According to 447498 D04 Interim General RF Exposure Guidance v01

 $(ERP_{20 \text{ cm}}(d/20 \text{ cm})^{\chi} \quad d \le 20 \text{ cm})$ $P_{\text{th}} (\text{mW}) =$ $20 \text{ cm} < d \le 40 \text{ cm}$

ERP20 cm

(B.2)

where

 $x = -\log_{10}\left(\frac{\epsilon_0}{\epsilon_R \rho_{20}} \frac{1}{\epsilon_R \sqrt{f}}\right)$

and f is in GHz, d is the separation distance (cm), and ERP_{20cm} is per Formula (B.1). The example values shown in Table B.2 are for illustration only.

$$P_{\rm th} (\rm mW) = ERP_{20 \,\rm cm} (\rm mW) = \begin{cases} 2040f & 0.3 \,\rm GHz \le f < 1.5 \,\rm GHz \\ 3060 & 1.5 \,\rm GHz \le f \le 6 \,\rm GHz \end{cases}$$
(B.1)

Table B.2-Example Power Thresholds (mW)

	Distance						(mm)				
		5	10	15	20	25	30	35	40	45	50
Frequency (MHz)	300	39	65	88	110	129	148	166	184	201	217
	450	22	44	67	89	112	135	158	180	203	226
	835	9	25	44	66	- 90	116	145	175	207	240
	1900	3	12	26	44	66	92	122	157	195	236
	2450	3	10	22	38	- 59	83	111	143	179	219
	3600	2	8	18	32	49	71	96	125	158	195
	5800	1	6	14	25	40	58	80	106	136	169

eirp = pt x gt = $(EXd)^2/30$ where: pt = transmitter output power in watts, gt = numeric gain of the transmitting antenna (unitless), E = electric field strength in V/m, --- $10^{((dBuV/m)/20)}/10^6$ d = measurement distance in meters (m) - -3mSopt = $(EXd)^2/30 \times gt$

Ant gain =2.58dBi so Ant numeric gain= 1.811 Ant gain =0.43dBd so Ant numeric gain= 1.1 Field strength =84.01dB μ V/m @3m@2402MHz So $Pt=\{ [10^{(84.01/20)}/10^6 x3]^2/(30x1.811) \} x1000 mW =$ 0.042mW <2.72 mW

ERP=0.042X1.1=0.0462mW <2.72 mW

Then SAR evaluation is not required