# Smith Chart



Report #R0407211S Page 31 of 87 SAR Evaluation Report

#### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

Client

Bay Area Comp. Lab (BACL)

# **CALIBRATION CERTIFICATE**

Object(s) D900V2 - SN:122

Calibration procedure(s) QA CAL-05.V2

Calibration procedure for dipole validation kits

Calibration date: October 3, 2003

Condition of the calibrated item In Tolerance (according to the specific calibration document)

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility; environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Scheduled Calibration Model Type ID# Cal Date (Calibrated by, Certificate No.) 18-Oct-02 (Agilent, No. 20021018) Oct-04 Power sensor HP 8481A MY41092317 Power sensor HP 8481A US37292783 30-Out-02 (META3, No. 252-0236) Oct-03 Oct-03 30-Oct-02 (METAS, No. 252-0236) Power meter EPM E442 GB37480704 RF generator R&S SML-03 100698 27-Mar-2002 (R&S, No. 20-92389) In house check: Mar-05 In house check: Oct 03 Network Analyzer HP 8753E US37390585 18-Oct-01 (Agilent, No. 24BR1033101)

Name Function Signature

Calibrated by: Judith Mueller Technician Amueller

Approved by: Katja Pokovic Laboratory Director / Laboratory Director

Date issued: October 9, 2003

This collibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Report #R0407211S Page 32 of 87 SAR Evaluation Report

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

# DASY

# Dipole Validation Kit

Type: D900V2

Serial: 122

Manufactured: July 4, 2001 Calibrated: October 3, 2003

Cambrated: October 3, 2003

### 1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 900 MHz:

Relative Dielectricity 42.3 ± 5% Conductivity 0.96 mho/m ± 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.6 at 900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was  $250 \text{mW} \pm 3 \%$ . The results are normalized to 1W input power.

#### 2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm<sup>3</sup> (1 g) of tissue:  $10.2 \text{ mW/g} \pm 16.8 \% (k=2)^{1}$ 

averaged over 10 cm<sup>3</sup> (10 g) of tissue:  $6.60 \text{ mW/g} \pm 16.2 \% (k=2)^1$ 

#### Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.409 ns (one direction)

Transmission factor:

0.983

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 900 MHz:

 $Re{Z} = 50.8 \Omega$ 

Im  $\{Z\} = -5.7 \Omega$ 

Return Loss at 900 MHz

-24.8 dB

#### 4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with **body** simulating solution of the following electrical parameters at 900 MHz:

Relative Dielectricity

54.4

± 5%

Conductivity

1.04 mho/m ± 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.3 at 900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was  $250 \text{mW} \pm 3 \%$ . The results are normalized to 1W input power.

Report #R0407211S Page 35 of 87 SAR Evaluation Report

#### SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm<sup>3</sup> (1 g) of tissue: 10.7 mW/g ± 16.8 % (k=2)<sup>2</sup>

averaged over 10 cm<sup>3</sup> (10 g) of tissue:  $6.92 \text{ mW/g} \pm 16.2 \% (k=2)^2$ 

#### 6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 900 MHz:  $Re\{Z\} = 47.1 \Omega$ 

Im  $\{Z\} = -6.7 \Omega$ 

Return Loss at 900 MHz -22.6 dB

#### Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

### Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

### Power Test

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Report #R0407211S Page 36 of 87 SAR Evaluation Report

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN122

Communication System: CW-900; Frequency: 900 MHz; Duty Cycle: 1:1 Medium: HSL 900 MHz ( $\sigma$  = 0.96 mho/m,  $\epsilon_r$  = 42.26,  $\rho$  = 1000 kg/m<sup>3</sup>)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

#### DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(6.6, 6.6, 6.6); Calibrated: 1/18/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 60

#### Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 55.6 V/m

Power Drift = 0.003 dB

Maximum value of SAR = 2.75 mW/g

# Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 3.81 W/kg

SAR(1 g) = 2.55 mW/g; SAR(10 g) = 1.65 mW/g

Reference Value = 55.6 V/m

Power Drift = 0.003 dB

Maximum value of SAR = 2.76 mW/g



Report #R0407211S Page 37 of 87 SAR Evaluation Report



Report #R0407211S Page 38 of 87 SAR Evaluation Report

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN122

Communication System: CW-900; Frequency: 900 MHz; Duty Cycle: 1:1 Medium: Muscle 900 MHz ( $\sigma$  = 1.04 mho/m,  $\epsilon_r$  = 54.38,  $\rho$  = 1000 kg/m³)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

#### DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(6.3, 6.3, 6.3); Calibrated: 1/18/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 60

Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 55 V/m

Power Drift = 0.0 dB

Maximum value of SAR = 2.87 mW/g

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Peak SAR (extrapolated) = 3.92 W/kg

SAR(1 g) = 2.67 mW/g; SAR(10 g) = 1.73 mW/g

Reference Value = 55 V/m

Power Drift = 0.0 dB

Maximum value of SAR = 2.88 mW/g



Report #R0407211S Page 39 of 87 SAR Evaluation Report

Body



# 835 MHZ Body Liquid Validation

```
Ambient Temp = 23 Deg C , Liquid Temp = 22 Deg C , 2004/8/2 frequency e' e''
```

```
e''
frequency
                                 21.6487
 815000000.0000
                     52.8436
 815800000.0000
                     52.8270
                                 21.6106
 816600000.0000
                     52.8738
                                 21.5509
 817400000.0000
                    52.8161
                                 21.5609
 818200000.0000
                                 21.5382
                     52.8532
 819000000.0000
                     52.7440
                                 21.5274
 819800000.0000
                     52.8197
                                 21.5457
                                 21.4599
 820600000.0000
                     52.8072
 821400000.0000
                     52.8993
                                 21.5114
 822200000.0000
                     52.8421
                                 21.4938
 823000000.0000
                    52.7553
                                 21.5184
 823800000.0000
                    52.7870
                                 21.4661
 824600000.0000
                     52.7889
                                 21.4838
 825400000.0000
                     52.8093
                                 21.4647
 826200000.0000
                     52.8058
                                 21.4345
 827000000.0000
                     52.7859
                                 21.3896
 827800000.0000
                     52.7181
                                 21.4052
 828600000.0000
                     52.7808
                                 21.3880
 829400000.0000
                     52.7517
                                 21.3708
 830200000.0000
                     52.6678
                                 21.3259
 831000000.0000
                     52.7450
                                 21.3289
 831800000.0000
                     52.7306
                                 21.3319
 832600000.0000
                     52.7200
                                 21.3329
 833400000.0000
                     52.7240
                                 21.3084
 834200000.0000
                    52.7134
                                 21.3277
 835000000.0000
                     52.7185
                                 21.3141
 835800000.0000
                     52.7134
                                 21.3115
                                 21.2544
 836600000.0000
                     52.7073
 837400000.0000
                     52.7222
                                 21.2154
 838200000.0000
                     52.6973
                                 21.2237
 839000000.0000
                     52.6904
                                 21.1958
 839800000.0000
                    52.6365
                                 21.1643
 840600000.0000
                     52.6514
                                 21.1254
 841400000.0000
                     52.6410
                                 21.0904
                     52.6779
                                 21.1311
 842200000.0000
 84300000.0000
                     52.6875
                                 21.1267
 843800000.0000
                     52.6411
                                 21.1099
                    52.6923
                                 21.1161
 844600000.0000
                                 21.0743
 845400000.0000
                    52.6151
 846200000.0000
                     52.5523
                                 20.9801
 847000000.0000
                     52.5457
                                 20.9524
 847800000.0000
                     52.6113
                                 20.9783
 848600000.0000
                     52.5992
                                 20.9400
 849400000.0000
                     52.5644
                                 20.9898
 850200000.0000
                     52.4880
                                 20.9842
 851000000.0000
                     52.5332
                                 20.9168
                                 20.9320
 851800000.0000
                     52.5664
 852600000.0000
                     52.5566
                                 20.9331
 853400000.0000
                     52.5162
                                 20.9184
 854200000.0000
                     52.5080
                                 20.9052
 855000000.0000
                     52.5031
                                 20.8456
```

$$s = we_o e'' = 2 pfe_o e'' = 0.99$$
  
where  $f = 835 \times 10^6$   
 $e_o = 8.854 \times 10^{-12}$   
 $e'' = 21.3141$ 

Report #R0407211S Page 41 of 87 SAR Evaluation Report

# 835 MHZ Head Liquid Validation

```
Ambient Temp = 23 Deg C , Liquid Temp = 22 Deg C , 2004/8/2
                  e''
  frequency e'
                                 19.7028
 815000000.0000
                    41.1038
 815800000.0000
                     41.0235
                                 19.6892
 816600000.0000
                    40.9890
                                 19.6357
 817400000.0000
                    40.9580
                                 19.6122
                    40.9566
 818200000.0000
                                 19.5972
 819000000.0000
                    40.9327
                                 19.6091
 819800000.0000
                    40.9022
                                 19.5988
 820600000.0000
                    40.9135
                                 19.5539
 821400000.0000
                    40.8799
                                 19.5346
 822200000.0000
                    40.8961
                                 19.5108
 823000000.0000
                    40.8354
                                 19.4983
 823800000.0000
                    40.8167
                                 19.4590
 824600000.0000
                    40.8033
                                 19.4067
 825400000.0000
                    40.7895
                                 19.3510
 826200000.0000
                    40.7780
                                 19.3266
 827000000.0000
                     40.7961
                                 19.2988
 827800000.0000
                    40.7873
                                 19.3159
 828600000.0000
                    40.7600
                                 19.2960
 829400000.0000
                    40.7811
                                 19.2381
 830200000.0000
                    40.7650
                                 19.2037
 831000000.0000
                    40.7265
                                 19.1698
 831800000.0000
                    40.7112
                                 19.1258
 832600000.0000
                    40.6200
                                 19.1021
 833400000.0000
                    40.6031
                                 19.0987
 834200000.0000
                    40.6216
                                 19.0326
 835000000.0000
                    40.5638
                                 19.0283
 835800000.0000
                    40.5536
                                 19.0239
 836600000.0000
                    40.5403
                                 19.0026
 837400000.0000
                     40.5367
                                 18.9826
 838200000.0000
                    40.5490
                                 18.9768
 839000000.0000
                                 18.9753
                    40.5388
 839800000.0000
                    40.5128
                                 18.8937
 840600000.0000
                    40.5200
                                 18.7982
 841400000.0000
                    40.5009
                                 18.7358
                                 18.7467
 842200000.0000
                    40.4837
 84300000.0000
                     40.4908
                                 18.7322
 843800000.0000
                    40.4761
                                 18.7231
                                 18.7026
 844600000.0000
                    40.4633
                                 18.6982
 845400000.0000
                    40.4550
 846200000.0000
                    40.4430
                                 18.6791
 847000000.0000
                    40.4267
                                 18.6649
 847800000.0000
                    40.4191
                                 18.6024
 848600000.0000
                     40.3826
                                 18.5873
 849400000.0000
                    40.3710
                                 18.5634
 850200000.0000
                                 18.5027
                    40.3566
```

$$\mathbf{s} = \mathbf{w} \mathbf{e}_o \, \mathbf{e}'' = 2 \, \mathbf{p} f \, \mathbf{e}_o \, \mathbf{e}'' = 0.8839$$
  
where  $f = 835x \, 10^6$   
 $\mathbf{e}_o = 8.854 \, x \, 10^{-12}$   
 $\mathbf{e}'' = 19.0283$ 

40.3328

40.3207

40.3001

40.2988

40.2891

40.2905

851000000.0000

851800000.0000

852600000.0000

853400000.0000

854200000.0000

855000000.0000

18.4768

18.4651

18.4325

18.3895

18.3756

18.3655

# 1900 MHZ Body Liquid Validation Ambient Temp = 23 Deg C, Liquid Temp = 22 Deg C, 2004/8/4

```
e''
frequency
            13.9304
1850000000.0000
                    52.4329
1852000000.0000
                    52.4374
                                 13.9426
1854000000.0000
                    52.4346
                                 13.9272
1856000000.0000
                    52.4014
                                 13.9306
                    52.3063
                                 13.9237
1858000000.0000
186000000.0000
                    52.2688
                                 13.9402
1862000000.0000
                    52.2881
                                 13.9549
1864000000.0000
                    52.2694
                                 13.9800
1866000000.0000
                    52.3075
                                 13.9808
1868000000.0000
                    52.3138
                                 14.0021
187000000.0000
                    52.3081
                                 14.0172
1872000000.0000
                    52.2924
                                 14.0496
1874000000.0000
                    52.3188
                                 14.0662
1876000000.0000
                    52.3427
                                 14.1498
1878000000.0000
                    52.3473
                                 14.1998
188000000.0000
                    52.3349
                                 14.2205
1882000000.0000
                    52.3379
                                 14.2578
1884000000.0000
                    52.2618
                                 14.2453
1886000000.0000
                    52.1670
                                 14.2322
188800000.0000
                    52.1318
                                 14.2355
189000000.0000
                    52.1376
                                 14.2581
1892000000.0000
                                 14.3293
                    52.1572
189400000.0000
                    52.1185
                                 14.3302
1896000000.0000
                    52.1063
                                 14.2952
1898000000.0000
                    52.0097
                                 14.3081
1900000000.0000
                    52.0068
                                 14.3128
1902000000.0000
                    52.0185
                                 14.3502
190400000.0000
                    51.9497
                                 14.3368
1906000000.0000
                    51.8781
                                 14.3347
1908000000.0000
                    51.8781
                                 14.3358
1910000000.0000
                    51.8926
                                 14.3585
1912000000.0000
                    51.9353
                                 14.3799
1914000000.0000
                    51.9952
                                 14.4301
1916000000.0000
                    52.0259
                                 14.4043
                                 14.4125
1918000000.0000
                    52.0210
192000000.0000
                    51.9668
                                 14.3985
1922000000.0000
                    51.9627
                                 14.4206
                    51.9986
                                 14.4363
1924000000.0000
                                 14.5207
1926000000.0000
                    52.1264
1928000000.0000
                    52.1940
                                 14.5454
1930000000.0000
                    52.2197
                                 14.5451
1932000000.0000
                    52.1936
                                 14.4995
1934000000.0000
                    52.1848
                                 14.5095
1936000000.0000
                    52.2190
                                 14.5122
1938000000.0000
                    52.2206
                                 14.5458
194000000.0000
                    52.2359
                                 14.5485
1942000000.0000
                    52.2838
                                 14.5740
1944000000.0000
                    52.2643
                                 14.6032
1946000000.0000
                    52.2475
                                 14.5748
1948000000.0000
                    52.2419
                                 14.5730
1950000000.0000
                    52.2356
                                 14.5950
```

$$\mathbf{s} = \mathbf{w} \mathbf{e}_o \ \mathbf{e}'' = 2 \ \mathbf{p} f \mathbf{e}_o \ \mathbf{e}'' = 1.512$$
  
where  $f = 1900 \ x \ 10^6$   
 $\mathbf{e}_o = 8.854 \ x \ 10^{-12}$   
 $\mathbf{e}'' = 14.3128$ 

Report #R0407211S Page 43 of 87 SAR Evaluation Report

# 1900 MHZ Head Liquid Validation Ambient Temp = 23 Deg C, Liquid Temp = 22 Deg C, 2004/8/4

```
e''
frequency
            e'
                    39.7747
                                 13.6335
1850000000.0000
1852000000.0000
                     39.7971
                                 13.6536
1854000000.0000
                    39.7837
                                 13.6500
1856000000.0000
                    39.8059
                                 13.6730
                                 13.6683
1858000000.0000
                    39.7006
186000000.0000
                    39.7055
                                 13.6735
1862000000.0000
                    39.7574
                                 13.7253
1864000000.0000
                    39.7957
                                 13.7510
1866000000.0000
                    39.8616
                                 13.7615
1868000000.0000
                    39.9044
                                 13.8371
187000000.0000
                    39.9254
                                 13.8610
1872000000.0000
                    39.9666
                                 13.8894
1874000000.0000
                    40.0159
                                 13.9082
1876000000.0000
                    40.0578
                                 13.9467
                                 13.9755
1878000000.0000
                    40.0889
188000000.0000
                     40.0788
                                 13.9526
1882000000.0000
                    40.0742
                                 13.9521
188400000.0000
                    39.9934
                                 13.8654
1886000000.0000
                    39.8618
                                 13.8010
188800000.0000
                    39.8091
                                 13.7690
                                 13.7419
189000000.0000
                    39.8330
1892000000.0000
                                 13.7751
                    39.8870
189400000.0000
                     39.8955
                                 13.7396
1896000000.0000
                    39.8818
                                 13.6908
1898000000.0000
                    39.7089
                                 13.6500
1900000000.0000
                    39.7252
                                 13.6266
1902000000.0000
                    39.7440
                                 13.6094
190400000.0000
                    39.5899
                                 13.5214
1906000000.0000
                    39.4460
                                 13.4571
1908000000.0000
                    39.4539
                                 13.4520
1910000000.0000
                    39.4694
                                 13.4406
1912000000.0000
                    39.4446
                                 13.4318
1914000000.0000
                    39.4619
                                 13.4533
1916000000.0000
                    39.4904
                                 13.4199
                                 13.4249
1918000000.0000
                    39.5361
192000000.0000
                    39.3987
                                 13.3992
1922000000.0000
                    39.3992
                                 13.3978
                    39.3741
1924000000.0000
                                 13.3975
                                 13.4160
1926000000.0000
                    39.4501
1928000000.0000
                    39.5210
                                 13.4654
193000000.0000
                    39.5446
                                 13.4601
                                 13.4589
1932000000.0000
                    39.5082
1934000000.0000
                    39.4495
                                 13.4746
1936000000.0000
                     39.4634
                                 13.5068
1938000000.0000
                    39.4173
                                 13.4851
194000000.0000
                    39.3854
                                 13.4855
                                 13.4779
1942000000.0000
                    39.3782
1944000000.0000
                    39.3440
                                 13.5122
1946000000.0000
                    39.3270
                                 13.5237
1948000000.0000
                    39.3108
                                 13.5451
1950000000.0000
                    39.2730
                                 13.5933
```

$$s = we_o e'' = 2 pf e_o e'' = 1.44$$
  
where  $f = 1900 \times 10^6$   
 $e_o = 8.854 \times 10^{-12}$   
 $e'' = 13.6266$ 

# **3 - EUT DESCRIPTION**

Applicant: VeriFone Inc.

Product Description: Wireless POS Terminal

Product Model Number: OMNI56XXC FCC ID: B32OMNI56XXC

Serial Number: 60137F09-01

Maximum RF Output Power: 23.50dBm for CDMA800

23.30dBm for CDMA1900

RF Exposure environment: General Population/Uncontrolled
Applicable Standard FCC CFR 47, Part 22, Part 24

Application Type: Certification

Report #R0407211S Page 45 of 87 SAR Evaluation Report

# 4 - SYSTEM TEST CONFIGURATION

#### 4.1 Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).

## **4.2 EUT Exercise Procedure**

The EUT exercising program used during SAR testing was designed to exercise the various system components in a manner similar to a typical use.

# **4.3 Equipment Modifications**

No modification(s) were made to ensure that the EUT complies with the applicable limits.

Report #R0407211S Page 46 of 87 SAR Evaluation Report

## 5 – CONDUCTED OUTPUT POWER MEASUREMENTS

### **5.1 Provision Applicable**

According to FCC §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts. According to FCC § 24.232(b), EIRP peak power for mobile/portable stations are limited to 2 watts.

#### **5.2 Test Procedure**

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

## **5.3** Test equipment

Hewlett Packard HP8564E Spectrum Analyzer, Calibration Due Date: 2004-08-25.

Hewlett Packard HP 7470A Plotter, Calibration not required.

A.H. Systems SAS200 Horn Antenna, Calibration Due Date: 2004-08-01 Com-Power AD-100 Dipole Antenna, Calibration Due Date: 2004-09-26

#### **5.4 Test Results**

#### 800 MHz

| Modulation Type | Channel | Frequency<br>(MHz) | Output Power in dBm | Output Power in W | Limit (W) |
|-----------------|---------|--------------------|---------------------|-------------------|-----------|
|                 | Low     | 824.50             | 23.17               | 0.207             | 7         |
| CDMA            | Middle  | 836.15             | 23.50               | 0.224             | 7         |
|                 | High    | 848.19             | 23.33               | 0.215             | 7         |

#### 1900 MHz

| Modulation Type | Channel | Frequency (MHz) | Output Power in dBm | Output Power in W | Limit (W) |
|-----------------|---------|-----------------|---------------------|-------------------|-----------|
|                 | Low     | 1851.25         | 22.80               | 0.191             | 7         |
| CDMA            | Middle  | 1879.75         | 23.30               | 0.214             | 7         |
|                 | High    | 1908.80         | 22.97               | 0.198             | 7         |

Please refer to the following plots.

Report #R0407211S Page 47 of 87 SAR Evaluation Report

#### 800MHz



#### 1900MHz



## 6 - DOSIMETRIC ASSESSMENT SETUP

These measurements were performed with the automated near-field scanning system DASY3 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m) which positions the probes with a positional repeatability of better than  $\pm 0.02$ mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The system is described in detail in [3].

The SAR measurements were conducted with the dosimetric probe ET3DV6 SN: 1577 (manufactured by SPEAG), designed in the classical triangular configuration [3] and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in [7] with accuracy of better than  $\pm 10\%$ . The spherical isotropy was evaluated with the procedure described in [8] and found to be better than  $\pm 0.25$ dB.

The phantom used was the \Generic Twin Phantom" described in [4]. The ear was simulated as a spacer of 4 mm thickness between the earpiece of the phone and the tissue simulating liquid. The Tissue simulation liquid used for each test is in according with the FCC OET65 supplement C as listed below.

| Ingredients         |       | Frequency (MHz) |       |      |       |       |       |      |      |      |
|---------------------|-------|-----------------|-------|------|-------|-------|-------|------|------|------|
| (% by weight)       | 45    | 0               | 83    | 35   | 9     | 15    | 1900  |      | 2450 |      |
| Tissue Type         | Head  | Body            | Head  | Body | Head  | Body  | Head  | Body | Head | Body |
| Water               | 38.56 | 51.16           | 41.45 | 52.4 | 41.05 | 56.0  | 54.9  | 40.4 | 62.7 | 73.2 |
| Salt (Nacl)         | 3.95  | 1.49            | 1.45  | 1.4  | 1.35  | 0.76  | 0.18  | 0.5  | 0.5  | 0.04 |
| Sugar               | 56.32 | 46.78           | 56.0  | 45.0 | 56.5  | 41.76 | 0.0   | 58.0 | 0.0  | 0.0  |
| HEC                 | 0.98  | 0.52            | 1.0   | 1.0  | 1.0   | 1.21  | 0.0   | 1.0  | 0.0  | 0.0  |
| Bactericide         | 0.19  | 0.05            | 0.1   | 0.1  | 0.1   | 0.27  | 0.0   | 0.1  | 0.0  | 0.0  |
| Triton x-100        | 0.0   | 0.0             | 0.0   | 0.0  | 0.0   | 0.0   | 0.0   | 0.0  | 36.8 | 0.0  |
| DGBE                | 0.0   | 0.0             | 0.0   | 0.0  | 0.0   | 0.0   | 44.92 | 0.0  | 0.0  | 26.7 |
| Dielectric Constant | 43.42 | 58.0            | 42.54 | 56.1 | 42.0  | 56.8  | 39.9  | 54.0 | 39.8 | 52.5 |
| Conductivity (s/m)  | 0.85  | 0.83            | 0.91  | 0.95 | 1.0   | 1.07  | 1.42  | 1.45 | 1.88 | 1.78 |

Report #R0407211S Page 50 of 87 SAR Evaluation Report

## **6.1 Measurement System Diagram**



The DASY3 system for performing compliance tests consist of the following items:

- 1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software.
- 2. An arm extension for accommodating the data acquisition electronics (DAE).
- 3. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- 4. A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 5. A unit to operate the optical surface detector, which is connected to the EOC. The Electro-optical coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the PC plug-in card. The functions of the PC plug-in card based on a DSP is to perform the time critical task such as signal filtering, surveillance of the robot operation fast movement interrupts.
- 6. A computer operating Windows 95 or larger
- 7. DASY3 software
- 8. Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- 9. The generic twin phantom enabling testing left-hand and right-hand usage.
- 10. The device holder for handheld EUT.
- 11. Tissue simulating liquid mixed according to the given recipes (see Application Note).
- 12. System validation dipoles to validate the proper functioning of the system.

Report #R0407211S Page 51 of 87 SAR Evaluation Report

## **6.2. System Components**

#### **ES3DV2 Probe Specification**

Construction Symmetrical design with triangular core

Interleafed sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g.,

glycol)

Calibration In air from 10 MHz to 3 GHz

In brain and muscle simulating tissue at frequencies of 450

MHz, 900 MHz and 1.8 GHz (accuracy  $\pm$  8%)

Calibratin for other liquids and frequencies upon request

Frequency 10 MHz to > 6GHz; Linearity:  $\pm$  0.2 dB (30 MHz to 3 GHz)

Directivity  $\pm 0.2 \text{ dB}$  in brain tissue (rotation around probe axis)

 $\pm$  0.3 dB in brain tissue (rotation normal to probe axis)

Photograph of the probe

Dynamic Range  $5\mu W/g$  to > 100 mW/g; Linearity:  $\pm 0.2$  dB

Dimensions Overall length: 330 mm

Tip length: 20 mm Body diameter: 12 mm Tip diameter: 3.9 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 5 GHz

Dosimetry in strong gradient fields Compliance tests of mobile phones

The SAR measurements were conducted with the dosimetric probe ET3DV2 designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY3 software reads the reflection during a software approach and looks for the maximum using a 2 nd order fitting. The approach is stopped when reaching the maximum.



Inside view of ES3DV2 E-field Probe

#### **E-Field Probe Calibration Process**

Each probe is calibrated according to a dosimetric assessment procedure described in [6] with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in [7] and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

#### **Data Evaluation**

The DASY3 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

| Probe Parameter:  | -Sensitivity             | $Norm_i$ , $a_{i0}$ , $a_{i1}$ , $a_{i2}$ |
|-------------------|--------------------------|-------------------------------------------|
|                   | -Conversion Factor       | ConvFi                                    |
|                   | -Diode compression point | $Dcp_i$                                   |
| Device parameter: | -Frequency               | f                                         |
| -                 | -Crest Factor            | cf                                        |
| Media parameter:  | -Conductivity            | S                                         |
| •                 | -Density                 | ?                                         |

These parameters must be set correctly in the software. They can either be found in the component documents or be imported into the software from the configuration files issued for the DASY3 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$Vi = Ui + (Ui)^2 cf / dcp_i$$

With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter) dcp<sub>i</sub> = diode compression point (DASY parameter)

Report #R0407211S Page 53 of 87 SAR Evaluation Report

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: 
$$E_{i} = \sqrt{\frac{V_{i}}{Norm_{i} \cdot ConvF}}$$
H-field probes: 
$$H_{i} = \sqrt{Vi} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^{2}}{f}$$

With Vi = compensated signal of channel i (i =x, y, z)

 $Norm_i = sensor sensitivity of channel i (i = x, y, z)$ 

 $\mu V/(V/m)^2$  for E-field probes

ConF = sensitivity enhancement in solution

a<sub>ij</sub> = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strenggy of channel i in V/m H<sub>i</sub> = diode compression point (DASY parameter)

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = Square Root [(E_x)^2 + (E_y)^2 + (E_z)^2]$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \% / (??1000)$$

With SAR = local specific absorption rate in mW/g

 $E_{tot}$  = total field strength in V/m

s = conductivity in [mho/m] or [Siemens/m]

? = equivalent tissue density in g/cm<sup>3</sup>

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pwe} = (E_{tot})^2 / 3770 \text{ or } P_{pwe} = (H_{tot})2 ? 37.7$$

With  $P_{pwe}$  = equivalent power density of a plane wave in mW/cm3

 $E_{tot}$  = total electric filed strength in V/m

 $H_{tot}$  = total magnetic filed strength in V/m

Report #R0407211S Page 54 of 87 SAR Evaluation Report

#### **Generic Twin Phantom**

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users [9][10]. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allows the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2 ± 0.1 mm Filling Volume Approx. 20 liters Dimensions 810 x 1000 x 500 mm (H x L x W)



**Generic Twin Phantom** 

#### **Device Holder**

In combination with the Generic Twin Phantom V3.0, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

\* Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations [10]. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.



**Device Holder** 

# **6.3 Measurement Uncertainty**

The uncertainty budget has been determined for the DASY3 measurement system according to the NIS81 [13] and the NIST1297 [14] documents and is given in the following Table.

| Measurement Uncertainty An<br>IEEE P1528-2002                       | alysis per    |                             |                                      |         |          |         |          |                       |
|---------------------------------------------------------------------|---------------|-----------------------------|--------------------------------------|---------|----------|---------|----------|-----------------------|
| Description                                                         | Section       | Reported<br>Variance<br>(%) | Probability<br>Distributio<br>n type | Divisor | Ci (1g)  | Ui (1g) | Vi       | welc/satt series term |
| Probe Calibration                                                   | E.2.1         | 4.80                        | N                                    | 1       | 1        | 4.80    | 1.00E+09 | 5.30842E-07           |
| Axial isotropy                                                      | E.2.2         | 4.70                        | R                                    | 1.732   | 0.707107 | 1.92    | 1.00E+09 | 1.35563E-08           |
| Hemispherical isotropy                                              | E.2.2         | 9.60                        | R                                    | 1.732   | 0.707107 | 3.92    | 1.00E+09 | 2.35957E-07           |
| Boundary effects                                                    | E.2.3         | 8.30                        | R                                    | 1.732   | 1        | 4.79    | 1.00E+09 | 5.27377E-07           |
| Linearity                                                           | E.2.4         | 4.70                        | R                                    | 1.732   | 1        | 2.71    | 1.00E+09 | 5.4225E-08            |
| System Detection Limit                                              | E.2.5         | 1.00                        | R                                    | 1.732   | 1        | 0.58    | 1.00E+09 | 1.11124E-10           |
| Readout Electronics                                                 | E.2.6         | 0.00                        | N                                    | 1       | 1        | 0.00    | 1.00E+09 | 0                     |
| Response time                                                       | E.2.7         | 0.00                        | R                                    | 1.732   | 1        | 0.00    | 1.00E+09 | 0                     |
| Integration time                                                    | E.2.8         | 0.00                        |                                      | 1.732   | 1        | 0.00    | 1.00E+09 | 0                     |
| RF Ambient conditions                                               | E.6.1         | 3.00                        | R                                    | 1.732   | 1        | 1.73    | 1.00E+09 | 9.00106E-09           |
| Probe positioning mechanical tolerance                              | E.6.2         | 0.40                        |                                      | 1.732   | 1        | 0.23    | 1.00E+09 | 2.84478E-12           |
| Probe positioning wrt phantom shell                                 | E.6.3         | 2.90                        | R                                    | 1.732   | 1        | 1.67    | 1.00E+09 | 7.8596E-09            |
| Extra/inter-polation & integration algorithmsfor max SAR evaluation | E.5.2         | 3.90                        | R                                    | 1.732   | 1        | 2.25    | 1.00E+09 | 2.57079E-08           |
| Test sample positioning                                             | 8, E.4.2      | 6.00                        | R                                    | 1.732   | 1        | 3.46    | 1.00E+09 | 1.44017E-07           |
| Device holder distance tolerance                                    | E.4.1         | 5.00                        | N                                    | 1       | 1        | 5.00    | 1.00E+09 | 0.000000625           |
| Output power and SAR drift measurement                              | 8,<br>E.6.6.2 | 5.00                        | R                                    | 1.732   | 1        | 2.89    | 1.00E+09 | 6.94526E-08           |
| Phantom uncertainty, shell thickness tolerance                      | E.3.1         | 4.00                        |                                      | 1.732   | 1        | 2.31    | 1.00E+09 | 2.84478E-08           |
| Liquid conductivity, deviation from target values                   | E.3.2         | 5.00                        |                                      | 1.732   | 0.64     | 1.85    | 1.00E+09 | 1.16522E-08           |
| Liquid conductivity, measurement uncertainty                        | E.3.3         | 5.00                        |                                      | 1       | 0.64     | 3.20    | 5        | 20.97152              |
| Liquid permitivity, deviation from target values                    | E.3.2         | 5.00                        |                                      | 1.732   | 0.6      | 1.73    | 1.00E+09 | 9.00106E-09           |
| Liquid permitivity,<br>measurement uncertainty                      | E.3.3         | 5.00                        | N                                    | 1       | 0.6      | 3.00    | 5        | 16.2                  |
| Probe isotropy sensitivity coefficient                              | 0.5           |                             |                                      |         |          |         |          | 689                   |
| Combined Standard<br>Uncertainty                                    |               |                             |                                      |         |          | 12.65   | %        |                       |
| Expanded Uncertainty, 95% confidence                                |               | k=                          | 2.004                                |         |          | 25.34   | %        |                       |

Report #R0407211S Page 56 of 87 SAR Evaluation Report

## 7 - EVALUATION PROCEDURE

### 7.1 Body SAR Evaluation Procedure

The evaluation was performed with the following procedure:

**Step 1:** Measurement of the SAR value at a fixed location within an anthropomorphic torso simulation shell was used as a reference value for assessing the power drop.

**Step 2**: The SAR distribution at the exposed side of the torso was measured at the required distance from the inner surface of the shell. The area covered the entire dimension of the EUT and the horizontal grid spacing was 20 mm x 20 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

**Step 3**: Around this point, a volume of 32 mm x 32 mm x 34 mm was assessed by measuring 5 x 5 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

- 1. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm [11]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- 2. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions) [11], [12]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- 3. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

**Step 4**: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

Report #R0407211S Page 57 of 87 SAR Evaluation Report

## 7.2 Exposure Limits

Table 1: Limits for Occupational/Controlled Exposure (W/kg)

| Whole-Body | Partial-Body | Hands. Wrists. Feet and Ankles |
|------------|--------------|--------------------------------|
| 0.4        | 8.0          | 20.0                           |

Table 2: Limits for General Population/Uncontrolled Exposure (W/kg)

| Whole-Body | Partial-Body | Hands. Wrists. Feet and Ankles |
|------------|--------------|--------------------------------|
| 0.08       | 1.6          | 4.0                            |

Note: Whole-body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube SAR for hands, writs, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

Population/uncontrolled environments Partial-body limit 1.6W/kg applied to the EUT.

# 7.3 Simulated Tissue Liquid Parameter Confirmation

The dielectric parameters were checked prior to assessment using the HP85070A dielectric probe kit. The dielectric parameters measured are reported in each correspondent section:

### 7.4 SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.



Report #R0407211S Page 58 of 87 SAR Evaluation Report

First, the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at he dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. after connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM 2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed form the previous value. The reflected power should be 20dB below the forward power.

The SAR measurements were performed in order to achieve repeatability and to establish an average target value.

# 7.5 System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of  $\pm 10\%$ . The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

IEEE P1528 recommended reference value for head

| Frequency (MHz) | 1 g SAR | 10 g SAR | Local SAR at surface (above feed point) | Local SAR at surface (v=2cm offset from feed point) |
|-----------------|---------|----------|-----------------------------------------|-----------------------------------------------------|
| 300             | 3.0     | 2.0      | 4.4                                     | 2.1                                                 |
| 450             | 4.9     | 3.3      | 7.2                                     | 3.2                                                 |
| 835             | 9.5     | 6.2      | 14.1                                    | 4.9                                                 |
| 900             | 10.8    | 6.9      | 16.4                                    | 5.4                                                 |
| 1450            | 29.0    | 16.0     | 50.2                                    | 6.5                                                 |
| 1800            | 38.1    | 19.8     | 69.5                                    | 6.8                                                 |
| 1900            | 39.7    | 20.5     | 72.1                                    | 6.6                                                 |
| 2000            | 41.1    | 21.1     | 74.6                                    | 6.5                                                 |
| 2450            | 52.4    | 24.0     | 104.2                                   | 7.7                                                 |
| 3000            | 63.8    | 25.7     | 140.2                                   | 9.5                                                 |

#### Validation Dipole SAR Reference Test Result for Body (835 MHz)

| Validation<br>Measurement | SAR @ 0.025W<br>Input averaged<br>over 1g | SAR @ 1W<br>Input averaged<br>over 1g | SAR @ 0.025W<br>Input averaged<br>over 10g | SAR @ 1W Input averaged over 10g |
|---------------------------|-------------------------------------------|---------------------------------------|--------------------------------------------|----------------------------------|
| Test 1                    | 0.222                                     | 8.88                                  | 0.112                                      | 4.48                             |
| Test 2                    | 0.221                                     | 8.84                                  | 0.111                                      | 4.44                             |
| Test 3                    | 0.222                                     | 8.88                                  | 0.112                                      | 4.48                             |
| Test 4                    | 0.220                                     | 8.80                                  | 0.111                                      | 4.44                             |
| Test 5                    | 0.223                                     | 8.92                                  | 0.113                                      | 4.52                             |
| Test 6                    | 0.222                                     | 8.88                                  | 0.115                                      | 4.60                             |
| Test 7                    | 0.221                                     | 8.84                                  | 0.114                                      | 4.56                             |
| Test 8                    | 0.222                                     | 8.88                                  | 0.114                                      | 4.56                             |
| Test 9                    | 0.223                                     | 8.92                                  | 0.113                                      | 4.52                             |
| Test 10                   | 0.222                                     | 8.88                                  | 0.112                                      | 4.48                             |
| Average                   | 0.2218                                    | 8.872                                 | 0.1127                                     | 4.51                             |

Report #R0407211S Page 59 of 87 SAR Evaluation Report

## Validation Dipole SAR Reference Test Result for Body (1900 MHz)

| Validation<br>Measurement | SAR @ 0.126W<br>Input averaged<br>over 1g | SAR @ 1W<br>Input averaged<br>over 1g | SAR @ 0.126W<br>Input averaged<br>over 10g | SAR @ 1W Input averaged over 10g |
|---------------------------|-------------------------------------------|---------------------------------------|--------------------------------------------|----------------------------------|
| Test 1                    | 3.1                                       | 24.61                                 | 1.42                                       | 11.27                            |
| Test 2                    | 3.1                                       | 24.61                                 | 1.41                                       | 11.20                            |
| Test 3                    | 3.2                                       | 25.41                                 | 1.43                                       | 11.35                            |
| Test 4                    | 3.2                                       | 25.41                                 | 1.42                                       | 11.27                            |
| Test 5                    | 3.1                                       | 24.61                                 | 1.42                                       | 11.27                            |
| Test 6                    | 3.2                                       | 25.61                                 | 1.41                                       | 11.20                            |
| Test 7                    | 3.2                                       | 25.61                                 | 1.43                                       | 11.35                            |
| Test 8                    | 3.1                                       | 24.61                                 | 1.42                                       | 11.27                            |
| Test 9                    | 3.1                                       | 24.61                                 | 1.42                                       | 11.27                            |
| Test 10                   | 3.1                                       | 24.61                                 | 1.43                                       | 11.35                            |
| Average                   | 3.14                                      | 24.97                                 | 1.421                                      | 11.28                            |

# 7.6 Liquid Measurement Result

2004-08-02

| Simulant | Freq [MHz] | Parameters         | Liquid<br>Temp [°C] | Target<br>Value | Measured<br>Value | Deviation | Limits<br>[%] |
|----------|------------|--------------------|---------------------|-----------------|-------------------|-----------|---------------|
|          |            | $\mathcal{E}_{r}$  | 22.0                | 55.2            | 52.7              | -4.53     | ±5            |
| Body     | 835        | σ                  | 22.0                | 0.97            | 0.99              | 2.06      | ±5            |
|          |            | 1g SAR             | 22.0                | 8.872           | 8.90              | 0.32      | ±10           |
|          |            | $\epsilon_{\rm r}$ | 22.0                | 41.5            | 40.6              | -2.17     | ±5            |
| Head     | 835        | σ                  | 22.0                | 0.90            | 0.88              | -2.22     | ±5            |
|          |            | 1g SAR             | 22.0                | 9.5             | 9.58              | 0.84      | ±10           |

 $\varepsilon_r$  = relative permittivity,  $\sigma$  = conductivity and  $\rho$ =1000kg/m<sup>3</sup>

Liquid Forward Power for body = 20.4 dBm = 109.65 mWLiquid Forward Power for head = 20.4 dBm = 109.65 mW

2004-08-04

| Simulant | Freq [MHz]             | Parameters                 | Liquid<br>Temp [°C] | Target<br>Value | Measured<br>Value | Deviation | Limits<br>[%] |
|----------|------------------------|----------------------------|---------------------|-----------------|-------------------|-----------|---------------|
|          | $\mathcal{E}_{\Gamma}$ | 22.0                       | 53.3                | 52.0            | -2.44             | ±5        |               |
| Body     | 1900                   | σ                          | 22.0                | 1.52            | 1.51              | -0.66     | ±5            |
|          |                        | 1g SAR                     | 22.0                | 24.97           | 26.38             | 5.65      | ±10           |
|          |                        | $\mathcal{E}_{\mathrm{r}}$ | 22.0                | 40.0            | 39.7              | -0.75     | ±5            |
| Head     | 1900                   | σ                          | 22.0                | 1.40            | 1.44              | 2.86      | ±5            |
|          |                        | 1g SAR                     | 22.0                | 39.7            | 40.59             | 2.24      | ±10           |

 $\varepsilon_r$  = relative permittivity,  $\sigma$  = conductivity and  $\rho$ =1000kg/m<sup>3</sup>

Liquid Forward Power for body = 20.5 dBm = 112.20 mWLiquid Forward Power for head = 20.6 dBm = 114.82 mW

Report #R0407211S Page 60 of 87 SAR Evaluation Report