٫۰۰۰٬۰۰۰										<u>Auto</u>	Man
											Freq	Offset
-80.0												0 Hz
-90.0											Deele	
												туре
Start 30 M #Res BW			#\	/BW 3.	0 MHz			Sweep 4	Stop 3	.575 GHz 7091 pts)	Log	<u>Lin</u>
MSG			"					STATU		, eer proj		

Plot 7-38. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Mid Channel)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 35 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 55 01 00
			V2 1 11/9/2021

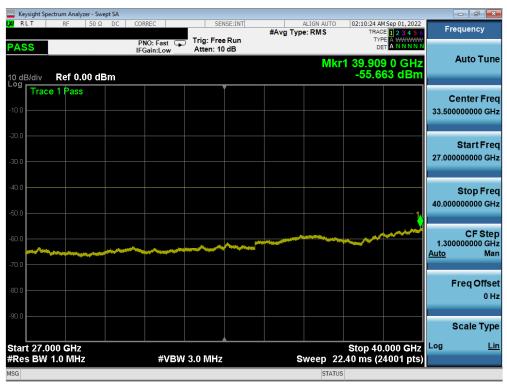
	um Analyzer - Sw												
LXI RLT	RF 50 Ω	DC	CORREC		SEN	ISE:INT	# A v	ALIGN			M Sep 01, 2022	Fi	equency
PASS			PNO: Fast IFGain:Low		rig: Free Atten: 10		#7.1	•		TY D			Auto Tune
Log	Ref 0.00 dl	Зm							WIKF	-62.9	6 5 GHz 65 dBm		
Trace 1	Pass												Center Freq
-10.0												21.00	0000000 GHz
-20.0													Start Freq
-30.0												15.00	0000000 GHz
-40.0													Stop Freq
-50.0												27.00	0000000 GHz
-60.0											▲1		CF Step
-70.0									~~~~	مبسمسلم		1.20 <u>Auto</u>	0000000 GHz Man
													Freq Offset
-80.0													0 Hz
-90.0													
													Scale Type
Start 15.000 #Res BW 1.			#V	BW 3.0) MHz			Swee	n 20	Stop 27	.000 GHz 4001 pts)	Log	<u>Lin</u>
MSG	o-11112				2 111 12			ewcc	STATUS	oo mo (a	-roo r pts)		


Plot 7-40. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Mid Channel)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 36 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 30 01 00
			V2 1 11/9/2021

🔤 Keysight Spectrum Analyzer - S									
LXIRLT RF 50	Ω DC (CORREC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO		4 Sep 01, 2022	Frequency
PASS		PNO: Fast IFGain:Low	Trig: Free #Atten: 26		"		TYF		Auto Tune
10 dB/div Ref 0.00 d	lBm						-59.	60 dBm	
Trace 1 Pass									Center Freq
-10.0									1.835000000 GHz
-20.0									
									Start Freq 30.000000 MHz
-30.0									00.000000 Mil 12
-40.0									Stop Freq
-50.0									3.640000000 GHz
							♦ ¹		CF Step
-60.0				and the second se		ar fan de fan	and the second		361.000000 MHz Auto Man
-70.0									
-80.0									Freq Offset
00.0									0 Hz
-90.0									
									Scale Type
Start 30 MHz #Res BW 1.0 MHz		#VBW	3.0 MHz			Sweep	Stop 3 6.257 ms (.640 GHz 7221 pts)	Log <u>Lin</u>
MSG						STATU			

Plot 7-41. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - High Channel)


Plot 7-42. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - High Channel)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 37 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 37 01 00
			V2 1 11/9/2021

	ctrum Analyz		t SA											- ¢ ×
LXI RLT	RF	50 Ω	DC	CORREC		SEI	NSE:INT	#Av	ALIGN			M Sep 01, 2022	Fr	equency
PASS				PNO: Fain:L	ast ⊊ ∟ow	Trig: Free Atten: 10		#7.1	g Type. Ki		TY D			Auto Tune
10 dB/div Log	Ref 0.0	0 dBr	m							Mkr	-62.7	9 0 GHz 02 dBm		Auto Func
Trac	e 1 Pass												c	enter Freq
-10.0													21.00	0000000 GHz
-20.0														Start Freq
-30.0													15.00	0000000 GHz
-40.0														Stop Freq
-50.0													27.00	0000000 GHz
												1		CF Step
-60.0											and the second second		1.20 <u>Auto</u>	0000000 GHz Man
-70.0			in a fill a second											
-80.0													I	Freq Offset
														0 Hz
-90.0														Scale Type
Start 15.0											Stop 27	1000 0112	Log	<u>Lin</u>
#Res BW	1.0 MHz			3	#VBW	3.0 MHz			Swee	ep 20.	80 ms (2	4001 pts)		
MSG										STATUS				

Plot 7-44. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - High Channel)


FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 56 01 66
			V2 1 11/9/2021

ULCA LTE Band 48

	pectrum Analyzer -										
RLT	RF 50)Ω DC 0	ORREC	SEI	NSE:INT	#Avg Typ	ALIGN AUTO		E 1 2 3 4 5 6	Freque	ncy
PASS	Gate: LO		PNO: Fast G	Trig: Free #Atten: 2		#Avg Typ	e. Kiwij	TYF			
0 dB/div	Ref 0.00	dBm					Mk	r1 3.069 -57.8	95 GHz 33 dBm	Aut	o Tun
.og Tra	ce 1 Pass				Í					Cont	er Fre
10.0										1.770000	
10.0										1.770000	500 Gr
20.0											
											rtFre
30.0										30.000	000 MH
40.0										Sto	p Fr
										3.510000	-
50.0								. 1			
								∳'		<i>.</i>	FSte
50.0				a an an an an an Information Markow	and build an addition	والمنابع ومعرفة والمعام والمتعام ومرا	a successive and purchase			348.000	
- And a state of the				an adhan a dhan a shiri	and the second s					<u>Auto</u>	М
70.0											
~~~~										Fred	Offs
80.0											0
90.0											
										Sca	е Ту
itart 30							_	Stop 3	010 0112	Log	L
	( 1.0 MHz		#VBV	V 3.0 MHz			sweep 3	5.00 ms (	7001 pts)		
SG							STATUS				

Plot 7-45. Conducted Spurious Plot (ULCA Band 48 - 20+20MHz QPSK - Low Channel)




Plot 7-46. Conducted Spurious Plot (ULCA Band 48 - 20+20MHz QPSK - Low Channel)

FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 39 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 39 01 00
			V2.1 11/9/2021



🛀 Keysi 🖬 RLT	ight Spectrum		- Swept SA 0 Ω DC	CORREC	CE CE	NSE:INT		ALIGN AUTO	11-26-21.0	M Sep 10, 2022		×
N KLI			0.32 DC				#Avg Typ		TRA	CE 123456	Frequency	
PASS	Gat	te: LO		PNO: Fast IFGain:Low	#Atten: 2				D	PE A WWWWW ET A N N N N N		
I0 dB/	alia Da	ef 0.00	dBm					Mkr	1 25.89	9 5 GHz 54 dBm	Auto T	ur
.od	Trace 1					Y						
											Center F	
10.0											21.00000000	GI
20.0												
											Start F	
30.0 -											15.00000000	GI
40.0											Stop F	
50.0										<u>↓</u> 1	27.00000000	GI
				in the set	بالب بياريم ا		and the second second				05.0	
60.0		(Indian) (miles			ine, president de la commencia	a and a second second					CF S 1.20000000	
70.0											<u>Auto</u>	M
/0.0												
80.0											Freq Of	
												0
90.0											Scale T	
	15.000			-43.1					Stop 27	.000 GHz 4001 pts)	Log	L
_	BW 1.0	MINZ		#VE	3W 3.0 MHz					4001 pts)		
SG								STATUS				

Plot 7-47. Conducted Spurious Plot (ULCA Band 48 - 20+20MHz QPSK - Low Channel)



Plot 7-48. Conducted Spurious Plot (ULCA Band 48 - 20+20MHz QPSK - Low Channel)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 40 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 40 01 80
			V2.1 11/9/2021



	ectrum Analyz											
LXI RLT	RF	50 Ω	DC	CORREC		SE	ISE:INT	#Avg Typ	ALIGN AUTO		Sep 10, 2022	Frequency
PASS	Gate: LO			PNO: Fa IFGain:L		Trig: Fre #Atten: 2		#7 ( B 1 ) P		TYP DE		Auto Tur
10 dB/div Log	Ref 0.0	)0 dBn	n						Mł	(r1 1.072 -58.30	2 7 GHz )3 dBm	Auto Tun
Trac	e 1 Pass											Center Fre
-10.0												1.802500000 GH
-20.0												
											Г	Start Fre 30.000000 MH
-30.0												30.000000 Min
-40.0												Stop Fre
-50.0												3.575000000 GH
-30.0				<b>∮</b> 1								05.04
-60.0						والدارية ومقتده والمساحد		an a	a contraction of a loss of			CF Ste 354.500000 MH
-70.0	antion in provide little				line de la constante de la cons	and of a set of						<u>Auto</u> Ma
												Freq Offse
-80.0												0 H
-90.0												Coole Turn
												Scale Typ
Start 30 I #Res BW				#	VBW	3.0 MHz			Sweep_3	Stop 3. 5.75 ms (	575 GHz 7151 pts)	Log <u>Li</u>
MSG									STATUS			

Plot 7-49. Conducted Spurious Plot (ULCA Band 48 - 20+20MHz QPSK - Mid Channel)



Plot 7-50. Conducted Spurious Plot (ULCA Band 48 - 20+20MHz QPSK - Mid Channel)

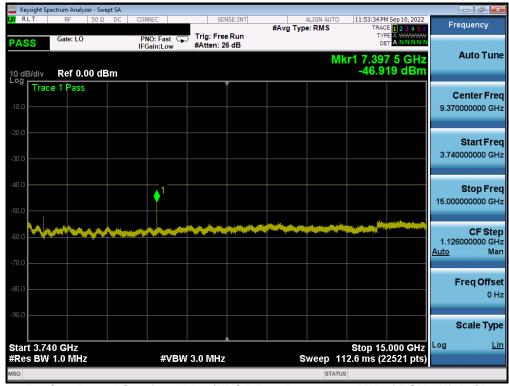
FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 41 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 41 01 00
			\/2 1 11/9/2021



SG							STATUS				
	000 GHz 1.0 MHz		#V	BW 3.0 MHz		s	weep 12	Stop 27 0.0 ms <u>(2</u>	.000 GHz 4001 pts)	Log	Li
											ale Typ
90.0											
.0.0										Fre	<b>qOffs</b> o ∂⊦
0.0											
i0.0			And the second sec	A AND IN THE R. LEWIS CO., LANSING MICH.						1.200000 <u>Auto</u>	0000 GH Ma
				ali da segunda da segunda da segunda da da segunda da da segunda da segunda da segunda da segunda da segunda d Sector da segunda da seg			a particular de la construcción de La construcción de la construcción d		and an appropriate for any second		CF Ste
io.o								<b>`</b>		27.000000	0000 GI
40.0										St	op Fre
30.0										15.000000	0000 GH
20.0											artFre
										21.000000	000 GI
10.0	e i Fass									Cen 21.000000	ter Fre
0 dB/div	Ref 0.0	00 dBm			•			-52.9	67 dBm		_
ASS	Guite: EO		IFGain:Lov	, #Atten: 2	0 dB		Mkr		5 0 GHz	Au	to Tur
	Gate: LO	5012 50	PNO: Fast			#Avg Typ		TRAC		Frequ	ency
RLT	RF	er - Swept SA 50 Ω DC	CORREC	SE	NSE:INT		ALIGN AUTO	11:48:12 PM	I Sep 10, 2022		

Plot 7-51. Conducted Spurious Plot (ULCA Band 48 - 20+20MHz QPSK - Mid Channel)




Plot 7-52. Conducted Spurious Plot (ULCA Band 48 - 20+20MHz QPSK - Mid Channel)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 42 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 42 01 80
			V2 1 11/9/2021



	ectrum Analyz											
RLT	RF	50 Ω	DC	CORREC		SEN	ISE:INT	#Avg Ty	ALIGN AUTO		M Sep 10, 2022	Frequency
ASS	Gate: LO			PNO: Fa IFGain:Lo		Trig: Free #Atten: 20		#Avg iy	pe. Kino	TYF	PE A WWWWW ET A NNNNN	
0 dB/div	Ref 0.0	00 dBr	m						Mł	(r1 3.20 -58.	1 3 GHz 16 dBm	Auto Tur
	e 1 Pass					,						Center Fre
10.0												1.825000000 GH
20.0												Start Fre
30.0												30.000000 MH
0.0												Stop Fre
io.o											1	3.620000000 G
0.0												CF Ste 359.000000 M
0.0 <b>Withwa</b>		a a a a a a a a a a a a a a a a a a a										<u>Auto</u> M
0.0												Freq Offs
0.0												01
0.0												Scale Ty
tart 30 I Res BW	MHz 1.0 MHz			#	VBW	3.0 MHz			Sweep 3	Stop 3	.620 GHz 7281 pts)	Log <u>L</u>
G									STATUS			

Plot 7-53. Conducted Spurious Plot (ULCA Band 48 - 20+20MHz QPSK - High Channel)




Plot 7-54. Conducted Spurious Plot (ULCA Band 48 - 20+20MHz QPSK - High Channel)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 43 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 43 01 60
<b>1</b>	·		V2.1 11/9/2021



	ectrum Analyze									
RLT	RF	50 Ω DC	CORREC	SEN	ISE:INT	#Avg Type	ALIGN AUTO e: RMS		E 1 2 3 4 5 6	Frequency
ASS	Gate: LO		PNO: Fast C IFGain:Low	Trig: Free #Atten: 20				TYF DE		
0 dB/div	Ref 0.0	0 dBm					Mkr	1 25.848 -52.4	35 GHz 25 dBm	Auto Tun
.og Trac	e 1 Pass									Center Fre
10.0										21.000000000 GH
20.0										Start Fre
30.0										15.000000000 GH
40.0										Stop Fre
50.0									1	27.00000000 GH
					at a s	فأنفلق ويصاداته والالتروي				
i0.0					and the state of the	an da an an an an an Anna an An				CF Ste 1.20000000 GF
101										<u>Auto</u> Ma
70.0										
30.0										Freq Offs
										01
90.0										Scale Typ
	000 GHz 1.0 MHz		#\/B	W 3.0 MHz		9	ween 13	Stop 27	.000 GHz 4001 pts)	Log <u>L</u>
SG SG	1.0 191112		#¥D			3	status		400 r pisj	

Plot 7-55. Conducted Spurious Plot (ULCA Band 48 - 20+20MHz QPSK - High Channel)



Plot 7-56. Conducted Spurious Plot (ULCA Band 48 - 20+20MHz QPSK - High Channel)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 44 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 44 01 00
			V2 1 11/9/2021



# 7.4 Band Edge Emissions at Antenna Terminal §2.1051 §96.41(e)(ii)

## Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation and all ports were investigated and the worst case configuration results are reported in this section.

The conducted power of any emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B MHz (where B is the bandwidth in MHz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B MHz below the lower CBSD-assigned channel edge. At all frequencies greater than B MHz above the upper CBSD assigned channel edge and less than B MHz below the lower CBSD-assigned channel edge, the conducted power of any end user device emission shall not exceed -25 dBm/MHz. The conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

### Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

### **Test Settings**

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW <u>></u> 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points  $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

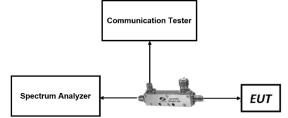
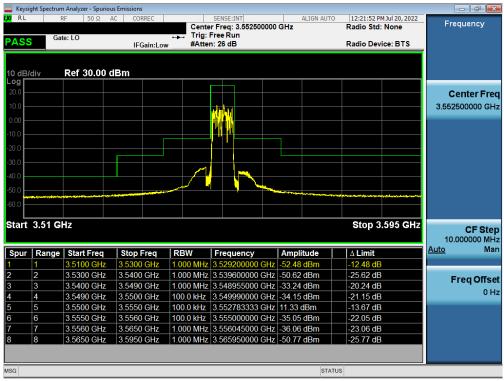
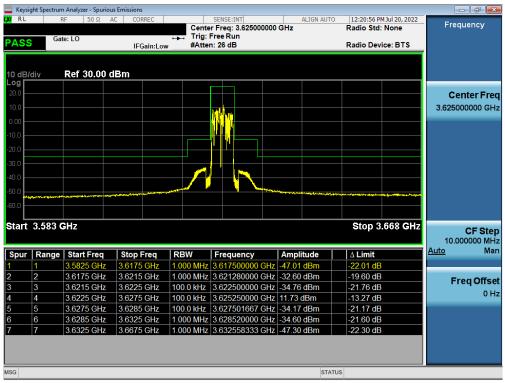



Figure 7-3. Test Instrument & Measurement Setup


### Test Notes

None


FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 45 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 45 01 00
			V2 1 11/9/2021

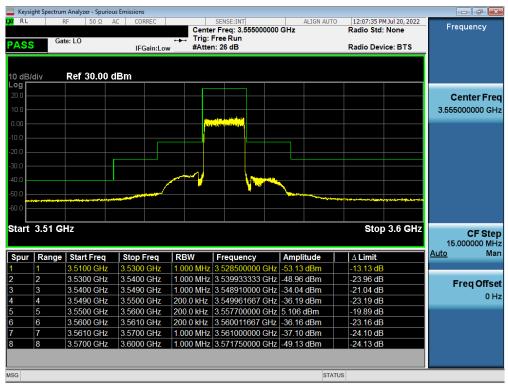


## LTE Band 48



Plot 7-57. Channel Edge Plot (LTE Band 48 - 5MHz QPSK - Low Channel)




Plot 7-58. Channel Edge Plot (LTE Band 48 - 5MHz QPSK - Mid Channel)

FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 46 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 40 01 00
			V2.1 11/9/2021



	- ·	Analyzer - Spurio						
RL	R	F 50 Ω	AC CORREC		SENSE:INT Freq: 3.697500000	GHz	12:24:59 PM Jul 20, 2022 Radio Std: None	Frequency
ASS	Gat	e: LO	IFGain:Low		Free Run n: 26 dB		Radio Device: BTS	
			ii dainizon					
0 dB/	laliu.	Ref 40.00	dBm					
-og 🔽		Rei 40.00						
30.0								Center Fre
20.0								3.697500000 GH
10.0								
0.00								
10.0								
			Г					
20.0								
30.0								
40.0 —								
40.0 50.0			and a set of the state of the	$ \neg \land$				
50.0		Revel allowing and the fail	alle of The matter and and the state of the			**************************************		
50.0	3.655 G	GHz					Stop 3.74 GHz	
so.o			Stop Freg	RBW	Frequency	Amplitude	Stop 3.74 GHz	10.000000 MH
so.o	Range	GHZ Start Freq 3.6550 GHz	Stop Freq 3.6850 GHz		Frequency 3.684950000 GHz	Amplitude		10.000000 MH
Start	Range	Start Freq		1.000 MHz		-49.50 dBm	∆ Limit	10.000000 MH <u>Auto</u> Ma
so.o	Range 1 2	Start Freq 3.6550 GHz	3.6850 GHz	1.000 MHz 1.000 MHz	3.684950000 GHz	-49.50 dBm -33.51 dBm	Δ Limit -24.50 dB	10.000000 MH <u>Auto</u> Ma Freq Offse
start	Range 1 2 3 4	<b>Start Freq</b> 3.6550 GHz 3.6850 GHz	3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz	1.000 MHz           1.000 MHz           1.000 MHz           100.0 kHz           100.0 kHz	3.684950000 GHz 3.693910000 GHz 3.694995000 GHz 3.697675000 GHz	-49.50 dBm -33.51 dBm -34.96 dBm 13.38 dBm	Δ Limit -24.50 dB -20.51 dB -21.96 dB -11.62 dB	10.000000 MH <u>Auto</u> Ma Freq Offse
50.0 <b></b> Start Spur 2 3 4	Range           1           2           3           4           5	<b>Start Freq</b> <b>3.6550 GHz</b> <b>3.6850 GHz</b> <b>3.6940 GHz</b> <b>3.6950 GHz</b> <b>3.7000 GHz</b>	3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz 3.7010 GHz	1.000 MHz           1.000 MHz           100.0 kHz           100.0 kHz           100.0 kHz	3.684950000 GHz 3.693910000 GHz 3.694995000 GHz 3.697675000 GHz 3.700001667 GHz	-49.50 dBm -33.51 dBm -34.96 dBm 13.38 dBm -34.90 dBm	Δ Limit -24.50 dB -20.51 dB -21.96 dB -11.62 dB -21.90 dB	СF Ste 10.00000 МН <u>Auto</u> Ма Freq Offse 0 Н
50.0	Range           1           2           3           4           5           6	<b>Start Freq</b> <b>3.6550 GHz</b> 3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz 3.7010 GHz	3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz 3.7010 GHz 3.7100 GHz	1.000 MHz           1.000 MHz           1.000 MHz           100.0 kHz           100.0 kHz           100.0 kHz           100.0 kHz           100.0 kHz	3.684950000 GHz 3.693910000 GHz 3.694995000 GHz 3.697675000 GHz 3.700001667 GHz 3.701015000 GHz	49.50 dBm           -33.51 dBm           -34.96 dBm           13.38 dBm           -34.90 dBm           -35.69 dBm	Δ Limit -24.50 dB -20.51 dB -21.96 dB -11.62 dB -21.90 dB -22.69 dB	10.000000 MH <u>Auto</u> Ma Freq Offse
50.0 <b>Start</b>	Range       1       2       3       4       5       6       7	Start Freq           3.6550 GHz           3.6850 GHz           3.6940 GHz           3.6950 GHz           3.7000 GHz           3.7010 GHz           3.7100 GHz	3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz 3.7010 GHz 3.7100 GHz 3.7200 GHz	1.000 MHz           1.000 MHz           100.0 KHz           100.0 KHz           100.0 KHz           100.0 KHz           1.000 MHz           1.000 MHz	3.684950000 GHz 3.693910000 GHz 3.694995000 GHz 3.697675000 GHz 3.700001667 GHz 3.701015000 GHz 3.710600000 GHz	49,50 dBm           -33,51 dBm           -34,96 dBm           13.38 dBm           -34.90 dBm           -35.69 dBm           -49.62 dBm	Δ Limit -24.50 dB -20.51 dB -21.96 dB -11.62 dB -21.90 dB -21.90 dB -22.69 dB -24.62 dB	10.000000 MH <u>Auto</u> Ma Freq Offse
50.0 <b>Start</b> Spur 2 3 4 5 5	Range       1       2       3       4       5       6       7	<b>Start Freq</b> <b>3.6550 GHz</b> 3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz 3.7010 GHz	3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz 3.7010 GHz 3.7100 GHz	1.000 MHz           1.000 MHz           100.0 KHz           100.0 KHz           100.0 KHz           100.0 KHz           1.000 MHz           1.000 MHz	3.684950000 GHz 3.693910000 GHz 3.694995000 GHz 3.697675000 GHz 3.700001667 GHz 3.701015000 GHz	49,50 dBm           -33,51 dBm           -34,96 dBm           13.38 dBm           -34.90 dBm           -35.69 dBm           -49.62 dBm	Δ Limit -24.50 dB -20.51 dB -21.96 dB -11.62 dB -21.90 dB -22.69 dB	10.000000 MH <u>Auto</u> Ma Freq Offse
Spur	Range       1       2       3       4       5       6       7	Start Freq           3.6550 GHz           3.6850 GHz           3.6940 GHz           3.6950 GHz           3.7000 GHz           3.7010 GHz           3.7100 GHz	3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz 3.7010 GHz 3.7100 GHz 3.7200 GHz	1.000 MHz           1.000 MHz           100.0 KHz           100.0 KHz           100.0 KHz           100.0 KHz           1.000 MHz           1.000 MHz	3.684950000 GHz 3.693910000 GHz 3.694995000 GHz 3.697675000 GHz 3.700001667 GHz 3.701015000 GHz 3.710600000 GHz	49,50 dBm           -33,51 dBm           -34,96 dBm           13.38 dBm           -34.90 dBm           -35.69 dBm           -49.62 dBm	Δ Limit -24.50 dB -20.51 dB -21.96 dB -11.62 dB -21.90 dB -21.90 dB -22.69 dB -24.62 dB	10.000000 MH <u>Auto</u> Ma Freq Offse

Plot 7-59. Channel Edge Plot (LTE Band 48 - 5MHz QPSK - High Channel)



Plot 7-60. Channel Edge Plot (LTE Band 48 - 10MHz QPSK - Low Channel)

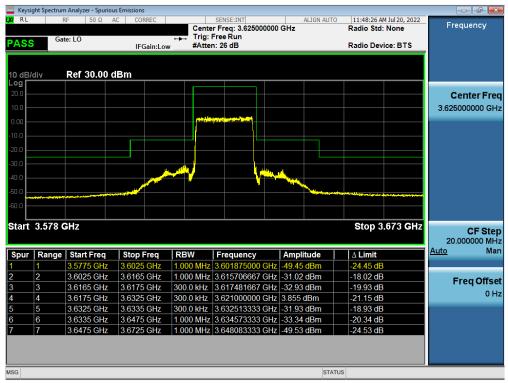
FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 47 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 47 01 00
			V2.1 11/9/2021



RL	F	¥F 50 Ω	AC CORREC		SENSE:INT	ALIGN AUTO	12:00:15 PM Jul 20, 2022	
					r Freq: 3.62500000	GHz	Radio Std: None	Frequency
ASS	Gat	te: LO			Free Run n: 26 dB		Radio Device: BTS	
	<u> </u>		IFGain:Lov	v #Attel	1: 26 dB		Radio Device: BTS	-
0 dB/	/div	Ref 30.00	dBm					
.og 20.0								Center Fre
10.0								3.625000000 GH
D.00				— — <mark>(</mark>				
10.0								
20.0								
30.0								
				المحمد	1 mar			
40.0								
50.0			and the second s					
50.0								
	3.57 G	Hz					Stop 3.68 GH	CF SIE
start			Stop From					15.000000 MH
		Start Freq	Stop Freq	RBW	Frequency	Amplitude	∆ Limit	z CF Stej 15.000000 MH <u>Auto</u> Ma
Start Spur	Range	Start Freq	3.6100 GHz	1.000 MHz	3.608266667 GHz	-49.42 dBm	∆ Limit -24.42 dB	15.00000 MH Auto Ma
Spur	Range	<b>Start Freq</b> 3.5700 GHz 3.6100 GHz	3.6100 GHz 3.6190 GHz	1.000 MHz 1.000 MHz	3.608266667 GHz 3.618610000 GHz	-49.42 dBm -34.07 dBm	Δ Limit -24.42 dB -21.07 dB	15.000000 MH Auto Ma
Spur	Range 1 2 3	<b>Start Freq</b> 3.5700 GHz 3.6100 GHz 3.6190 GHz	3.6100 GHz 3.6190 GHz 3.6200 GHz	1.000 MHz 1.000 MHz 200.0 kHz	3.608266667 GHz 3.618610000 GHz 3.619900000 GHz	-49.42 dBm -34.07 dBm -35.80 dBm	Δ Limit -24.42 dB -21.07 dB -22.80 dB	15.00000 MH Auto Ma
Spur	Range	<b>Start Freq</b> 3.5700 GHz 3.6100 GHz	3.6100 GHz 3.6190 GHz	1.000 MHz           1.000 MHz           200.0 kHz           200.0 kHz	3.608266667 GHz 3.618610000 GHz	-49.42 dBm -34.07 dBm -35.80 dBm 3.588 dBm	Δ Limit -24.42 dB -21.07 dB	Auto Ma
start Spur	Range 1 2 3 4	<b>Start Freq</b> <b>3.5700 GHz</b> <b>3.6100 GHz</b> <b>3.6190 GHz</b> <b>3.6200 GHz</b>	3.6100 GHz 3.6190 GHz 3.6200 GHz 3.6300 GHz	1.000 MHz           1.000 MHz           200.0 kHz           200.0 kHz           200.0 kHz	3.608266667 GHz 3.618610000 GHz 3.619900000 GHz 3.628683333 GHz	-49.42 dBm -34.07 dBm -35.80 dBm 3.588 dBm -36.04 dBm	△ Limit -24.42 dB -21.07 dB -22.80 dB -21.41 dB	15.000000 MH Auto Ma
Spur	Range 1 2 3 4 5	Start Freq           3.5700 GHz           3.6100 GHz           3.6190 GHz           3.6200 GHz           3.6300 GHz	3.6100 GHz 3.6190 GHz 3.6200 GHz 3.6300 GHz 3.6310 GHz	1.000 MHz           1.000 MHz           200.0 KHz           200.0 kHz           200.0 kHz           1.000 MHz	3.608266667 GHz 3.618610000 GHz 3.619900000 GHz 3.628683333 GHz 3.630011667 GHz	-49.42 dBm -34.07 dBm -35.80 dBm 3.588 dBm -36.04 dBm -35.16 dBm	Δ Limit -24.42 dB -21.07 dB -22.80 dB -21.41 dB -23.04 dB	15.000000 MH Auto Ma
Spur	Range 1 2 3 4 5 6	<b>Start Freq</b> 3.5700 GHz 3.6100 GHz 3.6190 GHz 3.6200 GHz 3.6300 GHz 3.6310 GHz	3.6100 GHz 3.6190 GHz 3.6200 GHz 3.6300 GHz 3.6310 GHz 3.6400 GHz	1.000 MHz           1.000 MHz           200.0 KHz           200.0 kHz           200.0 kHz           1.000 MHz	3.608266667 GHz 3.618610000 GHz 3.619900000 GHz 3.628683333 GHz 3.630011667 GHz 3.631000000 GHz	-49.42 dBm -34.07 dBm -35.80 dBm 3.588 dBm -36.04 dBm -35.16 dBm	Δ Limit -24.42 dB -21.07 dB -22.80 dB -21.41 dB -23.04 dB -22.16 dB	Auto Ma
Spur	Range 1 2 3 4 5 6	<b>Start Freq</b> 3.5700 GHz 3.6100 GHz 3.6190 GHz 3.6200 GHz 3.6300 GHz 3.6310 GHz	3.6100 GHz 3.6190 GHz 3.6200 GHz 3.6300 GHz 3.6310 GHz 3.6400 GHz	1.000 MHz           1.000 MHz           200.0 KHz           200.0 kHz           200.0 kHz           1.000 MHz	3.608266667 GHz 3.618610000 GHz 3.619900000 GHz 3.628683333 GHz 3.630011667 GHz 3.631000000 GHz	-49.42 dBm -34.07 dBm -35.80 dBm 3.588 dBm -36.04 dBm -35.16 dBm	Δ Limit -24.42 dB -21.07 dB -22.80 dB -21.41 dB -23.04 dB -22.16 dB	Auto Ma

Plot 7-61. Channel Edge Plot (LTE Band 48 - 10MHz QPSK - Mid Channel)




Plot 7-62. Channel Edge Plot (LTE Band 48 - 10MHz QPSK - High Channel)

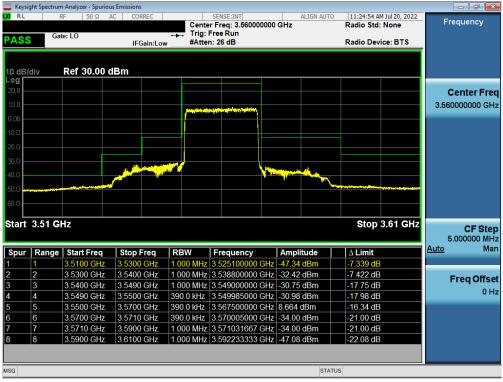
FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 48 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Faye 40 01 00
	·	•	V2.1 11/9/2021



RL	F	RF 50 Ω	us Emissions AC CORREC	Canta	SENSE:INT	ALIGN AUTO		Frequency
ASS	Gat	te: LO	IFGain:Lov	🛶 Trig: I	r Freq: 3.557500000 Free Run n: 26 dB	GHZ	Radio Std: None Radio Device: BTS	_
0 dB/ .og <b>Г</b>	/div	Ref 30.00	dBm					
20.0								Center Fre 3.557500000 GH
).00 - 0.0 - 0.0 -								
30.0 40.0				~/				
50.0 🛏								
50.0								
50.0	3.51 G						Stop 3.605 GH	20.000000 MH
50.0		Start Freq	Stop Freq	RBW	Frequency	Amplitude	∆ Limit	Z CF Ste 20.000000 MH Auto Ma
Start	Range	Start Freq 3.5100 GHz	3.5300 GHz	1.000 MHz	3.529866667 GHz	-51.25 dBm	Δ Limit -11.25 dB	20.000000 MH
so.o Start Spur	Range	<b>Start Freq</b> <b>3.5100 GHz</b> 3.5300 GHz	3.5300 GHz 3.5400 GHz	1.000 MHz 1.000 MHz	3.529866667 GHz 3.539800000 GHz	-51.25 dBm -39.92 dBm	Δ Limit -11.25 dB -14.92 dB	20.000000 MH Auto Ma
itart	Range 1 2 3	<b>Start Freq</b> <b>3.5100 GHz</b> 3.5300 GHz 3.5400 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz	1.000 MHz 1.000 MHz 1.000 MHz	3.529866667 GHz 3.539800000 GHz 3.548490000 GHz	-51.25 dBm -39.92 dBm -31.40 dBm	Δ Limit -11.25 dB -14.92 dB -18.40 dB	20.000000 MH Auto Ma
itart	Range 1 2 3 4	<b>Start Freq</b> <b>3.5100 GHz</b> 3.5300 GHz 3.5400 GHz 3.5490 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz	1.000 MHz 1.000 MHz 1.000 MHz 300.0 kHz	3.529866667 GHz 3.539800000 GHz 3.548490000 GHz 3.549976667 GHz	-51.25 dBm -39.92 dBm -31.40 dBm -32.97 dBm	△ Limit -11.25 dB -14.92 dB -18.40 dB -19.97 dB	20.000000 MH Auto Ma
itart	Range 1 2 3 4 5	Start Freq           3.5100 GHz           3.5300 GHz           3.5400 GHz           3.5490 GHz           3.5500 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5650 GHz	1.000 MHz           1.000 MHz           1.000 MHz           300.0 KHz           300.0 KHz	3.529866667 GHz 3.539800000 GHz 3.548490000 GHz 3.549976667 GHz 3.564025000 GHz	-51.25 dBm -39.92 dBm -31.40 dBm -32.97 dBm 4.532 dBm	Δ Limit -11.25 dB -14.92 dB -18.40 dB -19.97 dB -20.47 dB	20.000000 MH Auto Ma
Spur	Range 1 2 3 4 5 6	<b>Start Freq</b> 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5650 GHz	3.5300 GHz           3.5400 GHz           3.5490 GHz           3.5500 GHz           3.5500 GHz           3.5650 GHz           3.5660 GHz	1.000 MHz           1.000 MHz           1.000 MHz           1.000 MHz           300.0 KHz           300.0 KHz           300.0 KHz	3.529866667 GHz 3.539800000 GHz 3.548490000 GHz 3.549976667 GHz 3.564025000 GHz 3.565013333 GHz	-51.25 dBm -39.92 dBm -31.40 dBm -32.97 dBm 4.532 dBm -31.76 dBm	Δ Limit -11.25 dB -14.92 dB -18.40 dB -19.97 dB -20.47 dB -18.76 dB	20.000000 MH Auto Ma
Spur	Range           1           2           3           4           5           6           7	<b>Start Freq</b> 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5650 GHz 3.5660 GHz	3.5300 GHz           3.5400 GHz           3.5490 GHz           3.5500 GHz           3.5650 GHz           3.5660 GHz           3.5800 GHz	1.000 MHz           1.000 MHz           1.000 MHz           300.0 KHz           300.0 kHz           300.0 kHz           1.000 MHz	3.529866667 GHz 3.539800000 GHz 3.548490000 GHz 3.549976667 GHz 3.564025000 GHz 3.565013333 GHz 3.567073333 GHz	-51.25 dBm -39.92 dBm -31.40 dBm -32.97 dBm 4.532 dBm -31.76 dBm -33.81 dBm	Δ Limit -11.25 dB -14.92 dB -18.40 dB -19.97 dB -20.47 dB -18.76 dB -20.81 dB	20.000000 MH Auto Ma
Start	Range 1 2 3 4 5 6	<b>Start Freq</b> 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5650 GHz	3.5300 GHz           3.5400 GHz           3.5490 GHz           3.5500 GHz           3.5500 GHz           3.5650 GHz           3.5660 GHz	1.000 MHz           1.000 MHz           1.000 MHz           300.0 KHz           300.0 kHz           300.0 kHz           1.000 MHz	3.529866667 GHz 3.539800000 GHz 3.548490000 GHz 3.549976667 GHz 3.564025000 GHz 3.565013333 GHz	-51.25 dBm -39.92 dBm -31.40 dBm -32.97 dBm 4.532 dBm -31.76 dBm -33.81 dBm	Δ Limit -11.25 dB -14.92 dB -18.40 dB -19.97 dB -20.47 dB -18.76 dB	20.000000 MH

Plot 7-63. Channel Edge Plot (LTE Band 48 - 15MHz QPSK - Low Channel)




Plot 7-64. Channel Edge Plot (LTE Band 48 - 15MHz QPSK - Mid Channel)

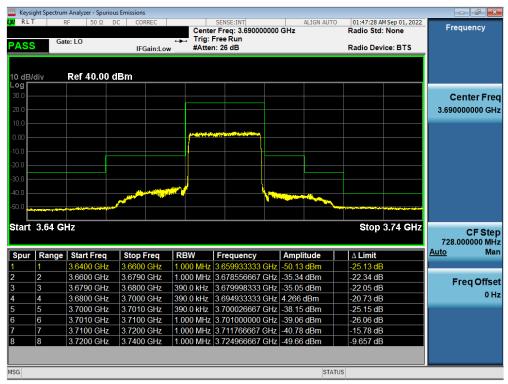
FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 49 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 49 01 00
			V2 1 11/9/2021



RL	F	RF 50 Ω	AC CORREC		SENSE:INT r Freq: 3.692500000 GH	ALIGN AUTO	11:51:31 AM Jul 20, 2022 Radio Std: None	Frequency
ASS	Gat	te: LO	IFGain:L		Free Run n: 26 dB		Radio Device: BTS	
0 dB/	div	Ref 40.00	) dBm					
30.0 — 20.0 —								Center Fre 3.692500000 GH
10.0 - 0.00 - 10.0 -								
20.0							1	
				المناقب والملك				
	and the second secon		and a start of the			a far a start a		
50.0	3.645 (	GHz					Stop 3.74 GH	CF SIE
40.0 50.0 Start Spur		GHz   Start Freq	Stop Freq	RBW	Frequency A	mplitude	Stop 3.74 GH	CF Ste 20.000000 MH Auto Ma
ia.o	Range	Start Freq	z 3.6700 GHz	1.000 MHz	3.669375000 GHz -48	8.49 dBm	∆ Limit -23.49 dB	20.000000 Mł
io.o Start	Range	<b>Start Freq</b> 3.6450 GHz 3.6700 GHz	z 3.6700 GHz z 3.6840 GHz	1.000 MHz	3.669375000 GHz -48 3.683206667 GHz -30	8.49 dBm 0.84 dBm	Δ Limit -23.49 dB -17.84 dB	20.000000 Mi Auto Ma
itart	<b>Range</b> 1 2 3	<b>Start Freq</b> 3.6450 GHz 3.6700 GHz 3.6840 GHz	2 3.6700 GHz 2 3.6840 GHz 2 3.6850 GHz	2 1.000 MHz 2 1.000 MHz 2 300.0 kHz	3.669375000 GHz 48 3.683206667 GHz -30 3.684971667 GHz -32	8.49 dBm 0.84 dBm 2.44 dBm	Δ Limit -23.49 dB -17.84 dB -19.44 dB	20.000000 MH Auto Ma
o.o tart Spur	Range 1 2 3 4	Start Freq           3.6450 GHz           3.6700 GHz           3.6840 GHz           3.6850 GHz	3.6700 GHz           3.6840 GHz           3.6850 GHz           3.7000 GHz	1.000 MHz           1.000 MHz           300.0 kHz           300.0 kHz	3.669375000         GHz         -48           3.683206667         GHz         -30           3.684971667         GHz         -32           3.694650000         GHz         3.8	8.49 dBm 0.84 dBm 2.44 dBm 390 dBm	Δ Limit -23.49 dB -17.84 dB -19.44 dB -21.11 dB	20.000000 Mi Auto Mi
io.o	Range 1 2 3 4 5	Start Freq           3.6450 GHz           3.6700 GHz           3.6840 GHz           3.6850 GHz           3.6850 GHz           3.7000 GHz	3.6700 GHz           3.6840 GHz           3.6850 GHz           3.7000 GHz           3.7000 GHz           3.7010 GHz	1.000 MHz           1.000 MHz           300.0 kHz           300.0 kHz           300.0 kHz	3.669375000 GHz         -48           3.683206667 GHz         -30           3.684971667 GHz         -32           3.694650000 GHz         3.8           3.700013333 GHz         -32	B.49 dBm           0.84 dBm           2.44 dBm           390 dBm           2.54 dBm	Δ Limit -23.49 dB -17.84 dB -19.44 dB -21.11 dB -19.54 dB	20.000000 MH Auto Ma
io.o	Range           1           2           3           4           5           6	Start Freq           3.6450 GHz           3.6700 GHz           3.6850 GHz           3.6850 GHz           3.7000 GHz           3.7000 GHz	3.6700 GHz           3.6840 GHz           3.6850 GHz           3.6850 GHz           3.7000 GHz           3.7010 GHz           3.7010 GHz           3.7100 GHz	1.000 MHz           1.000 MHz           300.0 kHz           300.0 kHz           300.0 kHz           1.000 MHz           1.000 MHz	3.669375000 GHz -48 3.683206667 GHz -30 3.684971667 GHz -32 3.694650000 GHz 3.8 3.700013333 GHz -32 3.702260000 GHz -33	3.49 dBm           0.84 dBm           2.44 dBm           390 dBm           2.54 dBm           3.16 dBm	Δ Limit -23.49 dB -17.84 dB -19.44 dB -21.11 dB -19.54 dB -20.16 dB	20.000000 MH Auto Ma
o.o start	Range           1           2           3           4           5           6           7	<b>Start Freq</b> 3.6450 GHz 3.6700 GHz 3.6840 GHz 3.6850 GHz 3.7000 GHz 3.7010 GHz 3.7100 GHz	2         3.6700 GHz           2         3.6840 GHz           2         3.6850 GHz           2         3.7000 GHz           2         3.7010 GHz           2         3.7010 GHz           2         3.7100 GHz           2         3.7200 GHz	<ul> <li>1.000 MHz</li> <li>1.000 MHz</li> <li>300.0 kHz</li> <li>300.0 kHz</li> <li>300.0 kHz</li> <li>300.0 kHz</li> <li>1.000 MHz</li> <li>1.000 MHz</li> </ul>	3.669375000 GHz 48 3.683206667 GHz -30 3.684971667 GHz -32 3.694650000 GHz 3.8 3.700013333 GHz -33 3.702260000 GHz -33 3.710133333 GHz -41	8.49 dBm           0.84 dBm           2.44 dBm           390 dBm           2.54 dBm           3.16 dBm           1.38 dBm	ΔLimit -23.49 dB -17.84 dB -19.44 dB -21.11 dB -21.54 dB -20.16 dB -26.16 dB -16.38 dB	20.000000 MH Auto Ma
itart	Range           1           2           3           4           5           6	Start Freq           3.6450 GHz           3.6700 GHz           3.6850 GHz           3.6850 GHz           3.7000 GHz           3.7000 GHz	2         3.6700 GHz           2         3.6840 GHz           2         3.6850 GHz           2         3.7000 GHz           2         3.7010 GHz           2         3.7010 GHz           2         3.7100 GHz           2         3.7200 GHz	<ul> <li>1.000 MHz</li> <li>1.000 MHz</li> <li>300.0 kHz</li> <li>300.0 kHz</li> <li>300.0 kHz</li> <li>300.0 kHz</li> <li>1.000 MHz</li> <li>1.000 MHz</li> </ul>	3.669375000 GHz -48 3.683206667 GHz -30 3.684971667 GHz -32 3.694650000 GHz 3.8 3.700013333 GHz -32 3.702260000 GHz -33	8.49 dBm           0.84 dBm           2.44 dBm           390 dBm           2.54 dBm           3.16 dBm           1.38 dBm	Δ Limit -23.49 dB -17.84 dB -19.44 dB -21.11 dB -19.54 dB -20.16 dB	20.000000 MH

Plot 7-65. Channel Edge Plot (LTE Band 48 - 15MHz QPSK - High Channel)



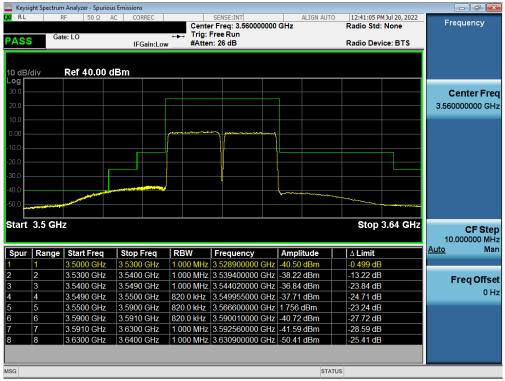

Plot 7-66. Channel Edge Plot (LTE Band 48 - 20MHz QPSK - Low Channel)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 50 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 50 01 66
			V2.1 11/9/2021

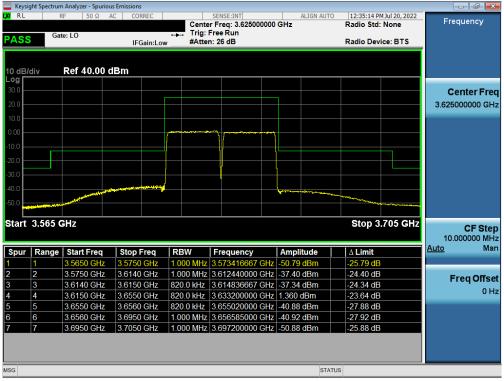


Cate: LO     Center Freq: 3.62500000 GHz     Radio Std: None       PASS     Gate: LO     IFGain:Low     Trig: External1     Radio Device: BTS       10 dB/div     Ref 30.00 dBm     Center Freq: 3.62500000 GHz     Radio Device: BTS	Center Freq: 3.625000000 GHz Trig: External1 #Atten: 26 dB Center Freq Radio Device: BTS Center Freq 3.625000000 GHz Stop 3.675 GHz CF Step 5.000000 MHz	Frequency	11:23:23 AM Jul 20, 2022	IGN AUTO		SENSE:INT		RREC	AC CO	F 50 Ω	F	Keysi R L
ASS         Oute: E0         IFGain:Low         #Atten: 26 dB         Radio Device: BTS           0 dB/div         Ref 30.00 dBm         Cent           0 dB/div         Ref 30.00 dBm         Ref 30.00 dBm           0 dB/div	Ow         #Atten: 26 dB         Radio Device: BTS           Image: Comparison of the sector of the sec			1011710110	000 GHz	Freq: 3.62500		1020		0032		
O dB/div         Ref 30.00 dBm         Cent           0 dB/div         Ref 30.00 dBm         Ref 30.00 dBm           0 dB/div         R	Center Fred 3.625000000 GH 3.625000000 GH 3.625000000 GH 5.00000 MH									e: LO	Gat	٨ee
og	3.625000000 GH		Radio Device: B15			26 dB	#Atte	Gain:Low	16		<u> </u>	-1010
Org     Org <td>3.62500000 GH</td> <td></td>	3.62500000 GH											
og	3.62500000 GH								dBm	Ref 30.00	div	) dB/
	3.62500000 GH											
	Stop 3.675 GHz	Center Fre					_					D.O
	Stop 3.675 GHz	3.625000000 GH										D.O -
	Stop 3.675 GHz					and and for the subscher	Propher region					L
	Stop 3.675 GHz											
	Stop 3.675 GHz											).0 <b> </b> -
	Stop 3.675 GHz											0.0
	Stop 3.675 GHz											10
	Stop 3.675 GHz			L.	-	\ \	<b>* /</b>					
	Stop 3.675 GHz CF Step 5.000000 MH			and the second sec					1 Martin			
	5.00000 M											).O 🟎
50.0												).O
												L
	RBW Frequency Amplitude A Limit Auto Mai											
Spur   Range   Start Freq   Stop Freq   RBW   Frequency   Amplitude     ∆ Limit   Auto			Stop 3.675 GHz							Hz	3.575 (	tart
1 3.5750 GHz 3.5950 GHz 1.000 MHz 3.594133333 GHz -47.20 dBm -22.20 dB	1.000 MHz 3.594133333 GHz -47.20 dBm -22.20 dB	5.000000 MH		ıde	Ampl	Frequency	RBW	Freq	Stop			
2 3.5950 GHz 3.6140 GHz 1.000 MHz 3.612955000 GHz 31.78 dBm -18.78 dB		5.000000 MH	∆ Limit							Start Freq		
3 3.6140 GHz 3.6150 GHz 390.0 kHz 3.614953333 GHz -31.70 dBm -18.70 dB	1.000 MHZ 3.012955000 GHZ -31.78 dBm -18.78 dB - From Office	5.000000 MH <u>uto</u> Ma	Δ Limit -22.20 dB	Bm	GHz -47.20	3.594133333 (	1.000 MHz	0 GHz	3.595	Start Freq 3.5750 GHz	Range	
0.0140 One 0.0100 One 0.0100 One 0.0140 00000 One 0.170 dBm	390.0 kHz 3.614953333 GHz -31.70 dBm -18.70 dB	5.000000 MH <u>uto</u> Ma Freq Offse	Δ Limit -22.20 dB -18.78 dB	Bm Bm	GHz -47.20 GHz -31.78	3.594133333 ( 3.612955000 (	1.000 MHz 1.000 MHz	0 GHz 0 GHz	3.595 3.614	Start Freq 3.5750 GHz	Range	
	390.0 kHz 3.614953333 GHz -31.70 dBm -18.70 dB	5.000000 MH <u>uto</u> Ma Freq Offse	∆ Limit -22.20 dB -18.78 dB -18.70 dB	Bm Bm Bm	GHz -47.20 GHz -31.78 GHz -31.70	3.594133333 ( 3.612955000 ( 3.614953333 (	1.000 MHz 1.000 MHz 390.0 kHz	0 GHz 0 GHz 0 GHz	3.595 3.614 3.615	<b>Start Freq</b> 3.5750 GHz 3.5950 GHz 3.6140 GHz	<b>Range</b> 1 2 3	
4 3.6150 GHz 3.6350 GHz 390.0 kHz 3.6288666667 GHz 7.901 dBm -17.10 dB	390.0 kHz         3.614953333 GHz         -31.70 dBm         -18.70 dB         OFFEQ Onse           390.0 kHz         3.628866667 GHz         7.901 dBm         -17.10 dB         0 H	5.000000 MH <u>uto</u> Ma Freq Offse	△ Limit -22.20 dB -18.78 dB -18.70 dB -17.10 dB	Bm B	GHz -47.20 GHz -31.78 GHz -31.70 GHz -31.70 GHz 7.901	3.594133333 ( 3.612955000 ( 3.614953333 ( 3.628866667 (	1.000 MHz 1.000 MHz 390.0 kHz 390.0 kHz	0 GHz 0 GHz 0 GHz 0 GHz 0 GHz	3.595 3.614 3.615 3.635	<b>Start Freq</b> 3.5750 GHz 3.5950 GHz 3.6140 GHz 3.6150 GHz	Range 1 2 3 4	
4 3.6150 GHz 3.6350 GHz 390.0 kHz 3.628866667 GHz 7.901 dBm -17.10 dB	390.0 kHz         3.614953333 GHz         -31.70 dBm         -18.70 dB         OH           390.0 kHz         3.628866667 GHz         7.901 dBm         -17.10 dB         OH           390.0 kHz         3.635010000 GHz         -33.00 dBm         -20.00 dB         OH	5.000000 MH <u>uto</u> Ma Freq Offse	Δ Limit -22.20 dB -18.78 dB -18.70 dB -17.10 dB -20.00 dB	Bm Bm Bm Bm Bm Bm	GHz         -47.20           GHz         -31.78           GHz         -31.78           GHz         -31.70           GHz         -33.00	3.594133333 ( 3.612955000 ( 3.614953333 ( 3.628866667 ( 3.635010000 (	1.000 MHz 1.000 MHz 390.0 kHz 390.0 kHz 390.0 kHz	0 GHz 0 GHz 0 GHz 0 GHz 0 GHz 0 GHz	3.595 3.614 3.615 3.635 3.636	<b>Start Freq</b> <b>3.5750 GHz</b> 3.5950 GHz 3.6140 GHz 3.6150 GHz 3.6350 GHz	Range 1 2 3 4 5	
		5.000000 MH <u>uto</u> Ma	Δ Limit -22.20 dB	Bm	GHz -47.20	3.594133333 (	1.000 MHz	0 GHz	3.595	Start Freq 3.5750 GHz	Range	
	Fred outs	5.000000 M⊢ <u>uto</u> Ma	Δ Limit -22.20 dB -18.78 dB	Bm Bm	GHz -47.20 GHz -31.78	3.594133333 ( 3.612955000 (	1.000 MHz 1.000 MHz	0 GHz 0 GHz	3.595 3.614	<b>Start Freq</b> 3.5750 GHz 3.5950 GHz	Range	
	390.0 kHz 3.614953333 GHz -31.70 dBm -18.70 dB	5.000000 MH <u>uto</u> Ma <b>Freq Offs</b> a	∆ Limit -22.20 dB -18.78 dB -18.70 dB	Bm Bm Bm	GHz -47.20 GHz -31.78 GHz -31.70	3.594133333 ( 3.612955000 ( 3.614953333 (	1.000 MHz 1.000 MHz 390.0 kHz	0 GHz 0 GHz 0 GHz	3.595 3.614 3.615	<b>Start Freq</b> 3.5750 GHz 3.5950 GHz 3.6140 GHz	<b>Range</b> 1 2 3	
4 3.6150 GHz 3.6350 GHz 390.0 kHz 3.628866667 GHz 7.901 dBm -17.10 dB	390.0 kHz         3.614953333 GHz         -31.70 dBm         -18.70 dB         Freq Ons           390.0 kHz         3.628866667 GHz         7.901 dBm         -17.10 dB         0 H	5.000000 MH <u>uto</u> Ma Freq Offs	△ Limit -22.20 dB -18.78 dB -18.70 dB -17.10 dB	Bm B	GHz -47.20 GHz -31.78 GHz -31.70 GHz -31.70 GHz 7.901	3.594133333 ( 3.612955000 ( 3.614953333 ( 3.628866667 (	1.000 MHz 1.000 MHz 390.0 kHz 390.0 kHz	0 GHz 0 GHz 0 GHz 0 GHz 0 GHz	3.595 3.614 3.615 3.635	<b>Start Freq</b> 3.5750 GHz 3.5950 GHz 3.6140 GHz 3.6150 GHz	Range 1 2 3 4	
4 3.6150 GHz 3.6350 GHz 390.0 kHz 3.628866667 GHz 7.901 dBm -17.10 dB	390.0 kHz         3.614953333 GHz         -31.70 dBm         -18.70 dB         Freq Ons           390.0 kHz         3.628866667 GHz         7.901 dBm         -17.10 dB         0 H	5.000000 MH <u>uto</u> Ma <b>Freq Offs</b> a	△ Limit -22.20 dB -18.78 dB -18.70 dB -17.10 dB	Bm B	GHz -47.20 GHz -31.78 GHz -31.70 GHz -31.70 GHz 7.901	3.594133333 ( 3.612955000 ( 3.614953333 ( 3.628866667 (	1.000 MHz 1.000 MHz 390.0 kHz 390.0 kHz	0 GHz 0 GHz 0 GHz 0 GHz 0 GHz	3.595 3.614 3.615 3.635	<b>Start Freq</b> 3.5750 GHz 3.5950 GHz 3.6140 GHz 3.6150 GHz	Range 1 2 3 4	
4         3.6150 GHz         3.6350 GHz         390.0 kHz         3.628866667 GHz         7.901 dBm         -17.10 dB           5         3.6350 GHz         3.6360 GHz         390.0 kHz         3.632010000 GHz         -33.00 dBm         -20.00 dB	390.0 kHz         3.614953333 GHz         -31.70 dBm         -18.70 dB         Freq Ons           390.0 kHz         3.628866667 GHz         7.901 dBm         -17.10 dB         0 H           390.0 kHz         3.635010000 GHz         -33.00 dBm         -20.00 dB         -20.00 dB	5.000000 MH <u>uto</u> Ma <b>Freq Offs</b> o	Δ Limit -22.20 dB -18.78 dB -18.70 dB -17.10 dB -20.00 dB	Bm Bm Bm Bm Bm Bm	GHz         -47.20           GHz         -31.78           GHz         -31.78           GHz         -31.70           GHz         -33.00	3.594133333 ( 3.612955000 ( 3.614953333 ( 3.628866667 ( 3.635010000 (	1.000 MHz 1.000 MHz 390.0 kHz 390.0 kHz 390.0 kHz	0 GHz 0 GHz 0 GHz 0 GHz 0 GHz 0 GHz	3.595 3.614 3.615 3.635 3.636	<b>Start Freq</b> <b>3.5750 GHz</b> 3.5950 GHz 3.6140 GHz 3.6150 GHz 3.6350 GHz	Range 1 2 3 4 5	

Plot 7-67. Channel Edge Plot (LTE Band 48 - 20MHz QPSK - Mid Channel)




Plot 7-68. Channel Edge Plot (LTE Band 48 - 20MHz QPSK - High Channel)


FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 51 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 51 01 80
	-		V2.1 11/9/2021



## ULCA LTE Band 48



Plot 7-69. Channel Edge Plot (ULCA Band 48 – 20+20MHz QPSK - Low Channel)



Plot 7-70. Channel Edge Plot (ULCA Band 48 – 20+20MHz QPSK - Mid Channel)

FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 52 of 96	
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Page 52 of 86	
L	<u>.</u>	•	V2.1 11/9/2021	



	trum Analyzer - Spuriou						
PASS	RF 50 Ω A Gate: LO		+++ Trig:	SENSE:INT r Freq: 3.690000000 Free Run n: 26 dB	ALIGN AUTO	12:44:09 PM Jul 20, 2022 Radio Std: None Radio Device: BTS	Frequency
10 dB/div	Ref 40.00 c	IFGain:Low	#Atte	n: 26 db		Radio Device: B 13	
30.0 20.0 10.0							Center Freq 3.69000000 GHz
0.00 -10.0 -20.0							
-30.0						2	
Start 3.61	GHz					Stop 3.75 GHz	10.000000 MHz
Spur   Ran	ge   Start Freq	Stop Freq	RBW	Frequency	Amplitude	∆ Limit	<u>Auto</u> Man
1 1	3.6100 GHz	3.6200 GHz		3.619700000 GHz		-25.09 dB	
2 2	3.6200 GHz	3.6590 GHz		3.658675000 GHz		-24.39 dB	Freq Offset
3 3	3.6590 GHz	3.6600 GHz		3.659893333 GHz		-24.70 dB	0 Hz
4 4	3.6600 GHz	3.7000 GHz		3.686800000 GHz		-23.58 dB	0 H2
5 5	3.7000 GHz	3.7010 GHz		3.700035000 GHz		-27.05 dB	
6 6	3.7010 GHz	3.7100 GHz		3.701810000 GHz		-27.95 dB	
7 7	3.7100 GHz	3.7200 GHz		3.710000000 GHz		-16.92 dB	
8 8	3.7200 GHz	3.7500 GHz	1.000 MHz	3.720600000 GHz	-43.90 dBm	-3.904 dB	
MSG					STATU	JS	

Plot 7-71. Channel Edge Plot (ULCA Band 48 – 20+20MHz QPSK - High Channel)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 53 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Page 55 01 60
			V2 1 11/9/2021

V2.1 11/9/2021 Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element Washington DC LLC. If you have any questions about this or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.



# 7.5 Peak-Average Ratio §96.41(g);

## **Test Overview**

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level. All ports were tested and only the worst case data were reported.

## Test Procedure Used

KDB 971168 D01 v03r01 - Section 5.7.1

## **Test Settings**

- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW ≥ OBW or specified reference bandwidth
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

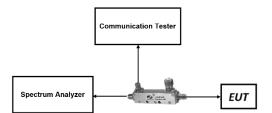
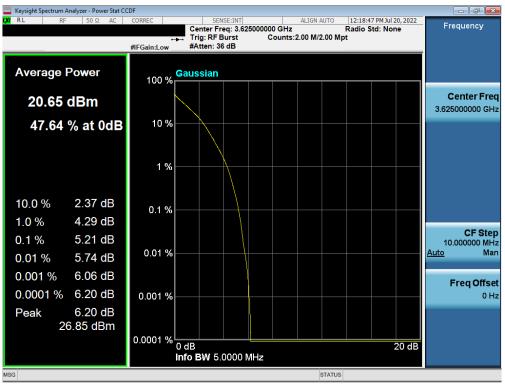
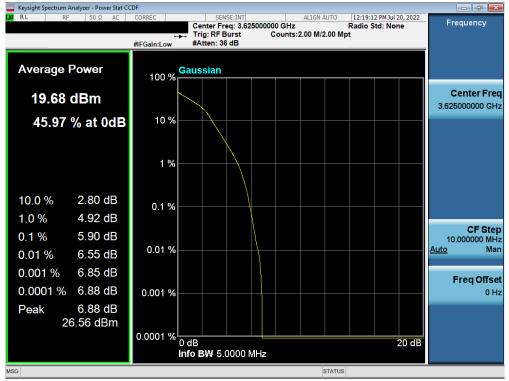



Figure 7-4. Test Instrument & Measurement Setup


### Test Notes

None.

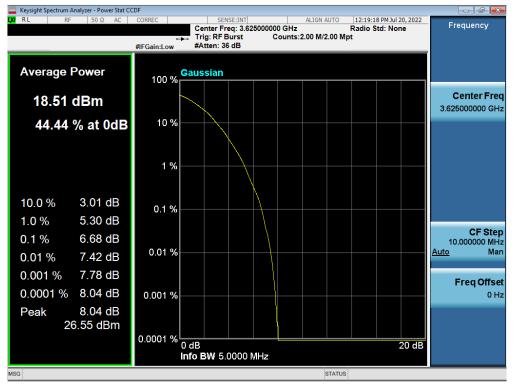

FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 54 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 54 01 00
			\/2 1 11/0/2021



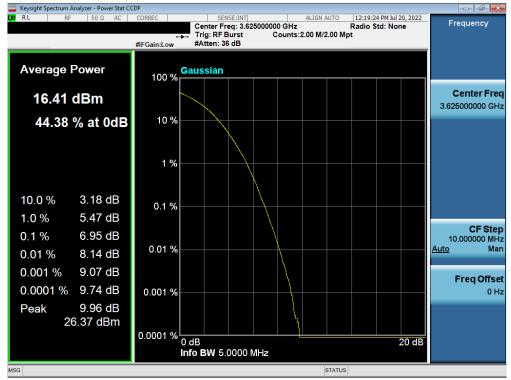
# LTE Band 48







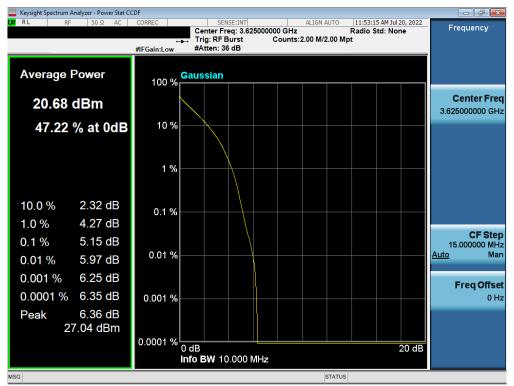

### Plot 7-73. PAR Plot (LTE Band 48 - 5MHz 16-QAM - Full RB)

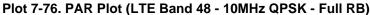

FCC ID: BCGA2757	element)	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 55 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 33 01 00

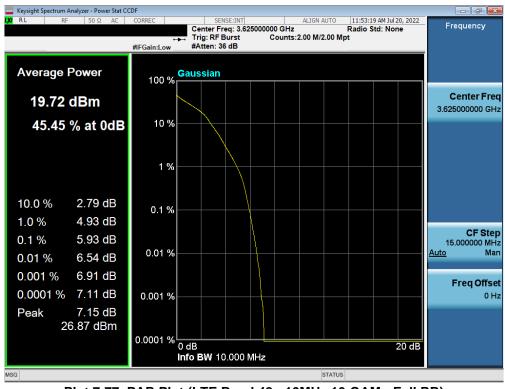
V2.1 11/9/2021









#### Plot 7-75. PAR Plot (LTE Band 48 - 5MHz 256-QAM - Full RB)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 56 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 50 01 00
			V2 1 11/9/2021









Plot 7-77. PAR Plot (LTE Band 48 - 10MHz 16-QAM - Full RB)

FCC ID: BCGA2757	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 57 of 86
1C2205090023-09-R1.BCG	5/30/2022-9/13/2022	Tablet Device	Fage 37 01 00
			\/2 1 11/9/2021