

Report No.: EED32K00171701 Page 1 of 54

TEST REPORT

Product Fetal Monitor

Trade mark **JUMPER** Model/Type reference JPD-300E

N/A **Serial Number**

Report Number : EED32K00171701 FCC ID : 2ADYL-JPD300E

Date of Issue : Feb. 19, 2019

Test Standards : 47 CFR Part 15Subpart C

Test result **PASS**

Prepared for:

Shenzhen Jumper Medical Equipment Co., Ltd D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by:

Compiled by:

Tom- cher Tom chen

Reviewed by:

Max liang

Max Liang

Peter

Date:

Feb. 19, 2019

Kevin yang

Relm (

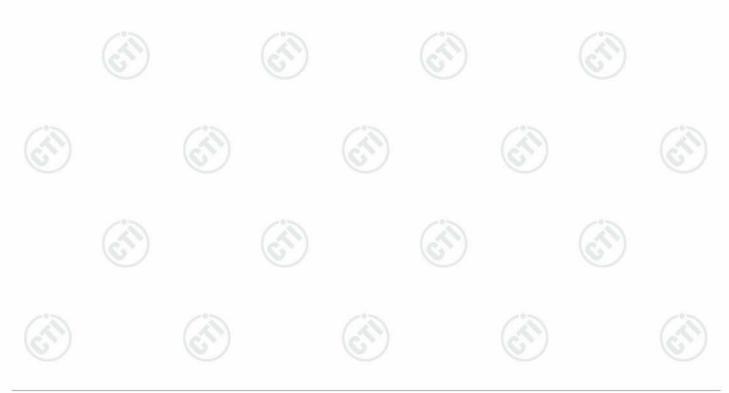
Check No.:3177469070

Report No.: EED32K00171701

Page 2 of 54

2 Version

Version No. Date		/ersion No. Date Description		
00	Feb. 19, 2019	9 Original		
	200	100	75	75
((c ² / ₂)	(81)	(6,77)


Report No.: EED32K00171701 Page 3 of 54

3 Test Summary

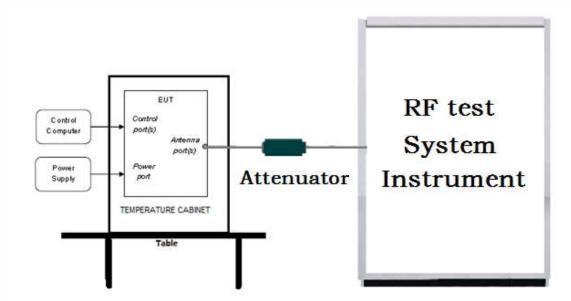
Test Item	Toot Possiroment	Toot mathad	Result
restitem	Test Requirement	Test method	Resul
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

4 Content

· Jointoint					
1 COVER PAGE			•••••		1
2 VERSION			•••••		2
TEST SUMMARY			•••••	•••••	3
4 CONTENT				•••••	4
TEST REQUIREMENT				•••••	5
5.1.1 For Conducted 5.1.2 For Radiated E 5.1.3 For Conducted 5.2 TEST ENVIRONMENT.	test setup missions test setup Emissions test setup				
GENERAL INFORMATION	ON	•••••	•••••		7
6.2 GENERAL DESCRIPTION 6.3 PRODUCT SPECIFICATION 6.4 DESCRIPTION OF SUFFICE TO SUFFICE	DN OF EUT TION SUBJECTIVE TO THIS SPORT UNITS ANDARDS M STANDARD CONDITIONS. REQUESTED BY THE CUSTERTAINTY (95% CONFIDENCE.	STANDARD			
7 EQUIPMENT LIST			•••••		10
RADIO TECHNICAL RE	QUIREMENTS SPECIFI	CATION	•••••		13
Appendix B): Conduct Appendix C): Band-e Appendix D): RF Cont Appendix E): Power of Appendix F): Antenna Appendix G): AC Power Appendix H): Restrict	cupied Bandwidthted Peak Output Power dge for RF Conducted Ernducted Spurious Emissic Spectral Density a Requirement wer Line Conducted Emis ted bands around fundam d Spurious Emissions	missions ons sion nental frequency (Rad	iated)		
PHOTOGRAPHS OF TES	T SETUP		•••••	•••••	39
PHOTOGRAPHS OF EUT	CONSTRUCTIONAL DE	ETAILS			41



Report No.: EED32K00171701 Page 5 of 54

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

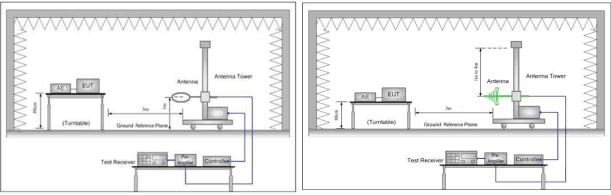


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

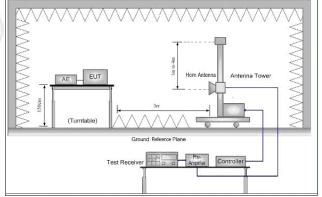
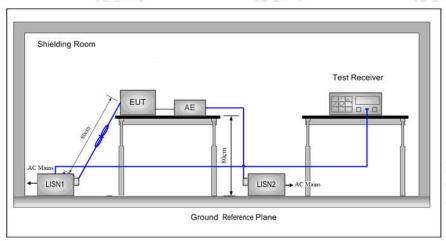



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment (RF) :		(0)
Temperature:	24°C	
Humidity:	57 % RH	
Atmospheric Pressure:	1010mbar	(0)

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel				
	TX/RX	Low(L)	Middle(M)	Middle(M) High(H) Channel 20 Channel 40		
0504	0.4000.411 0.400.8411	Channel 1	Channel 20	Channel 40		
GFSK	2402MHz ~2480 MHz	2402MHz	2402MHz 2440MHz 2480M	2480MHz		
Transmitting mode:	The EUT transmitted the continu	uous signal at the sp	ecific channel(s).			

6 General Information

6.1 Client Information

Applicant:	Shenzhen Jumper Medical Equipment Co., Ltd	
Address of Applicant:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China	-05
Manufacturer:	Shenzhen Jumper Medical Equipment Co., Ltd	.5
Address of Manufacturer:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China	
Factory:	Shenzhen Jumper Medical Equipment Co., Ltd	
Address of Factory:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China	

6.2 General Description of EUT

Product Name:	Fetal Monitor			
Model No.(EUT):	JPD-300E			
Trade mark:	JUMPER	$(\mathcal{L}_{\mathcal{L}_{\mathcal{L}}})$ $(\mathcal{L}_{\mathcal{L}_{\mathcal{L}}})$ $(\mathcal{L}_{\mathcal{L}_{\mathcal{L}}})$		
EUT Supports Radios application:	BT 4.1 Single	mode, 2402MHz-2480MHz		
Power Supply:	Medical Adapter	Model:LXCP12-012100DEH, Input:100-240V~50/60Hz,0.5A, Output:12.0V 1.0A		
(6,)	Battery: 3.7V	3000mAh		
Firmware version of the sample:	M1_V1.0(man	ufacturer declare)		
Hardware version of the sample:	3000R0(manufacturer declare)			
Sample Received Date:	Jul. 02, 2018			
Sample tested Date:	Aug. 13, 2018	to Fed. 19, 2019		

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	(57)
Bluetooth Version:	4.1	
Modulation Technique:	DSSS	
Modulation Type:	GFSK	-0-
Number of Channel:	40	
Sample Type:	Portable production	
Test power grade:	N/A	
Test software of EUT:	nRFgo Studio.exe(manufacturer declare)	
Antenna Type:	PCB Antenna	(1)
Antenna Gain:	0dBi	
Test Voltage:	AC 120V, 60Hz, DC 3.7V by Battery	

Report No. : EED32K00171701 Page 8 of 54

Operation F	requency eac	h of channe	1	(C).	/	(6)	/
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

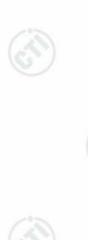
None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

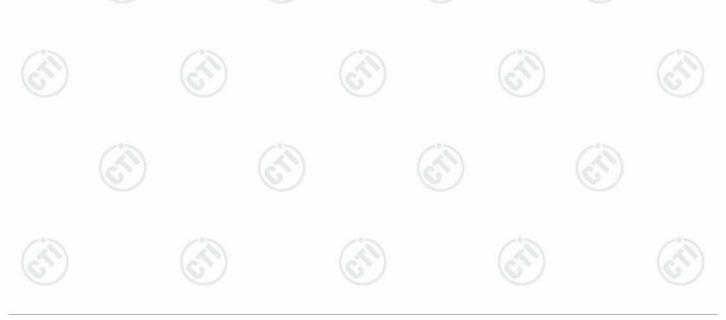
None.



Report No. : EED32K00171701 Page 9 of 54

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2 RF power, conduct	DE nover conducted	0.46dB (30MHz-1GHz)
	RF power, conducted	0.55dB (1GHz-18GHz)
3 Radiated Spu	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%



Report No. : EED32K00171701 Page 10 of 54

7 Equipment List

RF test system						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019	
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019	
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019	
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-10-2018 01-09-2019	01-09-2019 01-08-2020	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-10-2018 01-09-2019	01-09-2019 01-08-2020	
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019	
PC-1	Lenovo	R4960d		03-13-2018	03-12-2019	
BT&WI-FI Automatic control	R&S	OSP120	101374	03-13-2018	03-12-2019	
RF control unit	JS Tonscend	JS0806-2	15860006	03-13-2018	03-12-2019	
RF control unit	JS Tonscend	JS0806-1	15860004	03-13-2018	03-12-2019	
RF control unit	JS Tonscend	JS0806-4	158060007	03-13-2018	03-12-2019	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-13-2018	03-12-2019	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-13-2017 10-12-2018	10-12-2018 10-11-2019	

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: call: 0755-33681700 \\ Complaint E-mail: complaint call: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Com$

Report No.: EED32K00171701

Page	11	of 54	
------	----	-------	--

	(Conducted dist	urbance Tes	st	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Temperature/ Humidity Indicator	Defu	TH128	1	07-02-2018	07-01-2019
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019
Communication test set	R&S	CMW500	152394	03-16-2018	03-15-2019
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019
ISN	TESEQ	ISN T800	30297	02-06-2018 02-05-2019	02-05-2019 02-04-2020
Barometer	changchun	DYM3	1188	07-02-2018	07-01-2019

Report No. : EED32K00171701 Page 12 of 54

	3M S	Semi/full-anec	hoic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-22-2017 12-21-2018	12-21-2018 12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A02425	08-22-2017 08-21-2018	08-21-2018 08-20-2019
Microwave Preamplifier	Tonscend	EMC05184 5SE	980380	01-19-2018 01-18-2019	01-18-2019 01-17-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840- 60	6041	06-05-2018	06-04-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Multi device		NCD/070/1	.00100	01-10-2018	01-09-2019
Controller	maturo	0711112	(/ (01-09-2019	01-08-2020
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-13-2017 10-12-2018	10-12-2018 10-11-2019
Communication test set	Agilent	E5515C	GB47050534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020
Communication test set	R&S	CMW500	104466	02-05-2018 02-04-2019	02-04-2019 02-03-2020
High-pass filter	Sinoscite	FL3CX03W G18NM12- 0398-002		01-10-2018 01-09-2019	01-09-2019 01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-10-2018 01-09-2019	01-09-2019 01-08-2020
band rejection filter	Sinoscite	FL5CX01C A09CL12- 0395-001		01-10-2018 01-09-2019	01-09-2019 01-08-2020
band rejection filter	Sinoscite	FL5CX01C A08CL12- 0393-001	(0)	01-10-2018 01-09-2019	01-09-2019 01-08-2020
band rejection filter	Sinoscite	FL5CX02C A04CL12- 0396-002		01-10-2018 01-09-2019	01-09-2019 01-08-2020
band rejection filter	Sinoscite	FL5CX02C A03CL12- 0394-001		01-10-2018 01-09-2019	01-09-2019 01-08-2020

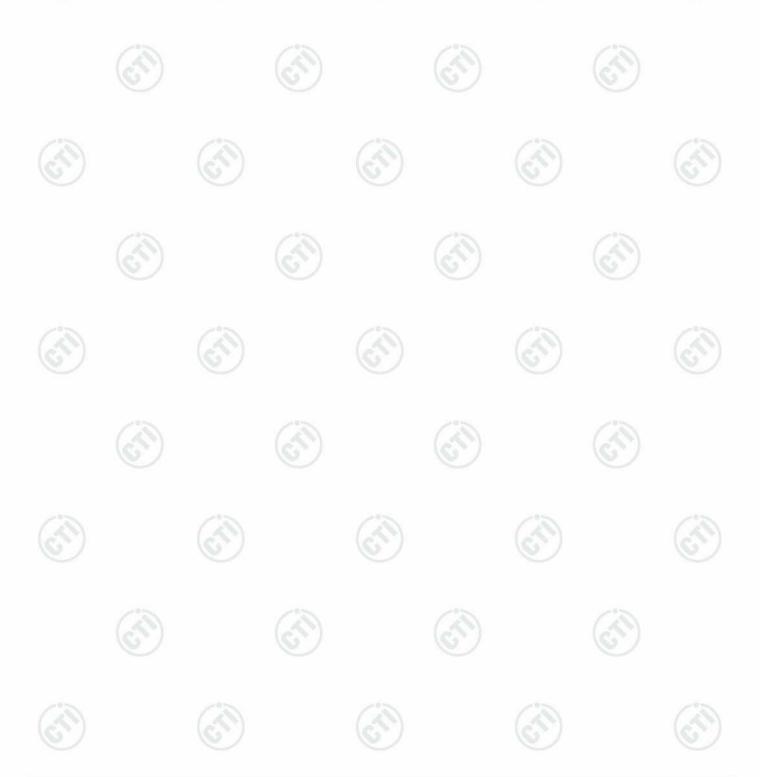
8 Radio Technical Requirements Specification

Reference documents for testing:

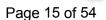
	No.	Identity	Document Title
	1	FCC Part15C	Subpart C-Intentional Radiators
١	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

00t 1100anto =10ti				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)



Appendix A): 6dB Occupied Bandwidth

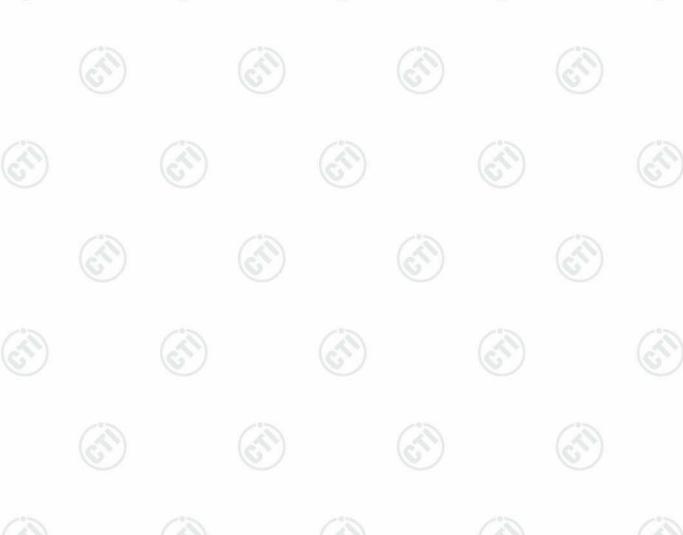

Test Result

		The state of the s		to the second second	
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6868	1.5014	PASS	
BLE	MCH	0.6718	1.3122	PASS	Peak
BLE	НСН	0.6862	1.2635	PASS	detector



Test Graphs

Report No.: EED32K00171701



Report No.: EED32K00171701

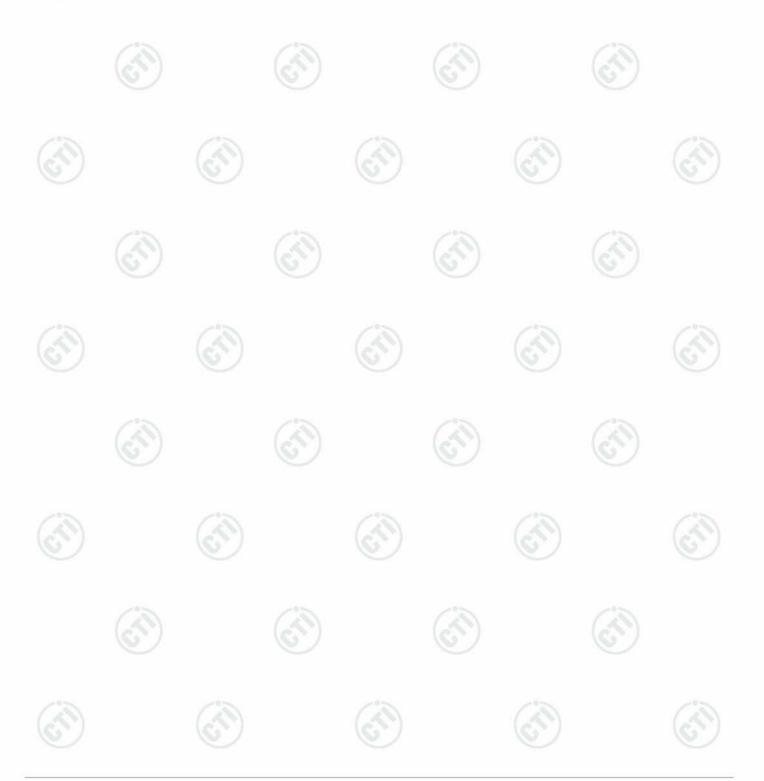
Appendix B): Conducted Peak Output Power

Test Result

5.700	3.300		
Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-3.335	PASS
BLE	MCH	-3.673	PASS
BLE	НСН	-4.715	PASS

Test Graphs

Report No.: EED32K00171701




Appendix C): Band-edge for RF Conducted Emissions

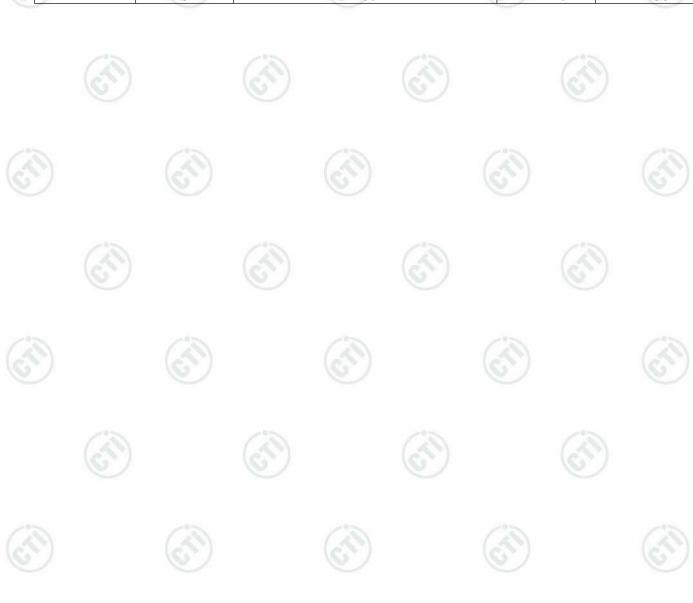
Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
0	BLE	LCH	-3.281	-56.270	-23.28	PASS
9	BLE	нсн	-4.580	-41.402	-24.58	PASS

Test Graphs

Report No.: EED32K00171701

(cii)

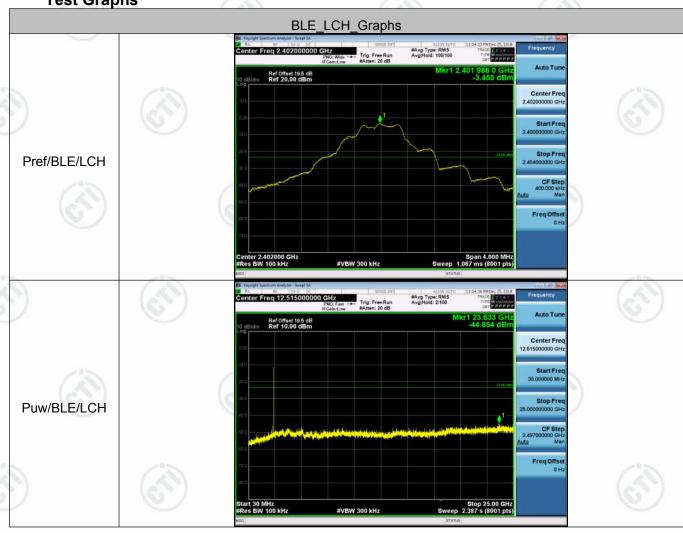


Report No. : EED32K00171701 Page 20 of 54

Appendix D): RF Conducted Spurious Emissions

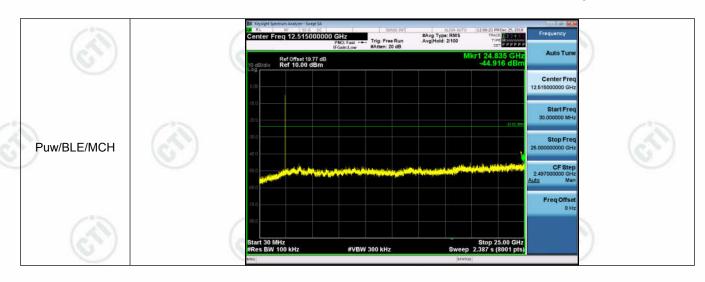
Result Table

The second second				
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-3.455	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-3.818	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-4.862	<limit< td=""><td>PASS</td></limit<>	PASS




Report No. : EED32K00171701 Page 21 of 54

Test Graphs



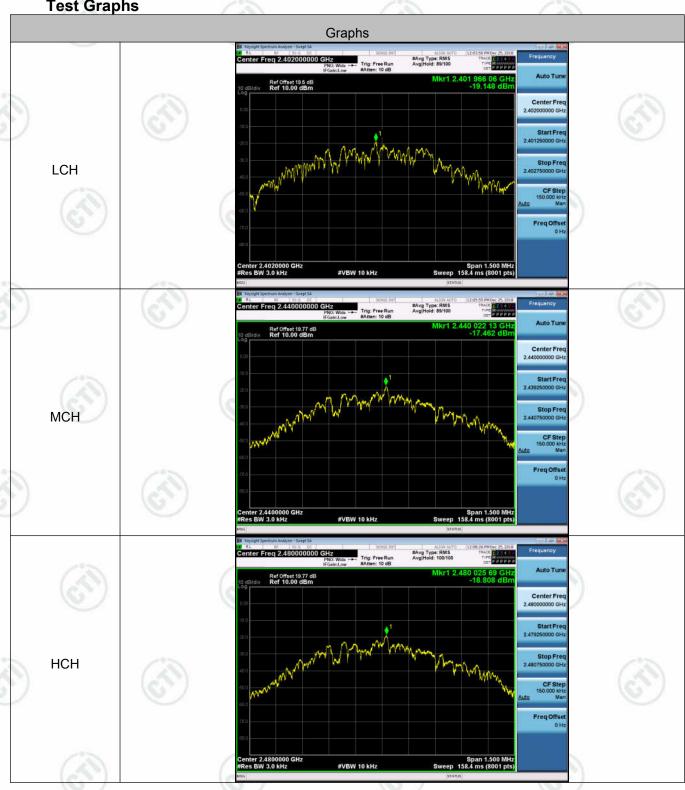
Report No. : EED32K00171701 Page 22 of 54

Report No.: EED32K00171701

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-19.148	8	PASS
BLE	MCH	-17.462	8	PASS
BLE	нсн	-18.808	8	PASS

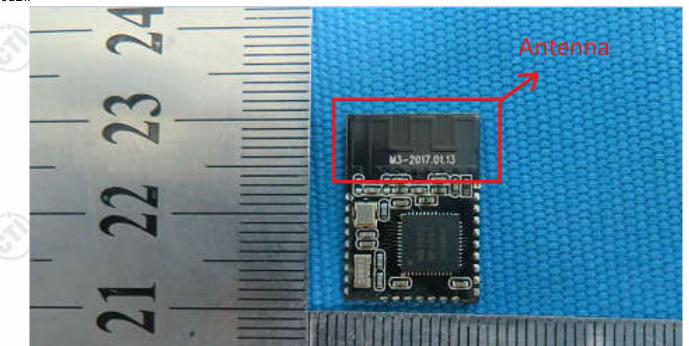


Test Graphs

Report No.: EED32K00171701

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No. : EED32K00171701 Page 26 of 54

Appendix G): AC Power Line Conducted Emission

Test Procedure: Test frequency range :150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

[Limit (c	dΒμV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

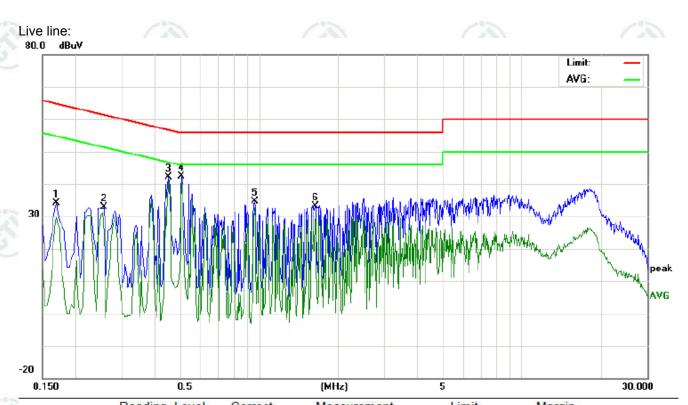
^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

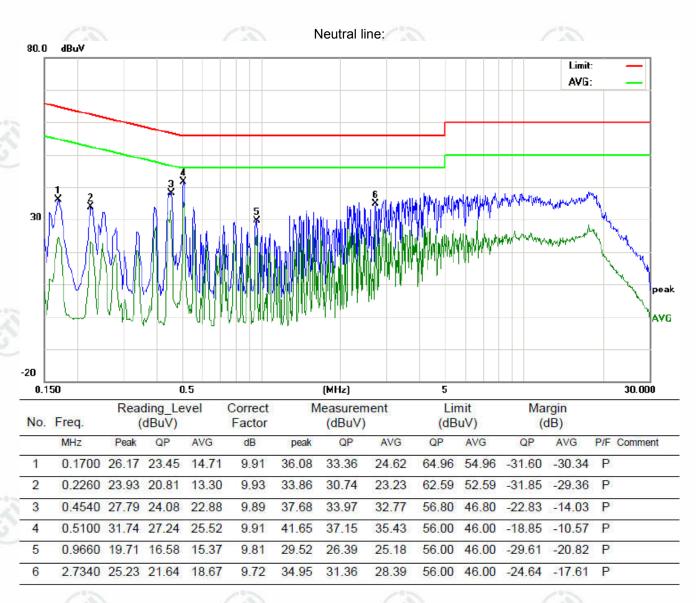


Report No.: EED32K00171701 Page 27 of 54

Product : Fetal Monitor Model/Type reference : JPD-300E (The host)

Temperature : 23° **Humidity** : 55%

	No.	Freq.		ding_Le dBuV)	vel	Factor	ľ	(dBuV)			nit uV)		rgin dB)		
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
-	1	0.1700	24.14	21.32	19.83	9.91	34.05	31.23	29.74	64.96	54.96	-33.73	-25.22	Р	
-	2	0.2540	22.40	19.37	21.07	9.96	32.36	29.33	31.03	61.62	51.62	-32.29	-20.59	Р	
	3	0.4540	32.35	28.34	31.00	9.89	42.24	38.23	40.89	56.80	46.80	-18.57	-5.91	Р	
_	4	0.5100	32.52	29.24	31.06	9.91	42.43	39.15	40.97	56.00	46.00	-16.85	-5.03	P	
	5	0.9660	24.78	21.54	22.75	9.81	34.59	31.35	32.56	56.00	46.00	-24.65	-13.44	Р	
	6	1.6180	23.36	20.27	21.63	9.75	33.11	30.02	31.38	56.00	46.00	-25.98	-14.62	Р	

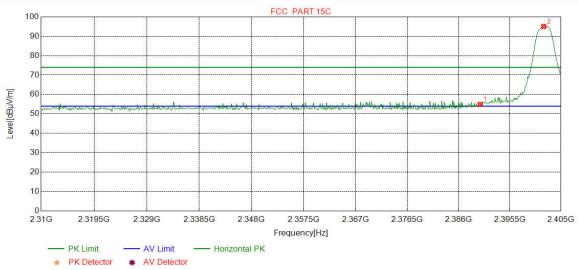


Notes:

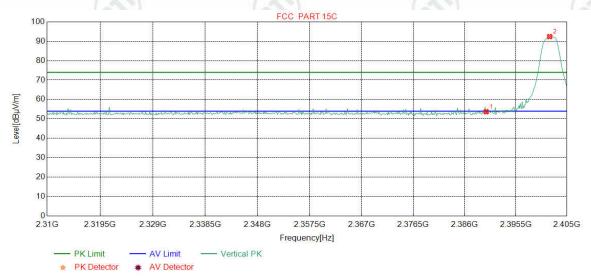
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ab 2112 4 0115	Peak	1MHz	3MHz	Peak	105
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedure. a. The EUT was placed of at a 3 meter semi-aneous determine the position. b. The EUT was set 3 mes was mounted on the to c. The antenna height is determine the maximular polarizations of the antenna was turned from 0 degree. The test-receiver systems and below the antenna was turned from 1 degree. The test-receiver systems and width with Maximum f. Place a marker at the semi-aneous force of the semi-aneous force o	ure as below: on the top of a rotal choic camber. The of the highest radieters away from the op of a variable-heil varied from one min value of the field tenna are set to minission, the EUT varies to 360 degreem was set to Peal aum Hold Mode.	ting table table wa iation. e interfere to fo d strengtrake the myas arrangmeter to es to find k Detect F	e 0.8 meters rotated 3 ence-receinna tower. ur meters n. Both horneasurement ged to its v. 4 meters at the maxin Function a	rs above the gas of the growth	, whice ound the ertical
	frequency to show con bands. Save the spect for lowest and highest	npliance. Also mea rum analyzer plot.	asure any	emissions	s in the restric	
	bands. Save the spect	npliance. Also mea rrum analyzer plot. channel ure as below: ve is the test site, on the change form to 1 meter and table towest channel, the ements are perform and found the X axis	change fr table 0.8 is 1.5 met e Highest ned in X, is	remissions for each por com Semi- meter to 1 fer). channel Y, Z axis p ng which i	Anechoic Ch. 5 meter(Abo	ambe
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between about to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the let. The radiation measure Transmitting mode, and	npliance. Also mea rrum analyzer plot. channel ure as below: ve is the test site, on the change form to 1 meter and table towest channel, the ements are perform and found the X axis	change fr table 0.8 is 1.5 met e Highest ned in X, is positioni	emissions for each posterior semi- meter to 1 ter). It channel Y, Z axis programming which is easured was a series of the control of the cont	Anechoic Ch. 5 meter(Abo	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between about to fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the fully Anechoic	npliance. Also mea rrum analyzer plot. channel ure as below: ve is the test site, on the change form to 1 meter and table towest channel, the ements are performed found the X axis tures until all freque	change fr table 0.8 is 1.5 met e Highest ned in X, is positioni	emissions for each portion Semi-meter to 1 ser). I channel Y, Z axis programming which is easured ware recommended.	Anechoic Ch. 5 meter(Abo	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is horizontal to the fully Anechoic Channel 18GHz the distance is horizontal the full in the left in the radiation measured Transmitting mode, and jour Repeat above procedure. Frequency	npliance. Also meaturum analyzer plot. channel ure as below: ve is the test site, on the change form of the channel, the ements are performed found the X axis ures until all freque	change fr table 0.8 is 1.5 met e Highest ned in X, is positioni	remissions for each portion Semi-meter to 1 ter). The channel Y, Z axis programming which is easured was red w	Anechoic Ch. 5 meter (Abo	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is here. The fully Anechoic Channel 18GHz the distance is here. The fully Anechoic Channel 18GHz the distance is here. The fully Anechoic Channel 18GHz the distance is here. The fully Anechoic Channel 18GHz the fully Anechoic Channel	npliance. Also mean analyzer plot. channel ure as below: ve is the test site, on the change form in the content of the channel, the content are performed found the X axis the content all freques Limit (dBµV/m 40.0)	change fr table 0.8 is 1.5 met e Highest ned in X, is positioni	emissions or each por com Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rei Quasi-pe	Anechoic Ch. S meter (About the substitution of the substitution	ambe
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is horizontal in the left. The radiation measure Transmitting mode, and jour procedured in the left. The requency and the same statement of the	npliance. Also mean analyzer plot. channel ure as below: ve is the test site, on the change form the change form the channel, the contents are performed found the X axis the contents are performed found the X axis the channel all freques the cha	change fr table 0.8 is 1.5 met e Highest ned in X, is positioni	remissions for each por each each each each each each each each	Anechoic Ch. 5 meter(Aboositioning for tis worse cases complete. mark eak Value eak Value	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is horizontal in the left. The radiation measure Transmitting mode, and journal in Repeat above procedum Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	npliance. Also mean analyzer plot. channel ure as below: ve is the test site, on the change form of the channel, the channel are performed found the X axis the channel all freques the channel all	change fr table 0.8 is 1.5 met e Highest ned in X, is positioni	remissions for each por each each each each each each each each	Anechoic Ch. 5 meter (Above Consitioning for t is worse cases complete. mark eak Value eak Value eak Value	ambe

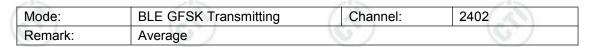


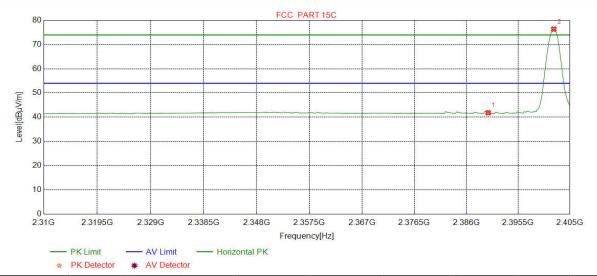
Report No.: EED32K00171701 Page 30 of 54


Test plot as follows:

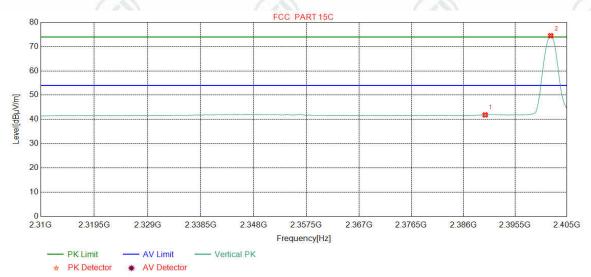
Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	Peak		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	51.68	54.86	74.00	19.14	Pass	Horizontal
2	2401.7897	32.26	13.31	-42.43	91.94	95.08	74.00	-21.08	Pass	Horizontal


Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	Peak	75%	

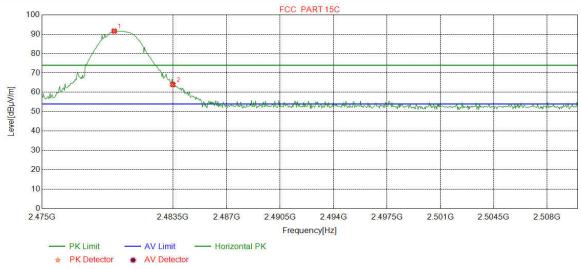


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.51	53.69	74.00	20.31	Pass	Vertical
2	2401.7897	32.26	13.31	-42.43	89.29	92.43	74.00	-18.43	Pass	Vertical

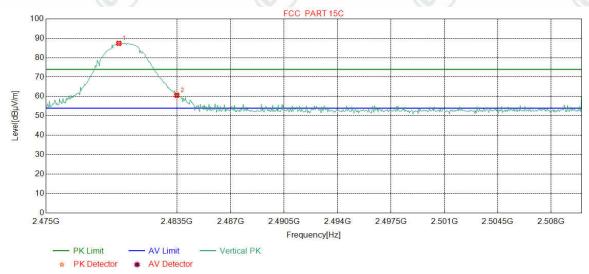

Report No. : EED32K00171701 Page 31 of 54

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	38.64	41.82	54.00	12.18	Pass	Horizontal
Ī	2	2402.0275	32.26	13.31	-42.43	73.26	76.40	54.00	-22.40	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	Average		

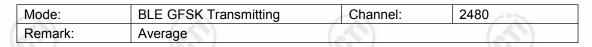


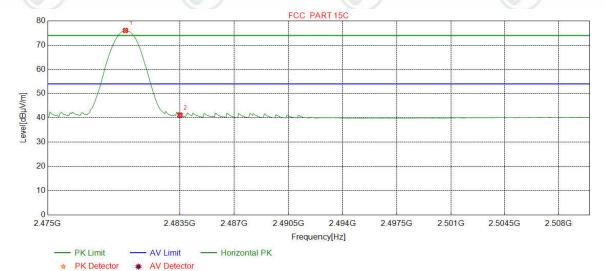
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.66	41.84	54.00	12.16	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	71.37	74.51	54.00	-20.51	Pass	Vertical


Report No.: EED32K00171701 Page 32 of 54

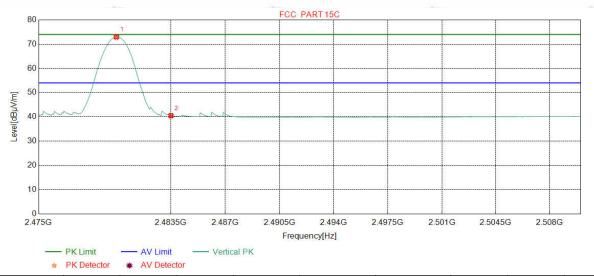
Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Peak		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.6871	32.37	13.39	-42.39	88.27	91.64	74.00	-17.64	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	60.66	64.02	74.00	9.98	Pass	Horizontal


Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Peak		



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7309	32.37	13.39	-42.39	84.02	87.39	74.00	-13.39	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	57.27	60.63	74.00	13.37	Pass	Vertical


Report No.: EED32K00171701 Page 33 of 54

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9937	32.37	13.39	-42.39	72.68	76.05	54.00	-22.05	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	37.78	41.14	54.00	12.86	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Average		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9937	32.37	13.39	-42.39	69.57	72.94	54.00	-18.94	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	37.15	40.51	54.00	13.49	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4011-	Peak	1MHz	3MHz	Peak	
(0,	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

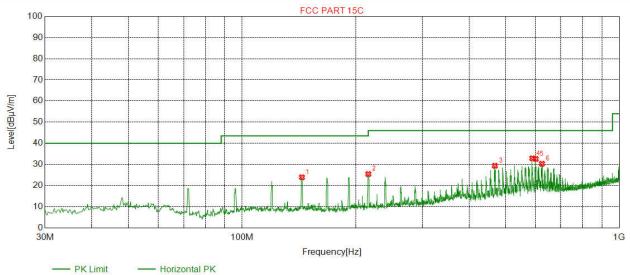
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

			• •	
	- 11	m	IIT	•
ш	-11	ш	ш	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	705	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 35 of 54 Report No.: EED32K00171701


Radiated Spurious Emissions test Data:

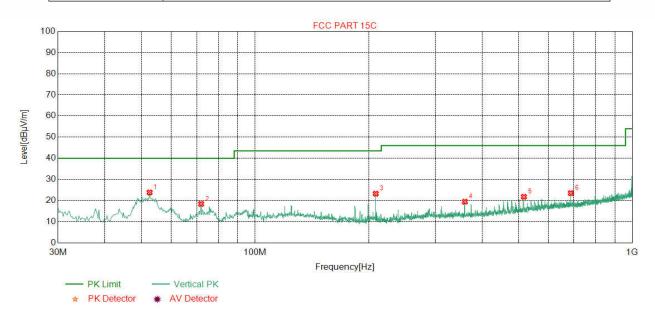
Product : Fetal Monitor Model/Type reference JPD-300E (The host)

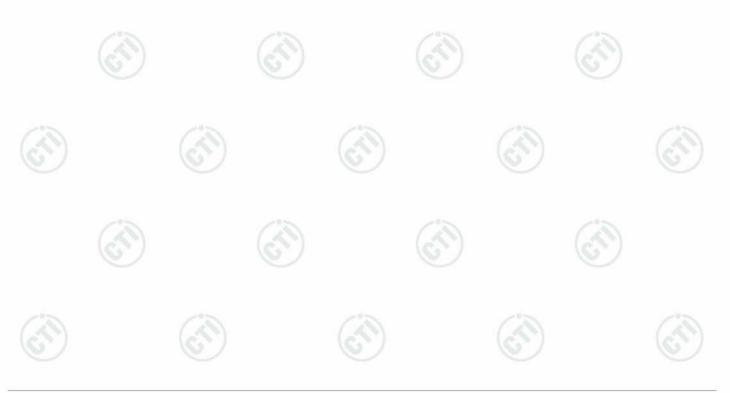
Temperature : 21°C Humidity 57%

Radiated Emission below 1GHz

Mode:	GFSK Transmitting	Channel:	2480
Remark:	QP		

	PK Limit	28	- Horizontal PK
*	PK Detector	*	AV Detector


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	144.0948	7.34	1.41	-31.99	47.14	23.90	43.50	19.60	Pass	Horizontal
2	216.0832	11.32	1.75	-31.95	44.31	25.43	46.00	20.57	Pass	Horizontal
3	467.9456	16.49	2.58	-31.87	42.17	29.37	46.00	16.63	Pass	Horizontal
4	588.2497	18.76	2.90	-31.93	43.14	32.87	46.00	13.13	Pass	Horizontal
5	600.6681	19.01	2.96	-32.00	42.62	32.59	46.00	13.41	Pass	Horizontal
6	623.9528	19.19	2.97	-31.98	40.12	30.30	46.00	15.70	Pass	Horizontal



Report No. : EED32K00171701 Page 36 of 54

Mode:	GFSK Transmitting	Channel:	2480
Remark:	QP		

1	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	52.5085	12.80	0.82	-32.10	42.29	23.81	40.00	16.19	Pass	Vertical
	2	71.9124	8.64	0.97	-32.05	40.83	18.39	40.00	21.61	Pass	Vertical
a.	3	208.9038	11.13	1.71	-31.94	42.33	23.23	43.50	20.27	Pass	Vertical
s.	4	360.0600	14.52	2.27	-31.84	34.49	19.44	46.00	26.56	Pass	Vertical
5	5	516.0672	17.32	2.71	-31.93	33.67	21.77	46.00	24.23	Pass	Vertical
	6	687.5975	19.70	3.14	-32.06	32.72	23.50	46.00	22.50	Pass	Vertical

Transmitter Emission above 1GHz

Mode:		BLE GFSK Transmitting			Channel:				2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1439.8440	28.34	2.94	-42.68	51.95	40.55	74.00	33.45	Pass	Н	Peak
2	3079.9553	33.23	4.76	-42.07	49.97	45.89	74.00	28.11	Pass	Н	Peak
3	4804.0000	34.50	4.55	-40.66	49.66	48.05	74.00	25.95	Pass	Н	Peak
4	6066.9045	35.81	5.23	-41.10	47.36	47.30	74.00	26.70	Pass	Н	Peak
5	7206.0000	36.31	5.81	-41.02	56.61	57.71	74.00	16.29	Pass	Н	Peak
6	7206.0000	36.31	5.82	-41.02	47.15	48.26	54.00	5.74	Pass	Н	Average
7	9608.0000	37.64	6.63	-40.76	43.95	47.46	74.00	26.54	Pass	Н	Peak
8	1390.8391	28.29	2.89	-42.69	55.73	44.22	74.00	29.78	Pass	V	Peak
9	3256.1171	33.30	4.47	-41.97	50.63	46.43	74.00	27.57	Pass	V	Peak
10	4804.0000	34.50	4.55	-40.66	51.33	49.72	74.00	24.28	Pass	V	Peak
11	6469.9313	35.89	5.50	-41.18	47.44	47.65	74.00	26.35	Pass	V	Peak
12	7206.0000	36.31	5.81	-41.02	55.71	56.81	74.00	17.19	Pass	V	Peak
13	7206.0000	36.31	5.82	-41.02	46.82	47.93	54.00	6.07	Pass	V	Average
14	9608.0000	37.64	6.63	-40.76	44.20	47.71	74.00	26.29	Pass	V	Peak

				400							
Mode:		BLE GFSK Transmitting			Channel:				2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1798.0798	30.37	3.32	-42.72	58.88	49.85	74.00	24.15	Pass	Н	Peak
2	3438.7793	33.38	4.46	-41.86	50.39	46.37	74.00	27.63	Pass	Н	Peak
3	4880.0000	34.50	4.80	-40.60	49.22	47.92	74.00	26.08	Pass	Н	Peak
4	6402.3268	35.88	5.32	-41.17	47.93	47.96	74.00	26.04	Pass	Н	Peak
5	7320.0000	36.42	5.85	-40.92	53.19	54.54	74.00	19.46	Pass	Н	Peak
6	7320.0000	36.42	5.85	-40.92	44.68	46.03	54.00	7.97	Pass	Н	Average
7	9760.0000	37.70	6.73	-40.62	44.20	48.01	74.00	25.99	Pass	Н	Peak
8	1934.8935	31.27	3.42	-42.64	51.70	43.75	74.00	30.25	Pass	V	Peak
9	3193.7129	33.28	4.64	-42.01	50.45	46.36	74.00	27.64	Pass	V	Peak
10	4880.0000	34.50	4.80	-40.60	50.19	48.89	74.00	25.11	Pass	V	Peak
11	6339.9227	35.87	5.46	-41.16	47.31	47.48	74.00	26.52	Pass	V	Peak
12	7320.0000	36.42	5.85	-40.92	51.92	53.27	74.00	20.73	Pass	V	Peak
13	7320.0000	36.42	5.85	-40.92	42.67	44.02	54.00	9.98	Pass	V	Average
14	9760.0000	37.70	6.73	-40.62	44.59	48.40	74.00	25.60	Pass	V	Peak

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

CII

Report No.: EED32K00171701 Page 38 of 54

	200					J1870			20%		
Mode:		BLE GFSK Transmitting			Channel:			2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1394.0394	28.29	2.89	-42.68	52.96	41.46	74.00	32.54	Pass	Н	Peak
2	3215.8144	33.29	4.59	-42.00	50.35	46.23	74.00	27.77	Pass	Н	Peak
3	4960.0000	34.50	4.82	-40.53	48.72	47.51	74.00	26.49	Pass	Н	Peak
4	6311.9708	35.86	5.46	-41.15	47.55	47.72	74.00	26.28	Pass	Н	Peak
5	7440.0000	36.54	5.85	-40.82	52.96	54.53	74.00	19.47	Pass	Н	Peak
6	7440.0000	36.54	5.85	-40.82	44.35	45.92	54.00	8.08	Pass	Н	Average
7	9920.0000	37.77	6.79	-40.48	43.65	47.73	74.00	26.27	Pass	Н	Peak
8	1395.4395	28.30	2.89	-42.69	53.82	42.32	74.00	31.68	Pass	V	Peak
9	4172.0281	34.04	4.50	-40.83	46.25	43.96	74.00	30.04	Pass	V	Peak
10	4960.0000	34.50	4.82	-40.53	48.51	47.30	74.00	26.70	Pass	V	Peak
11	6830.0553	36.03	5.55	-41.18	46.13	46.53	74.00	27.47	Pass	V	Peak
12	7440.0000	36.54	5.85	-40.82	49.10	50.67	74.00	23.33	Pass	V	Peak
13	9920.0000	37.77	6.79	-40.48	41.72	45.80	74.00	28.20	Pass	V	Peak

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: EED32K00171701 Page 39 of 54

PHOTOGRAPHS OF TEST SETUP

Test model No.: JPD-300E

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)

Report No. : EED32K00171701 Page 40 of 54

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No. : EED32K00171701 Page 41 of 54

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: JPD-300E

View of Product-1

The host

View of Product-2

View of Product-3

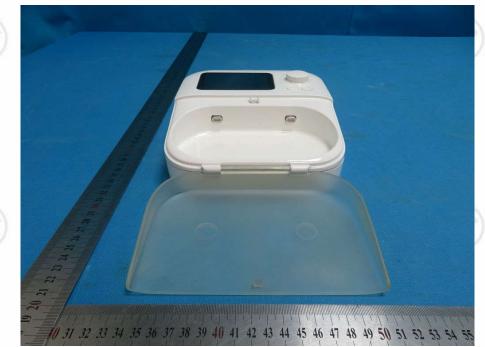
View of Product-4

View of Product-5

View of Product-6

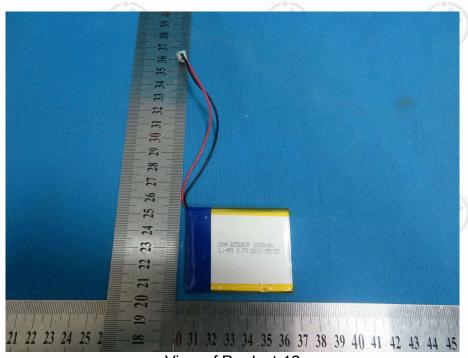
View of Product-7

View of Product-8



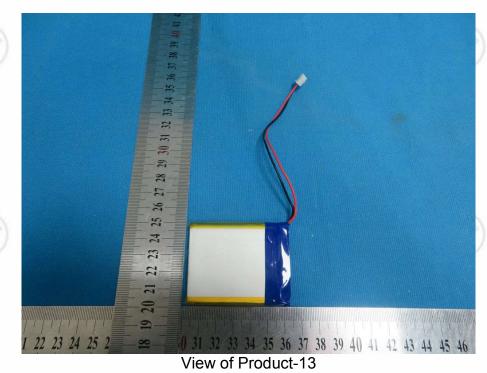
View of Product-9

View of Product-10



View of Product-11

View of Product-12

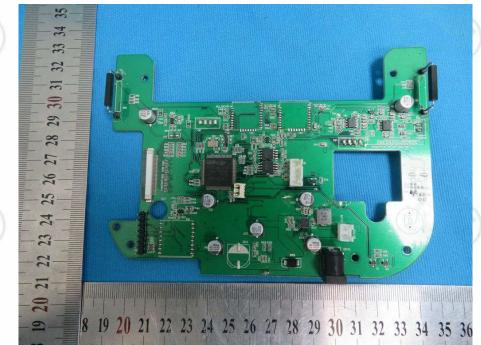


View of Product-14

Report No. : EED32K00171701 Page 48 of 54

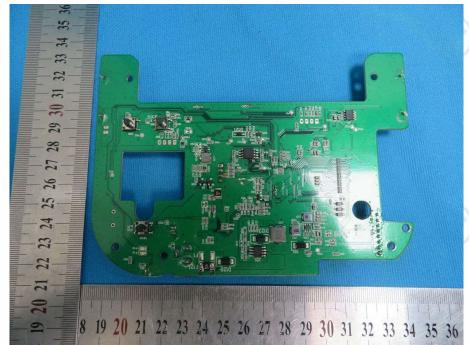
View of Product-15

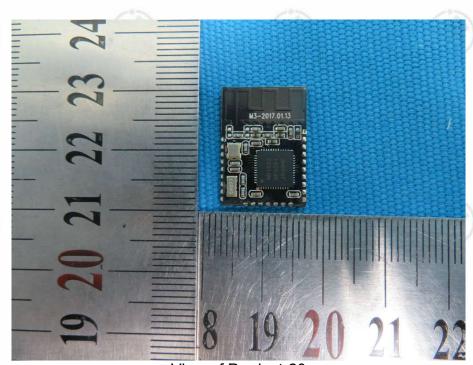
View of Product-16



View of Product-17

View of Product-18

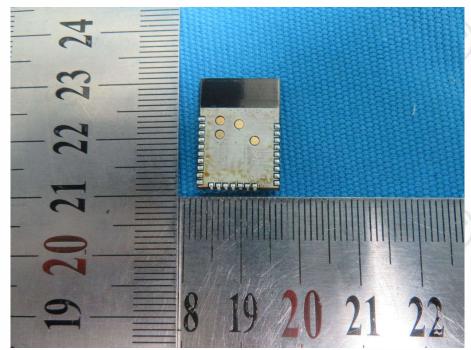




Report No. : EED32K00171701 Page 50 of 54

View of Product-19

View of Product-20



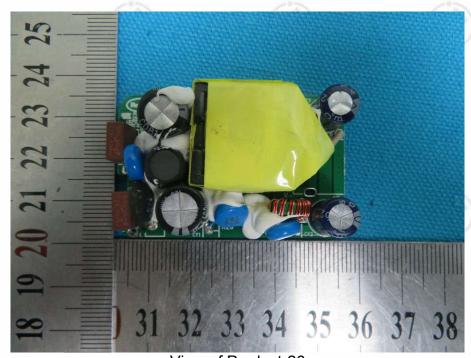
Report No. : EED32K00171701 Page 51 of 54

View of Product-21

View of Product-22

View of Product-23

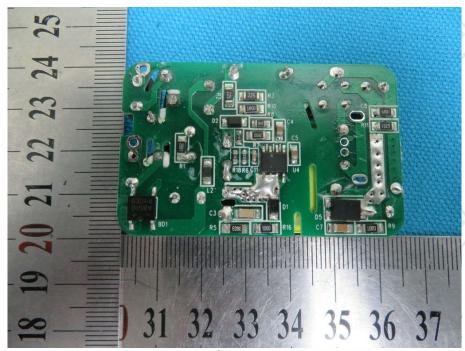
View of Product-24

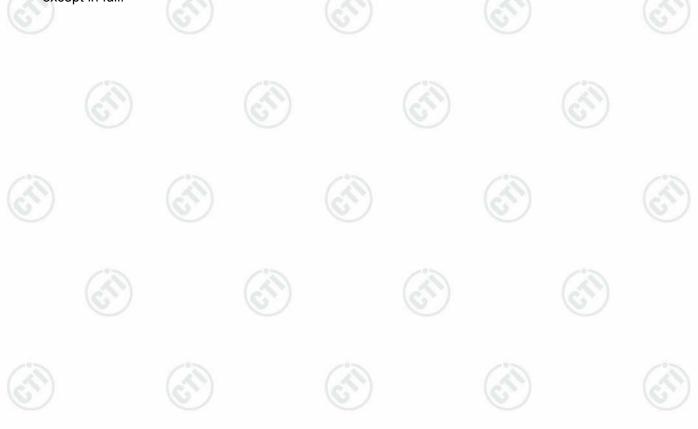


Report No.: EED32K00171701 Page 53 of 54

View of Product-25

View of Product-26




Report No.: EED32K00171701 Page 54 of 54

View of Product-27

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

