

RADIO TEST REPORT

S T S

A

P

Report No.:STS2205301W04

Issued for

Vasco Electronics Goralski Group S.K.A.

Al. 29 listopada 20, post code: 31-401 city: Krakow, Poland

Product Name:	Vasco Smart Voice Translator		
Brand Name:	Vasco		
Model Name:	Vasco Translator		
Series Model:	M3, M3 PRO, M4, M5, M55, M6		
FCC ID:	2A6YYVASCO30		
Test Standard:	FCC Part 15.247		

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, all test data presented in this report is only applicable to presented test sample.

Shenzhen STS Test Services Co., Ltd. A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

TEST RESULT CERTIFICATION

Applicant's Name	Vasco Electronics Goralski Group S.K.A.		
Address	Al. 29 listopada 20, post code: 31-401 city: Krakow, Poland		
Manufacturer's Name	SHENZHEN SET INNOVATION LIMITED		
Address	B203, Liuwei business center, Yangmei community, Bantian street, Longgang District, Shenzhen, China.		
Product Description			
Product Name:	Vasco Smart Voice Translator		
Brand Name:	Vasco		
Model Name:	Vasco Translator		
Series Model	M3, M3 PRO, M4, M5, M55, M6		
Test Standards	FCC Part15.247		
Test Procedure	ANSI C63.10-2013		

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Date of receipt of test item:	09 July 2021
Date (s) of performance of tests	09 July 2021 ~ 05 Aug. 2021
Date of Issue	19 May 2022
Test Result	Pass

.

Testing Engineer

(Chris Chen)

Technical Manager

She

(Sean she)

Authorized Signatory :

(Bovey Yang)

howy

Shenzhen STS Test Services Co., Ltd.

Table of Contents

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 TEST SOFTWARE AND POWER LEVEL	10
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	12
2.6 EQUIPMENTS LIST	13
3. EMC EMISSION TEST	15
3.1 CONDUCTED EMISSION MEASUREMENT	15
3.2 TEST PROCEDURE	16
3.3 TEST SETUP	16
3.4 EUT OPERATING CONDITIONS	16
3.5 TEST RESULTS	17
4. RADIATED EMISSION MEASUREMENT	19
4.1 RADIATED EMISSION LIMITS	19
4.2 TEST PROCEDURE	21
4.3 TEST SETUP	22
4.4 EUT OPERATING CONDITIONS	22
4.5 FIELD STRENGTH CALCULATION	23
4.6 TEST RESULTS	24
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	31
5.1 LIMIT	31
5.2 TEST PROCEDURE	31
5.3 TEST SETUP	31
5.4 EUT OPERATION CONDITIONS	31
5.5 TEST RESULTS	32
6. POWER SPECTRAL DENSITY TEST	36
6.1 LIMIT	36
6.2 TEST PROCEDURE	36
6.3 TEST SETUP	36

Page 4 of 46 Report No.: STS2205301W04

Table of Contents

6.4 EUT OPERATION CONDITIONS	36
6.5 TEST RESULTS	37
7. BANDWIDTH TEST	39
7.1 LIMIT	39
7.2 TEST PROCEDURE	39
7.3 TEST SETUP	39
7.4 EUT OPERATION CONDITIONS	39
7.5 TEST RESULTS	40
8. PEAK OUTPUT POWER TEST	42
8.1 LIMIT	42
8.2 TEST PROCEDURE	42
8.3 TEST SETUP	43
8.4 EUT OPERATION CONDITIONS	43
8.5 TEST RESULTS	44
9. ANTENNA REQUIREMENT	45
9.1 STANDARD REQUIREMENT	45
9.2 EUT ANTENNA	45
10. EUT TEST PHOTO	46

Page 5 of 46 Report No.: STS2205301W04

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	19 May 2022	STS2205301W04	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C					
Standard Section	Test Item	Judgment	Remark		
15.207	Conducted Emission	PASS			
15.247 (a)(2)	6dB Bandwidth	PASS			
15.247 (b)(3)	Output Power	PASS			
15.209	Radiated Spurious Emission PASS				
15.247 (d)	Conducted Spurious & Band Edge Emission PASS				
15.247 (e)	Power Spectral Density PASS				
15.205	Restricted bands of operation	PASS			
Part 15.247(d)/ Part 15.209(a)	Band Edge Emission PASS				
15.203	Antenna Requirement PASS				

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

(2) All tests are according to ANSI C63.10-2013.

Shenzhen STS Test Services Co., Ltd.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated 9K-30MHz	±2.84dB
4	All emissions, radiated 30M-1GHz	±4.39dB
5	All emissions, radiated 1G-6GHz	±5.10dB
6	All emissions, radiated>6G	±5.48dB
7	Conducted Emission (9KHz-150KHz)	±2.79dB
8	Conducted Emission (150KHz-30MHz)	±2.80dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name/PMN	Vasco Smart Voice Translator		
Trade Name	Vasco		
Model Name/HVIN	Vasco Translator		
Series Model	M3, M3 PRO, M4, N	<i>l</i> 15, M55, M6	
Model Difference	Only different in mo	del name.	
Product Description	The EUT is a Smart Voice TranslatorOperation Frequency:2402~2480 MHzModulation Type:GFSKRadio Technology:BLEBluetooth Version:4.0Bluetooth Configuration:LE(Support 1M PHY)Number Of Channel:40Antenna Designation:Please refer to the Note 3.		
Channel List	Antenna Gain (dBi) 0.5 dBi Please refer to the Note 2.		
Adapter	Input: AC 100-240V Output: DC 5V 1.0A		
Battery	Rated Voltage: 3.8V Charge Limit Voltage: 4.35V±0.05V Capacity: 1700mAh		
Hardware version number	F202_MB_V01		
Software version number/FVIN	V1.0		
Serial Numbers	VEVNMT1701230651		
Connecting I/O Port(s)	Please refer to the Note 1.		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2.								
				Chan	nel List			
	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequenc y (MHz)
	00	2402	10	2422	20	2442	30	2462
	01	2404	11	2424	21	2444	31	2464
	02	2406	12	2426	22	2446	32	2466
	03	2408	13	2428	23	2448	33	2468
	04	2410	14	2430	24	2450	34	2470
	05	2412	15	2432	25	2452	35	2472
	06	2414	16	2434	26	2454	36	2474
	07	2416	17	2436	27	2456	37	2476
	08	2418	18	2438	28	2458	38	2478
	09	2420	19	2440	29	2460	39	2480

3.

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	Vasco	Vasco Translator	PIFA	N/A	0.5 dBi	BLE ANT

Note: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH00(2402MHz)	1 Mbps/GFSK
Mode 2	TX CH19(2440MHz)	1 Mbps/GFSK
Mode 3	TX CH39(2480MHz)	1 Mbps/GFSK

Note:

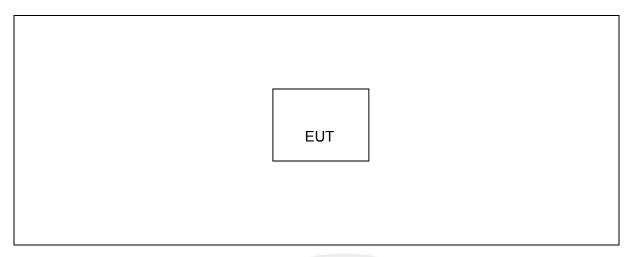
(1) We tested for all available U.S. voltage and frequencies (For 120V, 50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is shown in the report.

(2) The battery is fully-charged during the radiated and RF conducted test.

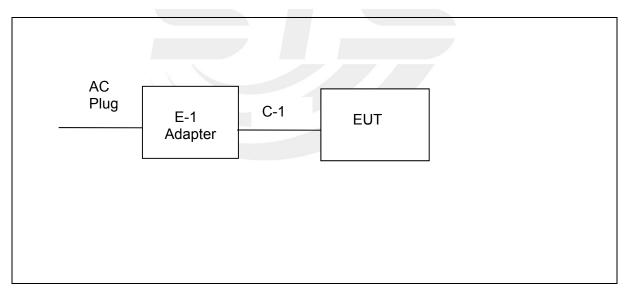
For AC Conducted Emission

	Test Case
AC Conducted Emission	Mode 4 : Keeping BT TX

2.3 TEST SOFTWARE AND POWER LEVEL


During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing
BLE	BLE	GFSK	0.5	default	Engineering mode



2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Emission Test

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
N/A	N/A	N/A	N/A	N/A	N/A

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
E-1	Adapter	N/A	MY-HFL05100R-ZMG	N/A	N/A
C-1	USB Cable	N/A	N/A	120cm	N/A

Note:

- (1) For detachable type I/O cable should be specified the length in cm in ^[] Length ^[] column.
- (2) "YES" is means "with core"; "NO" is means "without core".

2.6 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	
Test Receiver	R&S	ESCI	101427	2020.10.12	2021.10.11	
Signal Analyzer	R&S	FSV 40-N	101823	2020.10.10	2021.10.09	
Active loop Antenna	ZHINAN	ZN30900C	16035	2021.04.11	2022.04.10	
Bilog Antenna	TESEQ	CBL6111D	34678	2020.10.12	2022.10.11	
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2019.10.15	2021.10.14	
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	J211020657	2020.10.12	2022.10.11	
Pre-Amplifier (0.1M-3GHz)	EM	EM330	060665	2020.10.12	2021.10.11	
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2020.10.12	2021.10.11	
Pre-Amplifier (18G-40GHz)	SKET	LNPA-1840-50	SK2018101801	2020.10.10	2021.10.09	
Temperature & Humidity	HH660	Mieo	N/A	2020.10.13	2021.10.12	
Turn table	EM	SC100_1	60531	N/A	N/A	
Antenna mast	EM	SC100	N/A	N/A	N/A	
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 RE)				

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2020.10.12	2021.10.11
LISN	R&S	ENV216	101242	2020.10.12	2021.10.11
LISN	EMCO	3810/2NM	23625	2020.10.12	2021.10.11
Temperature & Humidity	HH660	Mieo	N/A	2020.10.13	2021.10.12
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 CE)			

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
			MY55520005	2020.10.10	2021.10.09
Power Sensor	Kovoight	evsight U2021XA		2020.10.10	2021.10.09
Power Sensor	Keysight	U2021XA	MY56120038	2020.10.10	2021.10.09
			MY56280002	2020.10.10	2021.10.09
Signal Analyzer	Agilent	N9020A	MY51110105	2021.03.04	2022.03.03
Temperature & Humidity	HH660	Mieo	N/A	2020.10.13	2021.10.12
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 RE)			

Shenzhen STS Test Services Co., Ltd.

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

	Conducted Emission limit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Vertical Reference Ground Plane EUT 40cm EUT 80cm N Horizontal Reference Ground Plane

3.3 TEST SETUP

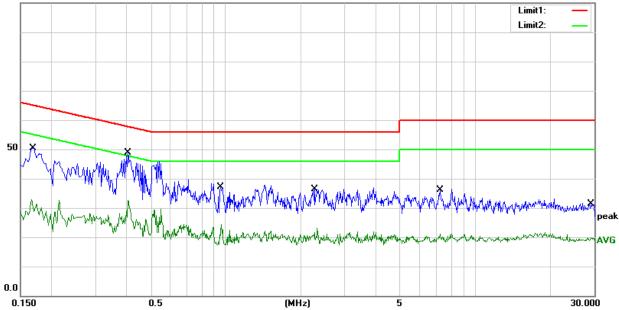
Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS


Temperature:	26.1(C)	Relative Humidity:	58%RH
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 4		

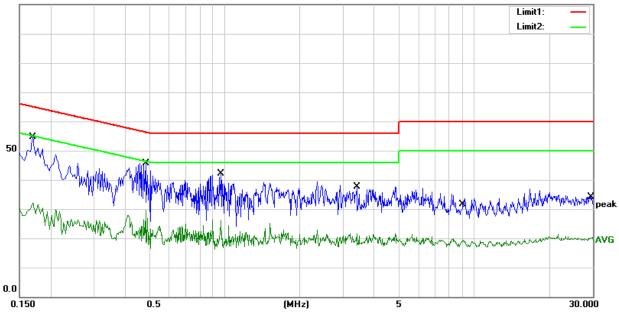
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.1660	29.95	20.33	50.28	65.16	-14.88	QP
2	0.1660	12.55	20.33	32.88	55.16	-22.28	AVG
3	0.4060	28.38	20.54	48.92	57.73	-8.81	QP
4	0.4060	11.98	20.54	32.52	47.73	-15.21	AVG
5	0.9660	16.64	20.31	36.95	56.00	-19.05	QP
6	0.9660	4.13	20.31	24.44	46.00	-21.56	AVG
7	2.2620	16.12	20.32	36.44	56.00	-19.56	QP
8	2.2620	2.89	20.32	23.21	46.00	-22.79	AVG
9	7.2140	15.44	20.62	36.06	60.00	-23.94	QP
10	7.2140	0.60	20.62	21.22	50.00	-28.78	AVG
11	29.1740	8.53	22.88	31.41	60.00	-28.59	QP
12	29.1740	-3.08	22.88	19.80	50.00	-30.20	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values
- 2. Margin = Result (Result = Reading + Factor)–Limit
- 3. Factor=LISN factor+Cable loss+Limiter (10dB)

100.0 dBuV

Shenzhen STS Test Services Co., Ltd.


Temperature:	26.1(C)	Relative Humidity:	58%RH
Test Voltage:	AC 120V/60Hz	Phase:	Ν
Test Mode:	Mode 4		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.1700	34.20	20.33	54.53	64.96	-10.43	QP
2	0.1700	11.87	20.33	32.20	54.96	-22.76	AVG
3	0.4820	25.03	20.54	45.57	56.30	-10.73	QP
4	0.4820	8.97	20.54	29.51	46.30	-16.79	AVG
5	0.9660	21.90	20.31	42.21	56.00	-13.79	QP
6	0.9660	5.88	20.31	26.19	46.00	-19.81	AVG
7	3.3900	17.21	20.37	37.58	56.00	-18.42	QP
8	3.3900	1.32	20.37	21.69	46.00	-24.31	AVG
9	9.0220	10.60	21.00	31.60	60.00	-28.40	QP
10	9.0220	-1.70	21.00	19.30	50.00	-30.70	AVG
11	29.7860	10.59	22.93	33.52	60.00	-26.48	QP
12	29.7860	-2.63	22.93	20.30	50.00	-29.70	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values
- 2. Margin = Result (Result =Reading + Factor)–Limit
- 3. Factor=LISN factor+Cable loss+Limiter (10dB)

100.0 dBu¥

Shenzhen STS Test Services Co., Ltd.

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance	
(MHz)	(micorvolts/meter)	(meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3M)			
FREQUENCY (MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Shenzhen STS Test Services Co., Ltd.

For Radiated Emission

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/QP/AV		
Start Frequency	9 KHz/150KHz(Peak/QP/AV)		
Stop Frequency	150KHz/30MHz(Peak/QP/AV)		
	200Hz (From 9kHz to 0.15MHz)/		
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);		
band)	200Hz (From 9kHz to 0.15MHz)/		
	9KHz (From 0.15MHz to 30MHz)		

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/QP	
Start Frequency	30 MHz(Peak/QP)	
Stop Frequency	1000 MHz (Peak/QP)	
RB / VB (emission in restricted band)	120 KHz / 300 KHz	

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)	
band)	1 MHz/1/T MHz(AVG)	

For Restricted band

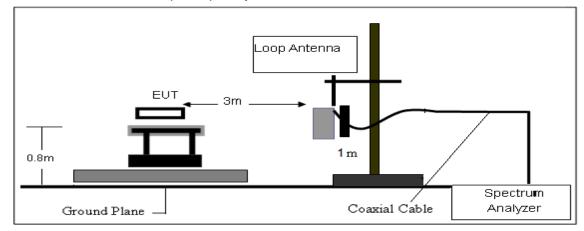
Spectrum Parameter	Setting	
Detector	Peak/AV	
Start/Stan Fraguanay	Lower Band Edge: 2310 to 2410 MHz	
Start/Stop Frequency	Upper Band Edge: 2475 to 2500 MHz	
	1 MHz / 3 MHz(Peak)	
RB / VB	1 MHz/1/T MHz(AVG)	

Shenzhen STS Test Services Co., Ltd.

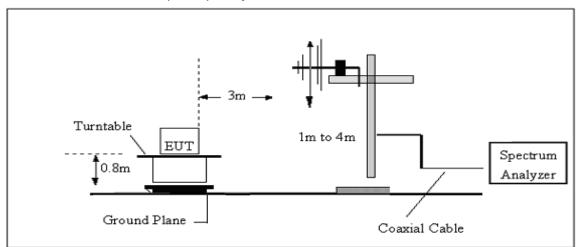
Page 21 of 46 Report No.: STS2205301W04

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

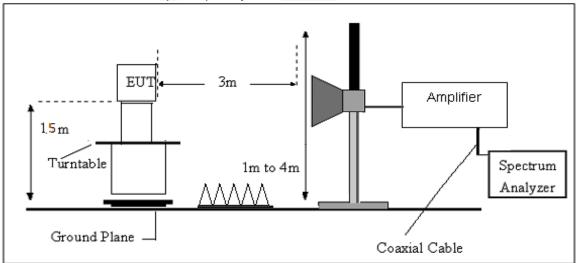
4.2 TEST PROCEDURE


- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS Please refer to section 3.4 of this report.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG Where FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

4.6 TEST RESULTS

(Between 9KHz - 30 MHz)

Temperature:	23.1(C)	Relative Humidtity:	60%RH
Test Voltage:	DC 3.8V	Polarization:	
Test Mode:	TX Mode		

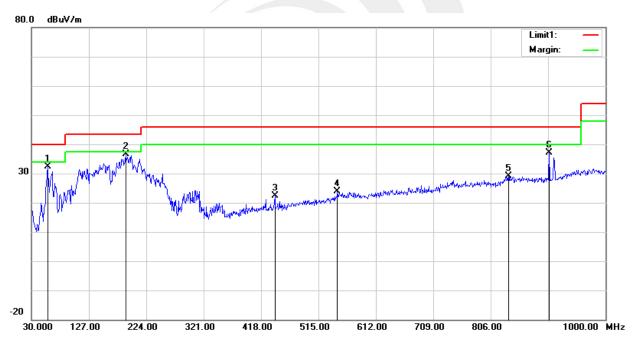
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

Shenzhen STS Test Services Co., Ltd.


(30MHz -1000MHz)

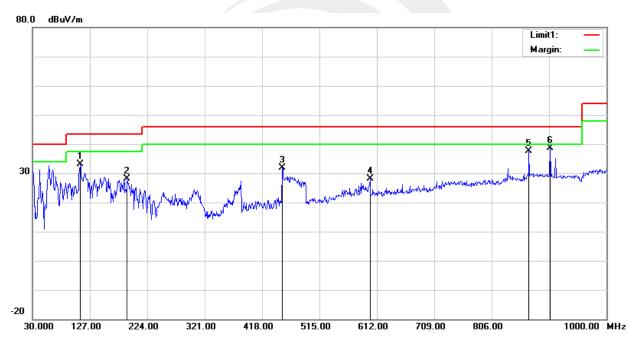
Temperature:	23.1(C)	Relative Humidity:	60%RH		
Test Voltage:	DC 3.8V	Phase:	Horizontal		
Test Mode:	Mode 1/2/3 (Mode 3 worst mode)				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	57.1600	57.84	-25.45	32.39	40.00	-7.61	QP
2	189.0800	57.44	-20.87	36.57	43.50	-6.93	QP
3	441.2800	32.54	-10.04	22.50	46.00	-23.50	QP
4	547.0100	30.04	-6.10	23.94	46.00	-22.06	QP
5	836.0700	29.64	-0.50	29.14	46.00	-16.86	QP
6	904.9400	37.51	-0.32	37.19	46.00	-8.81	QP

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Page 26 of 46 Report No.: STS2205301W04


Temperature:	23.1(C)	Relative Humidity:	60%RH		
Test Voltage:	DC 3.8V	Phase:	Vertical		
Test Mode:	Mode 1/2/3 (Mode 3 worst mode)				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	110.5100	52.03	-19.01	33.02	43.50	-10.48	QP
2	190.0500	48.99	-20.97	28.02	43.50	-15.48	QP
3	451.9500	41.54	-9.62	31.92	46.00	-14.08	QP
4	600.3600	33.98	-5.84	28.14	46.00	-17.86	QP
5	869.0500	38.23	-0.52	37.71	46.00	-8.29	QP
6	904.9400	38.94	-0.32	38.62	46.00	-7.38	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

(1GHz-25GHz) Spurious emission Requirements

GFSK

Comment	Detector	Margin	Limits	Emission Level	Corrected Factor	Antenna Factor	Loss	Amplifier	Meter Reading	Frequency
	Туре	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(dB/m)	(dB)	(dB)	(dBµV)	(MHz)
				2402 MHz)	nannel (GFSK/2	Low Ch				
Vertical	PK	-22.83	74.00	51.17	-9.80	28.20	6.70	44.70	60.97	3264.61
Vertical	AV	-12.21	54.00	41.79	-9.80	28.20	6.70	44.70	51.59	3264.61
Horizontal	PK	-22.08	74.00	51.92	-9.80	28.20	6.70	44.70	61.72	3264.69
Horizontal	AV	-12.77	54.00	41.23	-9.80	28.20	6.70	44.70	51.03	3264.69
Vertical	PK	-18.93	74.00	55.07	-3.56	31.60	9.04	44.20	58.63	4804.51
Vertical	AV	-7.52	54.00	46.48	-3.56	31.60	9.04	44.20	50.04	4804.51
Horizontal	PK	-18.60	74.00	55.40	-3.56	31.60	9.04	44.20	58.96	4804.41
Horizontal	AV	-7.85	54.00	46.15	-3.56	31.60	9.04	44.20	49.71	4804.41
Vertical	PK	-27.26	74.00	46.74	-2.34	32.00	9.86	44.20	49.09	5359.66
Vertical	AV	-16.71	54.00	37.29	-2.34	32.00	9.86	44.20	39.63	5359.66
Horizontal	PK	-27.80	74.00	46.20	-2.34	32.00	9.86	44.20	48.54	5359.83
Horizontal	AV	-16.92	54.00	37.08	-2.34	32.00	9.86	44.20	39.42	5359.83
Vertical	PK	-15.67	74.00	58.33	3.40	35.50	11.40	43.50	54.93	7205.77
Vertical	AV	-6.97	54.00	47.03	3.40	35.50	11.40	43.50	43.63	7205.77
Horizontal	PK	-16.78	74.00	57.22	3.40	35.50	11.40	43.50	53.82	7205.84
Horizontal	AV	-6.54	54.00	47.46	3.40	35.50	11.40	43.50	44.06	7205.84
				/2440 MHz)	Channel (GFSK	Middle C				
Vertical	PK	-22.21	74.00	51.79	-9.80	28.20	6.70	44.70	61.59	3263.03
Vertical	AV	-13.59	54.00	40.41	-9.80	28.20	6.70	44.70	50.21	3263.03
Horizontal	PK	-22.42	74.00	51.58	-9.80	28.20	6.70	44.70	61.38	3262.95
Horizontal	AV	-13.61	54.00	40.39	-9.80	28.20	6.70	44.70	50.19	3262.95
Vertical	PK	-19.00	74.00	55.00	-3.56	31.60	9.04	44.20	58.56	4880.06
Vertical	AV	-7.08	54.00	46.92	-3.56	31.60	9.04	44.20	50.48	4880.06
Horizontal	PK	-18.82	74.00	55.18	-3.56	31.60	9.04	44.20	58.74	4880.12
Horizontal	AV	-7.53	54.00	46.47	-3.56	31.60	9.04	44.20	50.03	4880.12
Vertical	PK	-27.63	74.00	46.37	-2.34	32.00	9.86	44.20	48.72	5357.18
Vertical	AV	-15.99	54.00	38.01	-2.34	32.00	9.86	44.20	40.35	5357.18
Horizontal	PK	-28.60	74.00	45.40	-2.34	32.00	9.86	44.20	47.74	5357.39
Horizontal	AV	-17.76	54.00	36.24	-2.34	32.00	9.86	44.20	38.58	5357.00
Vertical	PK	-16.76	74.00	57.24	3.40	35.50	11.40	43.50	53.84	7320.85
Vertical	AV	-6.33	54.00	47.67	3.40	35.50	11.40	43.50	44.27	7320.85
Horizontal	PK	-15.96	74.00	58.04	3.40	35.50	11.40	43.50	54.64	7320.38
Horizontal	AV	-5.96	54.00	48.04	3.40	35.50	11.40	43.50	44.64	7320.38

Page 28 of 46 Report No.: STS2205301W04

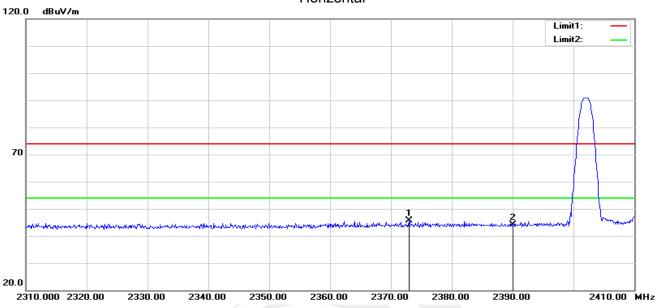
				High Char	nnel (GFSK/	2480 MHz)				
3264.69	61.39	44.70	6.70	28.20	-9.80	51.59	74.00	-22.41	PK	Vertical
3264.69	49.83	44.70	6.70	28.20	-9.80	40.03	54.00	-13.97	AV	Vertical
3264.81	61.07	44.70	6.70	28.20	-9.80	51.27	74.00	-22.73	PK	Horizontal
3264.81	49.94	44.70	6.70	28.20	-9.80	40.14	54.00	-13.86	AV	Horizontal
4960.41	58.75	44.20	9.04	31.60	-3.56	55.19	74.00	-18.81	PK	Vertical
4960.41	50.21	44.20	9.04	31.60	-3.56	46.65	54.00	-7.35	AV	Vertical
4960.51	58.14	44.20	9.04	31.60	-3.56	54.58	74.00	-19.42	PK	Horizontal
4960.51	49.66	44.20	9.04	31.60	-3.56	46.10	54.00	-7.90	AV	Horizontal
5359.87	49.31	44.20	9.86	32.00	-2.34	46.97	74.00	-27.03	PK	Vertical
5359.87	39.54	44.20	9.86	32.00	-2.34	37.19	54.00	-16.81	AV	Vertical
5359.64	48.51	44.20	9.86	32.00	-2.34	46.17	74.00	-27.83	PK	Horizontal
5359.64	38.39	44.20	9.86	32.00	-2.34	36.05	54.00	-17.95	AV	Horizontal
7439.81	53.60	43.50	11.40	35.50	3.40	57.00	74.00	-17.00	PK	Vertical
7439.81	43.67	43.50	11.40	35.50	3.40	47.07	54.00	-6.93	AV	Vertical
7439.74	54.24	43.50	11.40	35.50	3.40	57.64	74.00	-16.36	PK	Horizontal
7439.74	44.18	43.50	11.40	35.50	3.40	47.58	54.00	-6.42	AV	Horizontal

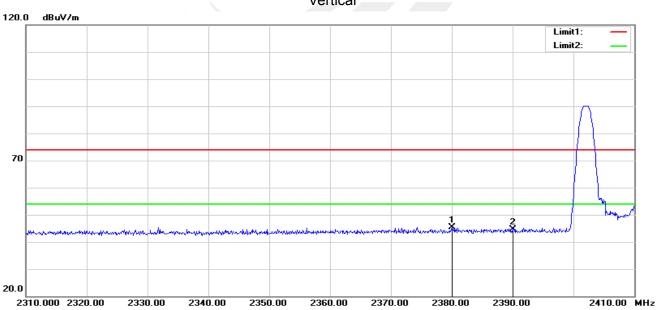
Note:

1) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Reading + Factor

2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.




Report No.: STS2205301W04

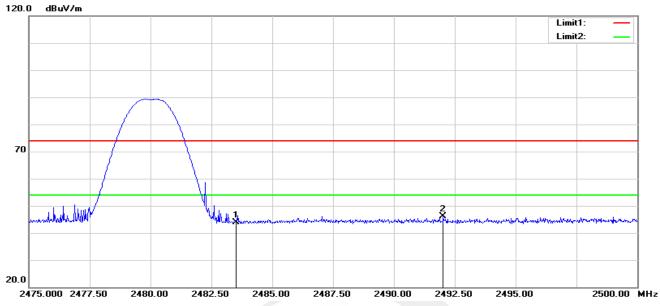
4.6 TEST RESULTS (Restricted Bands Requirements)

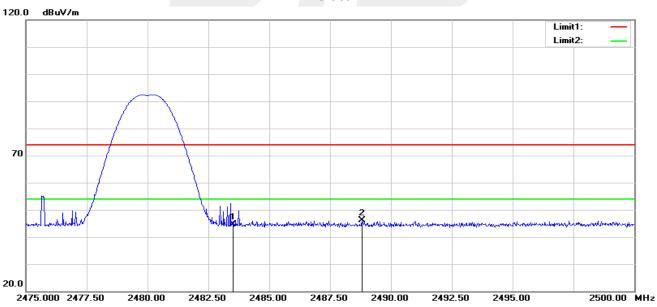
GFSK-Low Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2373.000	41.46	4.09	45.55	74.00	-28.45	peak
2	2390.000	39.91	4.34	44.25	74.00	-29.75	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2380.000	41.23	4.19	45.42	74.00	-28.58	peak
2	2390.000	40.37	4.34	44.71	74.00	-29.29	peak

Vertical


Shenzhen STS Test Services Co., Ltd.


Page 30 of 46

Report No.: STS2205301W04

GFSK-High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	39.21	4.60	43.81	74.00	-30.19	peak
2	2492.025	41.53	4.63	46.16	74.00	-27.84	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	39.91	4.60	44.51	74.00	-29.49	peak
2	2488.800	41.40	4.62	46.02	74.00	-27.98	peak

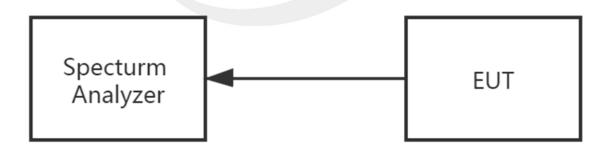
Vertical

Shenzhen STS Test Services Co., Ltd.

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.


5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting		
Detector	Peak		
Start/Stap Fraguenov	Lower Band Edge: 2300 – 2407 MHz		
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

5.3 TEST SETUP

The EUT which is powered by the Battery, is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

5.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Voltage:	DC 3.8V		TX Mode /CH00, CH19, CH39

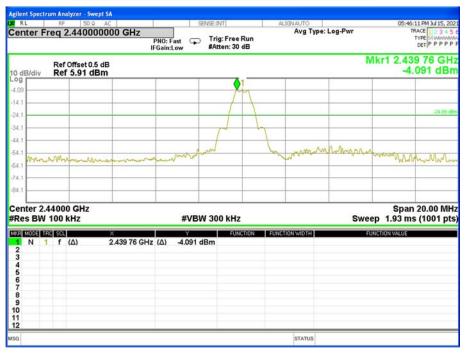
00 CH

RL			RF	50 Q	AC			SENSE:INT		ALIGNAUTO		05:39:0	3 PM Jul 15, 20
ent	er F	red	12	2.51500	0000 GHz	PNO: Gain	Fast G	Trig: Fr #Atten:		Avg Type	Log-Pwr	1	ACE 1 2 3 4 5 YPE MUMM DET P P P P P
0 dB	div			ffset 0.5 c 3.46 dBr								Mkr1 2. -6.	402 GH 544 dBr
.og 6.54			•	1					_				
16.5	-	_	+			-			_		-		-25.19 (8
26.5			1										-20.19 00
36.5 46.5				A2	13								C
56.5	- 44.4	أرهم	m	- Share	- And	we	1- martine - Fai	and the second	American	manushy	wenny	mouth	and the second of the
66.5						-							
76.5													
start #Res				Ηz			#VB	W 300 k	Hz		S	weep 2.39 s	25.00 GH (1001 pts
MKR M					×		Y		UNCTION	FUNCTION WIDTH		FUNCTION VALUE	
	N N	1	f (/ f		2.402 GHz 3.201 GHz		-6.544 -54.687	dBm					
3	N N		fu	7)	6.098 GHz 24.600 GHz	(Δ)	-55.571 -48.321						
234567													
7 8 9													
10													
11													
12	_	_	_										

19 CH

RL		RF				SENSE:IN	T	ALIGNAUTO			IS PM Jul 15, 20
ente	r Fr	eq	12.5150		PNO: Fast Gain:Lov		: Free Run en: 30 dB	Avg Type	: Log-Pwr	T	ACE 1 2 3 4 5 VPE MWWWW DET P P P P F
dB/d	liv		Offset 0.5							Mkr1 2. -4.9	452 GH 913 dB
91			1								
4.9											-24.09 (
4.9											
4.9 -			A2								
4.9		hall	Harry		m		- and a start of	the man and the man	and the second s	- vin	and the second
1.9											
4.9											
art 3 Res E			kHz	1		#VBW 300) kHz	1	S	Stop veep 2.39 s	25.00 GH
R MOC	E TRO	SCL		×		Y		FUNCTION WIDTH		UNCTION VALUE	()
1 N 2 N	1	f	(Δ)	2.452 GHz 2.652 GHz		4.913 dBm 5.690 dBm					
3 N 4 N 5	1	f f	(Δ)	6.048 GHz 24.750 GHz		5.613 dBm 6.548 dBm					
7											
B 9 0											
2											
3								STATUS			

39 CH



For Band edge(it's also the reference level for conducted spurious emission)

00 CH

19 CH

39 CH

RL RF	50 9 AC	SENSE:INT	ALIGNAUTO	05:41:14 PM Jul 15, 20
enter Freq 2.	487500000 GHz PI	10: Fast 🗭 Trig: Free Run Gain:Low #Atten: 30 dB	Avg Type: Log-Pwr	TRACE 12345 TYPE MUMMM DET P P P P P
dB/div Ref	ffset 0.5 dB 5.22 dBm			Mkr1 2.480 250 GH -3.783 dBr
og 1.78	1			
3.8				
3,8				-23.78 d
3.8				
3.8 AAAAA	met la	aggregation 2 $aggregation 3$		\diamond
3.8		and a star and a star and the s	and the second s	all - mander of a low of the second second of
3.8				
tart 2.47500 G Res BW 100 k		#VBW 300 kHz	SI	Stop 2.50000 GH weep 2.40 ms (1001 pt
KR MODE TRC SCL	×		FUNCTION WIDTH	FUNCTION VALUE
1 N 1 f () 2 N 1 f	2.480 250 GHz (2.483 500 GHz	∆) -3.783 dBm -59.284 dBm		
3 N 1 f (2.484 975 GHz (2.498 575 GHz)	Δ) -58.767 dBm -57.696 dBm		
5	2.450 010 0112	-07.000 dbin		
4 N 1 f 5 6 7				
6 7 8				
8 9 0				
6 7 8 9 10 11				

Shenzhen STS Test Services Co., Ltd.

6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT

	FCC Part 15.247,Subpart C										
Section	Test Item	Limit	Frequency Range (MHz)	Result							
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS							

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.



6.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.8V	Lest Mode.	TX Mode /CH00, CH19, CH39

Frequency	Power Density	Limit (dPm/2KHz)	Docult	
Frequency	(dBm/3kHz)	Limit (dBm/3KHz)	Result	
2402 MHz	-19.810	≤8	PASS	
2440 MHz	-18.766	≤8	PASS	
2480 MHz	-18.401	≤8	PASS	

TX CH19

TX CH39

Shenzhen STS Test Services Co., Ltd.

7. BANDWIDTH TEST


7.1 LIMIT

FCC Part 15.247,Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS				

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

7.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.8V	Lest Mode.	TX Mode /CH00, CH19, CH39

Frequency	6dB Bandwidth (KHz)	Limit (KHz)	Result
2402 MHz	706.200	≥500KHz	PASS
2440 MHz	701.600	≥500KHz	PASS
2480 MHz	701.000	≥500KHz	PASS

TX CH 00

RL	um Analyzer - Occupied BV RF 50 Ω AC		SENSE:INT	ALIGNAUTO	05:35:20 PM Jul 15, 2
	eq 2.40200000	GHz	Center Freq: 2.402000	000 GHz	Radio Std: None
		#IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold:>10/10	Radio Device: BTS
dB/div	Ref Offset 0.5 dB Ref 20.00 dBm				
g					
.0					
0					
0					
1					
• — — •					
o					
	402 GHz 100 kHz		#VBW 300 k	H7	Span 2 M Sweep 1 I
					Sweep 11
Occup	oied Bandwidth	ו	Total Power	1.71 dBm	
	1.0	0465 MHz			
Transn	nit Freq Error	2.580 kHz	OBW Power	99.00 %	
k dB B	andwidth	706.2 kHz	x dB	-6.00 dB	

Shenzhen STS Test Services Co., Ltd.

TX CH 19

TX CH 39

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

FCC Part 15.247,Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS				

8.2 TEST PROCEDURE

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

 $RBW \ge DTS$ bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq [3 × RBW].

c) Set span \geq [3 \times RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

a) Set the RBW = 1 MHz.

b) Set the VBW \geq [3 \times RBW].

c) Set the span \geq [1.5 × DTS bandwidth].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.


h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

8.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

8.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.8V	Test Mode:	TX Mode /CH00, CH19, CH39

Test Channe	Frequency	Peak Conducted Output Power	Average Conducted Output Power	LIMIT
	(MHz)	(dBm)	(dBm)	dBm
CH0	2402	-5.18	-10.36	30
CH19	2440	-4.02	-8.96	30
CH39	2480	-3.61	-11.39	30

Note: Our power sensor test AVG power has no duty cycle display. The power sensor measures AVG power is Burst power. The software has considered the factor of the duty cycle factor, so it is unnecessary to add it again.

Ton	Тр	Duty cycle(%)	Duty factor(dB)
0.404	0.606	66.67%	3.52

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is PIFA Antenna. It comply with the standard requirement.

Shenzhen STS Test Services Co., Ltd.

10. EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * *

Shenzhen STS Test Services Co., Ltd.