

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

PA1003 HD Streaming Video Drone

MODEL NUMBER: VL-6000/VL-6001/VL-6002

FCC ID: 2ASK3VL-6000R

REPORT NUMBER: 4789510507.1-4

ISSUE DATE: June 12, 2020

Prepared for

AMAX INDUSTRIAL GROUP CHINA CO.,LTD OFFICE NO.3 10/F WITTY COMMERCIAL BUILDING 1A-1L TUNG CHOI STREET MONGKOK KOWLOON HONG KONG

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	06/12/2020	Initial Issue	

Summary of Test Results						
Clause	Test Items	FCC Rules	Test Results			
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2)	Pass			
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3)	Pass			
3	Power Spectral Density	FCC Part 15.247 (e)	Pass			
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d)	Pass			
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205	Pass			
6	Conducted Emission Test For AC Power Port	FCC Part 15.207	Not Applicable			
7	Antenna Requirement	FCC Part 15.203	Pass			
Note:			1			

1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C> when <Accuracy Method> decision rule is applied.

3. The EUT only employ battery power for operation and which do not operate from the AC power lines.

TABLE OF CONTENTS

ATT	ESTATION OF TEST RESULTS	6
TES	T METHODOLOGY	7
FAC	CILITIES AND ACCREDITATION	7
CAL	-IBRATION AND UNCERTAINTY	8
1.1.	MEASURING INSTRUMENT CALIBRATION	8
4.2.	MEASUREMENT UNCERTAINTY	8
EQI	JIPMENT UNDER TEST	9
5.1.	DESCRIPTION OF EUT	9
5.2.	MAXIMUM AVERAGE OUTPUT POWER	9
5.3.	CHANNEL LIST	9
5.4.	TEST CHANNEL CONFIGURATION	10
5.5.	THE WORSE CASE CONFIGURATIONS	10
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5.7.	TEST ENVIRONMENT	11
5.8.	DESCRIPTION OF TEST SETUP	12
ME	ASURING INSTRUMENT AND SOFTWARE USED	13
	TENNA PORT TEST RESULTS	14
7.1.	ON TIME AND DUTY CYCLE	14
7.2.	6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH	17
7.3.	CONDUCTED OUTPUT POWER	19
7.4.	POWER SPECTRAL DENSITY	20
7.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	21
RAI	DIATED TEST RESULTS	23
3 <i>.1.</i> 8.1.		
8.1. 8.1. 8.1.	 802.11g MODE 802.11n HT20 MODE 	36 42 48
	TES FAC CAL 4.1. 4.2. EQU 5.1. 5.2. 5.4. 5.5. 5.6. 5.7. 5.6. 5.7. 5.6. 5.7. 5.6. 5.7. 5.8. MED 7.1. 7.2. 7.1. 7.2. 7.3. 7.1. 7.2. 7.3. 7.4. 7.5. 8.1.	 MEASUREMENT UNCERTAINTY EQUIPMENT UNDER TEST

8.3.1. 8.3.2.	802.11b MODE 802.11g MODE	
8.3.3. 8.3.4.	802.11n HT20 MODE 802.11n HT40 MODE	
8.4. SP 8.4.1.	PURIOUS EMISSIONS (18~26GHz) 802.11g MODE	
8.5. SP 8.5.1.	PURIOUS EMISSIONS (0.03 ~ 1 GHz) 802.11g MODE	
8.6. SP 8.6.1.	PURIOUS EMISSIONS BELOW 30M 802.11g MODE	
9. ANTEN	INA REQUIREMENTS	109
••	A: DTS Bandwidth	
	B: Occupied Channel Bandwidth	
	<i>C: Maximum conducted average output power</i>	
	<i>D: Maximum power spectral density</i> esult.	
	<i>E: Band edge measurement</i> s	
Test Re	<i>F: Conducted Spurious Emission</i> esult raphs	

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Address:	AMAX INDUSTRIAL GROUP CHINA CO.,LTD OFFICE NO.3 10/F WITTY COMMERCIAL BUILDING 1A-1L TUNG CHOI STREET MONGKOK KOWLOON HONG KONG
Manufacturer Information	
Company Name: Address:	AMAX INDUSTRIAL GROUP CHINA CO.,LTD OFFICE NO.3 10/F WITTY COMMERCIAL BUILDING 1A-1L
	TUNG CHOI STREET MONGKOK KOWLOON HONG KONG
EUT Information	
EUT Name:	PA1003 HD Streaming Video Drone
Model:	VL-6000/VL-6001/VL-6002
Sample ID:	3106822
Sample Received Date:	May 25, 2020
Sample Status:	Normal

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
CFR 47 FCC PART 15 SUBPART C	PASS			

May 25 2020~June 10, 2020

Prepared By:

Date of Tested:

Mick Zhong

Checked By:

Shawn Wen

Laboratory Leader

Sherry les

Mick Zhang Project Engineer

Approved By:

tephen Guo

Stephen Guo Laboratory Manager

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No: 10-SL-F0088 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, KDB 662911 D01 Multiple Transmitter Output v02r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules ISED(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name:

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62dB		
Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	2.2dB		
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB		
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	5.78dB (1GHz-18GHz)		
	5.23dB (18GHz-26GHz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	PA1003 HD Streaming Video Drone
Model	VL-6000/VL-6001/VL-6002
Model DifferenceAll the same except for the model name and color.	
Radio Technology IEEE802.11b/g/n HT20/n HT40	
Operation frequency	IEEE 802.11b: 2412MHz—2462MHz IEEE 802.11g: 2412MHz—2462MHz IEEE 802.11n HT20: 2412MHz—2462MHz IEEE 802.11n HT40: 2422MHz—2452MHz
Modulation	IEEE 802.11b: DSSS(CCK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
Rate Input:	DC 5V
Battery	DC 7.4V

5.2. MAXIMUM AVERAGE OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Frequency (MHz)	Channel Number	Max AV Conducted Power (dBm)
1	IEEE 802.11b	2412-2462	1-11[11]	16.12
1	IEEE 802.11g	2412-2462	1-11[11]	11.04
1	IEEE 802.11nHT20	2412-2462	1-11[11]	10.94
1	IEEE 802.11n HT40	2422-2452	3-9[7]	11.43

5.3. CHANNEL LIST

Channel List for 802.11b/g/n (20 MHz)									
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1	2412	4	2427	7	2442	10	2457		
2	2417	5	2432	8	2447	11	2462		
3	2422	6	2437	9	2452	/	/		

	Channel List for 802.11n (40 MHz)									
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
/	/	4	2427	7	2442	/	/			
/	/	5	2432	8	2447	/	/			
3	2422	6	2437	9	2452	/	/			

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel Number	Test Channel
WiFi TX (802.11b)	CH 1, CH 6, CH 11	Low Channel, MID Channel, High Channel
WiFi TX (802.11g)	CH 1, CH 6, CH 11	Low Channel, MID Channel, High Channel
WiFi TX (802.11n HT20)	CH 1, CH 6, CH 11	Low Channel, MID Channel, High Channel
WiFi TX(802.11n HT40)	CH 3, CH 6, CH 9	Low Channel, MID Channel, High Channel

5.5. THE WORSE CASE CONFIGURATIONS

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softw	/are			Ssc	com32			
Tra	Transmit			Test C	Channel			
Modulation Mode	Antenna	1	NCB: 20MHz NCB: 40MH				z	
Wode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1	45	45	45	· · ·			
802.11g	1	45 45 45 /						
802.11n HT20	1	45 45 45						
802.11n HT40	1		/		45	45	45	

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	Wire Antenna	2

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.

Note: The value of the antenna gain was declared by customer.

5.7. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests				
Relative Humidity	45 ~ 70%				
Atmospheric Pressure:	1025Pa				
Temperature	TN	22 ~ 28°C			
	VL	/			
Voltage:	VN	DC 7.4V			
	VH	/			

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

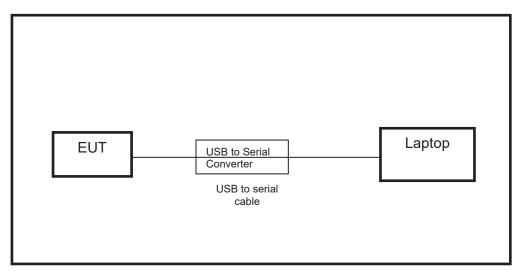
5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	PC	Dell	Vostro 3902	8KNDDB2
2	USB to Serial Cable	/	/	/
3	USB to Serial Converter	/	/	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1.0	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
/	/	/	/	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

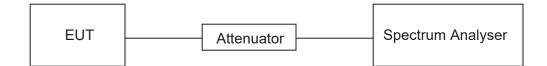
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6. MEASURING INSTRUMENT AND SOFTWARE USED

			Rad	iated	Emiss	ions				
				Instr	rument					
Used	Equipment	Manufacturer		Mode	el No.		Seria	l No.	Last Cal.	Next Cal.
\checkmark	MXE EMI Receiver	KESIGHT		N90)38A		MY564	00036	Dec.06,2019	Dec.05,2020
V	Hybrid Log Periodic Antenna	TDK	ŀ	HLP-(3003C		130	960	Sep.17,2018	Sep.17,2021
\checkmark	Preamplifier	HP		844	47D		2944A	09099	Dec.05,2019	Dec.05,2020
	EMI Measurement Receiver	R&S		ES	R26		101	377	Dec.05,2019	Dec.05,2020
\checkmark	Horn Antenna	TDK		HRN	-0118		130	939	Sep.17,2018	Sep.17,2021
V	High Gain Horn Antenna	Schwarzbeck	E	3BHA	-9170		691		Aug.11,2018	Aug.11,2021
V	Preamplifier	TDK	PA-02-0118		TRS-305- 00067		Dec.05,2019	Dec.05,2020		
\checkmark	Preamplifier	TDK		PA-02-2		TRS-307- 00003		Dec.05,2019	Dec.05,2020	
\checkmark	Loop antenna	Schwarzbeck		15 ⁻	19B		00008		Jan.07,2019	Jan.07,2022
\checkmark	Band Reject Filter	Wainwright	_		2350-24 33.5-40		4		Dec.05,2019	Dec.05,2020
\checkmark	High Pass Filter	Wi			2700-30)-40SS	00-	2	3	Dec.05,2019	Dec.05,2020
				Sof	ftware					
Used	De	scription			Man	ufact	turer		Name	Version
	Test Software for	Radiated dist	urbanc	e	F	arac	k		EZ-EMC	Ver. UL-3A1
			Oth	ner in	strume	ents				
Used	Equipment	Manufac	turer	Mod	lel No.	S	erial No) .	Last Cal.	Next Cal.
\checkmark	Spectrum Analyz	zer Keysią	ght	N9	030A	MY	554105	512 D	ec.06,2019	Dec.05,2020
V	Power sensor, Po	wer R&S	6	OS	P120		100921	C	Dec.06,2019	Dec.06,2020

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

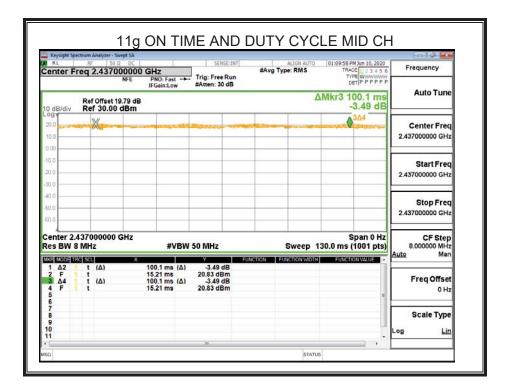
KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

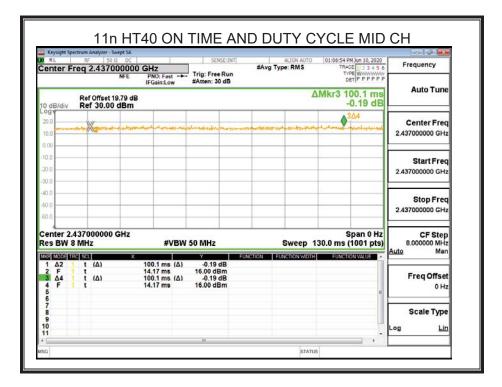
Temperature	24.8°C	Relative Humidity	67.9%
Atmosphere Pressure	101kPa	Test Voltage	DC 5V

RESULTS


Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
11b	100	100	1.0	100	0.0	0.01	0.01
11g	100	100	1.0	100	0.0	0.01	0.01
11n HT20	100	100	1.0	100	0.0	0.01	0.01
11n HT40	100	100	1.0	100	0.0	0.01	0.01

Note:

Duty Cycle Correction Factor=10log (1/x). Where: x is Duty Cycle (Linear) Where: T is On Time If that calculated VBW is not available on the analyzer then the next higher value should be used.


RL	RF 54	DA DC	GHz PNO: Fast -	SENSE:INT	ALIGN AUTO #Avg Type: RMS	01:11:48 PM Jun 10, 2020 TRACE 2 3 4 5 6 TYPE WWWWWW DET P P P P P P	Frequency
	Ref Offset		IFGain:Low	#Atten: 30 dB		AMkr3 100.1 ms	Auto Tune
0 dB/div	Ref 30.0	0 dBm				-0.22 dB	
20.0		_				344	Center Freq
10.0		_					2.437000000 GHz
0.00							
10.0							-
20.0							Start Freq 2.437000000 GHz
30.0							2.437000000 GHz
40.0							
50.0							Stop Freq
-60.0		_					2.437000000 GHz
_							
Center 2. Res BW 8	437000000 MHz	GHZ	#VB	W 50 MHz	Sween	Span 0 Hz 130.0 ms (1001 pts)	CF Step 8.000000 MHz
MARE MODE T		x		Y	FUNCTION		Auto Man
1 Δ2	t (Δ)		100.1 ms (Δ) -0.22 dB	Tunction Horr		
2 F 3 Δ4	t (Δ)		15.86 ms 100.1 ms (Δ	22.26 dBm -0.22 dB			Freq Offset
4 F 5	t		15.86 ms	22.26 dBm			0 Hz
67							Scale Type
8							scale Type
10							Log <u>Lin</u>
				111			

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

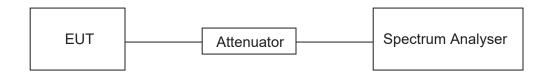
Frequency	01:08:36 PM Jun 10, 2020 TRACE 1 2 3 4 5 6 TVPE WWWWWW DET P P P P P P	ALIGN AUTO	n	SENSE: Trig: Free Ru #Atten: 30 dl		GHz PNO: Fast	0000000 NFE		req		en
Auto Tune	Mkr3 100.1 ms -3.96 dB	Δ		written: ov u	w	IFGam:Lov	19.79 dB 0 dBm			3/div) di
	_3∆4							V	k		g
Center Freq	and the state of t	Had Balance and an and a star and a star	a la construction	and the state of t	-	States and a second	and the second second	Ale cuis	L L L L L		0
2.437000000 GHz											0
											0
Start Freq											0
2.437000000 GHz											0
											0
Stop Free											
2.437000000 GHz											0
											0
CF Step 8.000000 MHz	Span 0 Hz 30.0 ms (1001 pts)	Sweep 1		50 MHz	/BW	#V) GHz	00000 z	4370 8 MH		
<u>Auto</u> Man	FUNCTION VALUE	IN FUNCTION WIDTH	EUN	Y			х		RC SCL		
				-3.96 dB 21.03 dBm	(A)	100.1 ms 14.56 ms		(Δ)	1	Δ2 F	
Freq Offset				-3.96 dB 21.03 dBm	(Δ)	100.1 ms 14.56 ms		(Δ)	!	∆4 F	Ļ
0 H2				21.05 0.511		14.00 1115					
Scale Type											
Log <u>Lir</u>											
Log Li	U										

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

7.2. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

ISED RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500KHz	2400-2483.5	


TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
IBBW/	For 6dB Bandwidth :100kHz For 99% Occupied Bandwidth :1% to 5% of the occupied bandwidth	
IV BW	For 6dB Bandwidth : ≥3 × RBW For 99% Occupied Bandwidth : ≥3×RBW	
Trace	Max hold	
Sweep	Auto couple	

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.8°C	Relative Humidity	67.9%
Atmosphere Pressure	101kPa	Test Voltage	DC 7.4V

RESULTS

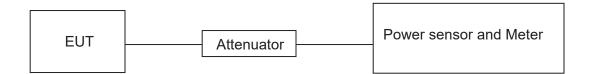
Please refer to Appendix A & B.

7.3. CONDUCTED OUTPUT POWER

LIMITS

ISED RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	

TEST PROCEDURE


Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure peak power each channel.

AVG Detector use for AVG result.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.8°C	Relative Humidity	67.9%
Atmosphere Pressure	101kPa	Test Voltage	DC 7.4V

RESULTS

Please refer to Appendix C.

7.4. POWER SPECTRAL DENSITY

LIMITS

ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.8°C	Relative Humidity	67.9%
Atmosphere Pressure	101kPa	Test Voltage	DC 7.4V

RESULTS

Please refer to Appendix D.

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

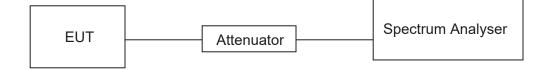
LIMITS

ISED RSS-247 ISSUE 2				
Section	Test Item	Limit		
CFR 47 FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power		

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.8°C	Relative Humidity	67.9%
Atmosphere Pressure	101kPa	Test Voltage	DC 7.4V

RESULTS

Please refer to Appendix E&F.

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Radiation Disturbance Test Limit for FCC (Above 1G)

Frequency (MHz)	dB(uV/m) (at 3 meters)		
	Peak	Average	
Above 1000	74	54	

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

FCC Restricted bands of operation:

MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
¹ 0.495-0.505	16.69475-16.69525	608-6 1 4	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

Please refer to ISED RSS-GEN Clause 8.9 (Transmitter)

Emissions radiated outside of the specified frequency bands above 30MHz				
Frequency Range	Field Strength Limit	Field Strength Limit		
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m		
(11112)		Quasi-Peak		
30 - 88	100	40		
88 - 216	150	43.5		
216 - 960	200	46		
Above 960	500	54		
Above 1000	500	Peak	Average	
	500	74	54	

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz					
Frequency Magnetic field strength (H-Field) (μA/m) Measurement distance (m)					
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300			
490 - 1705 kHz	63.7/F (F in kHz)	30			
1.705 - 30 MHz	0.08	30			

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

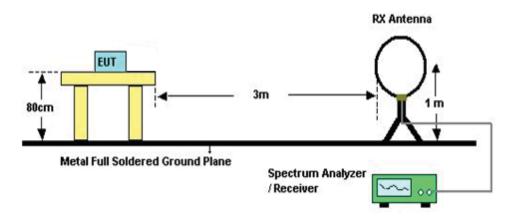

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

Table 7 – Restricted frequency bands ^{Hass 1}				
MHz	MHz	GHz		
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2		
0.495 - 0.505	156.52475 - 156.52525	9.3 - 9.5		
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7		
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4		
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5		
4.17725 - 4.17775	240 - 285	15.35 - 16.2		
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4		
5.677 - 5.683	399.9 - 410	22.01 - 23.12		
6.215 - 6.218	608 - 614	23.6 - 24.0		
6.26775 - 6.26825	960 - 1427	31.2 - 31.8		
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5		
8.291 - 8.294	1645.5 - 1646.5	Above 38.6		
8.362 - 8.366	1660 - 1710			
8.37625 - 8.38675	1718.8 - 1722.2			
8.41425 - 8.41475	2200 - 2300			
12.29 - 12.293	2310 - 2390			
12.51975 - 12.52025	2483.5 - 2500			
12.57675 - 12.57725	2655 - 2900			
13.36 - 13.41	3260 - 3267			
16.42 - 16.423	3332 - 3339			
16.69475 - 16.69525	3345.8 - 3358			
16.80425 • 16.80475	3500 - 4400			
25.5 - 25.67	4500 - 5150			
37.5 - 38.25	5350 - 5460			
73 - 74.6	7250 - 7750			
74.8 - 75.2	8025 - 8500			
108 - 138				

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

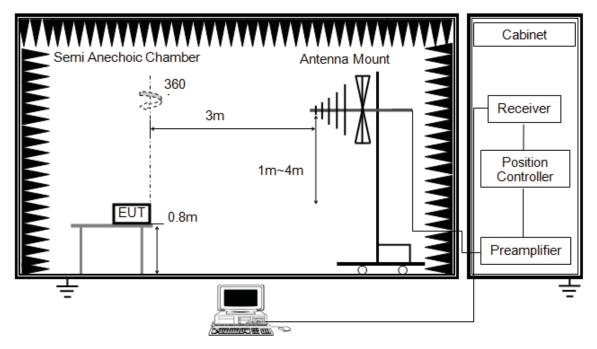
1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of 1 meter height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.


6. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

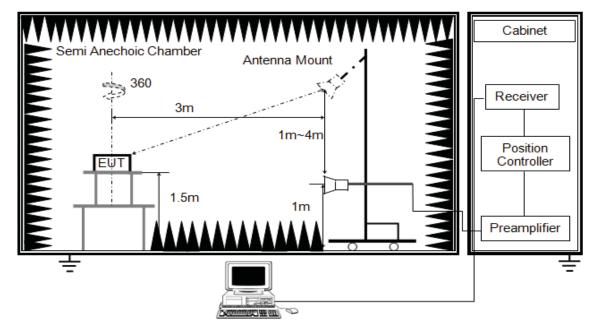
Below 1G

The setting of the spectrum analyser

RBW	120kHz
VBW	300kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

ABOVE 1G

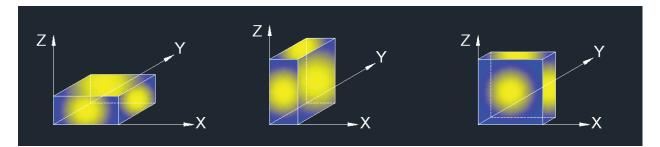
The setting of the spectrum analyser

RBW	1MHz	
NRW	PEAK: 3MHz AVG: see note 6	
Sweep	Auto	
Detector	Peak	
Trace	Max hold	

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

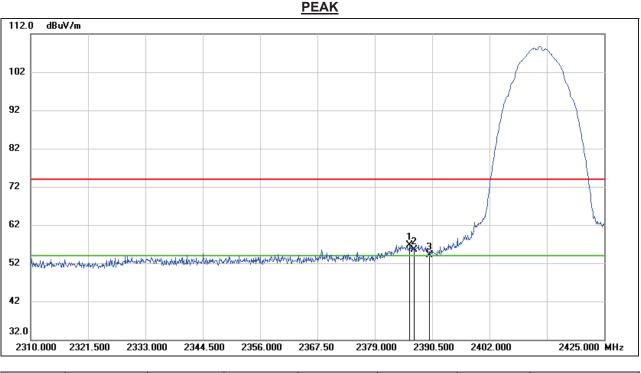
X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT does not support simultaneous transmission.

Note 3: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

TEST ENVIRONMENT

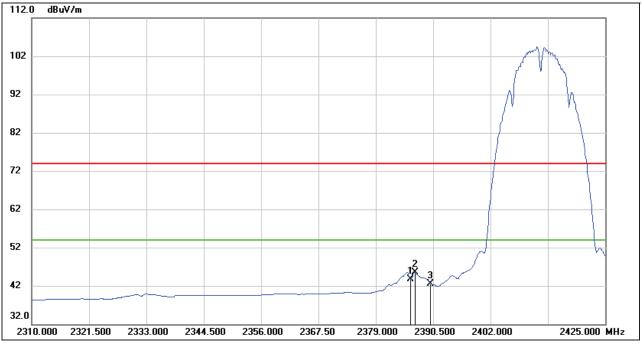

Temperature	23.2°C	Relative Humidity	57%
Atmosphere Pressure	101kPa	Test Voltage	DC 7.4V

8.1. RESTRICTED BANDEDGE

8.1.1. 802.11b MODE

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2386.015	23.77	32.93	56.70	74.00	-17.30	peak
2	2386.820	22.66	32.94	55.60	74.00	-18.40	peak
3	2390.000	21.24	32.94	54.18	74.00	-19.82	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

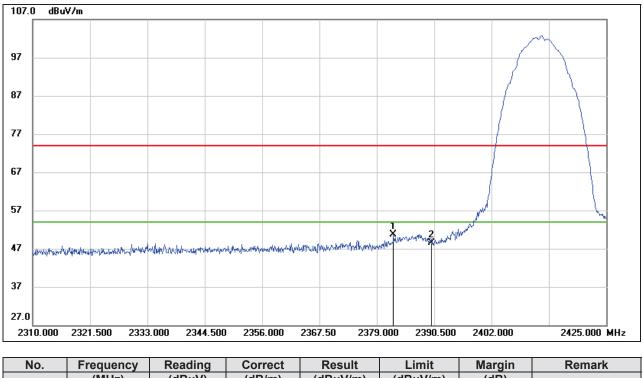
<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2386.015	10.70	32.93	43.63	54.00	-10.37	AVG
2	2386.820	12.66	32.94	45.60	54.00	-8.40	AVG
3	2390.000	9.65	32.94	42.59	54.00	-11.41	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

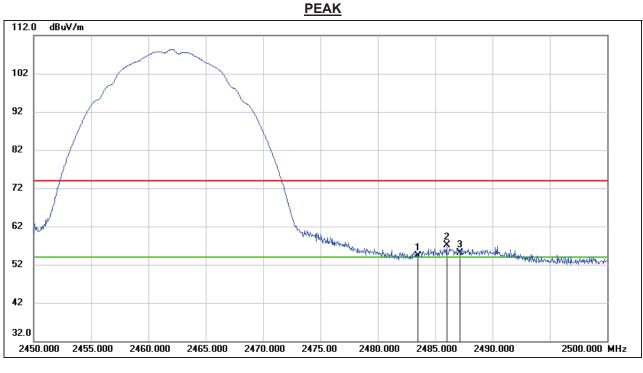
6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2382.335	17.71	32.92	50.63	74.00	-23.37	peak
2	2390.000	15.50	32.94	48.44	74.00	-25.56	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

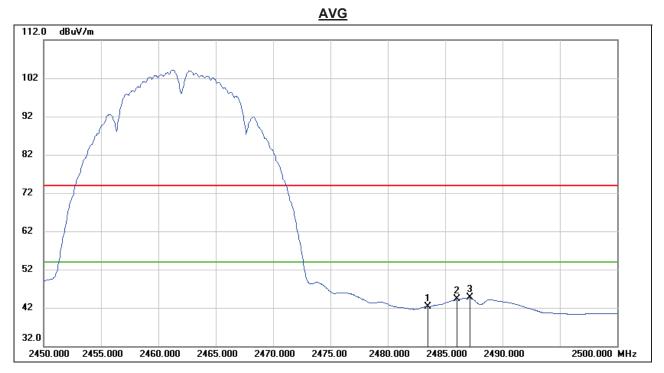

3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

PEAK

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	20.77	33.58	54.35	74.00	-19.65	peak
2	2486.000	23.56	33.59	57.15	74.00	-16.85	peak
3	2487.150	21.50	33.61	55.11	74.00	-18.89	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

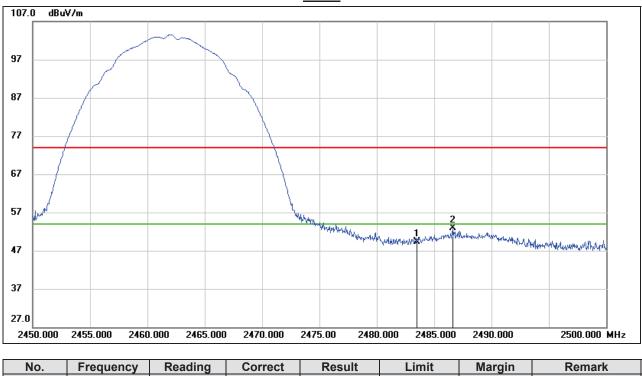
3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	8.76	33.58	42.34	54.00	-11.66	AVG
2	2486.000	10.61	33.59	44.20	54.00	-9.80	AVG
3	2487.150	11.00	33.61	44.61	54.00	-9.39	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

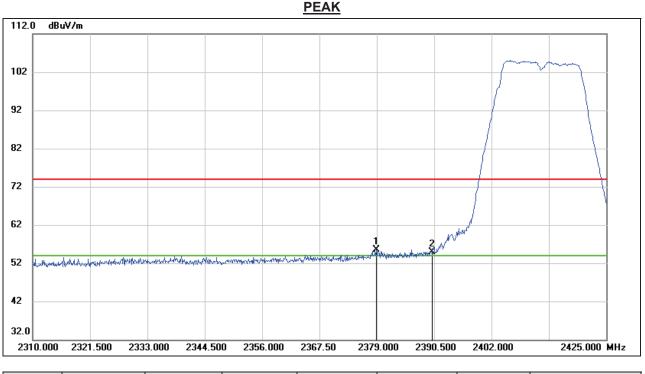
6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.71	33.58	49.29	74.00	-24.71	peak
2	2486.650	19.22	33.61	52.83	74.00	-21.17	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

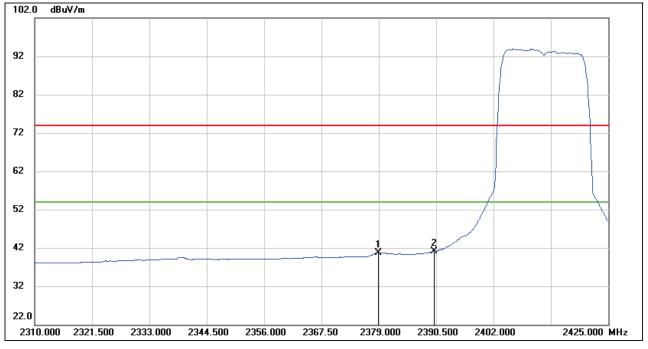
PEAK

8.1.2. 802.11g MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2378.885	22.59	32.91	55.50	74.00	-18.50	peak
2	2390.000	21.90	32.94	54.84	74.00	-19.16	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

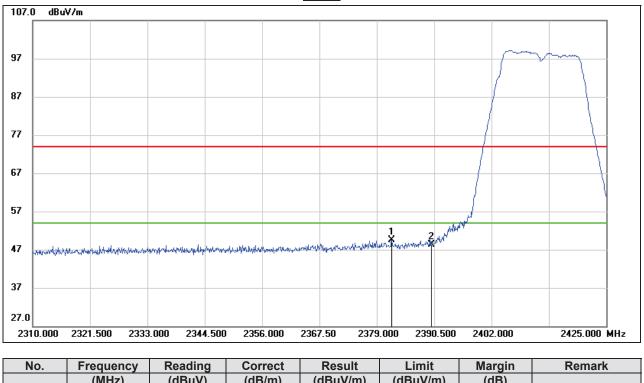
4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2378.885	7.87	32.91	40.78	54.00	-13.22	AVG
2	2390.000	8.14	32.94	41.08	54.00	-12.92	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

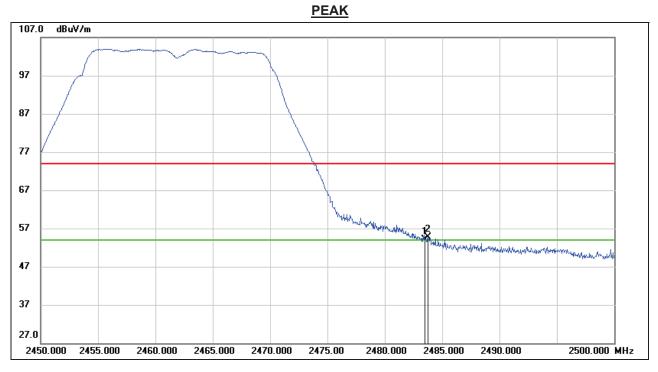
5. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2381.990	16.61	32.92	49.53	74.00	-24.47	peak
2	2390.000	15.28	32.94	48.22	74.00	-25.78	peak

Note: 1. Measurement = Reading Level + Correct Factor.

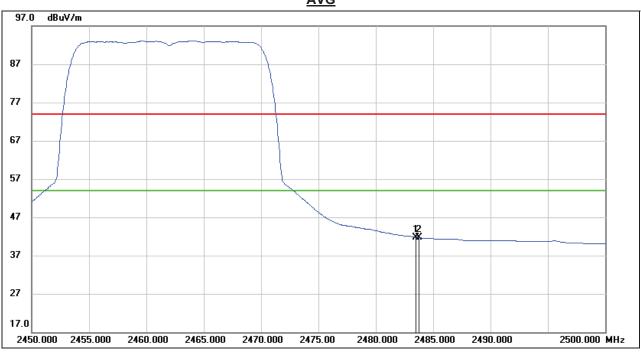
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

<u>PEAK</u>

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	20.59	33.58	54.17	74.00	-19.83	peak
2	2483.750	21.08	33.58	54.66	74.00	-19.34	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

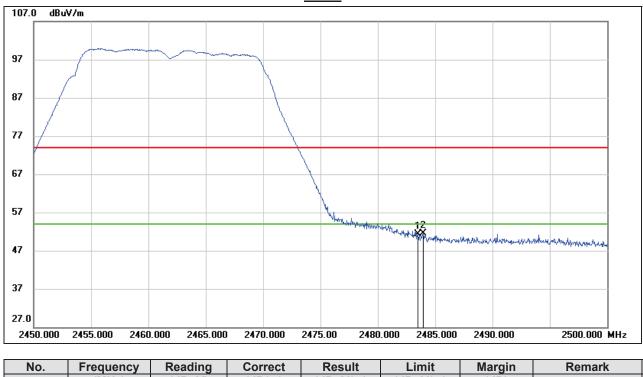
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	8.20	33.58	41.78	54.00	-12.22	AVG
2	2483.750	8.16	33.58	41.74	54.00	-12.26	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.


5. For the transmitting duration, please refer to clause 7.1.

6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

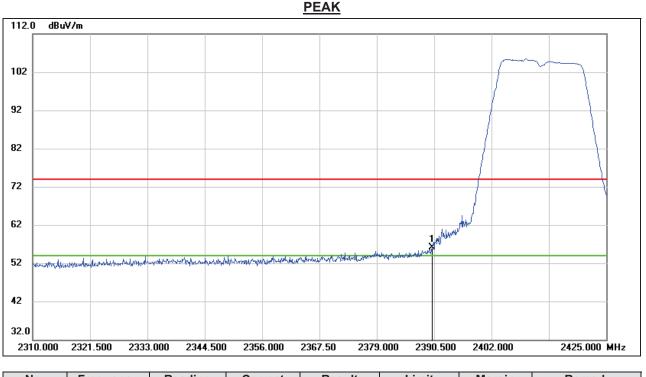
AVG

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	17.76	33.58	51.34	74.00	-22.66	peak
2	2483.950	17.96	33.58	51.54	74.00	-22.46	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

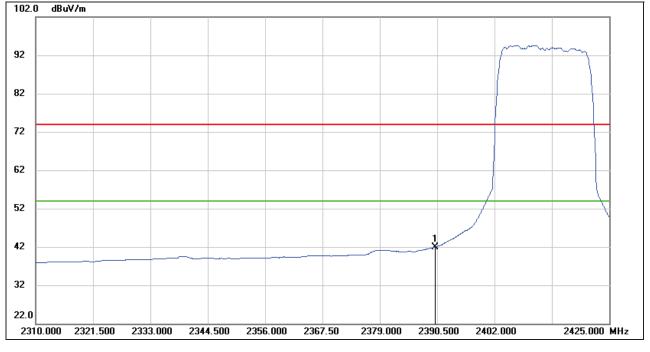
4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

<u>PEAK</u>

8.1.3. 802.11n HT20 MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	23.16	32.94	56.10	74.00	-17.90	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

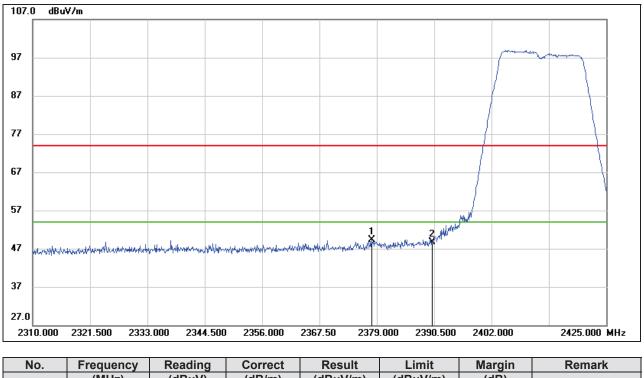
3. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	8.99	32.94	41.93	54.00	-12.07	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

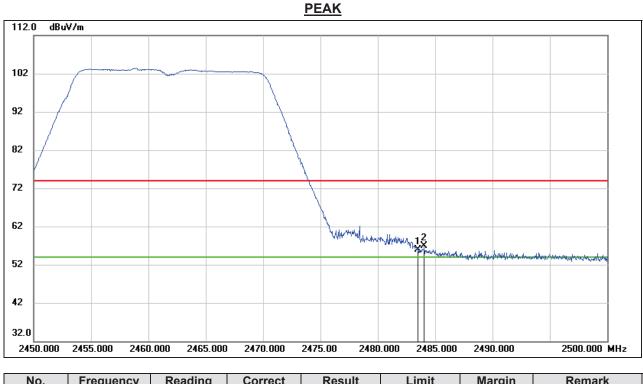
5. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2377.965	16.50	32.90	49.40	74.00	-24.60	peak
2	2390.000	15.69	32.94	48.63	74.00	-25.37	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

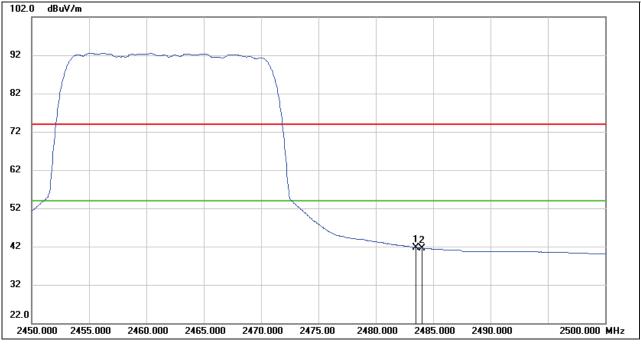

3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

PEAK

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	22.28	33.58	55.86	74.00	-18.14	peak
2	2484.050	23.23	33.58	56.81	74.00	-17.19	peak


Note: 1. Measurement = Reading Level + Correct Factor.

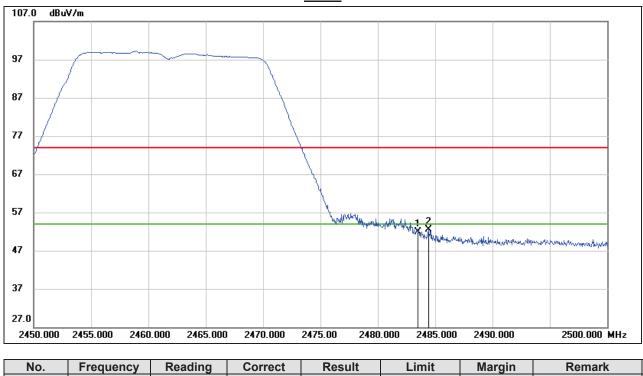
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	8.20	33.58	41.78	54.00	-12.22	AVG
2	2484.050	8.01	33.58	41.59	54.00	-12.41	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

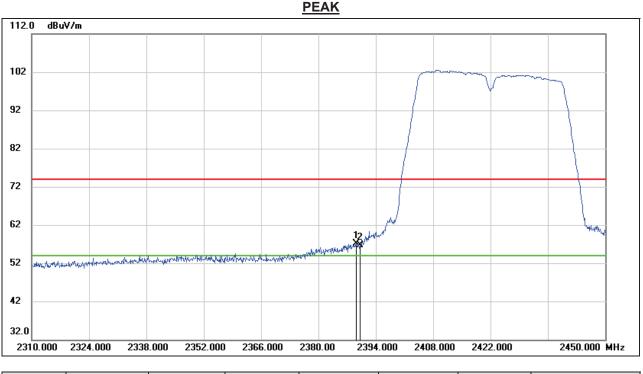
5. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.27	33.58	51.85	74.00	-22.15	peak
2	2484.400	18.92	33.59	52.51	74.00	-21.49	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

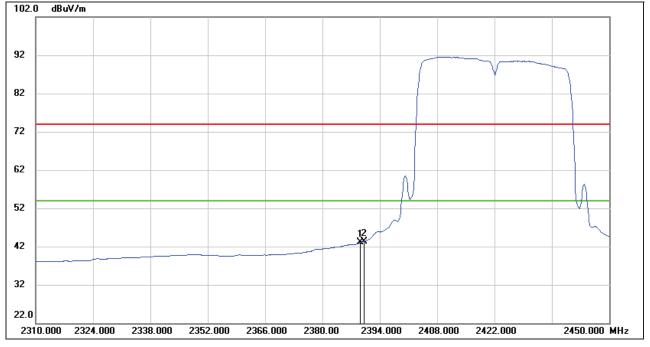
4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

PEAK

8.1.4. 802.11n HT40 MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.240	24.22	32.94	57.16	74.00	-16.84	peak
2	2390.000	23.78	32.94	56.72	74.00	-17.28	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

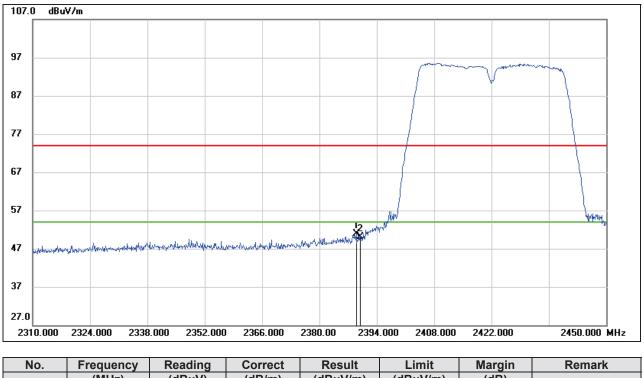
3. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.240	10.09	32.94	43.03	54.00	-10.97	AVG
2	2390.000	10.43	32.94	43.37	54.00	-10.63	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

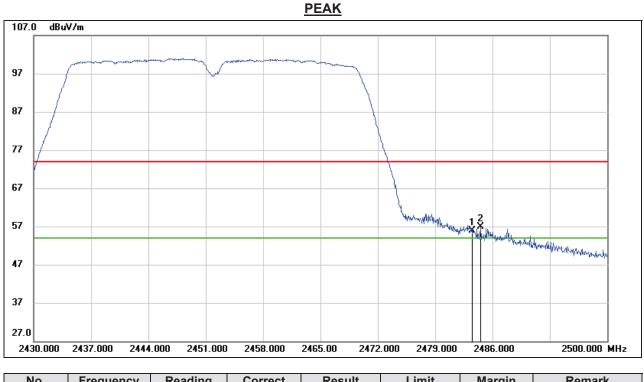
5. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2388.960	17.93	32.94	50.87	74.00	-23.13	peak
2	2390.000	17.21	32.94	50.15	74.00	-23.85	peak

Note: 1. Measurement = Reading Level + Correct Factor.

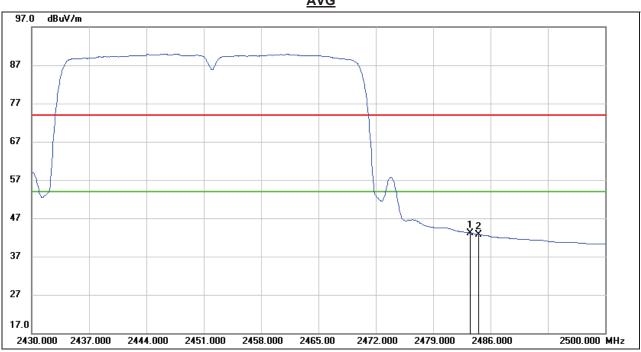
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

PEAK

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	22.29	33.58	55.87	74.00	-18.13	peak
2	2484.530	23.25	33.59	56.84	74.00	-17.16	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

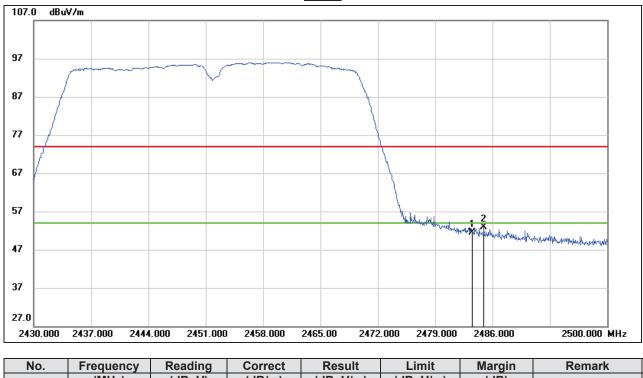
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	9.58	33.58	43.16	54.00	-10.84	AVG
2	2484.530	9.18	33.59	42.77	54.00	-11.23	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.


5. For the transmitting duration, please refer to clause 7.1.

6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

AVG

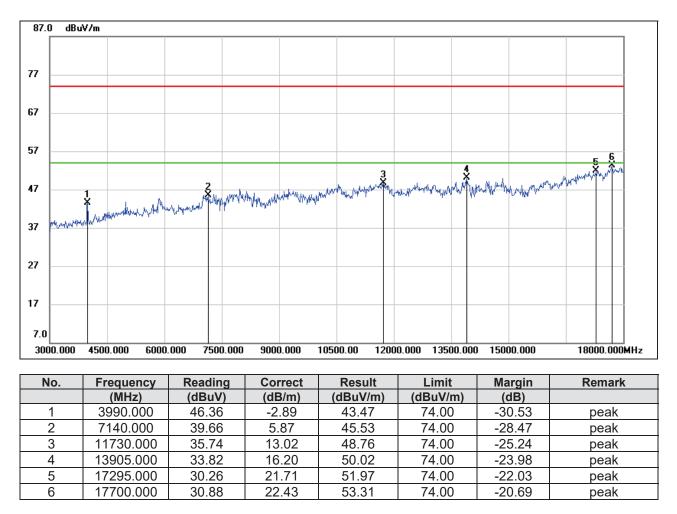
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Ρ	E/	١K	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	17.84	33.58	51.42	74.00	-22.58	peak
2	2484.950	19.23	33.59	52.82	74.00	-21.18	peak

Note: 1. Measurement = Reading Level + Correct Factor.

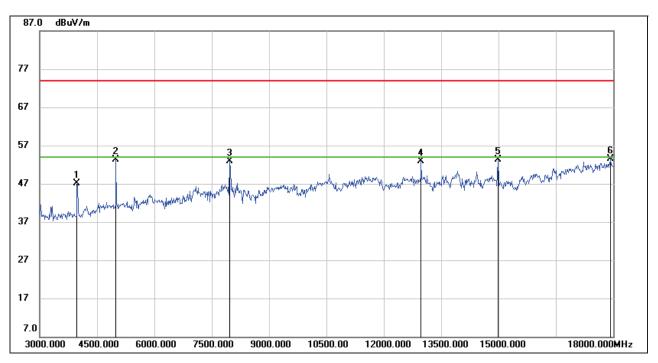
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

8.2. SPURIOUS EMISSIONS (3~18GHz)

8.2.1. 802.11b MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)


Note: 1. Measurement = Reading Level + Correct Factor.

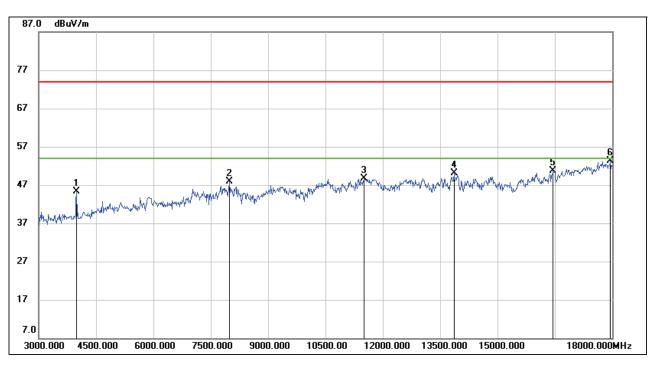
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	50.01	-2.90	47.11	74.00	-26.89	peak
2	4980.000	51.99	1.29	53.28	74.00	-20.72	peak
3	7965.000	45.83	7.00	52.83	74.00	-21.17	peak
4	12975.000	37.99	14.93	52.92	74.00	-21.08	peak
5	14985.000	37.30	15.97	53.27	74.00	-20.73	peak
6	17925.000	30.12	23.37	53.49	74.00	-20.51	peak


Note: 1. Measurement = Reading Level + Correct Factor.

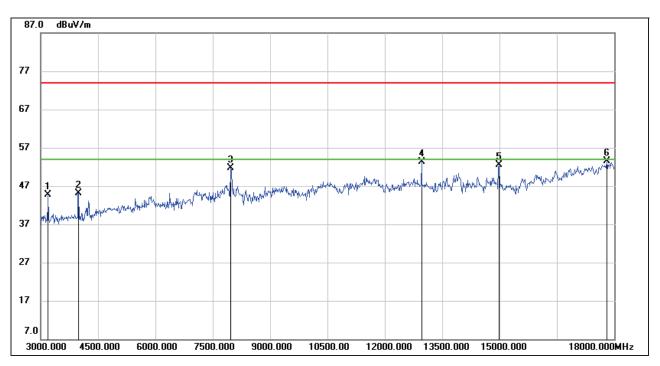
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	48.17	-2.89	45.28	74.00	-28.72	peak
2	7995.000	40.99	6.89	47.88	74.00	-26.12	peak
3	11505.000	35.21	13.42	48.63	74.00	-25.37	peak
4	13860.000	33.52	16.56	50.08	74.00	-23.92	peak
5	16455.000	31.77	19.00	50.77	74.00	-23.23	peak
6	17955.000	29.96	23.41	53.37	74.00	-20.63	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

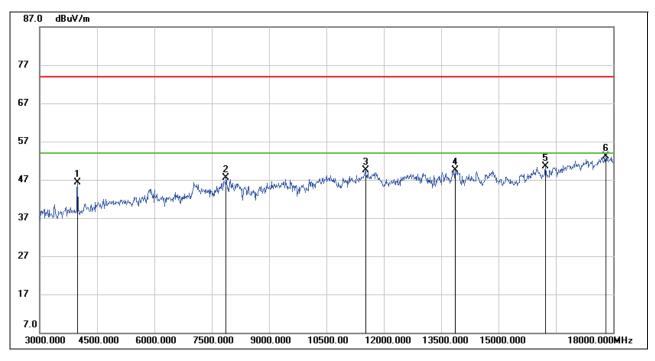
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3195.000	49.05	-4.42	44.63	74.00	-29.37	peak
2	3990.000	48.04	-2.89	45.15	74.00	-28.85	peak
3	7965.000	44.73	7.00	51.73	74.00	-22.27	peak
4	12960.000	38.31	14.92	53.23	74.00	-20.77	peak
5	14985.000	36.58	15.97	52.55	74.00	-21.45	peak
6	17805.000	30.12	23.31	53.43	74.00	-20.57	peak

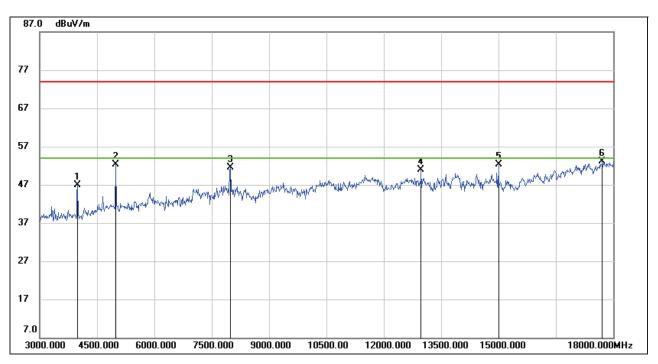
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	49.20	-2.89	46.31	74.00	-27.69	peak
2	7875.000	40.01	7.40	47.41	74.00	-26.59	peak
3	11520.000	36.17	13.38	49.55	74.00	-24.45	peak
4	13860.000	33.03	16.56	49.59	74.00	-24.41	peak
5	16230.000	32.02	18.46	50.48	74.00	-23.52	peak
6	17805.000	29.87	23.31	53.18	74.00	-20.82	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

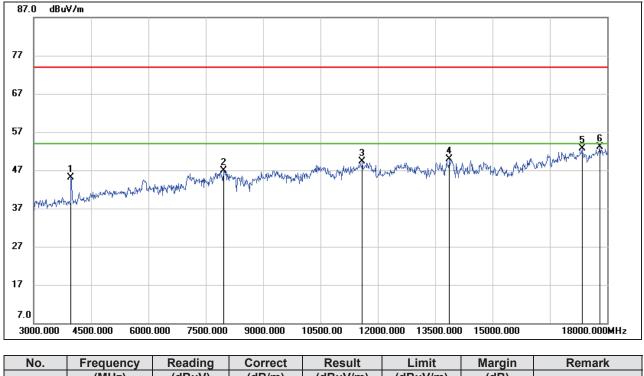
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	49.87	-2.89	46.98	74.00	-27.02	peak
2	4980.000	50.94	1.29	52.23	74.00	-21.77	peak
3	7995.000	44.63	6.89	51.52	74.00	-22.48	peak
4	12975.000	35.92	14.93	50.85	74.00	-23.15	peak
5	15000.000	36.40	15.97	52.37	74.00	-21.63	peak
6	17715.000	30.53	22.56	53.09	74.00	-20.91	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

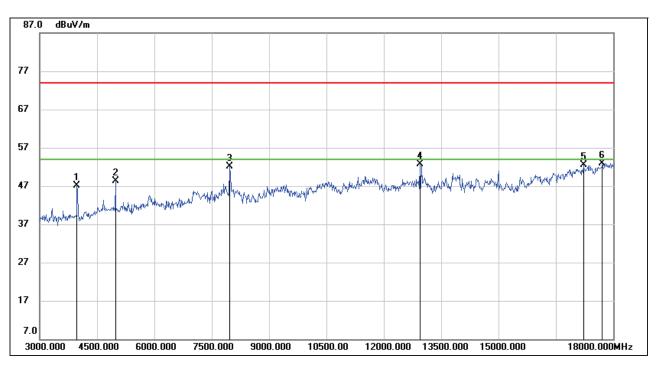
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

8.2.2. 802.11g MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	48.01	-2.90	45.11	74.00	-28.89	peak
2	7965.000	39.81	7.00	46.81	74.00	-27.19	peak
3	11595.000	36.12	13.19	49.31	74.00	-24.69	peak
4	13875.000	33.50	16.44	49.94	74.00	-24.06	peak
5	17340.000	31.03	21.61	52.64	74.00	-21.36	peak
6	17805.000	29.85	23.31	53.16	74.00	-20.84	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

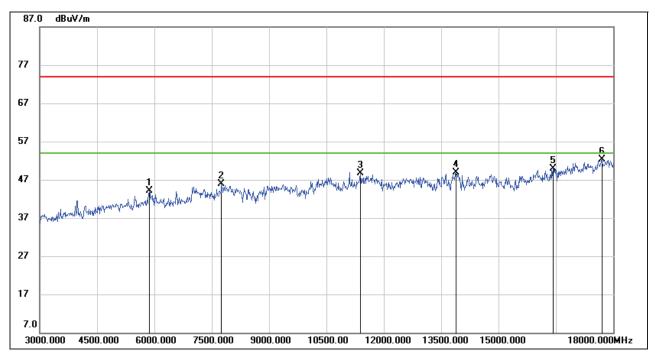
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	49.93	-2.90	47.03	74.00	-26.97	peak
2	4980.000	47.11	1.29	48.40	74.00	-25.60	peak
3	7965.000	45.18	7.00	52.18	74.00	-21.82	peak
4	12945.000	37.87	14.92	52.79	74.00	-21.21	peak
5	17220.000	31.36	21.08	52.44	74.00	-21.56	peak
6	17715.000	30.43	22.56	52.99	74.00	-21.01	peak

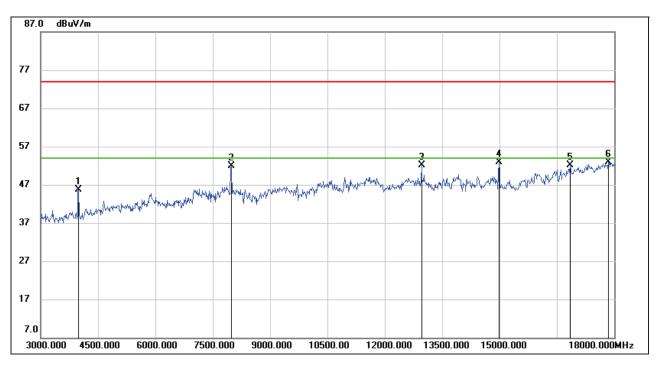
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5865.000	39.86	4.30	44.16	74.00	-29.84	peak
2	7755.000	38.60	7.29	45.89	74.00	-28.11	peak
3	11385.000	36.04	12.58	48.62	74.00	-25.38	peak
4	13890.000	32.66	16.31	48.97	74.00	-25.03	peak
5	16425.000	31.04	18.88	49.92	74.00	-24.08	peak
6	17700.000	29.81	22.43	52.24	74.00	-21.76	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

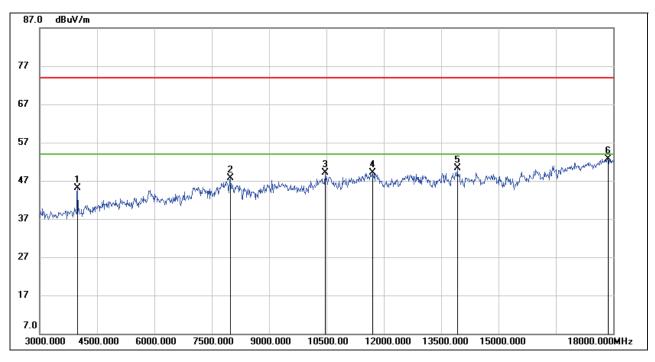
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	48.55	-2.89	45.66	74.00	-28.34	peak
2	7980.000	44.88	6.94	51.82	74.00	-22.18	peak
3	12960.000	37.13	14.92	52.05	74.00	-21.95	peak
4	14985.000	36.85	15.97	52.82	74.00	-21.18	peak
5	16845.000	32.06	19.96	52.02	74.00	-21.98	peak
6	17850.000	29.56	23.32	52.88	74.00	-21.12	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

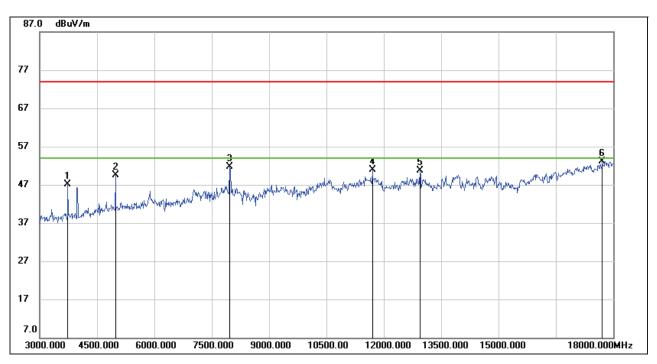

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	47.94	-2.89	45.05	74.00	-28.95	peak
2	7995.000	40.79	6.89	47.68	74.00	-26.32	peak
3	10470.000	37.83	11.25	49.08	74.00	-24.92	peak
4	11715.000	36.17	12.99	49.16	74.00	-24.84	peak
5	13920.000	34.13	16.17	50.30	74.00	-23.70	peak
6	17865.000	29.41	23.33	52.74	74.00	-21.26	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

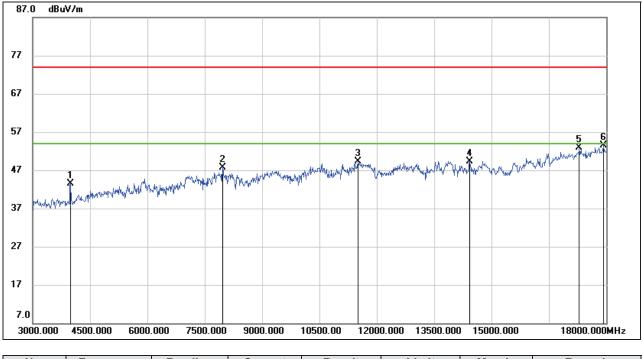
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3735.000	49.94	-2.74	47.20	74.00	-26.80	peak
2	4980.000	48.22	1.29	49.51	74.00	-24.49	peak
3	7965.000	44.68	7.00	51.68	74.00	-22.32	peak
4	11700.000	37.91	12.95	50.86	74.00	-23.14	peak
5	12945.000	35.75	14.92	50.67	74.00	-23.33	peak
6	17715.000	30.52	22.56	53.08	74.00	-20.92	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

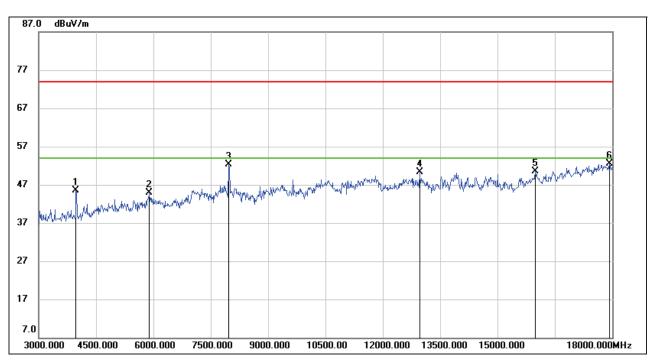
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

8.2.3. 802.11n HT20 MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	46.43	-2.89	43.54	74.00	-30.46	peak
2	7965.000	40.80	7.00	47.80	74.00	-26.20	peak
3	11505.000	35.85	13.42	49.27	74.00	-24.73	peak
4	14430.000	33.05	16.35	49.40	74.00	-24.60	peak
5	17295.000	31.16	21.71	52.87	74.00	-21.13	peak
6	17925.000	30.14	23.37	53.51	74.00	-20.49	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	48.38	-2.90	45.48	74.00	-28.52	peak
2	5895.000	39.97	4.86	44.83	74.00	-29.17	peak
3	7965.000	45.30	7.00	52.30	74.00	-21.70	peak
4	12960.000	35.37	14.92	50.29	74.00	-23.71	peak
5	15990.000	32.83	17.68	50.51	74.00	-23.49	peak
6	17925.000	29.14	23.37	52.51	74.00	-21.49	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	47.72	-2.90	44.82	74.00	-29.18	peak
2	7965.000	40.14	7.00	47.14	74.00	-26.86	peak
3	11520.000	35.66	13.38	49.04	74.00	-24.96	peak
4	14445.000	32.98	16.36	49.34	74.00	-24.66	peak
5	16845.000	31.14	19.96	51.10	74.00	-22.90	peak
6	17715.000	30.75	22.56	53.31	74.00	-20.69	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

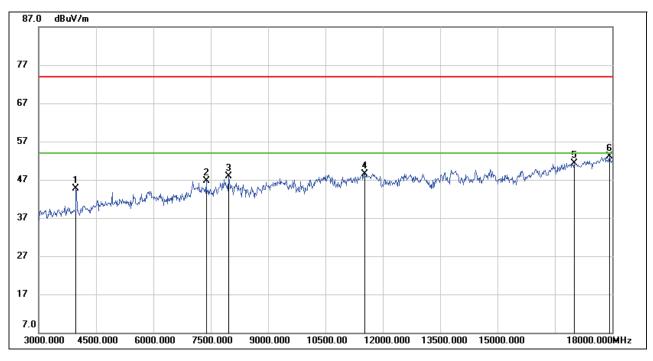
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	49.15	-2.89	46.26	74.00	-27.74	peak
2	4980.000	45.73	1.29	47.02	74.00	-26.98	peak
3	7965.000	46.13	7.00	53.13	74.00	-20.87	peak
4	12990.000	35.13	14.92	50.05	74.00	-23.95	peak
5	17235.000	31.41	21.21	52.62	74.00	-21.38	peak
6	17790.000	29.57	23.22	52.79	74.00	-21.21	peak

Note: 1. Measurement = Reading Level + Correct Factor.

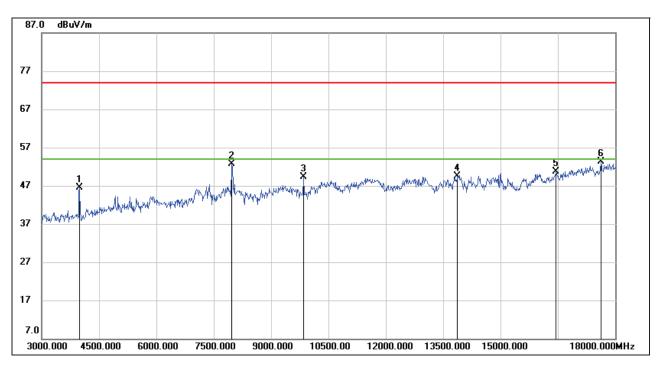

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	47.55	-2.90	44.65	74.00	-29.35	peak
2	7380.000	40.32	6.41	46.73	74.00	-27.27	peak
3	7965.000	40.84	7.00	47.84	74.00	-26.16	peak
4	11520.000	35.20	13.38	48.58	74.00	-25.42	peak
5	17010.000	30.96	20.43	51.39	74.00	-22.61	peak
6	17925.000	29.76	23.37	53.13	74.00	-20.87	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

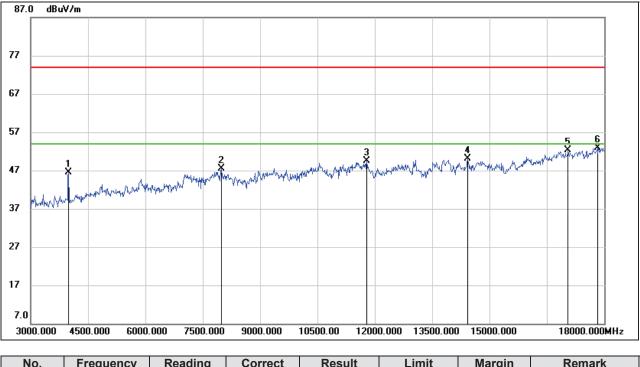
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	49.43	-2.89	46.54	74.00	-27.46	peak
2	7965.000	45.79	7.00	52.79	74.00	-21.21	peak
3	9855.000	39.31	9.92	49.23	74.00	-24.77	peak
4	13875.000	33.05	16.44	49.49	74.00	-24.51	peak
5	16455.000	31.68	19.00	50.68	74.00	-23.32	peak
6	17625.000	31.26	21.95	53.21	74.00	-20.79	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

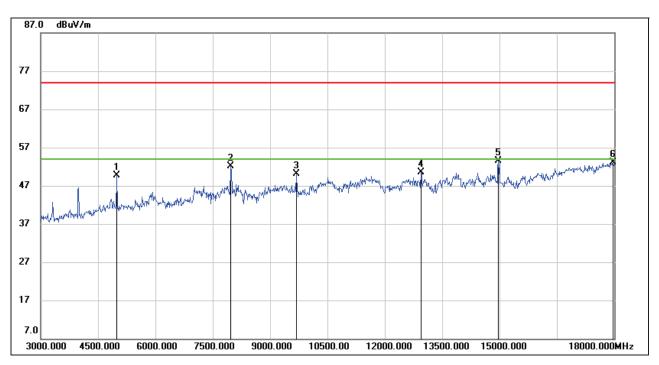
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

8.2.4. 802.11n HT40 MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	49.32	-2.89	46.43	74.00	-27.57	peak
2	7995.000	40.55	6.89	47.44	74.00	-26.56	peak
3	11790.000	36.27	13.17	49.44	74.00	-24.56	peak
4	14430.000	33.83	16.35	50.18	74.00	-23.82	peak
5	17055.000	31.69	20.53	52.22	74.00	-21.78	peak
6	17820.000	29.55	23.30	52.85	74.00	-21.15	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

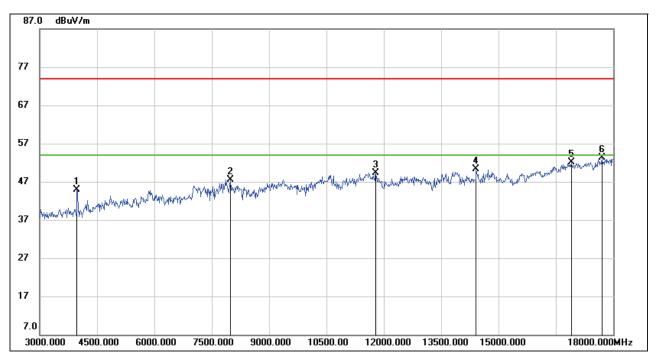
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4995.000	48.42	1.37	49.79	74.00	-24.21	peak
2	7965.000	45.15	7.00	52.15	74.00	-21.85	peak
3	9690.000	40.52	9.63	50.15	74.00	-23.85	peak
4	12945.000	35.54	14.92	50.46	74.00	-23.54	peak
5	14970.000	37.57	15.98	53.55	74.00	-20.45	peak
6	17970.000	29.76	23.42	53.18	74.00	-20.82	peak

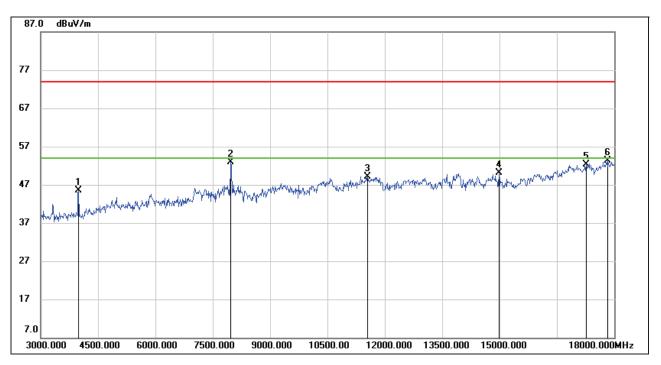
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	47.86	-2.90	44.96	74.00	-29.04	peak
2	7995.000	40.66	6.89	47.55	74.00	-26.45	peak
3	11790.000	36.16	13.17	49.33	74.00	-24.67	peak
4	14415.000	33.93	16.35	50.28	74.00	-23.72	peak
5	16905.000	32.03	19.99	52.02	74.00	-21.98	peak
6	17700.000	30.78	22.43	53.21	74.00	-20.79	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

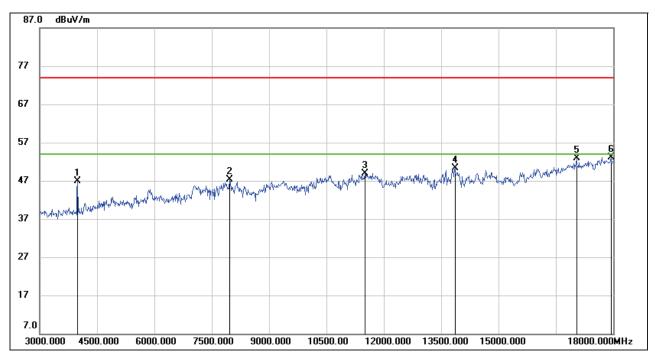
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	48.42	-2.89	45.53	74.00	-28.47	peak
2	7965.000	45.81	7.00	52.81	74.00	-21.19	peak
3	11550.000	35.83	13.30	49.13	74.00	-24.87	peak
4	14985.000	34.13	15.97	50.10	74.00	-23.90	peak
5	17265.000	30.84	21.46	52.30	74.00	-21.70	peak
6	17835.000	29.99	23.31	53.30	74.00	-20.70	peak

Note: 1. Measurement = Reading Level + Correct Factor.

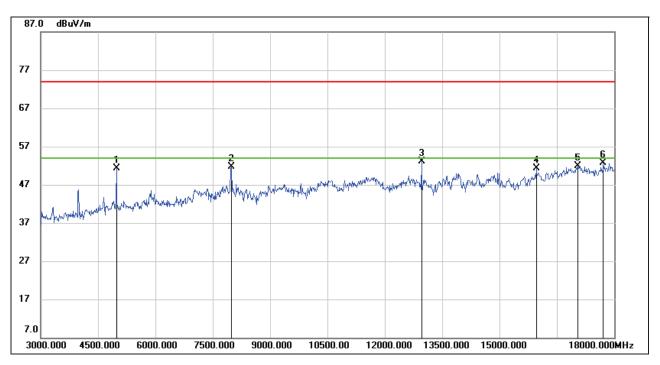

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	49.85	-2.89	46.96	74.00	-27.04	peak
2	7965.000	40.26	7.00	47.26	74.00	-26.74	peak
3	11505.000	35.57	13.42	48.99	74.00	-25.01	peak
4	13860.000	33.77	16.56	50.33	74.00	-23.67	peak
5	17040.000	32.47	20.49	52.96	74.00	-21.04	peak
6	17940.000	29.81	23.39	53.20	74.00	-20.80	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

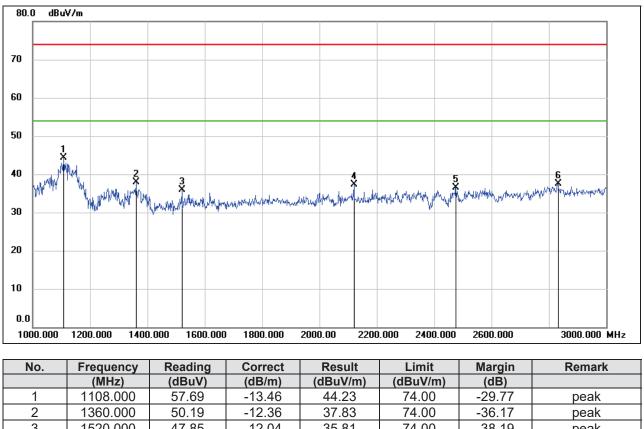
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4980.000	49.99	1.29	51.28	74.00	-22.72	peak
2	7980.000	44.84	6.94	51.78	74.00	-22.22	peak
3	12960.000	38.20	14.92	53.12	74.00	-20.88	peak
4	15960.000	33.62	17.63	51.25	74.00	-22.75	peak
5	17040.000	31.45	20.49	51.94	74.00	-22.06	peak
6	17715.000	30.24	22.56	52.80	74.00	-21.20	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

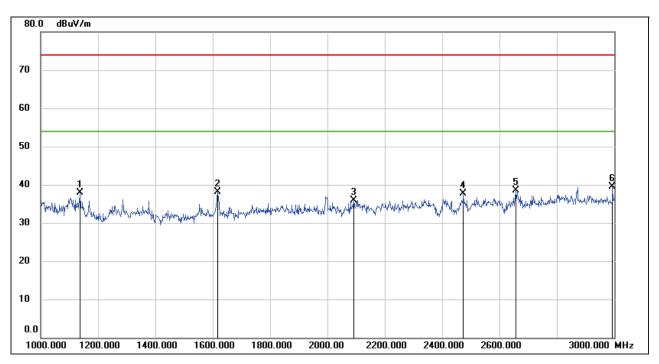

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

8.3. SPURIOUS EMISSIONS (1~3GHz)

8.3.1. 802.11b MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

l	Ζ	1300.000	50.19	-12.30	37.03	74.00	-30.17	реак
	3	1520.000	47.85	-12.04	35.81	74.00	-38.19	peak
	4	2120.000	46.35	-9.06	37.29	74.00	-36.71	peak
ſ	5	2476.000	43.85	-7.33	36.52	74.00	-37.48	peak
ſ	6	2832.000	43.37	-5.88	37.49	74.00	-36.51	peak
Ī								


Note: 1. Measurement = Reading Level + Correct Factor.

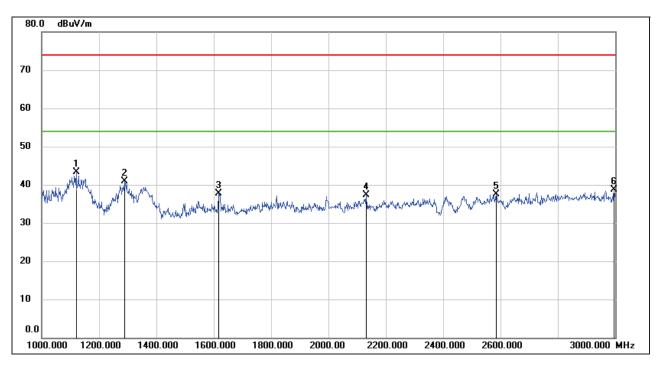
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1138.000	51.17	-13.19	37.98	74.00	-36.02	peak
2	1616.000	49.34	-11.32	38.02	74.00	-35.98	peak
3	2092.000	45.19	-9.20	35.99	74.00	-38.01	peak
4	2474.000	44.98	-7.35	37.63	74.00	-36.37	peak
5	2658.000	45.89	-7.37	38.52	74.00	-35.48	peak
6	2994.000	44.82	-5.31	39.51	74.00	-34.49	peak


Note: 1. Measurement = Reading Level + Correct Factor.

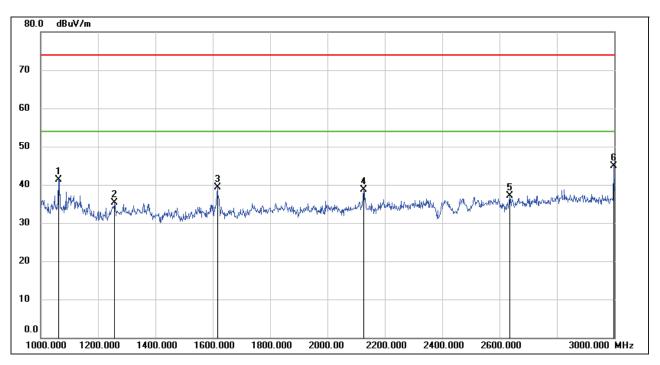
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1120.000	56.55	-13.34	43.21	74.00	-30.79	peak
2	1288.000	53.20	-12.38	40.82	74.00	-33.18	peak
3	1618.000	48.97	-11.31	37.66	74.00	-36.34	peak
4	2132.000	46.24	-9.00	37.24	74.00	-36.76	peak
5	2584.000	45.13	-7.62	37.51	74.00	-36.49	peak
6	2996.000	43.99	-5.30	38.69	74.00	-35.31	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

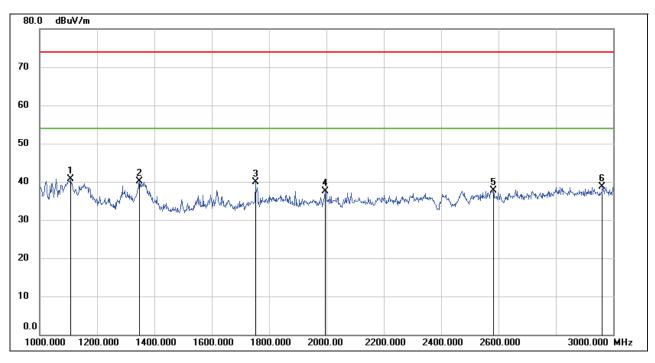
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1062.000	54.89	-13.55	41.34	74.00	-32.66	peak
2	1258.000	47.80	-12.49	35.31	74.00	-38.69	peak
3	1616.000	50.55	-11.32	39.23	74.00	-34.77	peak
4	2126.000	47.64	-9.02	38.62	74.00	-35.38	peak
5	2636.000	44.51	-7.49	37.02	74.00	-36.98	peak
6	2998.000	50.31	-5.31	45.00	74.00	-29.00	peak

Note: 1. Measurement = Reading Level + Correct Factor.

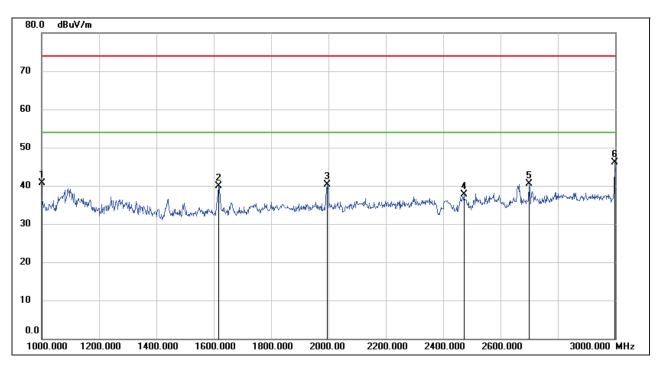

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1108.000	54.22	-13.46	40.76	74.00	-33.24	peak
2	1348.000	52.42	-12.36	40.06	74.00	-33.94	peak
3	1752.000	50.23	-10.39	39.84	74.00	-34.16	peak
4	1996.000	47.24	-9.83	37.41	74.00	-36.59	peak
5	2582.000	45.31	-7.60	37.71	74.00	-36.29	peak
6	2962.000	44.14	-5.39	38.75	74.00	-35.25	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

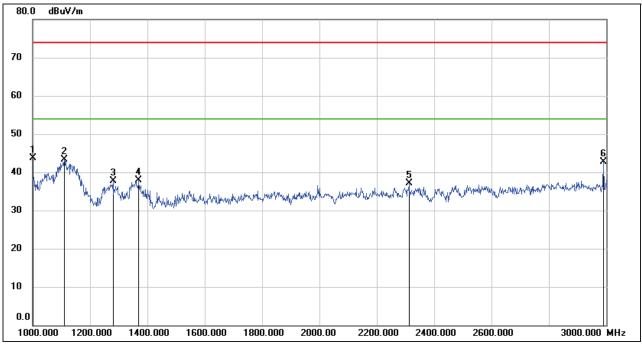
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1000.000	54.20	-13.59	40.61	74.00	-33.39	peak
2	1616.000	51.14	-11.32	39.82	74.00	-34.18	peak
3	1996.000	50.06	-9.83	40.23	74.00	-33.77	peak
4	2472.000	45.02	-7.36	37.66	74.00	-36.34	peak
5	2700.000	47.58	-7.13	40.45	74.00	-33.55	peak
6	2998.000	51.36	-5.31	46.05	74.00	-27.95	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

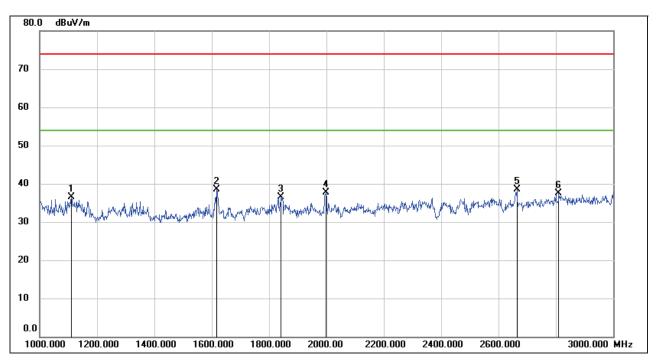
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

8.3.2. 802.11g MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1000.000	57.37	-13.59	43.78	74.00	-30.22	peak
2	1110.000	56.65	-13.43	43.22	74.00	-30.78	peak
3	1280.000	50.08	-12.41	37.67	74.00	-36.33	peak
4	1370.000	50.28	-12.37	37.91	74.00	-36.09	peak
5	2312.000	45.27	-8.15	37.12	74.00	-36.88	peak
6	2990.000	48.10	-5.33	42.77	74.00	-31.23	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1110.000	49.95	-13.43	36.52	74.00	-37.48	peak
2	1618.000	49.79	-11.31	38.48	74.00	-35.52	peak
3	1842.000	46.47	-9.93	36.54	74.00	-37.46	peak
4	1998.000	47.46	-9.83	37.63	74.00	-36.37	peak
5	2664.000	45.89	-7.34	38.55	74.00	-35.45	peak
6	2810.000	43.41	-6.00	37.41	74.00	-36.59	peak

Note: 1. Measurement = Reading Level + Correct Factor.

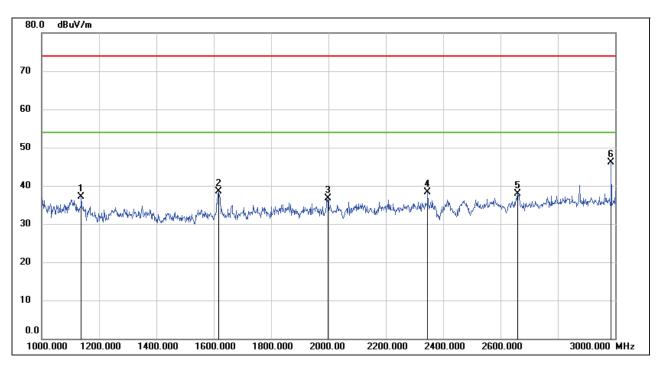
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1112.000	57.42	-13.42	44.00	74.00	-30.00	peak
2	1354.000	50.84	-12.36	38.48	74.00	-35.52	peak
3	2106.000	44.50	-9.12	35.38	74.00	-38.62	peak
4	2370.000	45.41	-7.95	37.46	74.00	-36.54	peak
5	2770.000	43.05	-6.38	36.67	74.00	-37.33	peak
6	2990.000	45.72	-5.33	40.39	74.00	-33.61	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

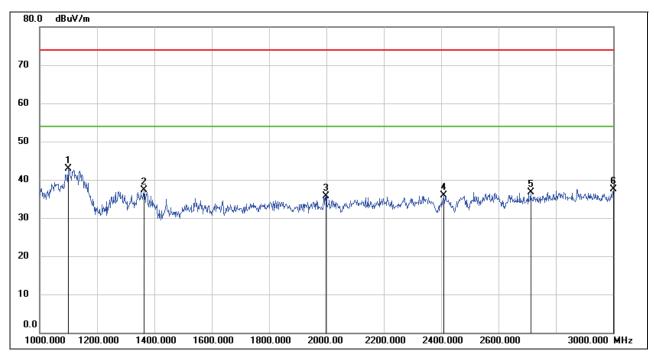
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1138.000	50.36	-13.19	37.17	74.00	-36.83	peak
2	1618.000	49.78	-11.31	38.47	74.00	-35.53	peak
3	1998.000	46.59	-9.83	36.76	74.00	-37.24	peak
4	2346.000	46.38	-8.04	38.34	74.00	-35.66	peak
5	2660.000	45.20	-7.35	37.85	74.00	-36.15	peak
6	2986.000	51.51	-5.33	46.18	74.00	-27.82	peak

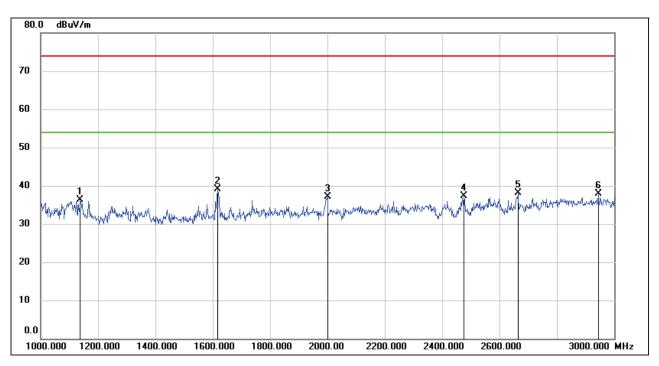
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1100.000	56.33	-13.52	42.81	74.00	-31.19	peak
2	1364.000	49.63	-12.37	37.26	74.00	-36.74	peak
3	1998.000	45.63	-9.83	35.80	74.00	-38.20	peak
4	2410.000	43.71	-7.78	35.93	74.00	-38.07	peak
5	2712.000	43.79	-7.00	36.79	74.00	-37.21	peak
6	3000.000	42.87	-5.30	37.57	74.00	-36.43	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1138.000	49.48	-13.19	36.29	74.00	-37.71	peak
2	1616.000	50.43	-11.32	39.11	74.00	-34.89	peak
3	2000.000	46.84	-9.82	37.02	74.00	-36.98	peak
4	2476.000	44.62	-7.33	37.29	74.00	-36.71	peak
5	2664.000	45.41	-7.34	38.07	74.00	-35.93	peak
6	2944.000	43.32	-5.42	37.90	74.00	-36.10	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

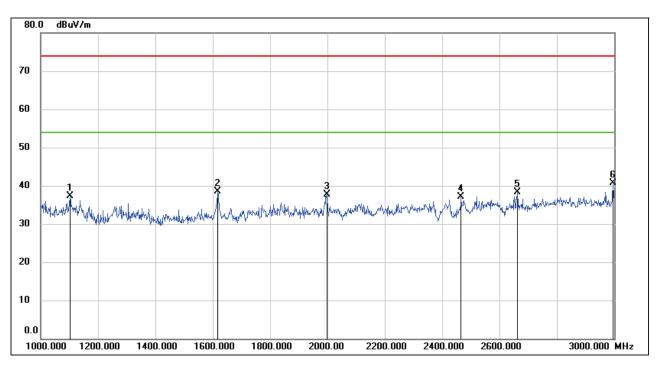
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

8.3.3. 802.11n HT20 MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1112.000	56.45	-13.42	43.03	74.00	-30.97	peak
2	1372.000	49.92	-12.37	37.55	74.00	-36.45	peak
3	1994.000	45.06	-9.83	35.23	74.00	-38.77	peak
4	2470.000	43.85	-7.37	36.48	74.00	-37.52	peak
5	2878.000	42.96	-5.64	37.32	74.00	-36.68	peak
6	2992.000	47.91	-5.31	42.60	74.00	-31.40	peak


Note: 1. Measurement = Reading Level + Correct Factor.

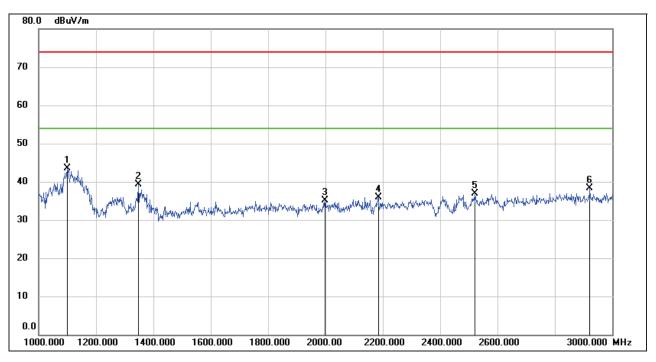
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1102.000	50.78	-13.51	37.27	74.00	-36.73	peak
2	1618.000	49.86	-11.31	38.55	74.00	-35.45	peak
3	1998.000	47.53	-9.83	37.70	74.00	-36.30	peak
4	2466.000	44.60	-7.40	37.20	74.00	-36.80	peak
5	2662.000	45.72	-7.35	38.37	74.00	-35.63	peak
6	2996.000	46.10	-5.30	40.80	74.00	-33.20	peak


Note: 1. Measurement = Reading Level + Correct Factor.

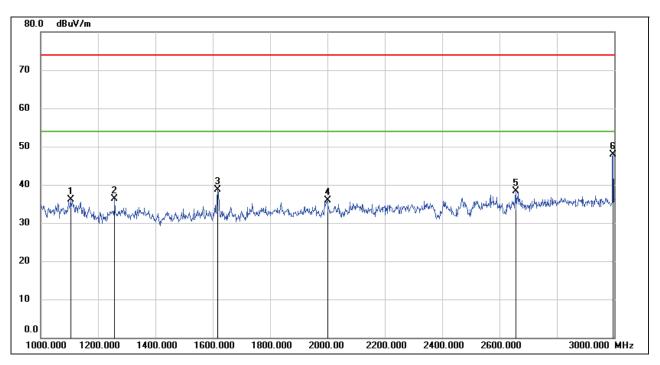
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1100.000	56.93	-13.52	43.41	74.00	-30.59	peak
2	1348.000	51.75	-12.36	39.39	74.00	-34.61	peak
3	1998.000	45.01	-9.83	35.18	74.00	-38.82	peak
4	2184.000	44.71	-8.74	35.97	74.00	-38.03	peak
5	2522.000	44.18	-7.28	36.90	74.00	-37.10	peak
6	2922.000	43.86	-5.47	38.39	74.00	-35.61	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

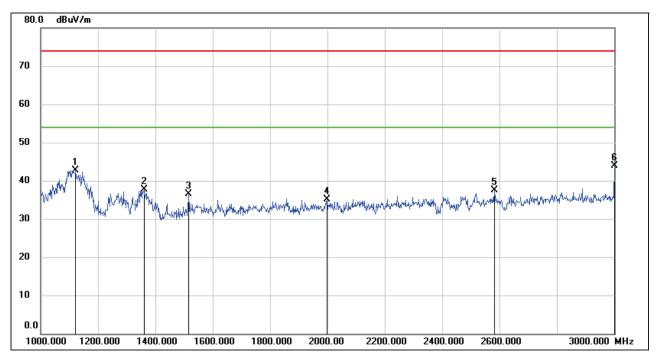
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1104.000	49.57	-13.48	36.09	74.00	-37.91	peak
2	1258.000	48.76	-12.49	36.27	74.00	-37.73	peak
3	1618.000	49.93	-11.31	38.62	74.00	-35.38	peak
4	2000.000	45.74	-9.82	35.92	74.00	-38.08	peak
5	2656.000	45.65	-7.38	38.27	74.00	-35.73	peak
6	2996.000	53.14	-5.30	47.84	74.00	-26.16	peak

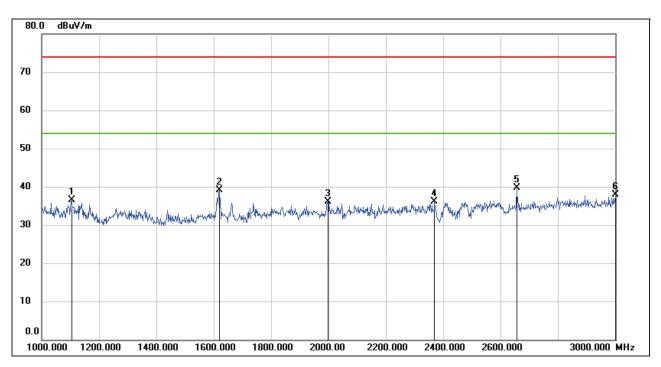
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1122.000	56.10	-13.33	42.77	74.00	-31.23	peak
2	1360.000	50.15	-12.36	37.79	74.00	-36.21	peak
3	1516.000	48.63	-12.08	36.55	74.00	-37.45	peak
4	1998.000	44.90	-9.83	35.07	74.00	-38.93	peak
5	2582.000	45.07	-7.60	37.47	74.00	-36.53	peak
6	3000.000	49.26	-5.30	43.96	74.00	-30.04	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

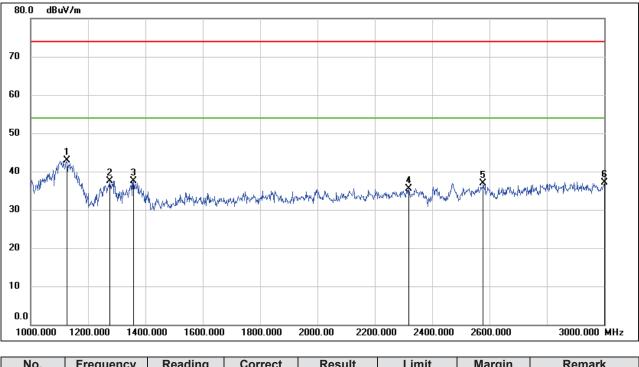
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1104.000	49.92	-13.48	36.44	74.00	-37.56	peak
2	1620.000	50.36	-11.29	39.07	74.00	-34.93	peak
3	1998.000	46.02	-9.83	36.19	74.00	-37.81	peak
4	2370.000	44.05	-7.95	36.10	74.00	-37.90	peak
5	2656.000	47.00	-7.38	39.62	74.00	-34.38	peak
6	3000.000	43.13	-5.30	37.83	74.00	-36.17	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

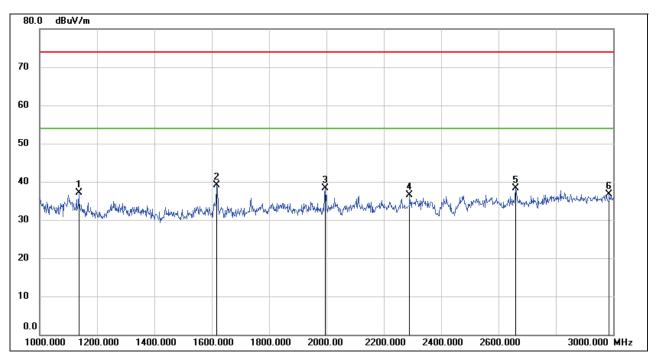
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

8.3.4. 802.11n HT40 MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1126.000	56.10	-13.29	42.81	74.00	-31.19	peak
2	1276.000	49.99	-12.42	37.57	74.00	-36.43	peak
3	1358.000	49.92	-12.37	37.55	74.00	-36.45	peak
4	2318.000	43.58	-8.13	35.45	74.00	-38.55	peak
5	2578.000	44.53	-7.58	36.95	74.00	-37.05	peak
6	3000.000	42.50	-5.30	37.20	74.00	-36.80	peak

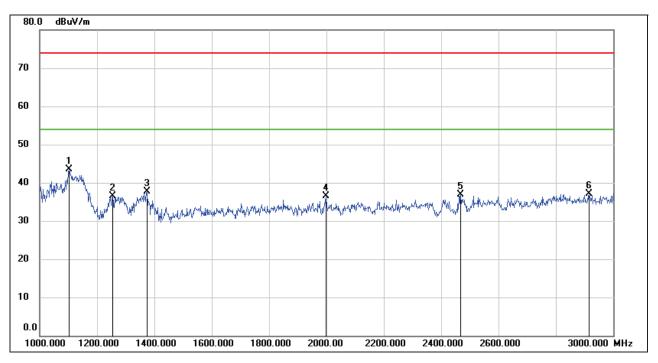
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1136.000	50.36	-13.22	37.14	74.00	-36.86	peak
2	1618.000	50.43	-11.31	39.12	74.00	-34.88	peak
3	1996.000	48.09	-9.83	38.26	74.00	-35.74	peak
4	2290.000	44.75	-8.24	36.51	74.00	-37.49	peak
5	2660.000	45.58	-7.35	38.23	74.00	-35.77	peak
6	2986.000	42.11	-5.33	36.78	74.00	-37.22	peak


Note: 1. Measurement = Reading Level + Correct Factor.

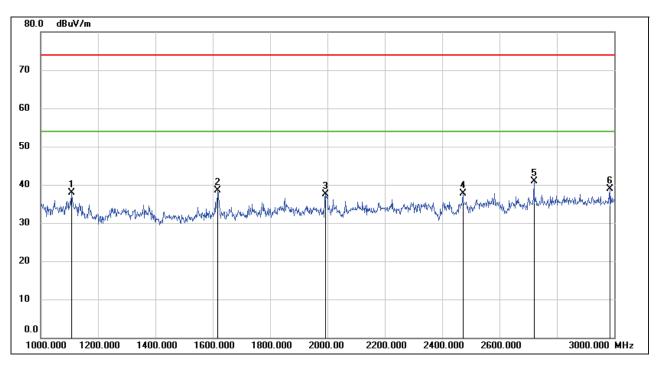
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1102.000	57.05	-13.51	43.54	74.00	-30.46	peak
2	1254.000	49.09	-12.50	36.59	74.00	-37.41	peak
3	1374.000	50.02	-12.38	37.64	74.00	-36.36	peak
4	1998.000	46.28	-9.83	36.45	74.00	-37.55	peak
5	2468.000	44.29	-7.39	36.90	74.00	-37.10	peak
6	2916.000	42.60	-5.48	37.12	74.00	-36.88	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

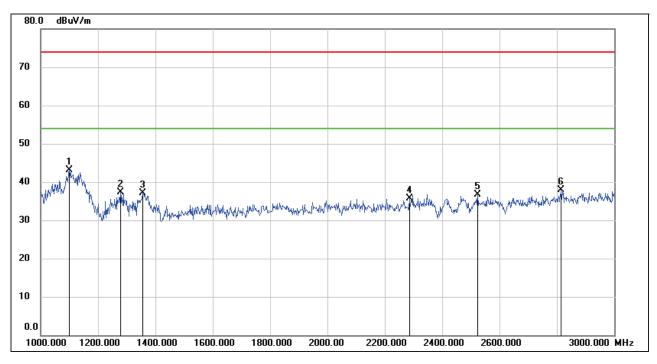
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1108.000	51.45	-13.46	37.99	74.00	-36.01	peak
2	1618.000	49.91	-11.31	38.60	74.00	-35.40	peak
3	1992.000	47.27	-9.83	37.44	74.00	-36.56	peak
4	2472.000	45.03	-7.36	37.67	74.00	-36.33	peak
5	2720.000	47.73	-6.92	40.81	74.00	-33.19	peak
6	2986.000	44.19	-5.33	38.86	74.00	-35.14	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

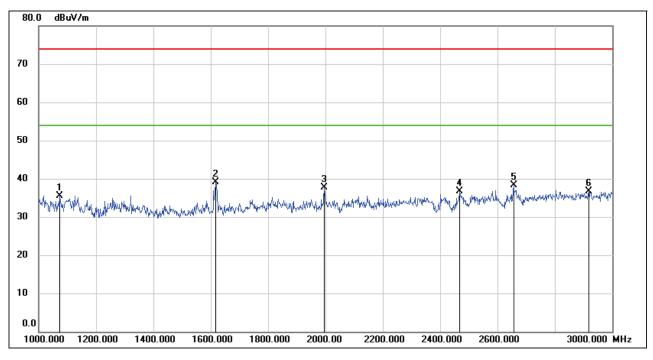
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1100.000	56.69	-13.52	43.17	74.00	-30.83	peak
2	1278.000	49.77	-12.42	37.35	74.00	-36.65	peak
3	1356.000	49.37	-12.36	37.01	74.00	-36.99	peak
4	2286.000	43.91	-8.26	35.65	74.00	-38.35	peak
5	2524.000	44.08	-7.29	36.79	74.00	-37.21	peak
6	2814.000	43.85	-5.98	37.87	74.00	-36.13	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

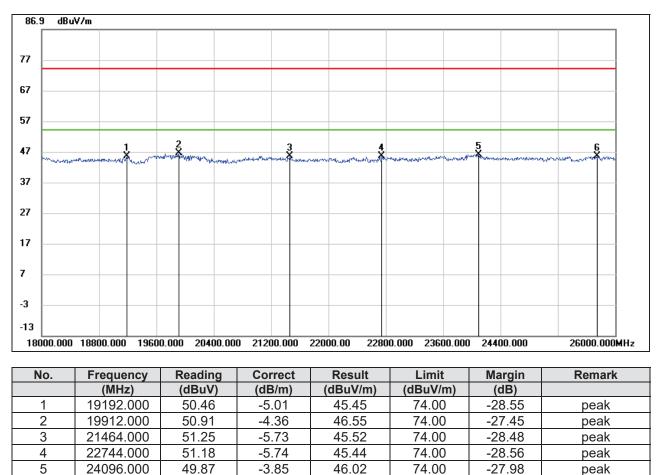
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1072.000	49.04	-13.53	35.51	74.00	-38.49	peak
2	1618.000	50.34	-11.31	39.03	74.00	-34.97	peak
3	1996.000	47.59	-9.83	37.76	74.00	-36.24	peak
4	2468.000	44.04	-7.39	36.65	74.00	-37.35	peak
5	2656.000	45.66	-7.38	38.28	74.00	-35.72	peak
6	2918.000	42.24	-5.48	36.76	74.00	-37.24	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

8.4. SPURIOUS EMISSIONS (18~26GHz)

8.4.1. 802.11g MODE

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

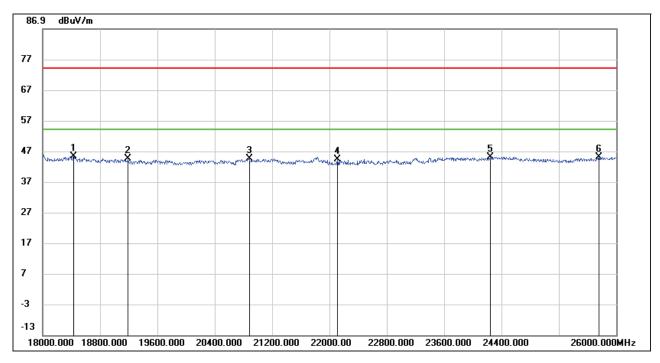
47.00

-1.35

25752.000

6

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.


45.65

74.00

-28.35

peak

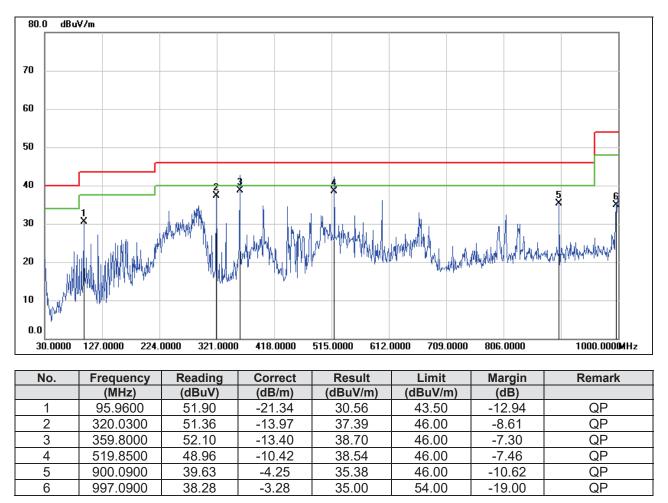
SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18432.000	49.61	-4.38	45.23	74.00	-28.77	peak
2	19192.000	49.48	-5.01	44.47	74.00	-29.53	peak
3	20880.000	49.84	-5.21	44.63	74.00	-29.37	peak
4	22112.000	50.47	-6.17	44.30	74.00	-29.70	peak
5	24240.000	48.75	-3.61	45.14	74.00	-28.86	peak
6	25760.000	46.46	-1.38	45.08	74.00	-28.92	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


Note: All the test modes have been tested, only the worst data record in the report.

8.5. SPURIOUS EMISSIONS (0.03 ~ 1 GHz)

8.5.1. 802.11g MODE

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

dBu¥/m 80.0 70 60 50 3 40 30 20 10 0.0 224.0000 321.0000 418.0000 515.0000 612.0000 709.0000 806.0000 1000.000**0**Hz 30.0000 127.0000

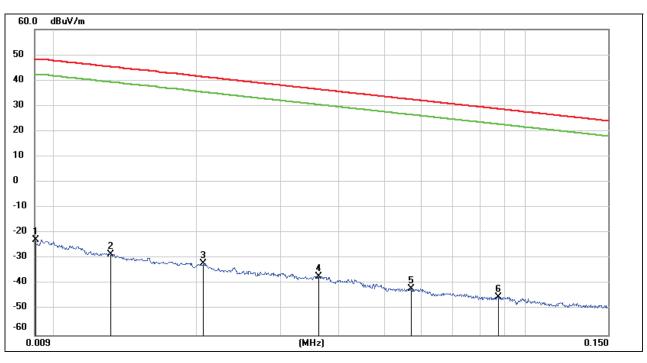
SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	144.4600	43.07	-18.67	24.40	43.50	-19.10	QP
2	359.8000	53.60	-13.40	40.20	46.00	-5.80	QP
3	519.8500	50.11	-10.42	39.69	46.00	-6.31	QP
4	600.3600	47.93	-8.80	39.13	46.00	-6.87	QP
5	666.3200	39.26	-7.65	31.61	46.00	-14.39	QP
6	995.1500	42.92	-3.30	39.62	54.00	-14.38	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

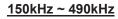
3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

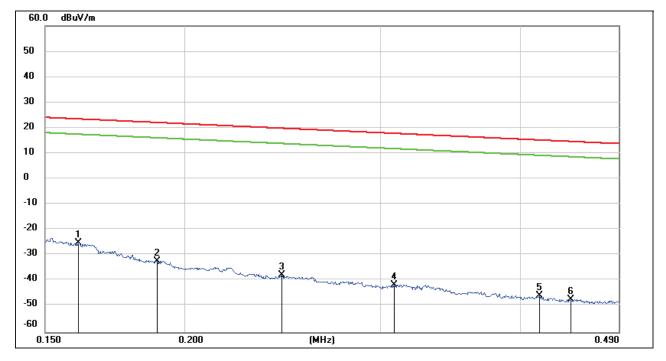

Note: All the test modes have been tested, only the worst data record in the report.

8.6. SPURIOUS EMISSIONS BELOW 30M

8.6.1. 802.11g MODE

SPURIOUS EMISSIONS (MID CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

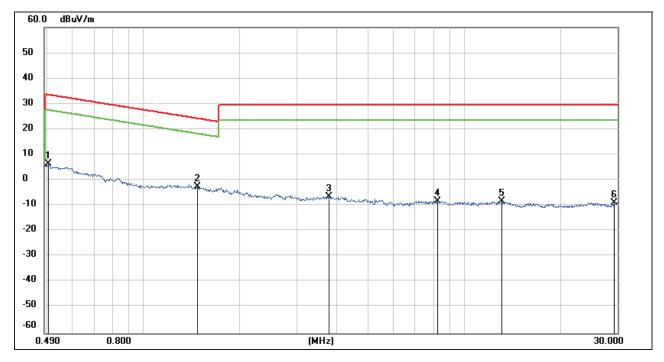

9kHz~ 150kHz


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0091	78.58	-101.33	-22.75	48.28	-71.03	peak
2	0.0131	72.97	-101.38	-28.41	45.25	-73.66	peak
3	0.0206	69.42	-101.35	-31.93	41.32	-73.25	peak
4	0.0362	64.51	-101.42	-36.91	36.43	-73.34	peak
5	0.0570	59.69	-101.51	-41.82	32.48	-74.30	peak
6	0.0874	56.58	-101.69	-45.11	28.77	-73.88	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1607	76.54	-101.65	-25.11	23.48	-48.59	peak
2	0.1890	69.59	-101.70	-32.11	22.08	-54.19	peak
3	0.2446	64.08	-101.79	-37.71	19.83	-57.54	peak
4	0.3084	60.45	-101.86	-41.41	17.82	-59.23	peak
5	0.4162	56.18	-101.98	-45.80	15.22	-61.02	peak
6	0.4435	54.80	-102.01	-47.21	14.66	-61.87	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490kHz ~ 30MHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.5039	68.44	-62.07	6.37	33.56	-27.19	peak
2	1.4700	59.39	-62.05	-2.66	24.26	-26.92	peak
3	3.7951	54.94	-61.38	-6.44	29.54	-35.98	peak
4	8.2507	52.78	-61.04	-8.26	29.54	-37.80	peak
5	13.0907	52.63	-60.93	-8.30	29.54	-37.84	peak
6	29.3213	51.30	-60.02	-8.72	29.54	-38.26	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the test modes have been tested, only the worst data record in the report.

9. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

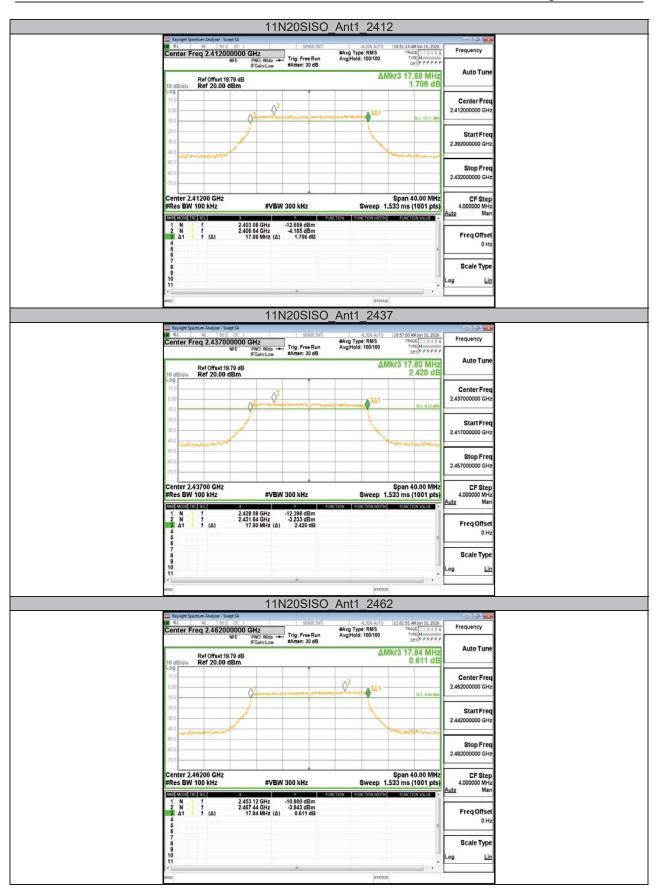
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

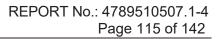
RESULTS

Complies

Appendix A: DTS Bandwidth Test Result

TestMode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2412	8.640	2407.920	2416.560	0.5	PASS
11B	Ant1	2437	8.160	2432.920	2441.080	0.5	PASS
		2462	9.120	2457.440	2466.560	0.5	PASS
		2412	16.640	2403.680	2420.320	0.5	PASS
11G	Ant1	2437	16.600	2428.680	2445.280	0.5	PASS
		2462	16.560	2453.800	2470.360	0.5	PASS
		2412	17.880	2403.080	2420.960	0.5	PASS
11N20SISO	Ant1	2437	17.800	2428.080	2445.880	0.5	PASS
		2462	17.840	2453.120	2470.960	0.5	PASS
		2422	36.560	2403.760	2440.320	0.5	PASS
11N40SISO	Ant1	2437	36.560	2418.760	2455.320	0.5	PASS
		2452	36.640	2433.680	2470.320	0.5	PASS

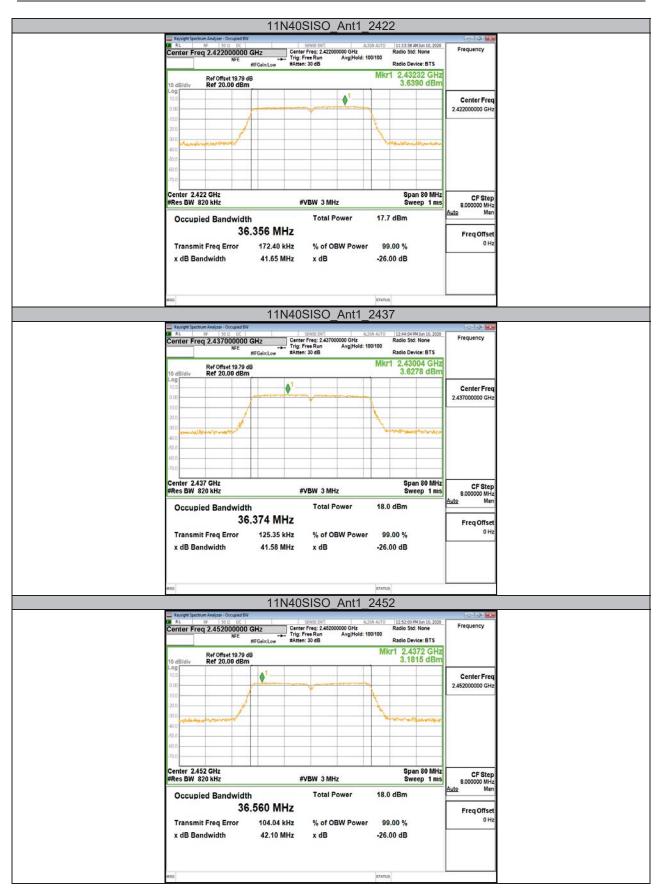

Test Graphs



Appendix B: Occupied Channel Bandwidth Test Result

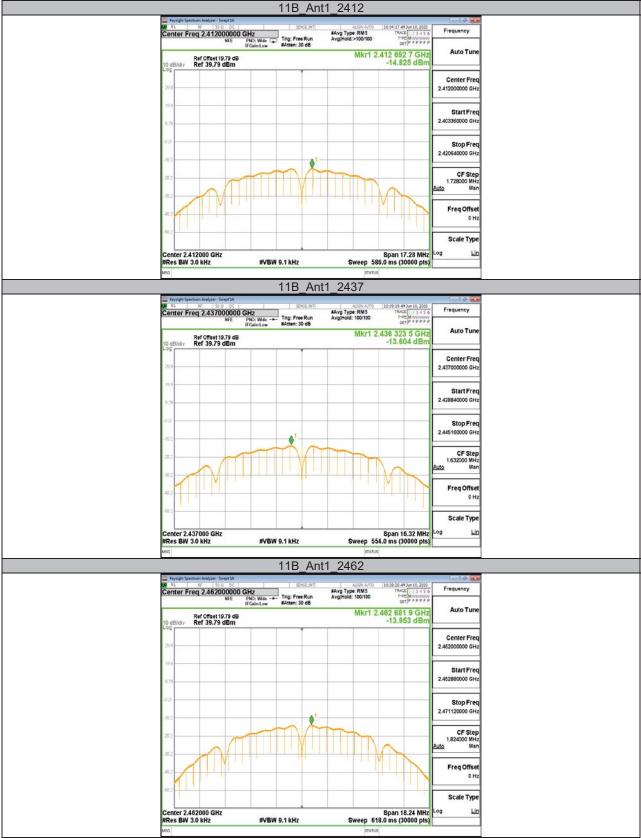
TestMode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2412	13.572	2405.286	2418.858		PASS
11B	Ant1	2437	13.309	2430.275	2443.584		PASS
		2462	13.342	2455.427	2468.769		PASS
		2412	17.135	2403.347	2420.482		PASS
11G	Ant1	2437	17.036	2428.322	2445.358		PASS
		2462	17.041	2453.509	2470.550		PASS
		2412	18.112	2402.999	2421.111		PASS
11N20SISO	Ant1	2437	18.000	2427.973	2445.973		PASS
		2462	18.036	2453.091	2471.127		PASS
		2422	36.356	2403.994	2440.350		PASS
11N40SISO	Ant1	2437	36.374	2418.938	2455.312		PASS
		2452	36.560	2433.824	2470.384		PASS

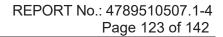

Test Graphs



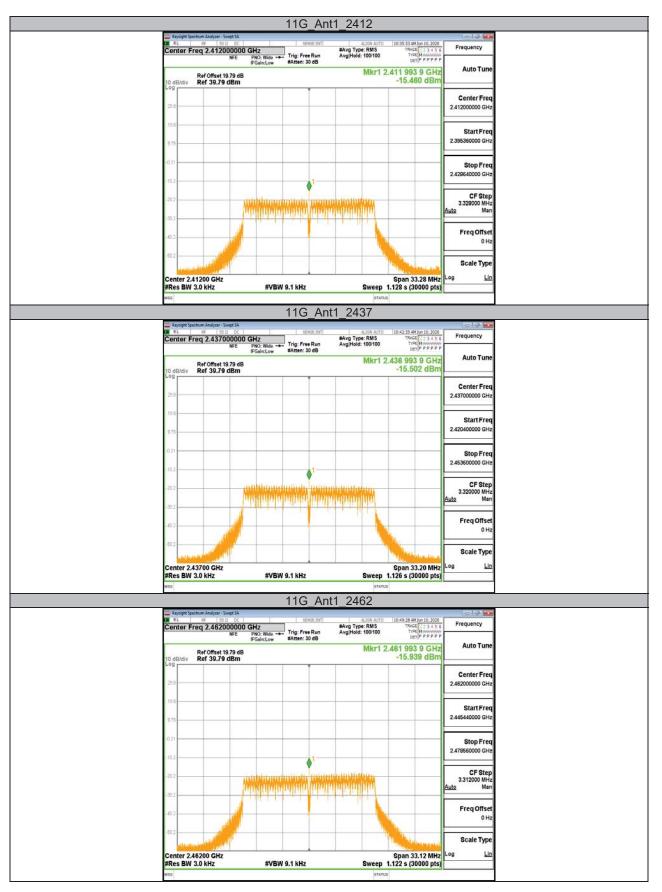
Appendix C: Maximum conducted average output power Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2412	15.16	<=30	PASS
11B	Ant1	2437	16.12	<=30	PASS
		2462	15.79	<=30	PASS
		2412	10.10	<=30 P/	
11G	Ant1	2437	2437 11.04 <=30	<=30	PASS
		2462	10.65	<=30	PASS
		2412	10.18	<=30	PASS
11N20SISO	Ant1	2437	10.94	<=30	PASS
		2462	10.66	<=30	PASS
		2422	11.43	<=30	PASS
11N40SISO	Ant1	2437	11.21	<=30	PASS
		2452	11.08	<=30	PASS

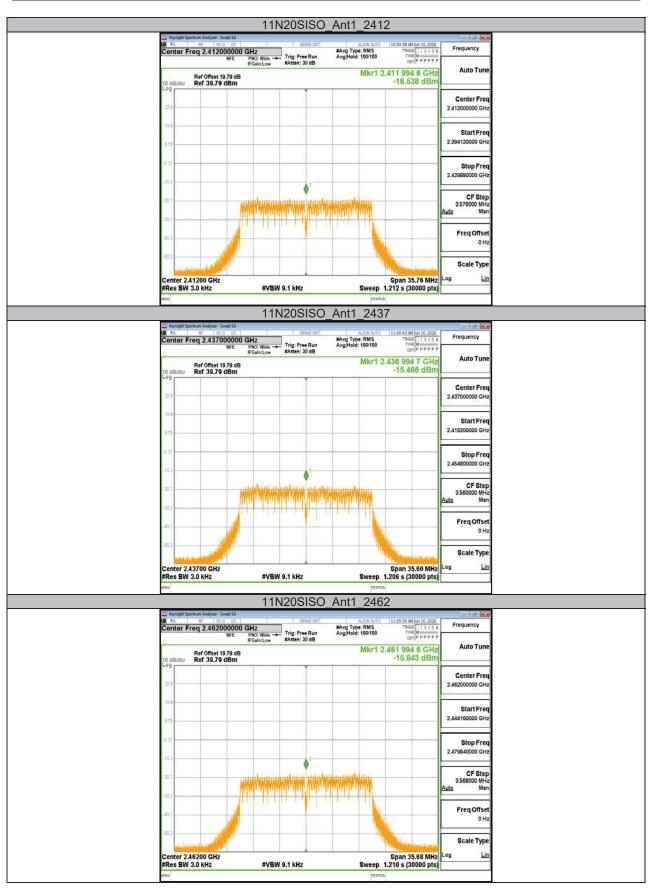


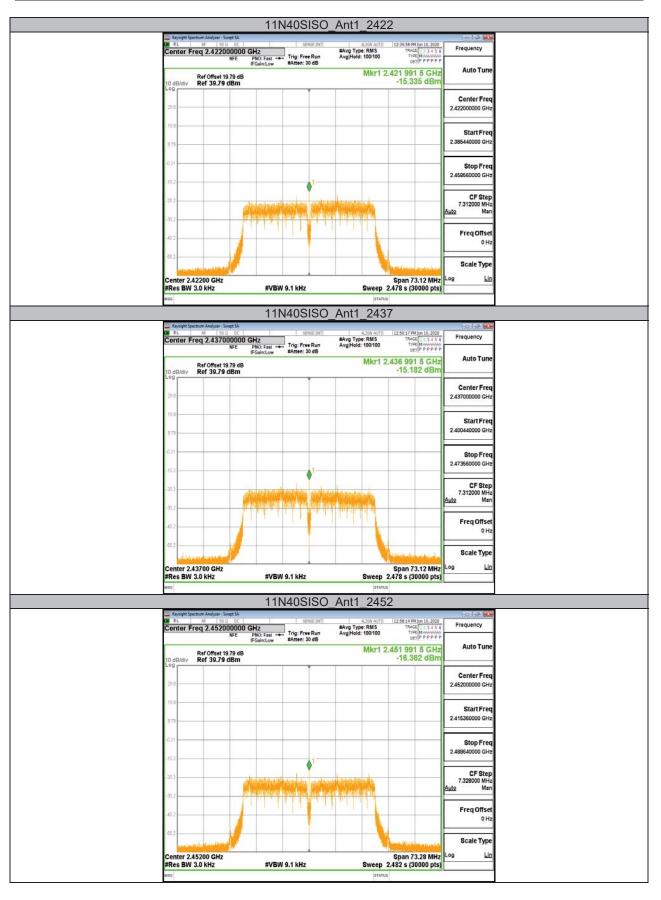

Appendix D: Maximum power spectral density Test Result

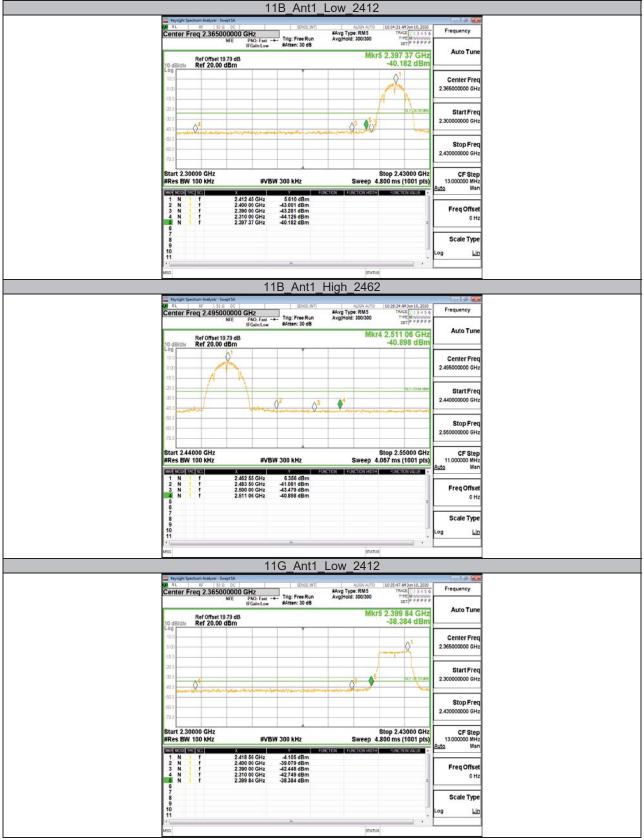
TestMode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2412	-14.83	<=8	PASS
11B	Ant1	2437	-13.6	<=8	PASS
		2462	-13.95	<=8	PASS
		2412	-15.46	<=8	PASS
11G	Ant1	2437	-15.5	<=8	PASS
		2462	-15.94	<=8	PASS
		2412	-16.54	<=8	PASS
11N20SISO	Ant1	2437	-15.47	<=8	PASS
		2462	-15.84	<=8	PASS
11N40SISO		2422	-15.34	<=8	PASS
	Ant1	2437	-15.18	<=8	PASS
		2452	-16.36	<=8	PASS



Test Graphs



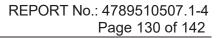




Appendix E: Band edge measurements Test Result


TestMode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
11B	A + 4	Low	2412	5.61	-40.18	<=-24.39	PASS
IID	Ant1	High	2462	6.36	-40.9	<=-23.64	PASS
11G	Ant1	Low	2412	-4.11	-38.38	<=-34.1	PASS
IIG	AILI	High	2462	-3.44	-39.8	<=-33.44	PASS
11N20SISO	Ant1	Low	2412	-4.17	-38.37	<=-34.17	PASS
1111203130	AILI	High	2462	-3.52	-40.55	<=-33.52	PASS
11N40SISO	Ant1	Low	2422	-5.99	-37.68	<=-35.99	PASS
111403130	AILI	High	2452	-6.53	-39.8	<=-36.53	PASS

Test Graphs



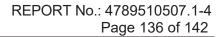
	11N40SISO Ant1 Low 2422	
	Rs 66 500.0 C 56165111 42101.4010 1224012 PH Jun 10.2020 enter Freq 2.372500000 GHz #Avg Type: RMS TRUCE 34.5 f	
	enter Freq 2.372500000 GHz NFE PNC: Fast Trig: Free Run Avg Type: RMS FGaint.vov #Atten: 30 dB	
	Ref Officie 10 79 dB Mkr5 2.399 905 GHz	Auto Tune
1	o dB/div Ref 20.00 dBm -37.684 dBm	
	0.0	Center Freq
	100	2.372500000 GHz
	00	
	00 A A A A A A A A A A A A A A A A A A	Start Freq 2.30000000 GHz
	100 min share a sh	
		Stop Freq
	20 00	2.445000000 GHz
	tart 2.30000 GHz Stop 2.44500 GHz	CF Step
	Res BW 100 kHz #VBW 300 kHz Sweep 5.333 ms (1001 pts)	14.500000 MHz
	XR Y FUNCTION FUNCTION FUNCTION FUNCTION WALE + 1 N f 2.429 920 GHz -5.986 dBm	Auto Man
	1 N f 2.429 920 GHz -5.986 dBm 2 N f 2.400 000 GHz -36.984 dBm 3 N f 2.900 000 GHz -42.934 dBm	FreqOffset
	4 N 1 f 2.310 000 GHz -43.2517 dBm 5 N 1 f 2.399 905 GHz -37.684 dBm	0 Hz
	6 7	
	8 9	Scale Type
	10 11 -	Log <u>Lin</u>
	e status	
L	11N40SISO Ant1 High 2452	
	Keylight Spectrum Analyzer - Swept SA	
	RL RF 50.0 DC SENSEINT #100 #000 1258/28/04 km 10.2020	
	enter Freq 2.487500000 GH2 NFE PRO: Fast -+- Freining Argenting Free Run AvgHold: 300/300 Trig: Free Run AvgHold: 300/300 Trig: Free Run Complexity AvgH	
1 r	Bef Offeet 19 79 dB Mkr4 2.491 000 GHz	Auto Tune
1	o dB/div Ref 20.00 dBm39.797 dBm	
	0.0	Center Freq
		2.487500000 GHz
4	00 x x x x x x x x x x x x x x x x x x	Start Freq 2.42500000 GHz
	10 and the state of the state o	
	00	Stop Freq
	NG	2.55000000 GHz
	tart 2.42500 GHz Stop 2.55000 GHz	CF Step
	Res BW 100 kHz #VBW 300 kHz Sweep 4.600 ms (1001 pts)	12.500000 MHz
	XR MODE THE SKI X Y FUNCTION WOTH FUNCTION WOLF 1 N f 2.436 750 GHz -6.529 dBm	Auto Man
	1 N 1 1 2.436 750 GHz -6.529 dBm 2 N 1 2.483 500 GHz -4.2.988 dBm 3 N 1 2.603 000 GHz -4.2.912 dBm	FreqOffset
	4 N f 2.491 000 GHz -39.797 dBm	0 Hz
	6 7	
	9	Scale Type
	0 1	Log Lin
1	i i i i i i i i i i i i i i i i i i i	L
	- P. Martin Ma	

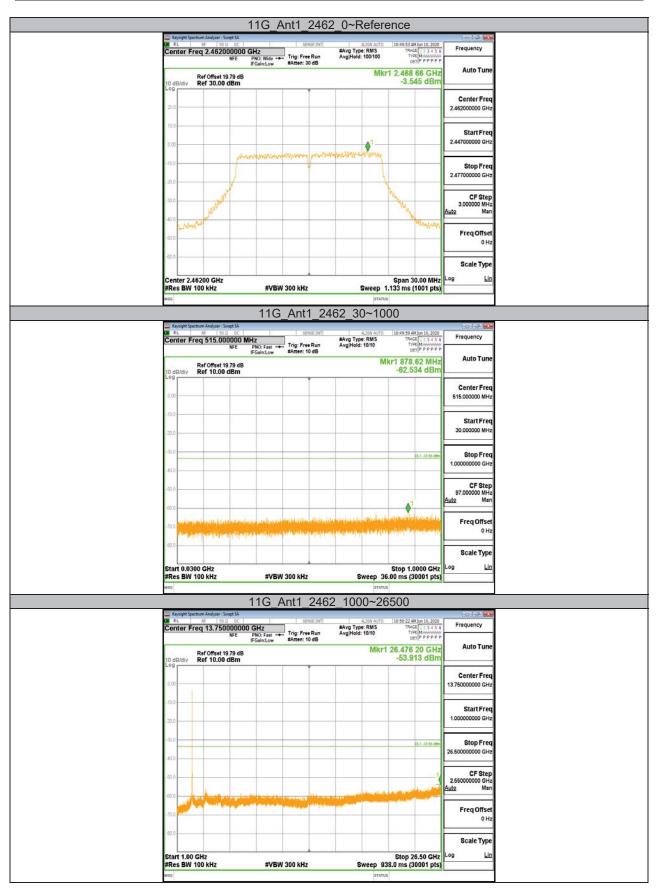


Appendix F: Conducted Spurious Emission Test Result

TestMode	Antenna	Channel	FreqRange [Mhz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
			Reference	5.35	5.35		PASS
		2412	30~1000	30~1000	-63.026	<=-24.648	PASS
			1000~26500	1000~26500	-46.879	<=-24.648	PASS
			Reference	6.65	6.65		PASS
11B	Ant1	2437	30~1000	30~1000	-63.227	<=-23.352	PASS
			1000~26500	1000~26500	-54.461	<=-23.352	PASS
			Reference	6.35	6.35		PASS
		2462	30~1000	30~1000	-63.677	<=-23.648	PASS
			1000~26500	1000~26500	-53.099	<=-23.648	PASS
			Reference	-4.16	-4.16		PASS
		2412	30~1000	30~1000	-63.544	<=-34.157	PASS
			1000~26500	1000~26500	-40.971	<=-34.157	PASS
			Reference	-3.72	-3.72		PASS
11G	Ant1	2437	30~1000	30~1000	-63.221	<=-33.718	PASS
			1000~26500	1000~26500	-54.582	<=-33.718	PASS
		2462	Reference	-3.55	-3.55		PASS
			30~1000	30~1000	-62.534	<=-33.545	PASS
			1000~26500	1000~26500	-53.913	<=-33.545	PASS
		2412	Reference	-4.31	-4.31		PASS
			30~1000	30~1000	-63.195	<=-34.306	PASS
			1000~26500	1000~26500	-41.432	<=-34.306	PASS
		2437	Reference	-3.12	-3.12		PASS
11N20SISO	Ant1		30~1000	30~1000	-63.317	<=-33.117	PASS
			1000~26500	1000~26500	-53.782	<=-33.117	PASS
			Reference	-3.87	-3.87		PASS
		2462	30~1000	30~1000	-62.841	<=-33.871	PASS
			1000~26500	1000~26500	-54.244	<=-33.871	PASS
			Reference	-6.40	-6.40		PASS
		2422	30~1000	30~1000	-63.487	<=-36.395	PASS
			1000~26500	1000~26500	-38.494	<=-36.395	PASS
		2437	Reference	-6.20	-6.20		PASS
11N40SISO	Ant1		30~1000	30~1000	-62.134	<=-36.196	PASS
			1000~26500	1000~26500	-53.353	<=-36.196	PASS
		2452	Reference	-6.38	-6.38		PASS
			30~1000	30~1000	-63.338	<=-36.383	PASS
			1000~26500	1000~26500	-47.761	<=-36.383	PASS

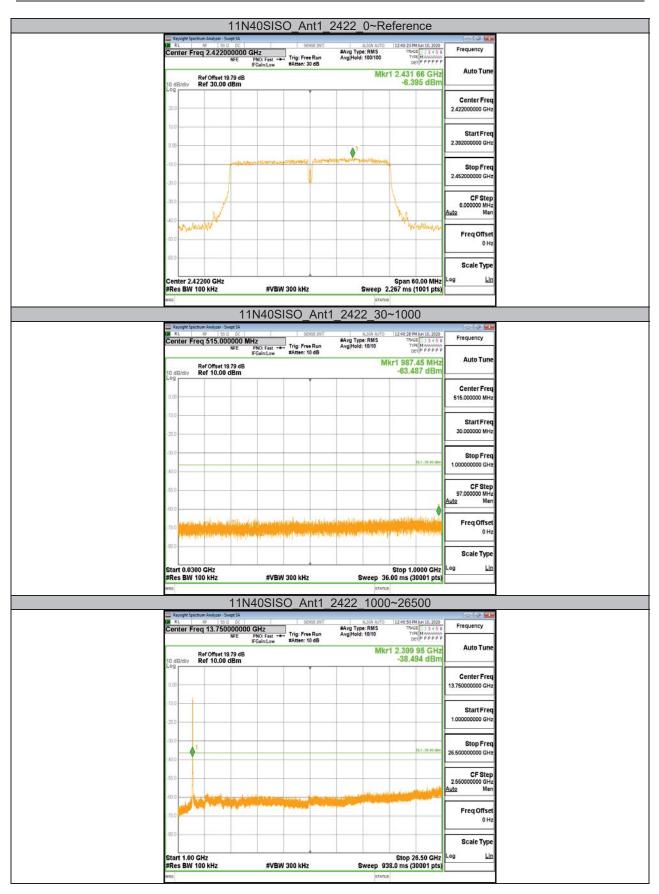
Test Graphs

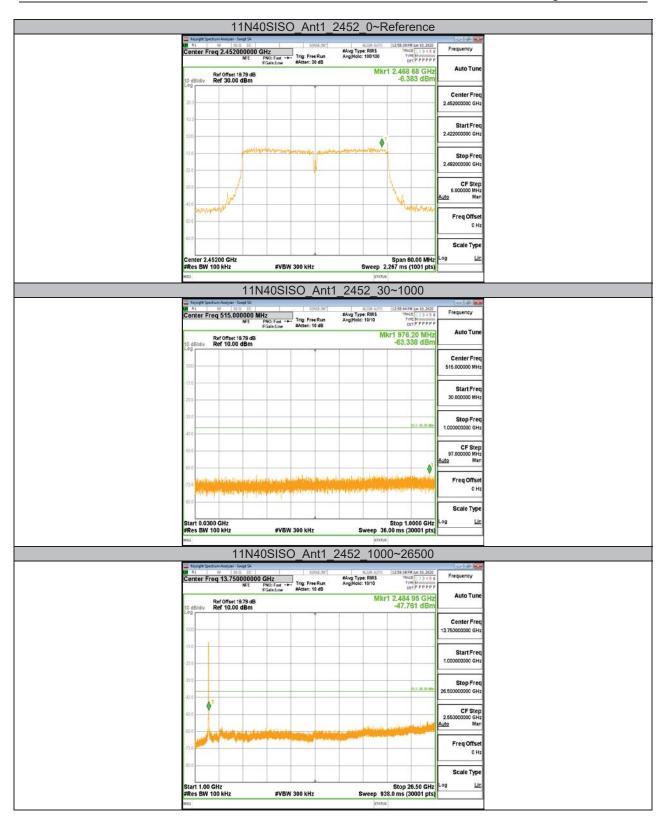












END OF REPORT