

Test Report

Report No.: MTi241011011-08E1

Date of issue: 2025-01-20

Applicant: ALOGIC Corporation Pty Ltd.

Product name: Alogic Illuminate Light Bar with 4k Autofocus Camera

Model(s): ALCMILSGR, ALCMILSLV

FCC ID: 2ATCA-ALCMIL

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 6
2	Sumi	mary of Test Result	7
3	Test	Facilities and accreditations	8
	3.1	Test laboratory	8
4	List	of test equipment	9
5	Evalu	uation Results (Evaluation)	10
	5.1	Antenna requirement	10
6	Radio	o Spectrum Matter Test Results (RF)	11
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Conducted Emission at AC power line	14 17 19 23
Ph	otogra	aphs of the test setup	34
Ph	otogra	aphs of the EUT	35

Test Result Certification			
Applicant:	ALOGIC Corporation Pty Ltd.		
Address:	Level 40, 140 William Street, Melbourne VIC, 3000 Australia		
Manufacturer:	ALOGIC Corporation Pty Ltd.		
Address:	Level 40, 140 William Street, Melbourne VIC, 3000 Australia		
Product description			
Product name:	Alogic Illuminate Light Bar with 4k Autofocus Camera		
Trademark:	ALOGIC		
Model name:	ALCMILSGR		
Series Model(s):	ALCMILSLV		
Standards:	47 CFR Part 15.231		
Test Method:	ANSI C63.10-2020		
Date of Test			
Date of test:	2024-11-25 to 2025-01-15		
Test result:	Pass		

Test Engineer	:	Yanice Xie
		(Yanice.Xie)
Reviewed By		David. Cee
		(David Lee)
Approved By		leon chen
		(Leon Chen)

1 General Description

1.1 Description of the EUT

Alogic Illuminate Light Bar with 4k Autofocus Camera
ALCMILSGR
ALCMILSLV
All the models are the same circuit and module, except the model name and color.
Input: DC 5V/1A
Cable: Type-C to Type-C cable (1.5m)*1
DH-4K-008
Fic760x-DH-PDM-McuVer1.0.8
MTi241011011-08S1001
434MHz
1
Spring Antenna
2 dBi

1.2 Description of test modes

No.	Emission test modes
Mode1	TX

1.2.1 Operation channel list

Test Channel List Operation Band:

Channel (MHz)	
434	

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software:

For power setting, refer to below table.

434MHz	
default	

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list					
Description	Model	Serial No.	Manufacturer		
1	1	1	1		
Support cable list					
Description	Length (m)	From	То		
1	1	1	1		

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
Time	±1 %
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Requirement	Result
1	Antenna requirement	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR 15.207(a)	Pass
3	20dB Bandwidth	47 CFR 15.231(c)	Pass
4	Dwell Time	47 CFR 15.231(a)(1) & (a)(2)	Pass
5	Duty Cycle	47 CFR 15.231(b) & (e)	Pass
6	Field Strength of The Fundamental Signal	47 CFR 15.231(b)	Pass
7	Radiated Emission (below 1GHz)	47 CFR 15.231	Pass
8	Radiated Emission (above 1GHz)	47 CFR 15.231	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
		Conducted En	nission at AC po	wer line	l	
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03-20	2025-03-19
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03-21	2025-03-20
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03-20	2025-03-19
		[IB Bandwidth Dwell Time Duty Cycle			
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20
		Field Strength o Radiated Er	f The Fundamen nission (below 1			
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19
		Radiated Er	nission (above 1	GHz)		
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20

5 Evaluation Results (Evaluation)

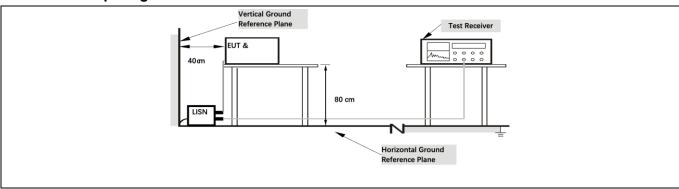
5.1 Antenna requirement

	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party
Test Requirement:	shall be used with the device. The use of a permanently attached antenna or
·	of an antenna that uses a unique coupling to the intentional radiator shall be
	considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

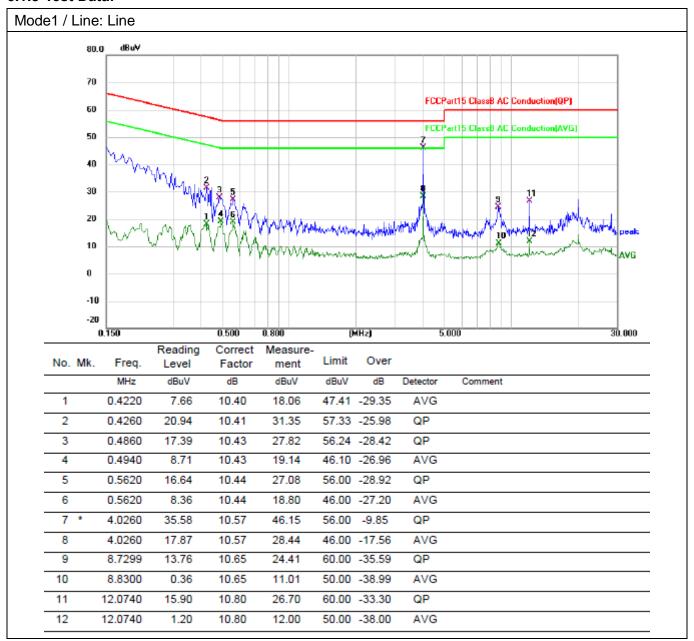
The antenna of the EUT is permanently attached.
The EUT complies with the requirement of FCC PART 15.203.

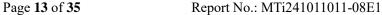
6 Radio Spectrum Matter Test Results (RF)

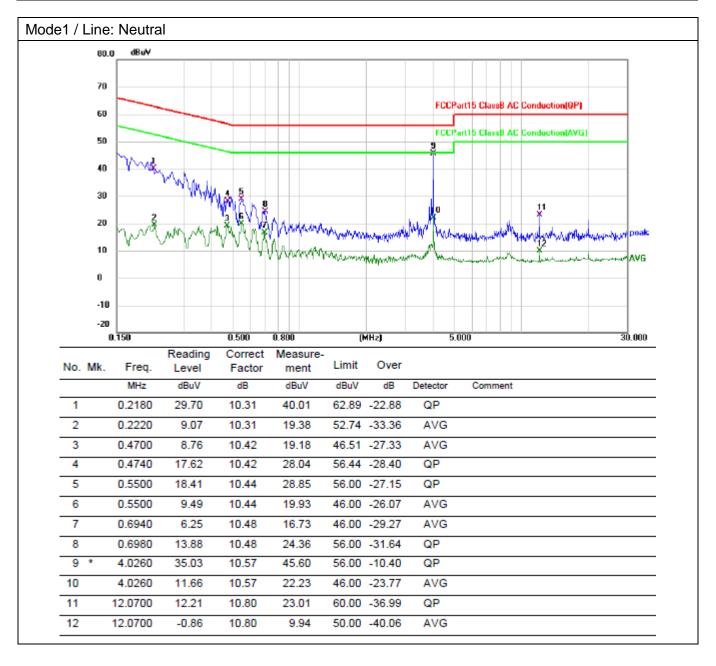

6.1 Conducted Emission at AC power line

Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz) Conducted limit (dBµV)						
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2020 section 6.2						
Procedure:	Refer to ANSI C63.10-2020 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						

6.1.1 E.U.T. Operation:


Operating Environment:							
Temperature: 26 °C			Humidity:	41 %	Atmospheric Pressure:	101 kPa	
Pre test mode: Mod			e1				
Final test mode: Mod			e1				


6.1.2 Test Setup Diagram:



6.1.3 Test Data:

6.2 20dB Bandwidth

Toot Poquiroment:	47 CED 15 221(a)
Test Requirement:	47 CFR 15.231(c)
Test Limit:	The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down
	from the modulated carrier.
Test Method:	ANSI C63.10-2020, section 6.9.2
Procedure:	a) The spectrum analyzer center frequency is set to the nominal EUT channel
1 1000ddi 5.	center frequency.
	The span range for the EMI receiver or spectrum analyzer shall be between two times and five
	times the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and
	video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified
	by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal
	from exceeding the maximum input mixer level for linear operation. In general, the peak of the
	spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given
	in 4.1.5.2.
	d) Steps a) through c) might require iteration to adjust within the specified tolerances.
	e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the
	target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB
	OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.
	f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated
	carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the
	highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx].
	Alternatively, this calculation may be made by using the marker-delta function of the
	instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation
	ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the
	new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).
	j) Place two markers, one at the lowest frequency and the other at the highest frequency of the
	envelope of the spectral display, such that each marker is at or slightly below the "íxx dB down
	amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value,

then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "íxx dB down amplitude" determined in step h). Reset the marker-delta function and move

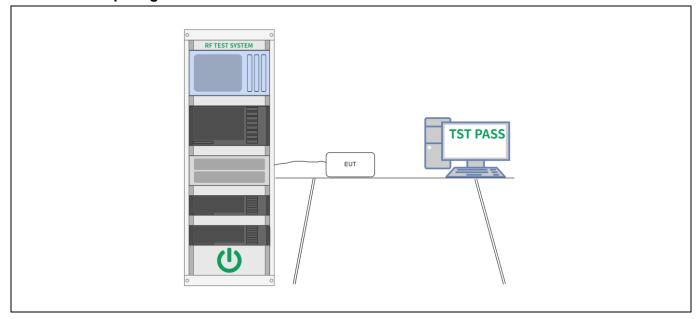
Report No.: MTi241011011-08E1

the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference

marker amplitude. The marker-delta frequency reading at this point is the specified emission

bandwidth.

k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

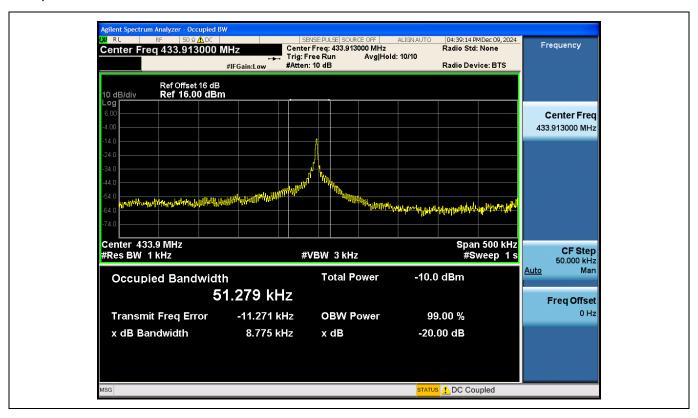

display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).

6.2.1 E.U.T. Operation:

Operating Environment:						
Temperature: 22.6 °C			Humidity:	60 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1			
Final test mode: Mo		Mode	e1			

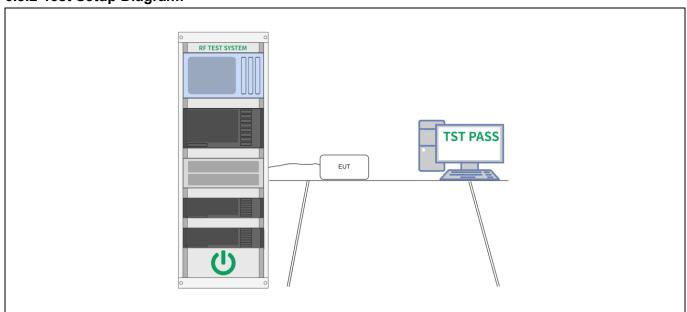
6.2.2 Test Setup Diagram:



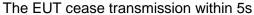
6.2.3 Test Data:

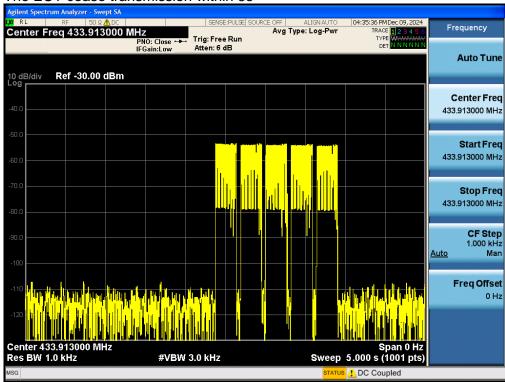
Frequency (MHz)	20dB emission bandwidth (kHz)	Limit (MHz)
433.913	51.279	≤ 1.045

Test plots as below


6.3 Dwell Time

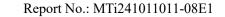
Test Requirement:	47 CFR 15.231(a)(1) & (a)(2)
Test Limit:	(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
	(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.
Test Method:	ANSI C63.10-2020, Section 7.4
Procedure:	For evaluation of periodic operation characteristics, the following procedure may be used: a) Trigger the spectrum analyzer sweep on the RF waveform of the unlicensed wireless device. b) Set the spectrum analyzer sweep time greater than the specified time for periodic operation. c) Manually activate and deactivate the unlicensed wireless device and confirm that it ceases transmission within the specified time of deactivation. d) Document the test results. e) Verify and document that periodic transmissions at regular predetermined intervals do not exist, except where regulatory requirements allow polling or supervision transmissions, including data, to determine system integrity. Compliance is addressed by an attestation supported by the equipment theory of operation.

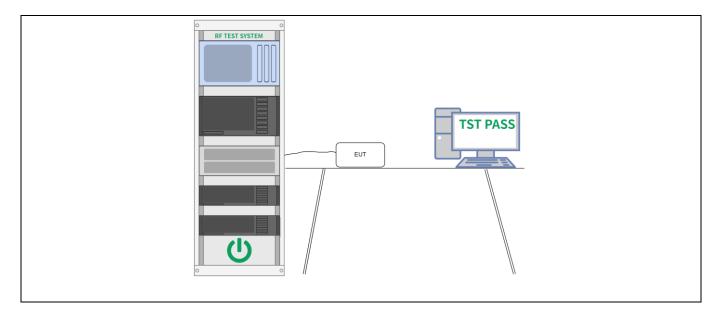

6.3.1 E.U.T. Operation:


Operating Environment:						
Temperature: 22.6 °C Humidity: 60 % Atmospheric Pressure: 101 kPa					101 kPa	
Pre test mode: M		Mode	e1			
Final test mode: Mod		Mode	e1			

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 Duty Cycle

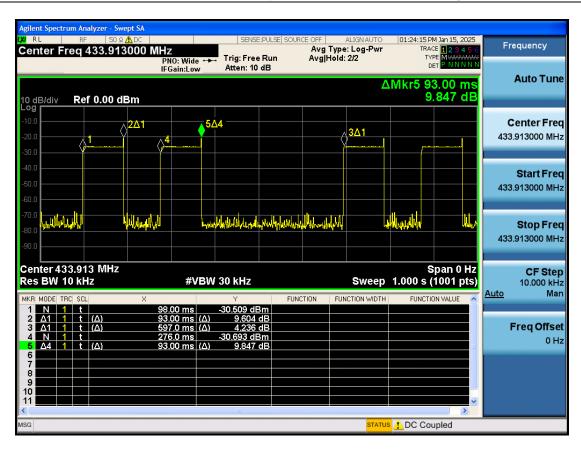

6.4 Duty Cycle	
Test Requirement:	47 CFR 15.231(b) & (e)
Test Limit:	No limit, only for Report Use.
Test Method:	ANSI C63.10-2020, Section 7.5
Procedure:	a) Adjust and configure any EUT switches, controls, or input data streams to ensure that the EUT is transmitting or encoded to obtain the "worst-case" pulse ON time.
	b) Couple the final radio frequency output signal to the input of a spectrum analyzer. This may be performed by a radiated, direct connection (i.e., conducted) or by a "near-field" coupling method. The signal received shall be of sufficient level to trigger adequately the spectrum analyzer sweep display. NOTE—If the bandwidth of the pulse is greater than the RBW of the spectrum analyzer, then a similar measurement may be performed using a
	wideband digital storage oscilloscope (DSO).
	c) Adjust the center frequency of the spectrum analyzer to the center of the RF signal.
	d) Set the spectrum analyzer for ZERO SPAN.
	e) Adjust the SWEEP TIME to obtain at least a 100 ms period of time on the
	horizontal display axis of the spectrum analyzer.
	f) If the pulse train is periodic (i.e., consists of a series of pulses that repeat in a characteristic pattern over a constant time period), and the period (T) is less than or equal to 100 ms, then:
	1) Set the TRIGGER on the spectrum analyzer to capture at least one period of the pulse train, including any blanking intervals.
	2) Determine the total maximum pulse "ON time" (t_{ON}) over one period of the pulse train. An example of a periodic pulse train and the associated period is shown in Figure 14. If the pulse train contains pulses of different widths, then t_{ON} is determined by summing the duration of all of the pulses within the pulse train [i.e., $t_{ON} = \Sigma(t_1 + t_2 +t_n)$].
	3) The duty cycle is then determined by dividing the total maximum "ON time" by the period of the pulse train (t_{ON}/T) .
	g) If the pulse train is nonperiodic or is periodic with a period that exceeds 100 ms, or as an alternative to step f), then:
	1) Set the TRIGGER on the spectrum analyzer to capture the greatest amount of pulse "ON time" over 100 ms.
	 2) Find the 100 ms period that contains the maximum "on time"; this may require summing the duration of multiple pulses as described in step f2). 3) Determine the duty cycle by dividing the total maximum "ON time" by 100 ms (t_{ON}/100 ms).

6.4.1 E.U.T. Operation:

Operating Environment:						
Temperature:	nperature: 22.6 °C		Humidity:	60 %	Atmospheric Pressure:	101 kPa
Pre test mode: Mo			e1			
Final test mode: Mod		e1				

6.4.2 Test Setup Diagram:

6.4.3 Test Data:


T _{on} time (ms)	Period (ms)	Duty cycle (Linear)	Duty cycle correction factor (dB)
94.6	100	0.946	-0.48

Note:

Duty cycle= Ton time/T

Duty cycle correction factor = 20 * log (Duty cycle)

6.5 Field Strength of The Fundamental Signal

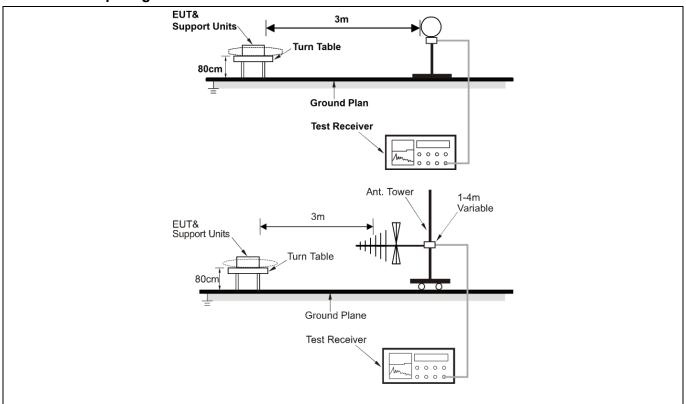
	The Fundamental Sign	ııaı	
Test Limit:	47 CFR 15.231(b)	Field -4	Ciald stranger of the st
Test Limit:	Fundamental	Field strength of	Field strength of
	frequency (MHz)	fundamental	spurious emissions
	10.00.10.70	(microvolts/meter)	(microvolts/meter)
	40.66-40.70	2,250	225
	70-130	1,250	125
	130-174	¹ 1,250 to 3,750	¹ 125 to 375
	174-260	3,750	375
	260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
	Above 470	12,500	1,250
	` ,	rength limits are specified	d at a distance of 3 meters. The
_	tighter limits apply at		
Test Method:	ANSI C63.10-2020, S	ection 6.5	
Procedure:	meters above the growas rotated 360 degree. b. The EUT was set 3 antenna, which was now the antenna height ground to determine the and vertical polarization. For each suspected then the antenna was frequency of below 30 the rotatable table was maximum reading. e. The test-receiver set Bandwidth with Maxim for the emission level specified, then testing would be reported. Of would be re-tested on then reported in a datang. Test the EUT in the channel. h. The radiation meast Transmitting mode, and case. i. Repeat above proceing the points marked on when testing, so only spurious emissions from the disturbance below the limit need in 3. The disturbance below the disturbance below the limit need in 3. The disturbance in 3. The 3.	und at a 3 meter semi-arees to determine the pose or 10 meters away from nounted on the top of a varied from one meter he maximum value of the ons of the antenna are set demission, the EUT was tuned to heights from 1 DMHz, the antenna was to sturned from 0 degrees system was set to Peak Donum Hold Mode. If of the EUT in peak moder could be stopped and the herwise the emissions the by one using quasi-pear a sheet. If lowest channel, the mides are performed and found the X axis positive dures until all frequencies above plots are the high above points had been on the radiator which are not be reported.	e top of a rotating table 0.8 nechoic chamber. The table sition of the highest radiation. The interference-receiving tariable-height antenna tower. To four meters above the effield strength. Both horizontal et to make the measurement. The arranged to its worst case and meter to 4 meters (for the test uned to heights 1 meter) and to 360 degrees to find the etect Function and Specified et was 10dB lower than the limitate peak values of the EUT and to did not have 10dB margin ask method as specified and dle channel, the Highest in X, Y, Z axis positioning for ioning which it is the worst es measured was complete. Factor- Preamp Factor below 30MHz was very low. The stem is sions could be found displayed. The amplitude of eattenuated more than 20dB and the harmonics were the only the above harmonics had

Above 1GHz:

a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No.: MTi241011011-08E1

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.


6.5.1 E.U.T. Operation:

Operating Envi	ironment:					
Temperature:	22.6 °C		Humidity:	60 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1			
Final test mode	e:	Mode	e1			

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China. Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com

Page 25 of 35 Report No.: MTi241011011-08E1

6.5.2 Test Setup Diagram:

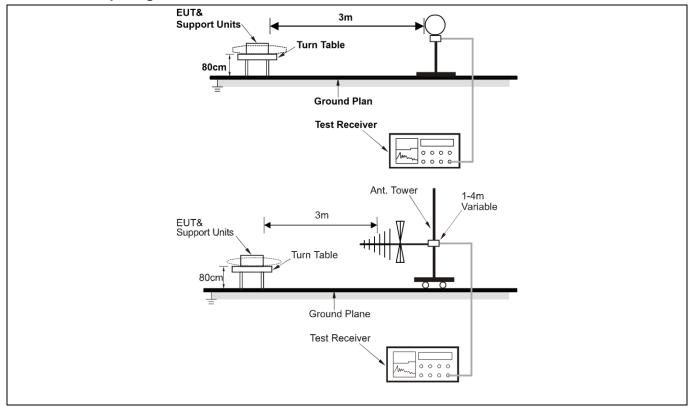
6.5.3 Test Data:

Frequency	Reading Level	Correct Factor	Measure- ment	Limit	Margin	Detector
(MHz)	(dBµV)	dB/m	(dBµV/m)	(dBµV/m)	dB	(MHz)
433.913	81.68	-10.60	71.08	100.90	-29.82	Peak
433.913			70.60	80.90	-10.30	AVG

Notes: AVG Measurement ($dB\mu V/m$) = Peak Measurement ($dB\mu V/m$) + Duty cycle correction factor (dB)

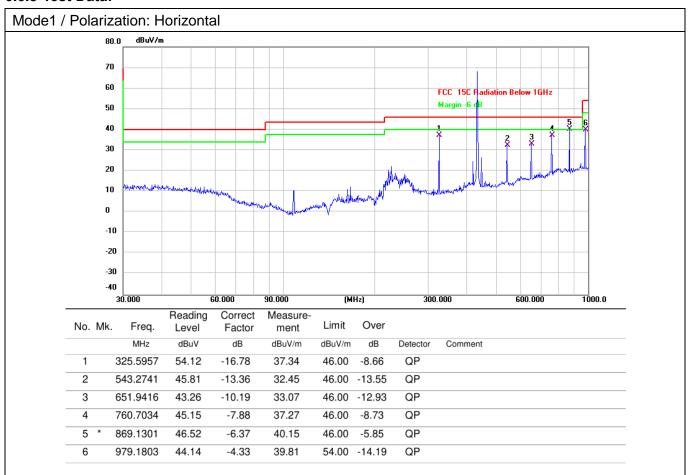
6.6 Radiated Emission (below 1GHz)

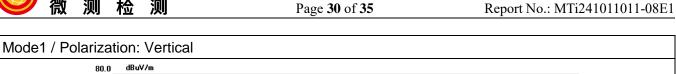
Test Requirement:	47 CFR 15.231		
Test Limit:	Frequency (MHz)	Field strength	Measuremen
root Emme.	Troquency (Williz)	(microvolts/meter)	t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators operative frequency bands 54-72 M However, operation within sections of this part, e.g., In the emission table about the emission limits shown employing a CISPR quasi kHz, 110–490 kHz and about the control of	ve, the tighter limit applies at the in the above table are based -peak detector except for the floore 1000 MHz. Radiated emis	ot be located in the or 470-806 MHz. mitted under other ne band edges. on measurements frequency bands 9–90 ssion limits in these
		measurements employing an	average detector.
Test Method:	ANSI C63.10-2020, Section	on 6.5	
Procedure:	meters above the ground was rotated 360 degrees. b. The EUT was set 3 or 1 antenna, which was mour c. The antenna height is viground to determine the nand vertical polarizations d. For each suspected enter then the antenna was tunfrequency of below 30MH the rotatable table was tunmaximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of the specified, then testing columning would be re-tested one by then reported in a data shad. The radiation measurer Transmitting mode, and for case. i. Repeat above procedure Remark: 1. Level= Read Level+ Case. 2. Scan from 9kHz to 30M The points marked on about the sting, so only about the set ing, set in th	the EUT in peak mode was 10 clid be stopped and the peak values the emissions that did not one using quasi-peak method eet. est channel, the middle channets are performed in X, Y, Z bund the X axis positioning which we until all frequencies measurable Loss+ Antenna Factor- Profiler, the disturbance below 30 love plots are the highest emissive points had been displayed, he radiator which are attenuate.	namber. The table highest radiation. herence-receiving hight antenna tower. heters above the hight. Both horizontal he the measurement. he to its worst case and he meters (for the test hights 1 meter) and higrees to find the highest have 10dB margin have 10dB margin has specified and hel, the Highest haxis positioning for high it is the worst hed was complete. heamp Factor hear years hered was very low. highest highest highest have 10dB margin has specified and hel, the Highest haxis positioning for high it is the worst hered was complete. heamp Factor hered was very low. highest highest highest highest have 10dB margin have 10

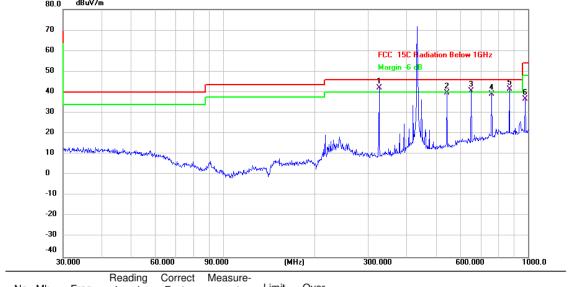

3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Report No.: MTi241011011-08E1

6.6.1 E.U.T. Operation:


Operating Envi	ironment:					
Temperature:	26 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1			
Final test mode	э:	Mode	e1			


6.6.2 Test Setup Diagram:



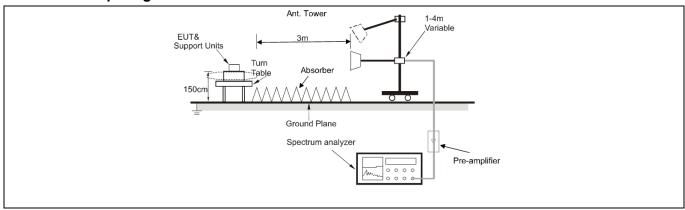
6.6.3 Test Data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	325.5957	56.08	-14.11	41.97	46.00	-4.03	QP	
2		543.2740	52.58	-12.95	39.63	46.00	-6.37	QP	
3	!	651.9415	51.08	-10.52	40.56	46.00	-5.44	QP	
4		760.7033	47.23	-8.23	39.00	46.00	-7.00	QP	
5	!	869.1300	47.71	-6.24	41.47	46.00	-4.53	QP	
6		979.1802	41.75	-5.01	36.74	54.00	-17.26	QP	

6.7 Radiated Emission (above 1GHz)

Test Requirement:	47 CFR 15.231		
Test Limit:	Frequency (MHz)	Field strength	Measuremen
root Emme.	r requeriey (Wiriz)	(microvolts/meter)	t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
		aragraph (g), fundamental em iting under this section shall no	
	frequency bands 54-72 M However, operation within sections of this part, e.g., In the emission table above The emission limits shown employing a CISPR quasikHz, 110–490 kHz and ab	Hz, 76-88 MHz, 174-216 MHz these frequency bands is peri §§ 15.231 and 15.241. /e, the tighter limit applies at the in the above table are based -peak detector except for the f ove 1000 MHz. Radiated emis	or 470-806 MHz. mitted under other ne band edges. on measurements requency bands 9–90 sion limits in these
		measurements employing an	average detector.
Test Method: Procedure:	ANSI C63.10-2020, Section	on 6.6	
	meters above the ground rotated 360 degrees to de b. The EUT was set 3 met which was mounted on the c. The antenna height is v ground to determine the mand vertical polarizations of d. For each suspected em then the antenna was tune frequency of below 30MH; the rotatable table was turn maximum reading. e. The test-receiver syster Bandwidth with Maximum f. If the emission level of the specified, then testing could be reported. Otherwould be re-tested one by and then reported in a data g. Test the EUT in the low channel. h. The radiation measurer Transmitting mode, and for case. i. Repeat above procedure Remark: 1. Level= Read Level+ Ca 2. Scan from 18GHz to 40 The points marked on above when testing, so only above	the EUT in peak mode was 10 club be stopped and the peak varies the emissions that did not one using peak or average may sheet. The est channel, the middle channel of the emission of the est channel, the middle channel of the est channel, the middle channel of the est channel, the middle channel of the est channel	amber. The table was nest radiation. E-receiving antenna, and tower. The ters above the neters above the neters above the neters above the neters (for the test eights 1 meter) and grees to find the etion and Specified. The Blower than the limit alues of the EUT have 10dB margin ethod as specified. The Highest axis positioning for ch it is the worst ed was complete. The amp Factor amplitude of the amplitude of the amplitude of the antended to the antended to the second to

3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.


Report No.: MTi241011011-08E1

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

6.7.1 E.U.T. Operation:

Operating Envi	ronment:	ı				
Temperature:	26 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1			
Final test mode	e:	Mode	e1			

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

Mode1 /	Polari	zatio	n: Horizonta	al					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		1302.000	63.14	-8.69	54.45	74.00	-19.55	peak
	2	*	1302.000	59.05	-8.69	50.36	54.00	-3.64	AVG
	3		1736.000	54.35	-7.63	46.72	74.00	-27.28	peak
	4		1736.000	49.77	-7.63	42.14	54.00	-11.86	AVG
	5		2170.000	48.07	-5.34	42.73	74.00	-31.27	peak
	6		2170.000	43.91	-5.34	38.57	54.00	-15.43	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		1302.000	56.20	-8.69	47.51	74.00	-26.49	peak
2		1302.000	51.94	-8.69	43.25	54.00	-10.75	AVG
3		1736.000	56.57	-7.63	48.94	74.00	-25.06	peak
4	*	1736.000	52.50	-7.63	44.87	54.00	-9.13	AVG
5		2170.000	47.21	-5.34	41.87	74.00	-32.13	peak
6		2170.000	43.02	-5.34	37.68	54.00	-16.32	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

----End of Report----