Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Element

Certificate No: D2450V2-855_Nov19

S

C

S

CALIBRATION CERTIFICATE

Dbject	D2450V2 - SN:85		2/2022
		00/0	212022
	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Source	es between 0.7-3 GHz
Calibration date:	November 12, 20	19	
		onal standards, which realize the physical ure of the physical	
All calibrations have been conducte	d in the closed laborator	ry facility: environment temperature (22 ± 3)°C and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	de la
Approved by:	Katja Pokovic	Technical Manager	de la
			Issued: November 12, 2019

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

S

C

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.3
Extrapolation	Advanced Extrapolation	and the second sec
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		-

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

the second se	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.8 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.02 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.2 Ω + 5.6 jΩ
Return Loss	- 24.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.0 Ω + 6.7 jΩ
Return Loss	- 23.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

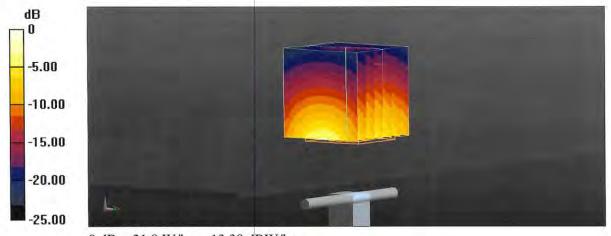
Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 12.11.2019

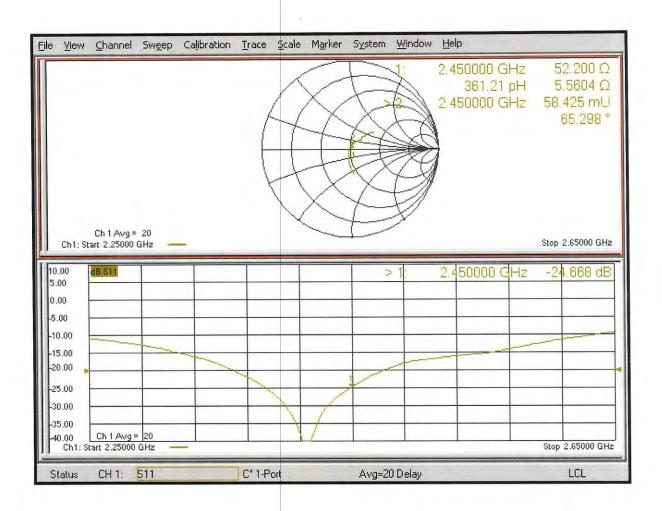
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:855


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.84 S/m; ϵ_r = 38.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.9, 7.9, 7.9) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.0 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 26.3 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.18 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.6% Maximum value of SAR (measured) = 21.8 W/kg

0 dB = 21.8 W/kg = 13.38 dBW/kg

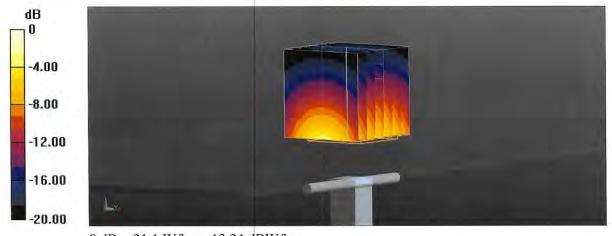
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 12.11.2019

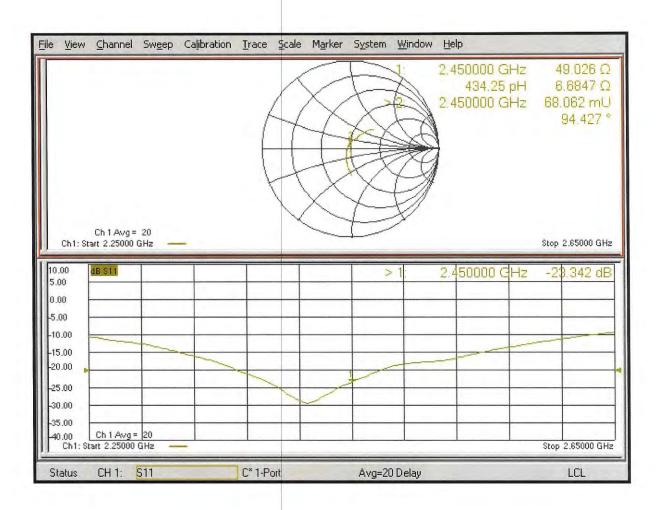
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:855


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ S/m; $\epsilon_r = 50.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.94, 7.94, 7.94) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.3 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 25.7 W/kg **SAR(1 g) = 13 W/kg; SAR(10 g) = 6.02 W/kg** Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 51.1% Maximum value of SAR (measured) = 21.1 W/kg

0 dB = 21.1 W/kg = 13.24 dBW/kg

Impedance Measurement Plot for Body TSL

element

Calibration Report for Antenna - Dipole

PsaCal 2020.06.10.0

DUT Code: ADI	L								Cal Date:	2021-12-08	
Description Ant	Antenna - Dipole						-	Temperature:	23.1C		
Model D24	450V2								Humidity:	18.60%	
Manufacturer SPE	EAG		Tester:	Kyle McMulla	in			Pressure:	1019.2mb		
Certificate No.: ADI	L2021-12-08	В							Job Site:	MN11	
TEST SPECIFICATIONS											
Specification: WP	9 438 SAR D	Dipole Verificaiton							Version:	2020 - Rev 0	
Specification:									Version:		
TEST PARAMETERS											
Device Received In T	Colerance:	Yes	Ca	librated Freq	uency Range:	N/A		Next (Cal Due Date:	2022-12-08	
Equipment Used to perfo	orm calib	ration									
Item: Anal	lyzer - Netw	vork Analyzer	Identifier:	NAM	Model:	E50	71C	Last Cal:	2019-11-13	Cal Due:	2022-11-13
Item: Fixture/	/Kit - Calibra	ation/Verification	Identifier:	NAN	Model:	850	32F	Last Cal:	NCR	Cal Due:	NCR
Item:	Termin	nator	Identifier:	NANA	Model:	85032	-60017	Last Cal:	2021-09-10	Cal Due:	2022-09-10
Item:			Identifier:		Model:			Last Cal:		Cal Due:	
Item:			Identifier:		Model:			Last Cal:		Cal Due:	
Item:			Identifier:		Model:			Last Cal:		Cal Due:	
COMMENTS, OPINIONS and IN	NTERPRETA	ATIONS									
None											
Measurement Uncertainty											
		Probability Distribution	Impedar	nce (dB)	Insertion	Loss (dB)	Value	Value (dB)		Value (+/- %)	
Expanded uncertainty U (level confidence = 95%)	of	normal (k=2)			0		0.8).81			
RESULTS											
Pass											
This measurement was a calibration verification. (Instrument parameters are within tolerances.)											
Measurements are traceable to the International System of Units (SI) via NIST.											
		international Gystern									
			CA	ALIBRATION F	DATA ATTACH	ED					

		Return Loss		Real Impedence	Imaginary Impedence
	2021 Value (dB)	-23.5	2021 Value (Ω)	49.5	6.5
	2020 Value (dB)	-26.3	2020 Value (Ω)	52.0	3.5
Head	Deviation (%)	10.6	Deviation (Ω)	2.5	3
Phantom	Limit (%)	20	Limit (Ω)	5	5
	Limit (< dB)	-20	Results	Pass	Pass
	Results	Pass			
	2021 Value (dB)	-21.9	2021 Value (Ω)	48.1	5.6
	2020 Value (dB)	-24.2	2020 Value (Ω)	48.3	1.8
Body	Deviation (%)	9.5	Deviation (Ω)	0.2	3.8
Phantom	Limit (%)	20	Limit (Ω)	5	5
	Limit (< dB)	-20	Results	Pass	Pass
	Results	Pass			

Certification of Calibration

Object

D2450V2 – SN: 855

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

June 1, 2022

Extended Calibration date:

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

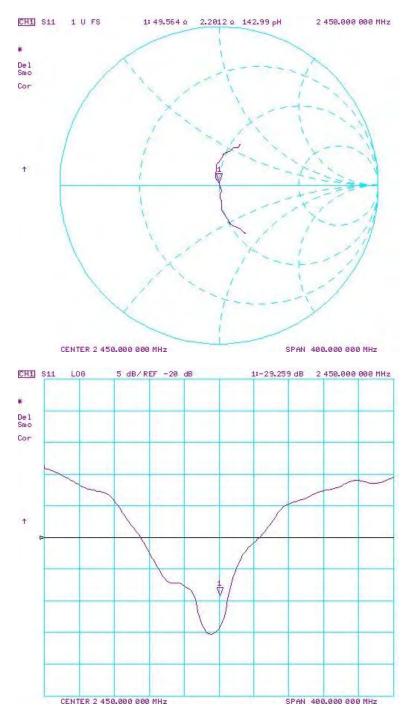
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Vector Network Analyzer	2/11/2022	Annual	2/11/2023	MY40003841
Agilent	N5182A	MXG Vector Signal Generator	5/6/2022	Annual	5/6/2023	MY51240479
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	3/2/2022	Annual	3/2/2023	1126066
Anritsu	MA2411B	Pulse Power Sensor	3/28/2022	Annual	3/28/2023	1339007
Anritsu	ML2495A	Power Meter	3/31/2022	Annual	3/31/2023	1138001
Control Company	4353	Long Stem Thermometer	10/28/2020	Biennial	10/28/2022	200670623
Control Company	4040	Therm./Clock/Humidity Monitor	3/12/2021	Biennial	3/12/2023	210202100
Agilent	85033E	3.5mm Standard Calibration Kit	44384	Annual	44749	MY53402352
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Mini-Circuits	ZHDC-16-63-S+	Coupler	CBT	N/A	CBT	F709401716
Seekonk	NC-100	Torque Wrench	7/30/2020	Biennial	7/30/2022	22217
SPEAG	DAK-3.5	Portable Dielectric Assessment Kit	10/7/2021	Annual	10/7/2022	1045
SPEAG	EX3DV4	SAR Probe	4/22/2022	Annual	4/22/2023	7546
SPEAG	DAE4	Data Acquisition Electronics	4/14/2022	Annual	4/14/2023	1402

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Department Manager	Parker Jones
Approved By:	Kaitlin O'Keefe	Managing Director	ROK

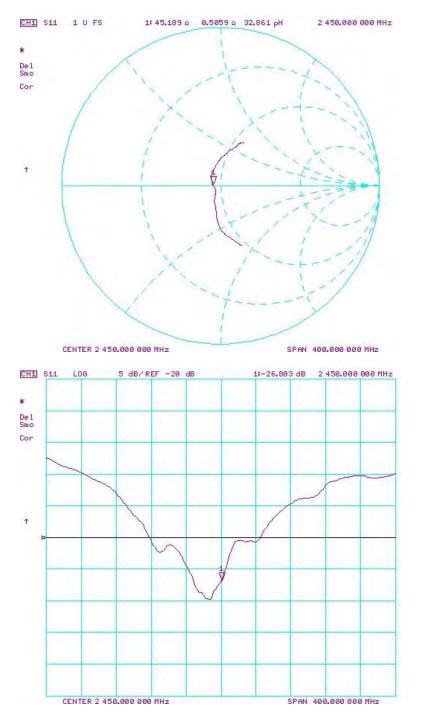
Object:	Date Issued:	Page 1 of 4
D2450V2 – SN: 855	6/1/2022	Fage 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Date	Extension Date	Certificate Electrical Delay (ns)	Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(%)	Head (10g) W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
11/12/2019	6/1/2022	1.157	5.23	4.99	-4.59%	2.45	2.30	-6.12%	52.2	49.6	2.6	5.6	2.2	3.4	-24.7	-29.3	-18.60%	PASS
Calibration Date	Extension Date	Certificate Electrical		Measured Body SAR (1g)				Deviation 10g		Measured Impedance	Difference	Certificate Impedance	Measured Impedance	Difference (Ohm)	Certificate Return Loss	Measured Return Loss	Deviation (%)	PASS/FAIL
11/12/2019	6/1/2022	Delay (ns)	W/kg @ 20.0 dBm 5.08	W/kg @ 20.0 dBm 4.88	-3.94%	W/kg @ 20.0 dBm 2.38	(10g) W/kg @ 20.0 dBm 2.25	(%) -5.46%	Body (Ohm) Real 49.0	Body (Ohm) Real	(Ohm) Real	Body (Ohm) Imaginary 6.7	Body (Ohm) Imaginary	Imaginary 6.2	Body (dB)	Body (dB)	-15.00%	PASS

Object:	Date Issued:	Page 2 of 4
D2450V2 – SN: 855	6/1/2022	rage 2 014

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D2450V2 – SN: 855	6/1/2022	Fage 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 – SN: 855	6/1/2022	Page 4 of 4

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2600V2-1042_May22

Accreditation No.: SCS 0108

Element Client

CALIBRATION CERTIFICATE

Object	D2600V2 - SN:10	042	VATM				
Calibration procedure(s)	QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz						
Calibration date:	May 11, 2022						
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.							
Calibration Equipment used (M&TE	critical for calibration)						
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration				
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23				
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23				
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23				
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23				
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23				
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22				
DAE4	SN: 601	02-May-22 (No. DAE4-601_May22)	May-23				
Secondary Standards	D#	Charle Data (In house)	School and Chool				
Power meter E4419B	SN: GB39512475	Check Date (in house)	Scheduled Check				
Power sensor HP 8481A	SN: US37292783	30-Oct-14 (in house check Oct-20)	In house check: Oct-22				
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22				
RF generator R&S SMT-06	SN: 100972	07-Oct-15 (in house check Oct-20)	In house check: Oct-22				
Network Analyzer Agilent E8358A	SN: US41080477	15-Jun-15 (in house check Oct-20)	In house check: Oct-22				
Network Analyzer Agriciti Loosoa	3N. 034 10004 m	31-Mar-14 (in house check Oct-20)	In house check: Oct-22				
	Name	Function	Signature				
Calibrated by:	Aldonia Georgiadou	Laboratory Technician	AFZ				
Approved by:	Sven Kühn	Technical Manager	Ses				
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	Issued: May 12, 2022				

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

tissue simulating liquid
sensitivity in TSL / NORM x,y,z
not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled 8 phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. 0
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.6 ± 6 %	2.02 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL

SAR averaged over 1 cm 3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.1 ± 6 %	2.20 mho/m ± 6 %	
Body TSL temperature change during test	< 0.5 °C			

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	53.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.5 Ω - 8.9 jΩ
Return Loss	- 20.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.2 Ω - 7.2 jΩ
Return Loss	- 20.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

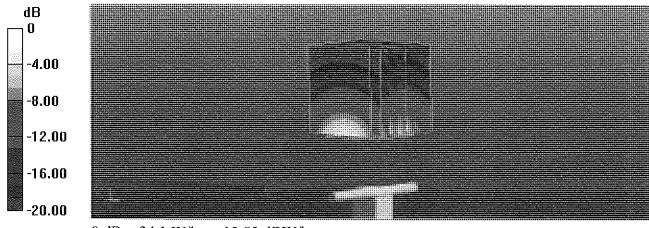
- 1		
	Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 11.05.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1042


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 37.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.84, 7.84, 7.84) @ 2600 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 117.1 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 28.9 W/kg **SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.3 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 49.3% Maximum value of SAR (measured) = 24.1 W/kg

0 dB = 24.1 W/kg = 13.83 dBW/kg

Impedance Measurement Plot for Head TSL

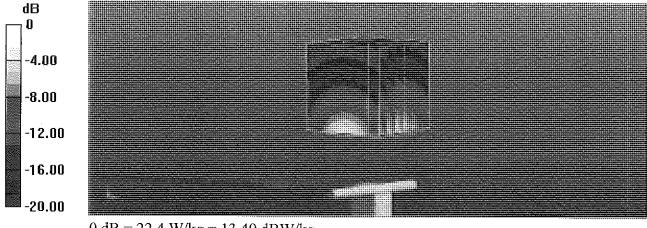
File	<u>⊻</u> iew	⊆hannel	Sweep	Calibration	<u>Trace</u> 5	cale	M <u>a</u> rker	S <u>y</u> stem	<u>W</u> indow (<u>t</u> elp				
		Ch 1 Avg =	20		K				A	.600000 (6.911) .600000 (3 pF	-8. 94.0	7.483 Ω 8584 Ω 362 mU 00.67 °	
	Ch1: Sta	at 2.40000						.j				Stop 2	.80000 GHa	2
10.(5.0 -5.0 -5.0 -10. -15. -20. -25.	0 - 0 - 10 - 00 - 00 -							>	1: 2			-20.	532 dB	Sector Sect
-30. -35. -40	.00 .09 .00	<u>Ch 1 Avg =</u> nt 2.48000 (20 3Hz									Stop 2	.80000 GHz	
Sta	itus	CH 1: §	311		C* 1-Port		and the second	Avg=20	Delay				LCL	<u>البريمينييني</u>

DASY5 Validation Report for Body TSL

Date: 11.05.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1042


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.2$ S/m; $\epsilon_r = 51.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.91, 7.91, 7.91) @ 2600 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.5 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.04 W/kg Smallest distance from peaks to all points 3 dB below = 8.5 mm Ratio of SAR at M2 to SAR at M1 = 50.9% Maximum value of SAR (measured) = 22.4 W/kg

0 dB = 22.4 W/kg = 13.49 dBW/kg

Impedance Measurement Plot for Body TSL

<u>File Yiew</u>	<u>⊂</u> hannel	Sw <u>e</u> ep C	ajibration]	[race <u>S</u> cale	e M <u>a</u> rker	System <u>W</u>	indow <u>H</u> e	elp		
					XXX			600000 G 8.4441 600000 G	рF	44.240 Ω -7.2493 Ω 7.962 mU -124.07 °
Ch1:S	Ch 1 Avg ≈ tart 2.40000 0				~~~ <u>~</u>		-		Sto	op 2,80000 GHz
10.00 5.00 0.00	dB \$11					>	2.6	00000 G	Hz -	20.179 dB
-5.00 -10.00 -15.00 -20.00			w							
-25.00 -30.00										
35.00 40.00 Ch1: \$	Ch 1 Avg = tart 2.40000 C						~		Ste	p 2.80000 GHz
Status	CH 1: [5	11	C	* 1-Port		Avg=20 Del	ay			LCL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Element Client

Certificate No: D2600V2-1068_Nov19

S

C

S

CALIBRATION CERTIFICATE

Object	D2600V2 - SN:10	068 ✓ KI 08/02/	2022
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz
Calibration date:	November 12, 20	019	
		ional standards, which realize the physical ur robability are given on the following pages ar	
		ry facility: environment temperature $(22 \pm 3)^\circ$	
Calibration Equipment used (M&TE		y radinty. Show of minor compositions (22 ± 5)	o and humany < 70%.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
ower sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
ower sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
eference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
letwork Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	7 la
Approved by:	Katja Pokovic	Technical Manager	letter
			/

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura Suiss Calibration Service

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	2.01 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.7 W/kg ± 17.0 % (k=2)
the second the second to the s	P. State of the second s	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.32 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.3 ± 6 %	2.19 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	53.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.9 Ω - 7.3 jΩ		
Return Loss	- 21.8 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.8 Ω - 6.2 jΩ		
Return Loss	- 21.4 dB		

General Antenna Parameters and Design

1.147 ns	
	1.147 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

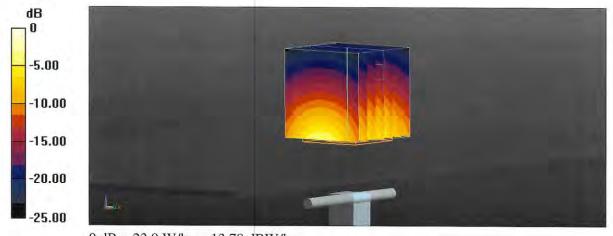
Manufactured by	SPEAG	
		-
ate No: D2600V2-1068_Nov19	Page 4 of 8	-

DASY5 Validation Report for Head TSL

Date: 12.11.2019

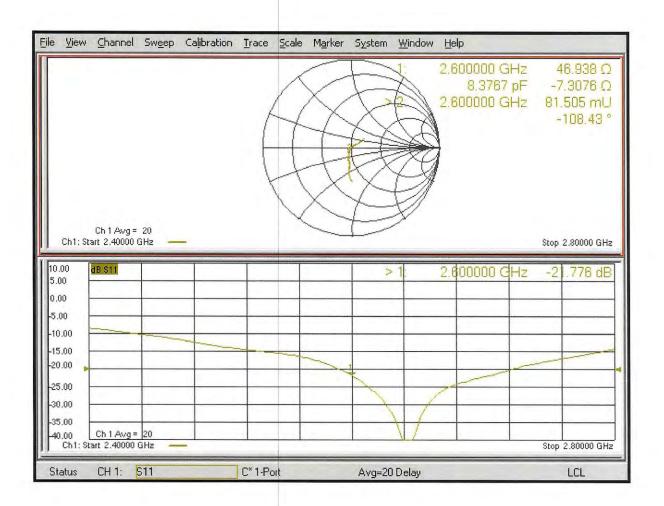
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1068


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.01$ S/m; $\epsilon_r = 37.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.9 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 28.7 W/kg **SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.32 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 49.4% Maximum value of SAR (measured) = 23.9 W/kg

0 dB = 23.9 W/kg = 13.78 dBW/kg

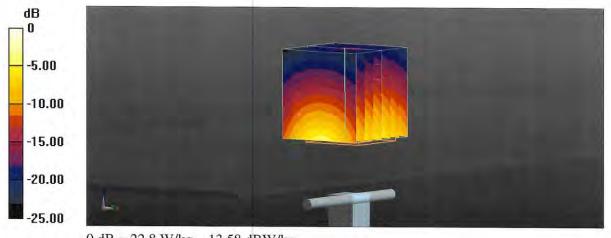
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 12.11.2019

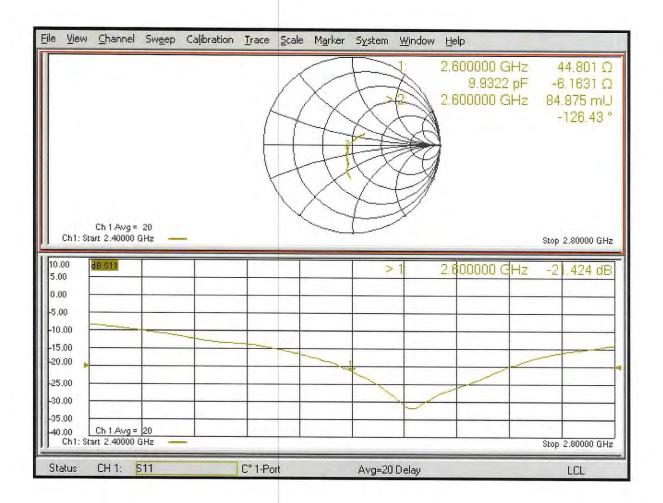
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1068


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.19$ S/m; $\varepsilon_r = 50.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.8, 7.8, 7.8) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.0 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.04 W/kg Smallest distance from peaks to all points 3 dB below = 8.2 mm Ratio of SAR at M2 to SAR at M1 = 49.3% Maximum value of SAR (measured) = 22.8 W/kg

0 dB = 22.8 W/kg = 13.58 dBW/kg

Impedance Measurement Plot for Body TSL

element

Calibration Report for Antenna - Dipole

PsaCal 2020.06.10.0

DUT Code: ADR							Cal Date:	Date: 2021-12-08		
Description Antenn	Description Antenna - Dipole							Temperature:	23.1C	
Model D2600	V2							Humidity:	18.60%	
Manufacturer SPEAG	ì		Tester:	Kyle McMulla	an		Pressure: 1019.2mb			
Certificate No.: ADR2021-12-08								Job Site:	MN11	
TEST SPECIFICATIONS										
Specification: WP 438 SAR Dipole Verificaiton Version:									2020 - Rev 0	
Specification:								Version:		
TEST PARAMETERS										
Device Received In Tole	rance: Yes	Ca	alibrated Freq	uency Range:	N/A		Next	Cal Due Date:	2022-12-08	
Equipment Used to perform	n calibration									
Item: Analyze	er - Network Analyzer	Identifier:	NAM	Model:	E50	71C	Last Cal:	2019-11-13	Cal Due:	2022-11-13
Item: Fixture/Kit	- Calibration/Verification	Identifier:	NAN	Model:	850	32F	Last Cal:	NCR	Cal Due:	NCR
Item:	Terminator	Identifier:	NANA	Model:	85032	-60017	Last Cal:	2021-09-10	Cal Due:	2022-09-10
Item:		Identifier:		Model:			Last Cal:		Cal Due:	
Item:		Identifier:		Model:			Last Cal:		Cal Due:	
Item:		Identifier:		Model:			Last Cal:		Cal Due:	
COMMENTS, OPINIONS and INTE	RPRETATIONS									
None										
Measurement Uncertainty										
	Probability Distribution	Impeda	ance (dB)	Insertion	Loss (dB)	Value	e (dB)	Value	(+/- %)	
Expanded uncertainty U (level of						0	04			
confidence = 95%)	normal (k=2)					0.	81			
RESULTS										
Pass										
This measurement was a calibration verification. (Instrument parameters are within tolerances.)										
Measurements are traceable to the International System of Units (SI) via NIST.										
				DATA ATTACI						
		C	ALIBRATION D	JATA ATTACH	IED .					

		Return Loss		Real Impedence	Imaginary Impedence
	2021 Value (dB)	-20.3	2021 Value (Ω)	42.8	-5.4
	2020 Value (dB)	-23.0	2020 Value (Ω)	45.6	-2.6
Head	Deviation (%)	11.7	Deviation (Ω)	2.8	2.8
Phantom	Limit (%)	20	Limit (Ω)	5	5
	Limit (< dB)	-20	Results	Pass	Pass
	Results	Pass			
	2021 Value (dB)	-20.1	2021 Value (Ω)	43.4	1.3
	2020 Value (dB)	-23.2	2020 Value (Ω)	46.3	-2.7
Body	Deviation (%)	13.4	Deviation (Ω)	2.9	4
Phantom	Limit (%)	20	Limit (Ω)	5	5
	Limit (< dB)	-20	Results	Pass	Pass
	Results	Pass			

Certification of Calibration

Object

D2600V2 - SN: 1068

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

June 1, 2022

Extended Calibration date:

Description:

SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

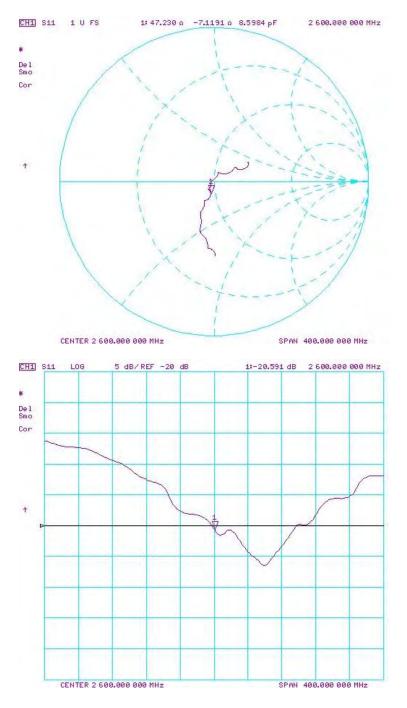
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Vector Network Analyzer	2/11/2022	Annual	2/11/2023	MY40003841
Agilent	N5182A	MXG Vector Signal Generator	5/6/2022	Annual	5/6/2023	MY51240479
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	3/2/2022	Annual	3/2/2023	1126066
Anritsu	MA2411B	Pulse Power Sensor	3/28/2022	Annual	3/28/2023	1339007
Anritsu	ML2495A	Power Meter	3/31/2022	Annual	3/31/2023	1138001
Control Company	4353	Long Stem Thermometer	10/28/2020	Biennial	10/28/2022	200670623
Control Company	4040	Therm./Clock/Humidity Monitor	3/12/2021	Biennial	3/12/2023	210202100
Agilent	85033E	3.5mm Standard Calibration Kit	44384	Annual	44749	MY53402352
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Mini-Circuits	ZHDC-16-63-S+	Coupler	CBT	N/A	CBT	F709401716
Seekonk	NC-100	Torque Wrench	7/30/2020	Biennial	7/30/2022	22217
SPEAG	DAK-3.5	Portable Dielectric Assessment Kit	10/7/2021	Annual	10/7/2022	1045
SPEAG	EX3DV4	SAR Probe	4/22/2022	Annual	4/22/2023	7546
SPEAG	DAE4	Data Acquisition Electronics	4/14/2022	Annual	4/14/2023	1402

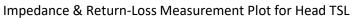
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Department Manager	Parker Jones
Approved By:	Kaitlin O'Keefe	Managing Director	ROK

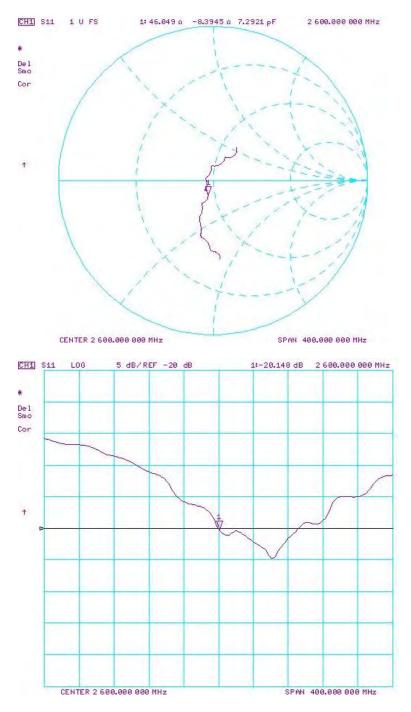
Object:	Date Issued:	Page 1 of 4
D2600V2 – SN: 1068	6/1/2022	Fage 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

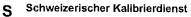

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Date	Extension Date		Head (19) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(%)	Head (10g) W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
11/12/2019	6/1/2022	1.147	5.57	5.53	-0.72%	2.50	2.49	-0.40%	46.9	47.2	0.3	-7.3	-7.1	0.2	-21.8	-20.6	5.50%	PASS
Date	Extension Date		Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(%)	Body (10g) W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Body (dB)	Deviation (%)	
11/12/2019	6/1/2022	1.147	5.35	5.42	1.31%	2.39	2.38	-0.42%	44.8	46.0	1.2	-6.2	-8.4	2.2	-21.4	-20.1	6.10%	PASS

Object:	Date Issued:	Page 2 of 4
D2600V2 – SN: 1068	6/1/2022	Fage 2 014

Object:	Date Issued:	Page 3 of 4
D2600V2 – SN: 1068	6/1/2022	Fage 5 01 4



Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2600V2 – SN: 1068	6/1/2022	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D5GHzV2-1123_Mar22

Client Element

Object	D5GHzV2 - SN:1	123	VAL.
Calibration procedure(s)	QA CAL-22.v6 Calibration Proce	dure for SAR Validation Sources	s between 3-10 GHz
			4/4
Calibration date:	March 22, 2022		
The measurements and the uncert	ainties with confidence pr ed in the closed laborator	onal standards, which realize the physical uni robability are given on the following pages an y facility: environment temperature (22 ± 3)°C	d are part of the certificate.
Calibration Equipment used (M&TE	critical for calibration)		
rimary Standards	iD#	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
ower sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
ower sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
eference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
pe-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
eference Probe EX3DV4	SN: 3503	08-Mar-22 (No. EX3-3503_Mar22)	Mar-23
AE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
econdary Standards	ID #	Check Date (in house)	Scheduled Check
ower meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
ower sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
ower sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
F generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
etwork Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
alibrated by:	Aldonia Georgiadou	Laboratory Technician	đ
			MEP
pproved by:	Sven Kühn	Deputy Manager	\leq

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. .
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	· · · · · · · · · · · · · · · · · · ·
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	4.55 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	100 mW input power	8.43 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	83.7 W/kg ± 19.9 % (k=2	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.39 W/kg	

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	5.05 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	- wanted
SAR measured	100 mW input power	8.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22,0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	5.10 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.2 ± 6 %	5.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.6 ± 6 %	5.97 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.80 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	6.18 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm 3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	6.25 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SAR measured	100 mW input power	7.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.2 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	53.6 Ω - 2.7 jΩ
Return Loss	- 27.3 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	57.2 Ω + 3.0 jΩ
Return Loss	- 22.7 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	56.7 Ω + 4.1 jΩ
Return Loss	- 22.7 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	55.7 Ω + 2.4 jΩ
Return Loss	- 24.7 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	52.8 Ω - 1.6 jΩ
Return Loss	- 30.0 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	57.7 Ω + 4.2 jΩ
Return Loss	- 21.8 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	57.9 Ω + 4.7 jΩ
Return Loss	- 21.5 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	56.0 Ω + 4.8 jΩ
Return Loss	- 22.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.205 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG	1		
		ufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 22.03.2022

Test Laboratory: SPEAG, Zurich, Switzerland

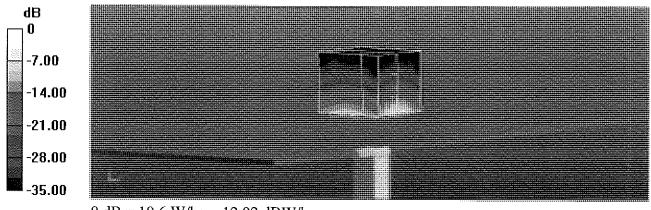
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1123

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.55$ S/m; $\varepsilon_r = 35.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.9$ S/m; $\varepsilon_r = 34.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.05$ S/m; $\varepsilon_r = 34.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.1$ S/m; $\varepsilon_r = 34.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.80 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 28.1 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.5% Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.34 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 8.43 W/kg; SAR(10 g) = 2.39 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.7% Maximum value of SAR (measured) = 19.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.77 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 8.11 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.9% Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mmReference Value = 75.72 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 32.6 W/kg SAR(1 g) = 8.10 W/kg; SAR(10 g) = 2.27 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.5% Maximum value of SAR (measured) = 19.4 W/kg

0 dB = 19.6 W/kg = 12.92 dBW/kg

Impedance Measurement Plot for Head TSL

Eile	<u>V</u> iew <u>C</u> hannel	Sw <u>e</u> ep C	alibration	<u>T</u> race <u>S</u> cale	M <u>a</u> rker	S <u>v</u> stem V	<u>W</u> indow <u>H</u> e	lp		
								l :	5.250000 GHz	53,536 Q
							2	2:	11.324 pF 5.600000 GHa	-2.6771 Ω 57.236 Ω
					\land /	₹f			85,510 pH	3.0087 Ω
				- /l		XJ		3:	5.750000 GHz 114.23 pH	56.694 Ω 4.1269 Ω
				$ \int$	~~	$\sim \times$		>4:	5.800000 GHz	$55.657 \ \Omega$
								R:	67.093 pH 5.500000 GHz	2.4450 0 23.749 m U
						f	A.		0.0000000000000000000000000000000000000	6.7606 °
					\mathcal{X}	\times 1	-M			
					\times \sim	$\lambda \pm$				
				\sim	$\langle \ \neg \neg$	L>	5-1			
	= Ch 1 Avg 1 Ch 1: Start 5.00000				·····				2	
W) Y	are, seare 0.000000								Stoj	p 6.00000 GHz -
. La contraction de la contraction										
10.00	1							1:	5. 3 50000 GHa	-27 279 dB
5.00								- <u>2:</u>	-5.400000-CHa	22.727 48
5.00 0.00										
5.00						······································		- 2: 3:	- 5, <mark>90000 GH</mark>a 5, 150000 GHa	- <u>22,727-48</u> -22,656 dB
5.00 0.00	 							- 2: 3:	- 5, <mark>90000 GH</mark>a 5, 150000 GHa	- <u>22,727-48</u> -22,656 dB
5.00 0.00 -5.00 -10.0 -15.0								- 2: 3:	- 5, <mark>90000 GH</mark>a 5, 150000 GHa	- <u>22,727-48</u> -22,656 dB
5.00 0.00 -5.00 -10.0								- 2: 3:	- 5, <mark>90000 GH</mark>a 5, 150000 GHa	- <u>22,727-48</u> -22,656 dB
5.00 0.00 -5.00 -10.0 -15.0								- 2: 3:	- 5, <mark>90000 GH</mark>a 5, 150000 GHa	- <u>22,727-48</u> -22,656 dB
5.00 0.00 -5.00 -10.0 -15.0 -20.0								2: 3: - 4:	- 5, <mark>90000 GH</mark>a 5, 150000 GHa	- <u>22,727-48</u> -22,656 dB
5.00 0.00 -5.00 -10.0 -15.0 -20.0 -25.0								2: 3: - 4:	- 5, <mark>90000 GH</mark>a 5, 150000 GHa	- <u>22,727-48</u> -22,656 dB
5.00 0.00 -5.00 -10.0 -15.0 -20.0 -25.0 -25.0 -30.0 -35.0 -40.0	10 production of the second se							2: 3: - 4:	5.100000 GHz 5.300000 GHz	-22.727.48 -22.656.dB -24.685.dB
5.00 0.00 -5.00 -10.0 -20.0 -25.0 -30.0 -35.0 -40.0								2: 3: - 4:	5.100000 GHz 5.300000 GHz	- <u>22,727-48</u> -22,656 dB

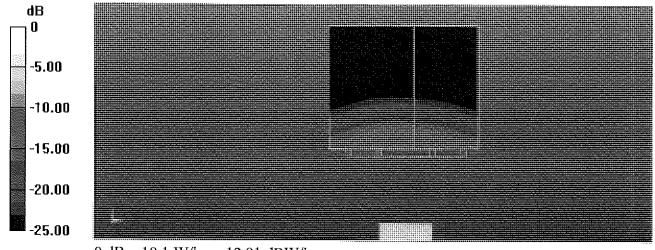
DASY5 Validation Report for Body TSL

Date: 17.03.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1123

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.5$ S/m; $\varepsilon_r = 48.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.97$ S/m; $\varepsilon_r = 47.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.18$ S/m; $\varepsilon_r = 47.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.25$ S/m; $\varepsilon_r = 47.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.66, 4.66, 4.66) @ 5750 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.23 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 7.55 W/kg; SAR(10 g) = 2.09 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.8% Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.83 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 33.8 W/kg SAR(1 g) = 7.80 W/kg; SAR(10 g) = 2.15 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.2% Maximum value of SAR (measured) = 19.1 W/kg Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = .64.54 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 34.1 W/kg SAR(1 g) = 7.55 W/kg; SAR(10 g) = 2.08 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 61.3% Maximum value of SAR (measured) = 18.6 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.49 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 32.8 W/kg **SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.03 W/kg** Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62.8% Maximum value of SAR (measured) = 18.3 W/kg

0 dB = 19.1 W/kg = 12.81 dBW/kg

Impedance Measurement Plot for Body TSL

√g = 20 000 GHz					1: 2: 3: >4; R:	18 5,8000 115 5,7500 5,8000 133 5,8000	,681 pF - 00 GHz 3.71 pH 00 GHz 9.86 pH 00 GHz 2.20 pH 00 GHz - 30 Stop 6.00	
					3: >4: R:	5,8000 115 5,7500 126 5,8000 132 5,5000	00 GHz 3,71 pH 30 GHz 3.36 pH 00 GHz 2.20 pH 00 GHz 30 Stop 6.00	57,724 Q 4,2122 Q 57,853 Q 4,6557 Q 55,968 Q 4,6155 Q 0,803 mU 36,770 °
					3: >4: R:	111 5,7500 121 5,8000 133 5,5000	9.71 pH 00 GHz 9.86 pH 00 GHz 2.20 pH 00 GHz 30 Stop 6.00	4.2122 0 57.853 0 4.6557 0 55.968 0 4.8175 0 0.803 mU 36.770 °
					>4: R:	12: 5,8000 13: 5,5000	00 GHz 3.86 pH 00 GHz 2.20 pH 00 GHz 30 Stop 6.00	57.853 0 4.6557 0 55.968 0 4.8175 0 0.803 mU 36.770 °
					R:	5,8000 133 5,5000	00 GHz 2.20 pH 00 GHz 30 Stop 6.00	55.963 0 4.8175 0 0.803 mU 36.778 °
					R:	13: 5,5000	2.20 pH 00 GHz 30 Stop 6.00	4.9175 0 0.809 mU 36.770 °
		H	X		Ŋ		Stop 6.0(36.770 0000 GHa
				S	1	5 \$500		0000 GH:
				S I	1	5 \$500		
					1	5 4500		
					1:	5 \$500		
					1:	5 \$500		
					1:	5 \$500		A. A.A.A. 11
					1:	5 1500	50 C115	125 33 40 1 1
		1 1	1			5.000	000H2 -3 000U- 0	30.007 dE 24.765 de
					3:	5, 15000		21.456.68
					▷ 4:	5.80000	<u>10 6H2 -2</u>	2.817 19
					·····			
				······				
······································					and the second		A DESCRIPTION OF A DESC	
		_				And a second		
	1 ~	sha						
vg ≈ 20 000 GHz		\sim						
-								