

TEST REPORT

Report No.:	BCTC2307757199-2E
Applicant:	Shenzhen Qichang Intelligent Technology Co., Ltd
Product Name:	Smart phone
Model/Type Ref.:	F101 PRO
Tested Date:	2023-07-03 to 2023-07-14
Issued Date:	2023-07-17
She No.: BCTC/RF-EMC-005	enzhen BCTC Testing Co., Ltd. Page: 1 of 45

FCC ID: 2BAK2-F101PRO

Product Name:	Smart phone
Trademark:	Fossibot
Model/Type Ref.:	F101 PRO F101 +, F101 PLUS, F101 S
Prepared For:	Shenzhen Qichang Intelligent Technology Co., Ltd
Address:	Room 510, Building 7, Yunli Intelligent Park, No. 7, Bantian Street, Longgang, Shenzhen
Manufacturer:	Shenzhen Qichang Intelligent Technology Co., Ltd
Address:	Room 510, Building 7, Yunli Intelligent Park, No. 7, Bantian Street, Longgang, Shenzhen
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2023-07-03
Sample tested Date:	2023-07-03 to 2023-07-14
Issue Date:	2023-07-17
Report No.:	BCTC2307757199-2E
Test Standards:	FCC Part15.247 ANSI C63.10-2013
Test Results:	PASS
Remark:	This is Bluetooth BLE radio test report.

Tested by:

Brave Zeng/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page: 2 of 45

Table Of Content

Test	Report Declaration	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	8
4.1	Product Information	8
4.2	Test Setup Configuration	8
4.4	Channel List	
4.5	Test Mode	9
4.6	Table Of Parameters Of Text Software Setting	10
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	
6.	Conducted Emissions	13
6.1	Block Diagram Of Test Setup	
6.2	Limit	
6.3	Test Procedure	
6.4	EUT Operating Conditions	
6.5	Test Result	
7.	Radiated Emissions	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test Procedure	
7.4	EUT Operating Conditions	
7.5	Test Result	
8.	Radiated Band Emission Measurement And Restricted Bands Of Ope	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	- Test Procedure	
8.4		
8.5	EUT operating Conditions	25
9.	Power Spectral Density Test	26
9.1	Block Diagram Of Test Setup	26
9.2	Limit	26
9.3	Test Procedure	26
Q /	Block Diagram Of Test Setup Limit Test Procedure EUT Operating Conditions	26
9.5	Test Result	27
10.	Bandwidth Test	30
10.1	Block Diagram Of Test Setup	30
10.2	Limit	30
10.3	Test Procedure	30
10.4	FUT Operating Conditions	30
10.5	Test Result	31
11	Peak Output Power Test	34
11 1	Peak Output Power Test Block Diagram Of Test Setup	
BCTC/F	RF-EMC-005 Page: 3 of 45 / Edition:	B.0

11.2 Limit	
11.3 Test Procedure	34
11.4 EUT Operating Conditions	34
11.5 Test Result	
12. 100 KHz Bandwidth Of Frequency Band Edge	35
12.1 Block Diagram Of Test Setup	35
12.2 Limit	35
12.3 Test Procedure	
12.4 EUT Operating Conditions	35
12.5 Test Result	
13. Antenna Requirement	41
13.1 Limit	41
13.2 Test Result	41
14. EUT Photographs	42
15. EUT Test Setup Photographs	

(Note: N/A Means Not Applicable)

1. Version

Report No.	Issue Date	Description	Approved
BCTC2307757199-2E	2023-07-17	Original	Valid

Edition: B.0

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted Emission	15.207	PASS
2	6dB Bandwidth	15.247 (a)(2)	PASS
3	Peak Output Power	15.247 (b)	PASS
4	Radiated Spurious Emission	15.247 (d), 15.205	PASS
5	Power Spectral Density	15.247 (e)	PASS
6	Restricted Band of Operation	15.205	PASS
7	Band Edge (Out of Band Emissions)	15.247(d)	PASS
8	Antenna Requirement	15.203	PASS

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(9kHz-30MHz)	U=3.7dB
2	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission(150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59°C

4. **Product Information And Test Setup**

4.1 Product Information

F101 PRO F101 +, F101 PLUS, F101 S
All the model are the same circuit and RF module, except model names.
5.0
TE197_MAIN_PCB_V1.0
FOSSiBOT_F101 Pro_E
2402-2480MHz
GFSK
LE 1M PHY
40CH
Internal antenna
1 dBi
DC 5V from adapter/DC 3.85V from battery
Model: HJ-FC017K7-US Input: 100-240V- 50/60Hz 0.6A
Output: 5.0V 2.0A OR 7.0V 2.0A OR 9.0V 2.0A OR 12.0V 1.5A 18.0W

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment. Conducted Emission:

Radiated Spurious Emission:

E-1	C-1	E-2	AC
EUT		Adapter	

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Smart phone	Fossibot	F101 PRO	N/A	EUT
E-2	Adapter	N/A	HJ-FC017K7-US	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	1M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

	Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	2402	11	2422	21	2442	
02	2404	12	2424	22	2444	
03	2406	13	2426	23	2446	
~	~	~	~	~	~	
09	2418	19	2438	39	2478	
10	2420	20	2440	40	2480	

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

For All Mode	Description	Modulation Type				
Mode 1	CH01					
Mode 2	CH20	GFSK				
Mode 3	CH40					
Mode 4	Charging (Conducted emission)					
Mode 5	Link mode (Radiated emis	Link mode (Radiated emission)				

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	CMD				
Frequency	2402 MHz	2440 MHz	2480 MHz		
Parameters	DEF	DEF	DEF		

Edition: B.0

5. Test Facility And Test Instrument Used

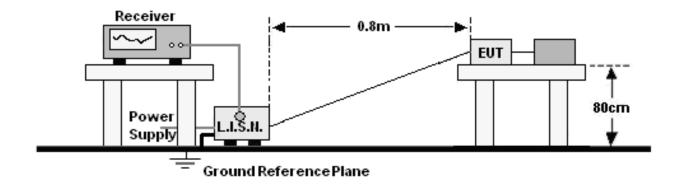
5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 A2LA certificate registration number is: CN1212 ISED Registered No.: 23583 ISED CAB identifier: CN0017

Conducted Emissions Test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Receiver	R&S	ESR3	102075	May 15, 2023	May 14, 2024		
LISN	R&S	ENV216	101375	May 15, 2023	May 14, 2024		
Software	Frad	EZ-EMC	EMC-CON 3A1	/	/		
Attenuator	١	10dB DC-6GHz	1650	May 15, 2023	May 14, 2024		

5.2 Test Instrument Used

RF Conducted Test								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
Power Metter	Keysight	E4419	١	May 15, 2023	May 14, 2024			
Power Sensor (AV)	Keysight	E9300A	/	May 15, 2023	May 14, 2024			
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 15, 2023	May 14, 2024			
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 15, 2023	May 14, 2024			
Communication test set	R&S	CMW500	126173	Nov. 08, 2022	Nov. 07, 2023			
Radio frequency control box	MAIWEI	MW200-RFC B	·······		1			
Software	MAIWEI	MTS 8200	/					



Radiated Emissions Test (966 Chamber01)							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
966 chamber	ChengYu	966 Room	966	May 15, 2023	May 14, 2026		
Receiver	R&S	ESR3	102075	May 15, 2023	May 14, 2024		
Receiver	R&S	ESRP	101154	May 15, 2023	May 14, 2024		
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 15, 2023	May 14, 2024		
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 29, 2023	May 28, 2024		
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 31, 2023	May 30, 2024		
Amplifier	SKET	LAPA_01G18 G-45dB	١	May 15, 2023	May 14, 2024		
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 31, 2023	May 30, 2024		
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 15, 2023	May 14, 2024		
Horn Antenn(18GHz -40GHz)	Schwarzbeck	BBHA9170	00822	May 31, 2023	May 30, 2024		
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 15, 2023	May 14, 2024		
Communication test set	R&S	CMW500	126173	Nov. 08, 2022	Nov. 07, 2023		
Software	Frad	EZ-EMC	FA-03A2 RE	\	\		

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit (dBuV)		
FREQUENCY (MHz)	Quas-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

6.3 Test Procedure

Setting
10 dB
0.15 MHz
30 MHz
9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

6.4 EUT Operating Conditions

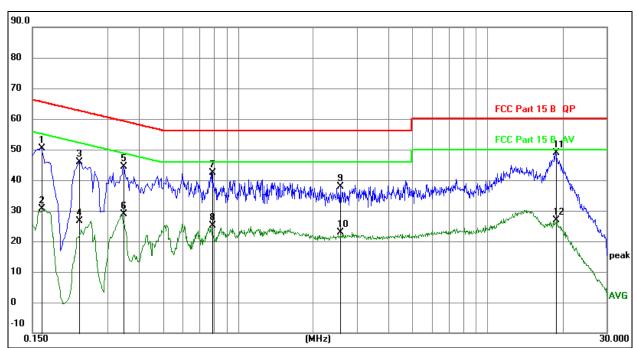
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 1	Test Voltage :	AC120V/60Hz

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.


3. Measurement=Reading Level+ Correct Factor

4. Over=Measurement-Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1539	42.31	9.52	51.83	65.79	-13.96	QP
2		0.1539	23.97	9.52	33.49	55.79	-22.30	AVG
3		0.2256	34.09	9.61	43.70	62.61	-18.91	QP
4		0.2256	19.26	9.61	28.87	52.61	-23.74	AVG
5		0.3428	32.15	9.61	41.76	59.14	-17.38	QP
6		0.3428	21.42	9.61	31.03	49.14	-18.11	AVG
7		0.6075	30.61	9.62	40.23	56.00	-15.77	QP
8		0.6075	17.00	9.62	26.62	46.00	-19.38	AVG
9	*	13.3372	38.27	9.66	47.93	60.00	-12.07	QP
10		13.3372	22.66	9.66	32.32	50.00	-17.68	AVG
11		18.0393	38.06	9.73	47.79	60.00	-12.21	QP
12		18.0393	17.46	9.73	27.19	50.00	-22.81	AVG

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	N
Test Mode:	Mode 1	Test Voltage :	AC120V/60Hz

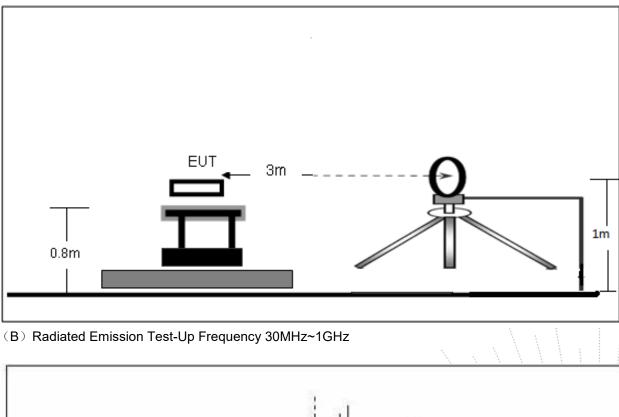
Remark:

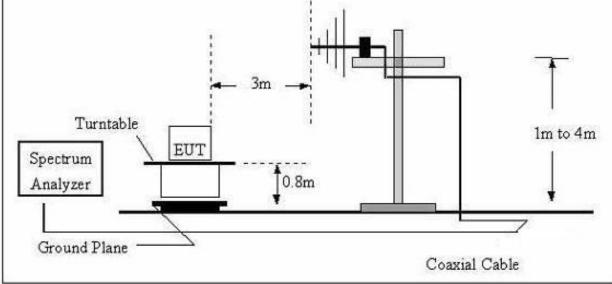
1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

3. Measurement=Reading Level+ Correct Factor

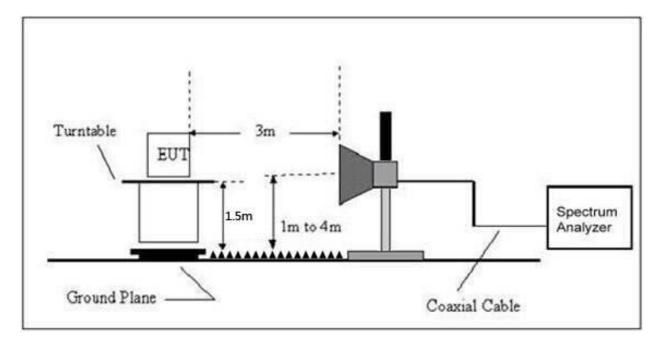
4. Over=Measurement-Limit


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1635	40.87	9.54	50.41	65.28	-14.87	QP
2	0.1635	21.12	9.54	30.66	55.28	-24.62	AVG
3	0.2310	36.23	9.61	45.84	62.41	-16.57	QP
4	0.2310	17.06	9.61	26.67	52.41	-25.74	AVG
5	0.3480	34.83	9.61	44.44	59.01	-14.57	QP
6	0.3480	19.18	9.61	28.79	49.01	-20.22	AVG
7	0.7890	32.83	9.65	42.48	56.00	-13.52	QP
8	0.7890	15.44	9.65	25.09	46.00	-20.91	AVG
9	2.5800	28.24	9.76	38.00	56.00	-18.00	QP
10	2.5800	13.10	9.76	22.86	46.00	-23.14	AVG
11 *	18.8160	39.17	9.75	48.92	60.00	-11.08	QP
12	18.8160	17.25	9.75	27.00	50.00	-23.00	AVG



7. Radiated Emissions

7.1 Block Diagram Of Test Setup


(A) Radiated Emission Test-Up Frequency Below 30MHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Li	mit at 3m Distance
(MHz)	uV/m	(m)	uV/m	dBuV/m
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY	Limit (dBuV/m) (at 3M)					
(MHz)	PEAK	AVERAGE				
Above 1000	74	54				

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 - 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

7.3 Test Procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).

h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

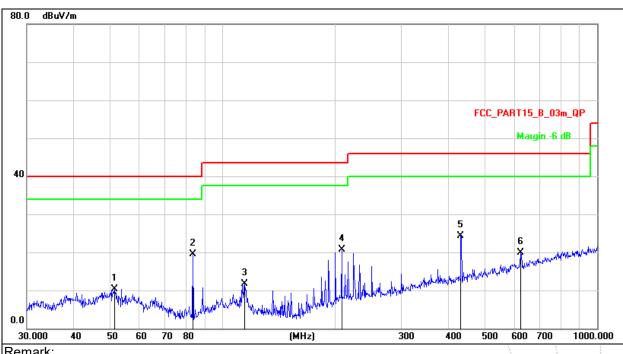
Below 30MHz

Temperature:	26 ℃	Relative Humidity:	24%
Pressure:	101KPa	Test Voltage:	AC120V/60Hz
Test Mode:	Mode 4	Polarization :	

		· · · ·		
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor =40 log (specific distance/test distance)(dB);

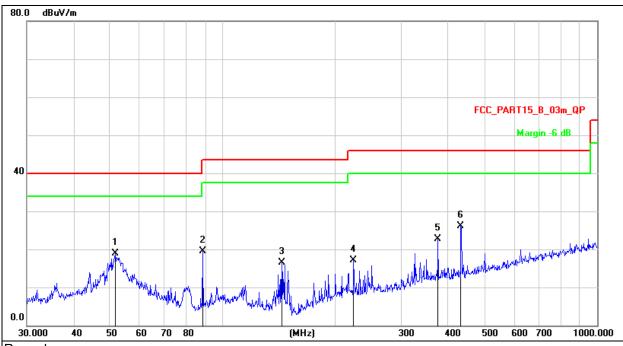
Limit line = specific limits(dBuv) + distance extrapolation factor.

Between 30MHz - 1GHz

۲emperature: 26°C F		Relative Humidity:	54%	
Pressure:	101KPa	Phase :	Horizontal	
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz	

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.


2. Measurement=Reading Level+ Correct Factor

3. Over=Measurement-Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		51.4807	26.20	-15.81	10.39	40.00	-29.61	QP
2	*	83.2298	40.30	-20.81	19.49	40.00	-20.51	QP
3	1	14.5146	30.35	-18.72	11.63	43.50	-31.87	QP
4	2	07.8501	37.86	-17.13	20.73	43.50	-22.77	QP
5	4	32.5457	36.02	-11.74	24.28	46.00	-21.72	QP
6	6	25.0780	27.87	-8.05	19.82	46.00	-26.18	QP

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Measurement=Reading Level+ Correct Factor

3.	Over=Measurement-L	imit
----	--------------------	------

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		51.6616	34.75	-15.84	18.91	40.00	-21.09	QP
2		88.3421	39.21	-19.62	19.59	43.50	-23.91	QP
3		143.8295	37.23	-20.64	16.59	43.50	-26.91	QP
4		223.7334	33.65	-16.64	17.01	46.00	-28.99	QP
5	,	375.9385	35.17	-12.49	22.68	46.00	-23.32	QP
6	*	432.5457	37.91	-11.74	26.17	46.00	-19.83	QP

Between 1GHz – 25GHz

			GFSK				
Polar	Frequency	requency Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Low chan	nel			
V	4804.00	58.06	-10.85	47.21	74.00	-26.79	PK
V	4804.00	48.14	-10.85	37.29	54.00	-16.71	AV
V	7206.00	49.84	-3.06	46.78	74.00	-27.22	PK
V	7206.00	40.76	-3.06	37.70	54.00	-16.30	AV
Н	4804.00	54.37	-10.85	43.52	74.00	-30.48	PK
Н	4804.00	45.07	-10.85	34.22	54.00	-19.78	AV
Н	7206.00	47.15	-3.06	44.09	74.00	-29.91	PK
Н	7206.00	38.79	-3.06	35.73	54.00	-18.27	AV
			Middle char	nel			
V	4880.00	56.53	-10.62	45.91	74.00	-28.09	PK
V	4880.00	49.49	-10.62	38.87	54.00	-15.13	AV
V	7320.00	49.51	-2.65	46.86	74.00	-27.14	PK
V	7320.00	40.72	-2.65	38.07	54.00	-15.93	AV
Н	4880.00	53.29	-10.62	42.67	74.00	-31.33	PK
Н	4880.00	42.86	-10.62	32.24	54.00	-21.76	AV
Н	7320.00	48.19	-2.65	45.54	74.00	-28.46	PK
Н	7320.00	40.58	-2.65	37.93	54.00	-16.07	AV
			High chan	nel			
V	4960.00	59.49	-10.38	49.11	74.00	-24.89	PK
V	4960.00	51.47	-10.38	41.09	54.00	-12.91	AV
V	7440.00	53.04	-2.22	50.82	74.00	-23.18	PK
V	7440.00	42.14	-2.22	39.92	54.00	-14.08	AV
Н	4960.00	58.29	-10.38	47.91	74.00	-26.09	PK
Н	4960.00	47.49	-10.38	37.11	54.00	-16.89	AV
Н	7440.00	50.75	-2.22	48.53	74.00	-25.47	PK
Н	7440.00	43.46	-2.22	41.24	54.00	-12.76	AV

Remark:

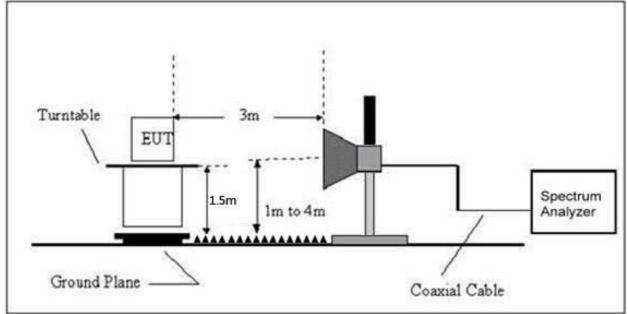
1.Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


5. This report only shows the worst case test data.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY	Limit (dBuV/m) (at 3M)		
(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test Procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

	Polar	Frequency	Reading	Correct Factor	Measure- ment (dBuV/m)	Lim (dBu		Result
	(H/V)	(MHz)	Level (dBuV/m)	(dB)	PK	PK	AV	
			Lov	v Channel 24	402MHz			
	Н	2390.00	54.94	-19.46	35.48	74.00	54.00	PASS
	Н	2400.00	59.50	-19.42	40.08	74.00	54.00	PASS
	V	2390.00	55.35	-19.46	35.89	74.00	54.00	PASS
GFSK	V	2400.00	59.78	-19.42	40.36	74.00	54.00	PASS
1Mbps			Hig	h Channel 24	480MHz			
	Н	2483.50	59.15	-19.05	40.10	74.00	54.00	PASS
	Н	2500.00	52.49	-18.98	33.51	74.00	54.00	PASS
	V	2483.50	58.61	-19.05	39.56	74.00	54.00	PASS
	V	2500.00	54.19	-18.98	35.21	74.00	54.00	PASS

Remark:

1. Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5. This report only shows the worst case test data.

9. Power Spectral Density Test

9.1 Block Diagram Of Test Setup

9.2 Limit

FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS	

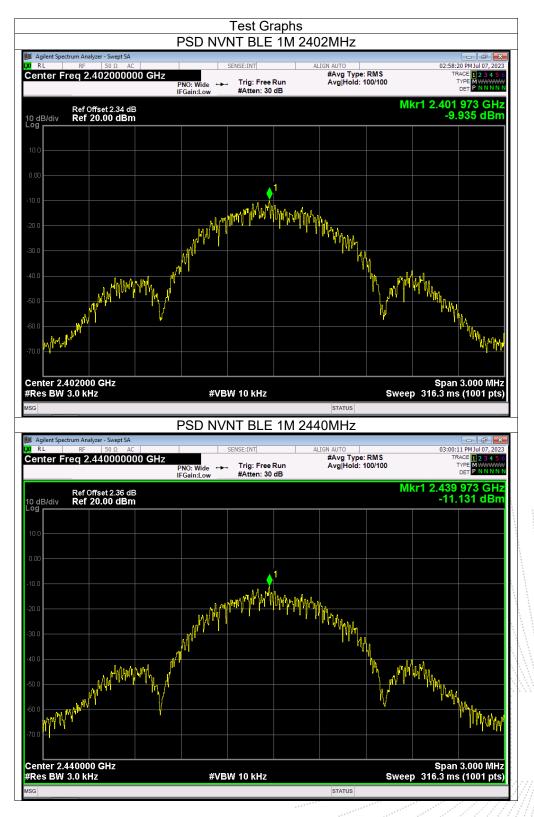
LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

9.3 Test Procedure

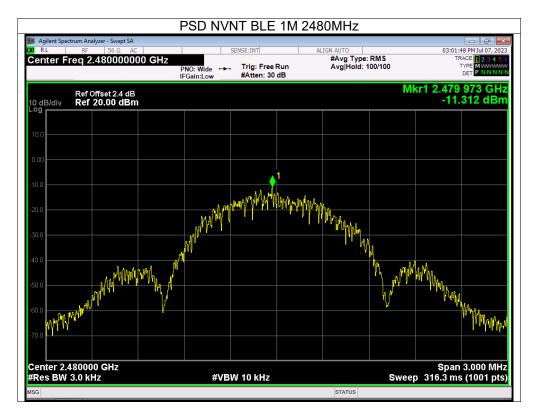
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz
- 4. Set the VBW \ge 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

9.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss



9.5 Test Result


Temperature :	26 ℃	Relative Humidity:	54%
Test Mode :	GFSK	Test Voltage :	DC 5V

	Frequency	Power Spectral Density(dBm/3kHz)	Limit (dBm/3kHz)	Result
	2402 MHz	-9.94	8	PASS
GFSK	2440 MHz	-11.13	8	PASS
	2480 MHz	-11.31	8	PASS

Page: 29 of 45

10. Bandwidth Test

10.1 Block Diagram Of Test Setup

10.2 Limit

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

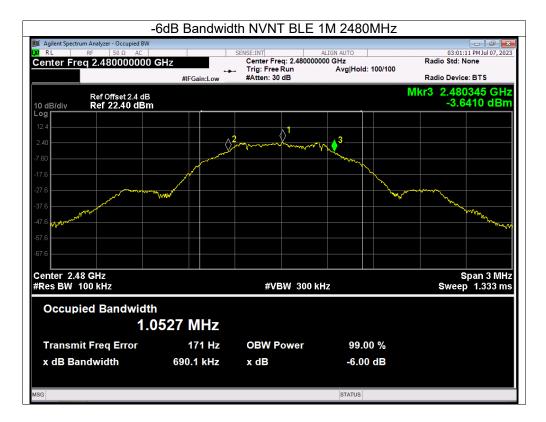
10.3 Test Procedure

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss


10.5 Test Result

Temperature :	26 ℃	Relative H	umidity :	54%	
Test Mode :	GFSK	Test Volta	ge :	DC 5V	
	Frequency (MHz)	-6dB bandwidth (MHz)	Limit (kHz)		Result
	2402	0.684	500		Pass
GFSK	2440	0.667	500		Pass
	2480	0.69	500		Pass

Page: 33 of 45

11. Peak Output Power Test

11.1 Block Diagram Of Test Setup

11.2 Limit

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

11.3 Test Procedure

a. The EUT was directly connected to the Power meter

11.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

11.5 Test Result

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 5V

FrequencyOutput Power(PK)Limit(MHz)(dBm)dBm24024.673024403.3830		Fraguanay	Maximum Conducted	Conducted Output Power
2402 4.67 30 GFSK 1Mbps 2440 3.38 30		Frequency	Output Power(PK)	Limit
GFSK 1Mbps 2440 3.38 30		(MHz)	(dBm)	dBm
		2402	4.67	30
	GFSK 1Mbps	2440	3.38	30
2480 3.44 30		2480	3.44	30

12. 100 KHz Bandwidth Of Frequency Band Edge

12.1 Block Diagram Of Test Setup

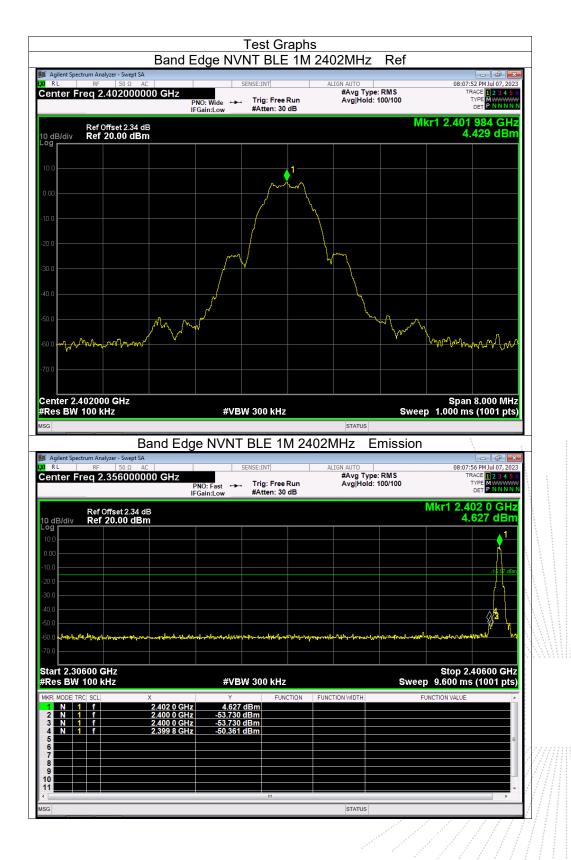
12.2 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

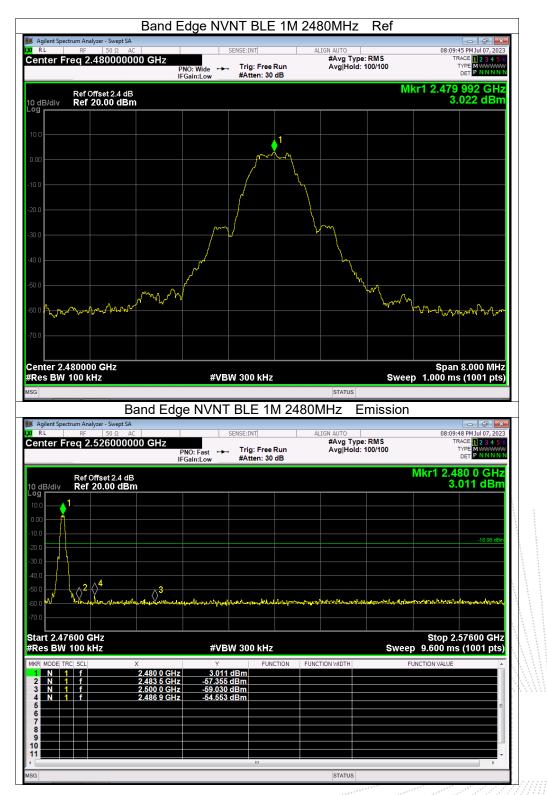
12.3 Test Procedure

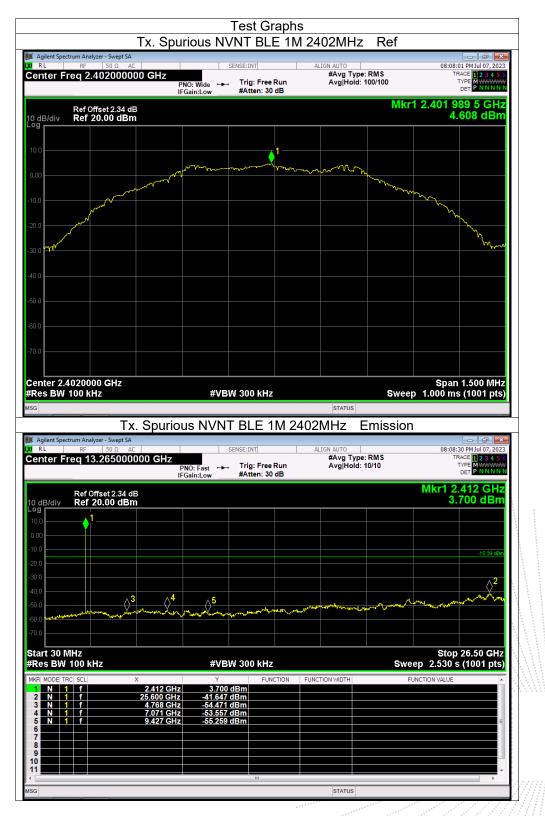
Using the following spectrum analyzer setting:

- a) Set the RBW = 100KHz.
- b) Set the VBW = 300KHz.
- c) Sweep time = auto couple.
- d) Detector function = peak.
- e) Trace mode = max hold.
- f) Allow trace to fully stabilize..


12.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss


Page: 35 of 45


12.5 Test Result

Agilent Spectrum Analyzer - Swept							
RL RF 50 Ω enter Freq 2.48000		SE	NSE:INT	ALIGN AUTO #Avg Type	RMS	TR	55 PM Jul 07, 2023
anter 110q 2.40000	PN	NO:Wide ↔	Trig: Free Run #Atten: 40 dB	Avg Hold:	100/100	1	
	IFC	Gain:Low	#Atten: 40 dB		Mler		91 0 GHz
dB/div Ref Offset 2.4 Ref 20.00 d					IVINI	2.479 5	952 dBm
.0			1				
		mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
10	and with	ų · · · · ·			and and a second		
.0	man				Marine	m	
,						m	
.0 0						<u>```</u>	hourse and the second s
and a second							Mr
.0							www.w
.0							
.0							
.0							
.0							
enter 2.4800000 GHz						Cnon	1.500 MHz
tes BW 100 kHz		#VBW	300 kHz	STATUS	Sweep	5 1.000 ms	(1001 pts)
	Tx Spuriou					o 1.000 ms	; (1001 pts)
3 	Tx. Spuriou				sweer Emission	o 1.000 ms	(1001 pts)
Agilent Spectrum Analyzer - Swep RL RF 50 Ω	AC	ıs NVNT		2480MHz	Emission	o 1.000 ms	(1001 pts)
Agilent Spectrum Analyzer - Swep RL RF 50 Ω	AC 00000 GHz	ıs NVNT	BLE 1M 2	2480MHz E	Emission .: RMS	08:10:2	24 PM Jul 07, 2023
Agilent Spectrum Analyzer - Swep RL RF 50 Ω	SA AC 000000 GHz	JS NVNT	BLE 1M 2	2480MHz E	Emission .: RMS	08:10:2	(1001 pts)
Agilent Spectrum Analyzer - Swep RL RF 50 Ω enter Freq 13.26500 Ref Offset 2.4	AC 00000 GHz Pr	JS NVNT SEI NO:Fast ↔	BLE 1M 2	2480MHz E	Emission .: RMS	08:10: 08:10: TF T Mkr1 2.	(1001 pts) (1001 pts) (24 PM Jul 07, 2023 (24 PM Jul 07, 2023 (24 PM Jul 07, 2023 (24 PM Jul 07, 2023 (24 PM Jul 07, 2023) (24 PM Jul 0
Agilent Spectrum Analyzer - Swep RL RF 50 Ω enter Freq 13.26500 Ref Offset 2.4 dB/div Ref 20.00 d	AC 00000 GHz Pr	JS NVNT SEI NO:Fast ↔	BLE 1M 2	2480MHz E	Emission .: RMS	08:10: 08:10: TF T Mkr1 2.	(1001 pts)
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.2650 Ref Offset 2.4 dB/div Ref 20.00 d	AC 00000 GHz Pr	JS NVNT SEI NO:Fast ↔	BLE 1M 2	2480MHz E	Emission .: RMS	08:10: 08:10: TF T Mkr1 2.	(1001 pts) (1001 pts) (24 PM Jul 07, 2023 (24 PM Jul 07, 2023 (24 PM Jul 07, 2023 (24 PM Jul 07, 2023 (24 PM Jul 07, 2023) (24 PM Jul 0
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 Ref Offset 2.4 dB/div Ref 20.00 d	AC 00000 GHz Pr	JS NVNT SEI NO:Fast ↔	BLE 1M 2	2480MHz E	Emission .: RMS	08:10: 08:10: TF T Mkr1 2.	(1001 pts) (1001 pts) (24 PM Jul 07, 2023 (24 PM Jul 07, 2023 (24 PM Jul 07, 2023 (24 PM Jul 07, 2023 (24 PM Jul 07, 2023) (24 PM Jul 0
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 Ref Offset 2.4 dB/div Ref 20.00 d	AC 00000 GHz Pr	JS NVNT SEI NO:Fast ↔	BLE 1M 2	2480MHz E	Emission .: RMS	08:10: 08:10: TF T Mkr1 2.	492 GHz 691 dBm
Agilent Spectrum Analyzer - Swept RL RF 50 Q enter Freq 13.26500 Ref Offset 2.4 dB/div Ref 20.00 d	AC 00000 GHz Pr	JS NVNT SEI NO:Fast ↔	BLE 1M 2	2480MHz E	Emission .: RMS	08:10: 08:10: TF T Mkr1 2.	(1001 pts) (1001 pts) (24 PM Jul 07, 2023 (24 PM Jul 07, 2023 (24 PM Jul 07, 2023 (24 PM Jul 07, 2023 (24 PM Jul 07, 2023) (24 PM Jul 0
Agilent Spectrum Analyzer - Swept RL RF 50 Q enter Freq 13.26500 Ref Offset 2.4 dB/div Ref 20.00 d	AC 00000 GHz Pr	JS NVNT SEI NO:Fast ↔	BLE 1M 2	2480MHz E	Emission .: RMS	08:10: 08:10: TF T Mkr1 2.	492 GHz 691 dBm
Agilent Spectrum Analyzer - Swept RL RF 50 Q enter Freq 13.26500 Ref Offset 2.4 dB/div Ref 20.00 d	AC 00000 GHz Pr	JS NVNT SEI NO:Fast ↔	BLE 1M 2	2480MHz E	Emission	08:10: 08:10: TF T Mkr1 2.	492 GHz 691 dBm
Agilent Spectrum Analyzer - Swept RL RF 50 Q enter Freq 13.26500 Ref Offset 2.4 dB/div Ref 20.00 d	AC 00000 GHz Pr	JS NVNT SEI NO:Fast ↔	BLE 1M 2	2480MHz E	Emission	08:10: 08:10: TF T Mkr1 2.	492 GHz 691 dBm
Agilent Spectrum Analyzer - Swept RL RF 50 Q enter Freq 13.26500 Ref Offset 2.4 dB/div Ref 20.00 d	AC 00000 GHz Pr	JS NVNT SEI NO:Fast ↔	BLE 1M 2	2480MHz E	Emission	08:10: 08:10: TF T Mkr1 2.	492 GHz 691 dBm
Agilent Spectrum Analyzer - Swept RL RF 50 Q enter Freq 13.26500 Ref Offset 2.4 dB/div Ref 20.00 d	AC 00000 GHz Pr	JS NVNT SEI NO:Fast ↔	BLE 1M 2	2480MHz E	Emission	08:10: 08:10: TF T Mkr1 2.	492 GHz 691 dBm
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 g g g g g g g g g g g g g g g g g g	AC 00000 GHz Pr	JS NVNT SEI NO:Fast ↔	BLE 1M 2	2480MHz E	Emission	08:10:2 08:10:2 TR Mkr1 2. 2.	1001 pts)
Agilent Spectrum Analyzer - Swept RL RF 50 Ω Penter Freq 13.26500 Ref Offset 2.4 dB/div Ref 20.00 d	AC 00000 GHz Pr	IS NVNT	BLE 1M 2	2480MHz E	Emission : RMS 10/10	08:10:2 08:10 08:10:2 08:10:2 08:10:2 08:10 00	26.50 GHz
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 dB/div Ref 20.00 d g g 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AC 00000 GHz Pr	IS NVNT	BLE 1M 2	2480MHz E	Emission 10/10	08:10:2 08:10:2 TR Mkr1 2. 2.	26.50 GHz
Agilent Spectrum Analyzer - Swep RL RF 50 Q enter Freq 13.26500 Ref Offset 2.4 dB/div Ref 20.00 d 0 0 0 0 0 0 0 0 0 0 0 0 0	AC AC D00000 GHz PP IFC dB Bm 3 4 4 4 5 4 4 5 4 4 5 4 4 5 4 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	JS NVNT	BLE 1M 2	2480MHz E	Emission 10/10	2 1.000 ms	26.50 GHz
Agilent Spectrum Analyzer - Swept RL RF 50 Q enter Freq 13.26500 Ref Offset 2.4 dB/div Ref 20.00 d 9 0 0 0 0 0 0 0 0 0 0 0 0 0	AC AC AC AC AC AC PP IFC dB Bm AC PP IFC AC PP IFC AC PP IFC AC AC PP IFC AC AC PP IFC AC AC AC PP IFC AC AC AC AC AC AC AC AC AC A	JS NVNT NO: Fast →→ Gain:Low → #VBW Y 2.691 d1 -42.648 d1	BLE 1M 2 NSE:INT Trig: Free Run #Atten: 40 dB 4 300 kHz FUNCTION Bm Bm Bm Bm	2480MHz E	Emission 10/10	2 1.000 ms	26.50 GHz
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500	x 2.492 GHz 2.5600 GHz 2.492 GHz 5.139 GHz 7.627 GHz	IS NVNT SEE NO: Fast ↔ Gain:Low #VBW 2.691 dl -31.334 dl -43.48 dl	BLE 1M 2 NSE:INT Trig: Free Run #Atten: 40 dB	2480MHz E	Emission 10/10	2 1.000 ms	26.50 GHz
Agilent Spectrum Analyzer - Swep RL RF So Q enter Freq 13.26500 Ref Offset 2.4 dB/div Ref 20.00 d 9 0 0 0 0 0 0 0 0 0 0 0 0 0	AC AC AC AC AC AC PP IFC dB Bm AC PP IFC AC PP IFC AC PP IFC AC PP IFC AC AC PP IFC AC AC AC AC PP IFC AC AC AC AC AC AC AC AC AC A	JS NVNT NO: Fast →→ Gain:Low → #VBW Y 2.691 d1 -42.648 d1	BLE 1M 2 NSE:INT Trig: Free Run #Atten: 40 dB	2480MHz E	Emission 10/10	2 1.000 ms	26.50 GHz (1001 pts)
Agilent Spectrum Analyzer - Swept RL RF 50 Q enter Freq 13.26500 Ref Offset 2.4 dB/div Ref 20.00 d 9 0 0 0 0 0 0 0 0 0 0 0 0 0	x 2.492 GHz 2.5600 GHz 2.492 GHz 5.139 GHz 7.627 GHz	IS NVNT SEE NO: Fast ↔ Gain:Low #VBW 2.691 dl -31.334 dl -43.48 dl	BLE 1M 2 NSE:INT Trig: Free Run #Atten: 40 dB	2480MHz E	Emission 10/10	2 1.000 ms	26.50 GHz (1001 pts)
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500	x 2.492 GHz 2.5600 GHz 2.492 GHz 5.139 GHz 7.627 GHz	IS NVNT SEE NO: Fast ↔ Gain:Low #VBW 2.691 dl -31.334 dl -43.48 dl	BLE 1M 2 NSE:INT Trig: Free Run #Atten: 40 dB	2480MHz E	Emission 10/10	2 1.000 ms	26.50 GHz (1001 pts)

13. Antenna Requirement

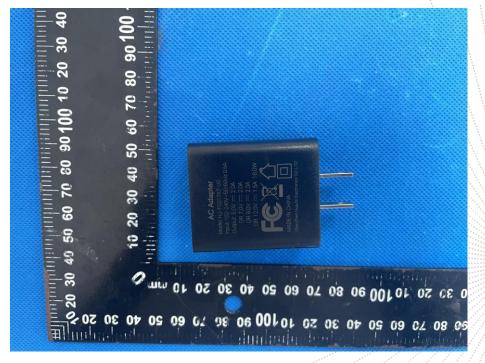
13.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

13.2 Test Result

The EUT antenna is Internal antenna, Antenna Gain is 1dBi, fulfill the requirement of this section.

No.: BCTC/RF-EMC-005

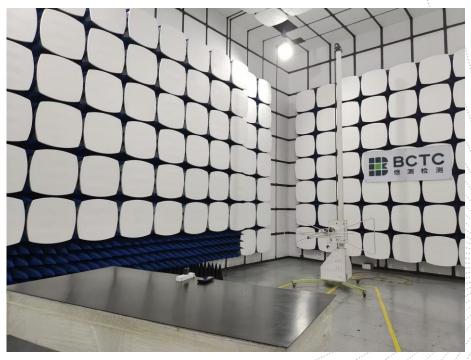


14. EUT Photographs

EUT Photo 1

EUT Photo 2

No.: BCTC/RF-EMC-005



15. EUT Test Setup Photographs

Conducted Emissions Photo

Radiated Measurement Photos

No.: BCTC/RF-EMC-005

Page: 44 of 45

Edition: B.0

STATEMENT

1. The equipment lists are traceable to the national reference standards.

- 2. The test report can not be partially copied unless prior written approval is issued from our lab.
- 3. The test report is invalid without the "special seal for inspection and testing".
- 4. The test report is invalid without the signature of the approver.
- 5. The test process and test result is only related to the Unit Under Test.
- 6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.
- 7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

***** END *****