

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.381.1520 http://www.element.com

http://www.eleffient.com

MEASUREMENT REPORT FCC PART 15.407 802.11a/ax/be WiFi 6E (OFDM)

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing:

03/14/2024 – 05/20/2024 **Test Report Issue Date:** 05/20/2024 **Test Site/Location:** Element lab., Columbia, MD, USA **Test Report Serial No.:** 1M2401250007-07-R2.A3L

FCC ID:

A3LNP960XMA

APPLICANT:

Samsung Electronics Co., Ltd.

Application Type:	Certification
Model:	NP960XMA
Additional Model:	NP960XMB, NP964XMA, NP964XMB
EUT Type:	Portable Computing Device
Frequency Range:	5935 – 7115MHz
Modulation Type:	OFDM
FCC Classification:	15E 6GHz Low Power Dual Client (6CD)
FCC Rule Part(s):	Part 15 Subpart E (15.407)
Test Procedure(s):	ANSI C63.10-2013, KDB 987594 D02 v02r01, KDB 484596 D01 v02r03

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 1M2401250007-07-R2.A3L) supersedes and replaces the previously issued test report (S/N: 1M2401250007-07-R1.A3L) on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Degra 1 of 169	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 1 of 168	
© 2024 ELEMENT	•		V 9.0 02/01/2019	

TABLE OF CONTENTS

1.0	INTRO	RODUCTION	5
	1.1	Scope	5
	1.2	Element Test Location	5
	1.3	Test Facility / Accreditations	5
2.0	PROE	DUCT INFORMATION	6
	2.1	Equipment Description	6
	2.2	Device Capabilities	6
	2.3	Antenna Description	9
	2.4	Test Configuration	9
	2.5	Software and Firmware	9
	2.6	EMI Suppression Device(s) / Modifications	9
3.0	DESC	CRIPTION OF TESTS	10
	3.1	Evaluation Procedure	10
	3.2	AC Line Conducted Emissions	10
	3.3	Radiated Emissions	11
	3.4	Environmental Conditions	
4.0	ANTE	ENNA REQUIREMENTS	12
5.0	MEAS	SUREMENT UNCERTAINTY	13
6.0	TEST	T EQUIPMENT CALIBRATION DATA	14
7.0	TEST	T RESULTS	15
	7.1	Summary	15
	7.2	26dB Bandwidth Measurement	
	7.3	UNII Output Power Measurement	44
	7.4	Maximum Power Spectral Density	
	7.5	In-Band Emissions	
	7.6	Contention Based Protocol	
		7.6.1 AWGN Plots	136
		7.6.2 CBP Timing Plots	137
		7.6.3 Channel Move Plots	145
	7.7	Radiated Emission Measurements	
		7.7.1 MIMO Radiated Spurious Emission Measurements	151
		7.7.2 MIMO Radiated Band Edge Measurements (20MHz BW)	
		7.7.3 MIMO Radiated Band Edge Measurements (40MHz BW)	
		7.7.4 MIMO Radiated Band Edge Measurements (80MHz BW)	
		7.7.5 MIMO Radiated Band Edge Measurements (160MHz BW)	
		7.7.6 MIMO Radiated Band Edge Measurements (320MHz BW)	
	7.8	Line Conducted Test Data	
8.0	CONC	CLUSION	

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 2 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

MEASUREMENT REPORT

Channel		Tx Frequency	MI	МО
Bandwidth [MHz]			Max. Power [mW]	Max. Power [dBm]
	5	5935 - 6415	9.74	9.89
20	6	6435 - 6515	10.63	10.27
20	7	6535 - 6875	10.68	10.29
	8	6895 - 7115	10.48	10.21
	5	5965 - 6405	16.31	12.13
40	6	6445 - 6525	18.73	12.73
40	7	6565 - 6845	15.79	11.98
	8	6885 - 7085	13.85	11.42
	5	5985 - 6385	17.08	12.33
80	6	6465	18.28	12.62
80	7	6545 - 6865	17.20	12.36
	8	6945 - 7025	13.98	11.46
	5	6025 - 6345	16.43	12.16
100	6	6505	18.78	12.74
160	7	6665 - 6825	15.91	12.02
	8	6985	14.01	11.47
	5	6105 - 6265	16.57	12.19
220	6	6425	18.40	12.65
320	7	6585 - 6745	15.75	11.97
	8	6905	13.90	11.43

EUT Overview – Low Power Indoor Client – EIRP

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 160
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 3 of 168
© 2024 ELEMENT	·		V 9.0 02/01/2019

Channel		Tx Frequency	ΜΙΜΟ		
Bandwidth [MHz]	UNII Band	[MHz]	Max. Power [mW]	Max. Power [dBm]	
20	5	5935 - 6415	17.12	12.34	
20	7	6535 - 6875	15.56	11.92	
40	5	5965 - 6405	16.31	12.13	
40	7	6565 - 6845	15.79	11.98	
80	5	5985 - 6385	17.08	12.33	
00	7	6545 - 6865	18.26	12.62	
160	5	6025 - 6345	16.43	12.16	
100	7	6665 - 6825	15.91	12.02	
320	5	6105 - 6265	16.57	12.19	
520	7	6585 - 6745	15.57	11.92	

EUT Overview – Standard Power Client – EIRP

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dere 1 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 4 of 168
© 2024 ELEMENT		·	V 9.0 02/01/2019

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and\\or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO\\IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreements (MRAs).

FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dego 5 of 169	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 5 of 168	
© 2024 ELEMENT			V 9.0 02/01/2019	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact cr.info@element.com.

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Electronics Co., Ltd. Portable Computing Device FCC ID: A3LNP960XMA**. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter while operating in the 6GHz band.

Test Device Serial No.: 0126X, 1123F, 1137B, 0851W,

2.2 Device Capabilities

This device contains the following capabilities:

802.11b/g/n/ax/be WLAN, 802.11a/n/ac/ax/be UNII (5GHz and 6GHz), Bluetooth (1x, EDR, LE)

	Band 5	_	Band 6		Band 7		Band 8
Ch.	Frequency (MHz)						
2	5935	97	6435	117	6535	189	6895
:	:	:		:	:	:	:
45	6175	105	6475	149	6695	209	6995
:	:	:	:	:	:	:	:
93	6415	113	6515	185	6875	233	7115

Table 2-1. 802.11a/ax/be (20MHz) Frequency / Channel Operations

	Band 5		Band 6		Band 7		Band 8
Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
3	5965	99	6445	123	6565	187	6885
:	:	:	:	:	:	:	:
43	6165	107	6485	155	6725	211	7005
:	:	:	:	:	:	:	:
91	6405	115	6525	179	6845	227	7085

Table 2-2. 802.11ax/be (40MHz BW) Frequency / Channel Operations

	Band 5		Band 6		Band 7		Band 8
Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
7	5985	103	6465	119	6545	199	6945
:	:			:	:	:	:
39	6145			151	6705	215	7025
:	:			:	:		
87	6385			183	6865		
	Tabla	~ ~ ~ ~ ~ <i>•</i>					

Table 2-3. 802.11ax/be (80MHz BW) Frequency / Channel Operations

FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dama C af 400		
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 6 of 168		
© 2024 ELEMENT	•		V 9.0 02/01/2019		

	Band 5	_		Band 6	Band 6 Band 7			Band 8
Ch.	Frequency (MHz)	C	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch	Frequency (MHz)
15	6025	1	111	6505	143	6665	207	6985
47	6185				175	6825		
79	6345							

Table 2-4. 802.11ax/be (160MHz BW) Frequency / Channel Operations

	Band 5			Band 6 Band 7				Band 8	
Ch.	Frequency (MHz)		Ch.	Frequency (MHz)		Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
31	6105	Γ	95	6425		127	6585	191	6905
63	6265					159	6745		

Table 2-5. 802.11be (320MHz BW) Frequency / Channel Operations

Notes:

 6GHz NII operation is possible in 20MHz, 40MHz, 80MHz, 160MHz and 320MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of ANSI C63.10-2013. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

802.11	Duty Cycle [%]	
	а	99.05
	ax (HE20)	98.99
	be (EHT20)	98.99
	ax (HE40)	98.99
6GHz	be (EHT40)	98.99
OGHZ	ax (HE80)	98.99
	be (EHT80)	99.49
	ax (HE160)	99.49
	be (EHT160)	99.24
	be (EHT320)	99.63

Table 2-6. Measured Duty Cycles

FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 7 of 169		
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 7 of 168		
© 2024 ELEMENT		·	V 9.0 02/01/2019		

2. The device employs MIMO technology. Below are the possible configurations.

	Configurations	SI	SO	C	DD	SDM	
	Configurations	ANT1	ANT2	ANT1	ANT2	ANT1	ANT2
	11a	×	×	✓	✓	×	×
6GHz	11ax	×	×	✓	✓	✓	✓
	11be	×	×	✓	✓	✓	✓
	Table 2.7 Antonna / Tachnology Configurations						

Table 2-7. Antenna /	Technology	Configurations

✓ = Support; ×= NOT Support
 SISO = Single Input Single Output
 SDM = Spatial Diversity Multiplexing – MIMO function
 CDD = Cyclic Delay Diversity – 2Tx Function

3. The device supports the following data rates (shown in Mbps):

802.11a	Spatial		OFDM (802.11ax/be)													
20141	Stream		20MHz			40MHz			80MHz			160MHz			320MHz	
20MHz		0.8µs GI	1.6µs GI	3.2µs Gl	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs Gl	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI
6	1	8.6	8.1	7.3	17.2	16.3	14.6	36	34	30.6	72.1	68.1	61.3	144.1	136.1	122.5
9	1	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3	144.1	136.1	122.5	288.2	272.2	245
12	1	25.8	24.4	21.9	51.6	48.8	43.9	108.1	102.1	91.9	216.2	204.2	183.8	432.4	408.3	367.5
18	1	34.4	32.5	29.3	68.8	65	58.5	144.1	136.1	122.5	288.2	272.2	245	576.5	544.4	490
24	1	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5	864.7	816.7	735
36	1	68.8	65	58.5	137.6	130	117	288.2	272.2	245	576.5	544.4	490	1152.9	1088.9	980
48	1	77.4	73.1	65.8	154.9	146.3	131.6	324.3	306.3	275.6	648.5	612.5	551.3	1297.1	1225	1102.5
54	1	86	81.3	73.1	172.1	162.5	146.3	360.3	340.3	306.3	720.6	680.6	612.5	1441.2	1361.1	1225
	1	103.2	97.5	87.8	206.5	195	175.5	432.4	408.3	367.5	864.7	816.7	735	1729.4	1633.3	1470
	1	114.7	108.3	97.5	229.4	216.7	195	480.4	453.7	408.3	960.8	907.4	816.7	1921.6	1814.8	1633.3
	1	129	121.9	109.7	258.1	243.8	219.4	540.4	510.4	459.4	1080.9	1020.8	918.8	2161.8	2041.7	1837.5
	1	143.4	135.4	121.9	286.8	270.8	243.8	600.5	567.1	510.4	1201	1134.3	1020.8	2402	2268.5	2041.7
	1	154.9	146.3	131.6	309.7	292.5	263.3	648.5	612.5	551.3	1297.1	1225	1102.5	2594.1	2450	2205
	1	172.1	162.5	146.3	344.1	325	292.5	720.6	680.6	612.5	1441.2	1361.1	1225	2882.4	2722.2	2450
6	2	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3	144.1	136.1	122.5	288.2	272.2	245
9	2	34.4	32.5	29.3	68.8	65	58.5	144.1	136.1	122.5	288.2	272.2	245	576.5	544.4	490
12	2	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5	864.7	816.7	735
18	2	68.8	65	58.5	137.6	130	117	288.2	272.2	245	576.5	544.4	490	1152.9	1088.9	980
24	2	103.2	97.5	87.8	206.5	195	175.5	432.4	408.3	367.5	864.7	816.7	735	1729.4	1633.3	1470
36	2	137.6	130	117	275.3	260	234	576.5	544.4	490	1152.9	1088.9	980	2305.9	2177.8	1960
48	2	154.9	146.3	131.6	309.7	292.5	263.3	648.5	612.5	551.3	1297.1	1225	1102.5	2594.1	2450	2205
54	2	172.1	162.5	146.3	344.1	325	292.5	720.6	680.6	612.5	1441.2	1361.1	1225	2882.4	2722.2	2450
	2	206.5	195	175.5	412.9	390	351	864.7	816.7	735	1729.4	1633.3	1470	3458.8	3266.7	2940
	2	229.4	216.7	195	458.8	433.3	390	960.8	907.4	816.7	1921.6	1814.8	1633.3	3843.1	3629.6	3266.7
	2	258.1	243.8	219.4	516.2	487.5	438.8	1080.9	1020.8	918.8	2161.8	2041.7	1837.5	4323.5	4083.3	3675
	2	286.8	270.8	243.8	573.5	541.7	487.5	1201	1134.3	1020.8	2402	2268.5	2041.7	4803.9	4537	4083.3
	2	309.7	292.5	263.3	619.4	585	526.5	1297.1	1225	1102.5	2594.1	2450	2205	5188.2	4900	4410
	2	344.1	325	292.5	688.2	650	585	1441.2	1361.1	1225	2882.4	2722.2	2450	5764.7	5444.4	4900

Table 2-8. Supported Data Rates

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 9 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 8 of 168
© 2024 ELEMENT	<u>.</u>	·	V 9.0 02/01/2019

2.3 Antenna Description

This device is only used with its integral antennas as shown in the documentation of this filing. The antenna gains for this device are as shown in the table below:

	Ant1 Peak Gain [dBi]	Ant2 Peak Gain [dBi]	Directional Gain [dBi]
5925 - 6425 MHz	-3.67	-3.58	-0.61
6425 - 6525 MHz	-3.21	-3.02	-0.10
6525 - 6875 MHz	-4.11	-3.40	-0.74
6875 - 7125 MHz	-4.28	-4.31	-1.28

Table 2-9. Antenna Peak Gain

2.4 Test Configuration

The EUT was tested per the guidance of ANSI C63.10-2013 and KDB 987594 D02 v02r01. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5 and 7.6 for antenna port conducted emissions test setups.

This device operates in the 5.925-7.125 GHz band when under control of a low power indoor access point. Additionally, the device may operate in the 5.925-6.875 GHz bands when under control of a standard power access point.

2.5 Software and Firmware

The test was conducted with firmware version REV0.1 and software version Windows 11 installed on the EUT.

2.6 EMI Suppression Device(s) / Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 0 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 9 of 168
© 2024 ELEMENT		·	V 9.0 02/01/2019

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 987594 D02 v02r01 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.8. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Deve 40 of 400
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 10 of 168
© 2024 ELEMENT	•	·	V 9.0 02/01/2019

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3-meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precautions were taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height were noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst-case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dama 44 af 400		
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 11 of 168		
© 2024 ELEMENT			V 9.0 02/01/2019		

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: A3LNP960XMA		MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dega 12 of 169			
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 12 of 168			
0 2024 ELEMENT						

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Contention Based Protocol Conducted Measurements	0.86
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LNP960XMA		MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:					
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 13 of 168				
© 2024 ELEMENT	2024 ELEMENT						

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer Model		Description	Cal Date	Cal Interval	Cal Due	Serial Number
N/A	WL25-1	Conducted Cable Set (25GHz)	11/15/2023	Annual	11/15/2024	WL25-1
N/A	WL25-2	Conducted Cable Set (25GHz)	11/15/2023	Annual	11/15/2024	WL25-2
N/A	WL40-1	Conducted Cable Set (40GHz)	11/15/2023	Annual	11/15/2024	WL40-1
N/A	ETS-001	EMC Cable and Switch Systems	11/15/2023	Annual	11/15/2024	ETS-001
N/A	ETS-002	EMC Cable and Switch Systems	11/15/2023	Annual	11/15/2024	ETS-002
N/A	AP1-002	EMC Cable and Switch Systems	11/15/2023	Annual	11/15/2024	AP1-002
N/A	AP2-001	EMC Cable and Switch Systems	11/15/2023	Annual	11/15/2024	AP2-001
N/A	AP2-001	EMC Cable and Switch Systems	11/15/2023	Annual	11/15/2024	AP2-001
Anritsu	MA2411B	Pulse Power Sensor	11/8/2023	Annual	11/8/2024	1027293
Anritsu	MA2411B	Pulse Power Sensor	6/14/2023	Annual	6/14/2024	1911105
Com-Power	AL-130	9khZ-30MHz Loop Antenna	4/13/2022	Biennial	4/13/2025	121034
Keysight Technologies	N9038A	MXE EMI Reciever	8/30/2023	Annual	8/30/2024	MY51210133
Keysight Technologies	N9038A	PXA Signal Analyzer	2/29/2023	Annual	3/1/2025	MY55410501
Keysight Technologies	N9020A	MXA Signal Analyzer	3/22/2024	Annual	3/22/2025	US46470561
Pasternack	NMLC-2	Line Conducted Emissions Cable (NM)	11/15/2023	Annual	11/15/2024	NMLC-2
Rohde & Schwarz	ESU26	EMI Test Reciever (26.5GHz)	9/25/2023	Annual	9/25/2023	100342
Rohde & Schwarz	ESU40	EMI Test Reciever (40GHz)	9/11/2023	Annual	9/11/2024	100348
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	2/15/2024	Annual	2/15/2025	103200
Rohde & Schwarz	SFUNIT-RX	Shielded Filter Unit	3/15/2023	Annual	3/15/2025	102136
Rohde & Schwarz	SFUNIT-RX	Shielded Filter Unit	3/15/2023	Annual	3/15/2025	102132
Rohde & Schwarz	SFUNIT-RX	Shielded Filter Unit	1/11/2024	Annual	1/11/2025	102151
Sunol Sciences	DRH-118	Horn (Small)	2/21/2024	Biennial	2/21/2026	A050307
Sunol Sciences	JB5	Bi-Log Antenna (30M-5GHz)	8/30/2022	Biennial	8/30/2024	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LNP960XMA		MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dega 14 of 169			
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 14 of 168			
© 2024 ELEMENT V 9.0						

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LNP960XMA
FCC Classification:	15E 6GHz Low Power Dual Client (6CD)

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1046, 15.407(a)(12)	Maximum Conducted Output Power	N/A		PASS	Section 7.3
15.407(a)(8)	Maximum Radiated Output Power (LPI)	< 24dBm over the frequency band of operation		PASS	Section 7.3
15.407(a)(7)	Maximum Radiated Output Power (SP)	< 30dBm over the frequency band of operation		PASS	Section 7.3
2.1049, 15.407(a)(11)	Occupied Bandwidth/ 26dB Bandwidth	99% of the occupied bandwidth of any channel must be contained within each of its respective U-NII sub bands. The maximum transmitter channel bandwidth for U-NII devices in the 5.925-7.125 GHz band is 320 megahertz.		PASS	Section 7.2
15.407(a)(8)	Maximum Power Spectral Density (LPI)	< -1dBm/MHz e.i.r.p.	CONDUCTED	PASS	Section 7.4
15.407(a)(7)	Maximum Power Spectral Density (SP)	< 17dBm/MHz e.i.r.p.		PASS	Section 7.4
15.407(a)(7)	Power Reduction Verification for standard client device	EUT must limit its power to no more than 6 dB below its associated standard power access point's authorized transmit power		PASS	Attestation
15.407(b)(7)	In-Band Emissions	EUT must meet the limits detailed in RSS-248 [4.6.2]		PASS	Section 7.5
15.407(d)(6)	Contention Based Protocol	EUT must detect AWGN signal with 90% (or better) certainty		PASS	Section 7.6
15.407(b)(6)	Undesirable Emissions	< -27dBm/MHz e.i.r.p. outside of the 5.925 – 7.125GHz band		PASS	Section 7.7
15.205, 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions shall comply with RSS-Gen (8.9) limits	RADIATED	PASS	Section 7.7
15.407(b)(9)	AC Conducted Emissions (150kHz – 30MHz)	< RSS-Gen [8.8] limits	LINE CONDUCTED	PASS	Section 7.8

Table 7-1. Summary of Test Results

FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Daws 45 of 400	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 15 of 168	
© 2024 ELEMENT			V 9.0 02/01/2019	

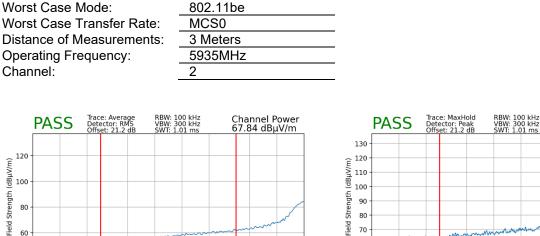
Notes:

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst-case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) Per RSS-248 [4.5.5], a device operating under the control of a standard power access point in 5.925 6.875 GHz bands must not have the maximum power spectral density exceed 17 dBm/MHz e.i.r.p., must limit the maximum e.i.r.p. over the frequency band of operation does not exceed 30 dBm, and must limit its power to no more than 6 dB below its associated standard power access point's authorized transmit power. Compliance to this clause is addressed in Dual Client PRV Supplemental Test Report.
- 5) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "EST," Version 1.2.1.
- 6) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "Chamber Automation," Version 1.6.1.
- 7) Data was leveraged from Model NP960XMA for the certification of NP960XMB. See Table 7-2 for spot-check results.

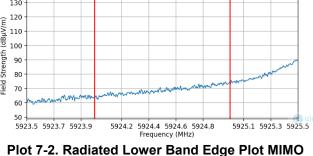
FCC Rules	Test Item	Test Case	Units	Limit	Reference Model: NP960XMA	Variant Model: NP960XMB	Deviation	Max Deviation	Pass/Fail
2.1046, 15.407(a)(8)	Conducted Output Power	20MHz, Ch.45, 802.11a, MIMO	dBm	-	10.17	10.31	0.14	3	PASS
15.209	Radiated Spurious Emissions	20MHz, Ch.149, 802.11a, MIMO	dBµv/m	68.2	47.54	46.10	1.44	3	PASS
15.209	Radiated Band Edge Emissions	20MHz, Ch2, 802.11be, MIMO	dBµv/m	68.2	65.71	67.84	2.13	3	PASS
							-		

Table 7-2. Summary	of Spot-checks
--------------------	----------------

6GHz WIFI (20MHz 802.11a MIMO)					Directional Ant.				
Band	Freq	Channel	Avg. Conducted Powers [dBm]		Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]	
[MHz] Channer		ANT1	ANT2	MIMO	[dBi]				
UNII-5	6175	45	7.02	7.57	10.31	-0.61	9.70	24.00	-14.30


Table 7-3. Conducted Output Power Measurements (Spot-check)

Mode	Antenna	UNII Band	Channel	Test Channel Freq. [MHz]	Restricted	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
802.11a	MIMO	-7	149	6695	*	13390.00	Average	н	130	205	-86.22	25.32	0.00	46.10	53.98	-7.88
802.11a MIMO		149	0095	*	13390.00	Peak	н	130	205	-75.20	24.56	0.00	56.36	73.98	-17.62	


Table 7-4. Radiated Measurements MIMO (Spot-check)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 16 of 169	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 16 of 168	
© 2024 ELEMENT		·	V 9.0 02/01/2019	

 40
 40
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500

Channel Power 79.39 dBµV/m

- 8) Each spot check test on the EUT was performed using the same procedure and setting that were used to perform the test on the corresponding reference device. And the worst-case RSE data is determined by an actual emission and not by noise floor.
- 9) All test cases were performed to verify the variant EUT is still in compliance with the spot-checked results to the reference device and was performed using the guidance of ANSI C63.10-2013.

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 17 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 17 of 168
© 2024 ELEMENT		·	V 9.0 02/01/2019

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

7.2 26dB Bandwidth Measurement

Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

Test Procedure Used

ANSI C63.10-2013 - Section 12.4

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

- 1. All cases were investigated; a subset of the taken plots were included to represent relevant settings and measurements.
- 2. In this section, the bandwidth data table (Table 7-2) includes mainly the 26dB bandwidth measurements. In case of 320MHz operation, an occupied bandwidth measurement was included in the table to demonstrate compliance. Thus, all measurements in the tables are 26dB bandwidth measurements except for the 320MHz bandwidth cases which are occupied bandwidth measurements.

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Daga 19 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 18 of 168
© 2024 ELEMENT	· · · · ·		V 9.0 02/01/2019

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

				1			
				Antenna-1	Antenna-2	Antenna-1	Antenna-2
	Frequency	Channel	802.11	26dB Bandwidth	26dB Bandwidth	Occupied	Occupied
	[MHz]	channer	MODE	[MHz]	[MHz]	Bandwidth	Bandwidth
				[10112]	[[V][12]	[MHz]	[MHz]
	5935	2	а	20.72	21.30	-	-
	6175	45	а	21.08	20.84	-	-
	6415	93	а	21.43	21.25	-	-
	5935	2	be (20MHz)	21.09	21.45	-	-
	6175	45	be (20MHz)	21.17	21.82	-	-
	6415	93	be (20MHz)	22.03	21.40	-	-
	5695	3	be (40MHz)	42.40	42.36	-	-
45	6165	43	be (40MHz)	42.33	42.18	-	-
Band 5	6405	91	be (40MHz)	42.88	42.56	-	-
-	5985	7	be (80MHz)	85.36	85.65	-	-
	6145	39	be (80MHz)	86.83	84.84	-	-
	6385	87	be (80MHz)	86.79	86.73	-	-
	6025	15	be (160MHz)	174.66	172.73	-	-
	6185	47	be (160MHz)	173.44	173.93	-	-
	6345	79	be (160MHz)	174.56	174.51	-	-
	6105	31	be (320MHz)	-	-	312.99	312.77
	6265	63	be (320MHz)	-	-	312.25	312.65
	6345	97	а	21.48	21.33	-	-
	6475	105	а	21.04	20.97	-	-
	6515	113	а	21.47	20.80	-	-
	6345	97	be (20MHz)	21.03	21.22	-	-
d 6	6475	105	be (20MHz)	21.33	21.34	-	-
Band 6	6515	113	be (20MHz)	21.49	21.30	-	-
-	6445	99	be (40MHz)	42.10	42.52	-	-
	6485	107	be (40MHz)	43.06	42.38	-	-
	6525	115	be (40MHz)	41.80	42.87	-	-
	6465	103	be (80MHz)	86.38	85.09	-	-
Dand E/C/7	6505	111	be (160MHz)	175.00	174.87	-	-
Band 5/6/7	6425	95 117	be (320MHz)	- 20.90	- 21.06	312.68	312.46
	6535 6695	117	a	20.90	20.80	-	-
	6875	145	a	21.39	21.72		_
	6535	105	be (20MHz)	21.60	21.72		-
	6695	149	be (20MHz)	21.39	21.50		
	6875	145	be (20MHz)	21.35	21.30	-	_
47	6565	103	be (40MHz)	42.43	42.09	-	-
Band 7	6725	155	be (40MHz)	42.06	41.92	-	-
	6885	179	be (40MHz)	41.91	42.15	-	-
	6545	119	be (80MHz)	85.60	87.31	_	-
	6705	151	be (80MHz)	87.08	88.05	-	-
	6865	183	be (80MHz)	86.11	85.45	-	-
	6665	143	be (160MHz)	174.95	244.02	-	-
	6825	175	be (160MHz)	175.80	171.84	-	-
Band 6/7	6585	127	be (320MHz)	-	-	311.89	315.79
Band 7/8	6745	159	be (320MHz)	-	-	313.00	312.08
	6895	189	а	21.21	20.80	-	-
	6995	209	а	21.16	20.89	-	-
	7115	233	а	21.41	20.44	-	-
	6895	189	be (20MHz)	21.62	21.54	-	-
	6995	209	be (20MHz)	21.20	21.63	-	-
Band 8	7115	233	be (20MHz)	21.29	21.52	-	-
Bar	6925	187	be (40MHz)	41.54	41.90	-	-
	7005	211	be (40MHz)	41.71	42.52	-	-
	7085	227	be (40MHz)	43.03	41.29	-	-
	6945	199	be (80MHz)	83.87	86.00	-	-
	7025	215	be (80MHz)	86.62	85.16	-	-
	6985	207	be (160MHz)	173.94	241.53	-	-
Band 7/8	6905	191	be (320MHz)	-	-	313.87	312.37

Table 7-5. Bandwidth Test Results

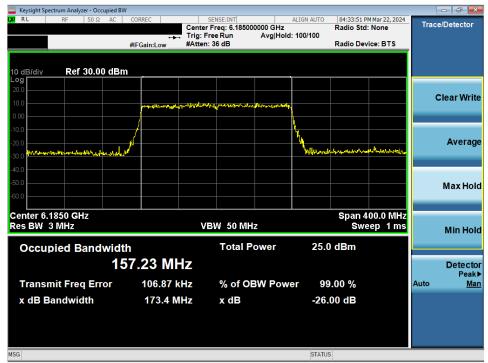
FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 19 of 168
© 2024 ELEMENT	•		V 9.0 02/01/2019

MIMO Antenna-1 26 dB Bandwidth Measurements - (UNII Band 5)

Plot 7-3. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11a (UNII Band 5) - Ch. 45)

Plot 7-4. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11ax/be (UNII Band 5) – Ch. 45)

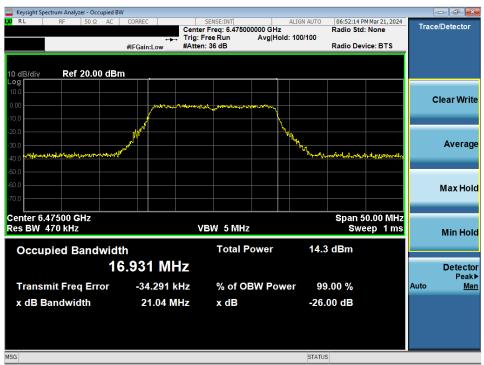
FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dega 20 of 169	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 20 of 168	
© 2024 ELEMENT	-		V 9.0 02/01/2019	


Plot 7-5. 26dB Bandwidth Plot MIMO ANT1 (40MHz 802.11ax/be (UNII Band 5) - Ch. 43)

Plot 7-6. 26dB Bandwidth Plot MIMO ANT1 (80MHz 802.11ax/be (UNII Band 5) - Ch. 39)

FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 01 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 21 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

Plot 7-7. 26dB Bandwidth Plot MIMO ANT1 (160MHz 802.11ax/be (UNII Band 5) - Ch. 47)



Plot 7-8. 26dB Bandwidth Plot MIMO ANT1 (320MHz 802.11ax/be (UNII Band 5) - Ch.31)

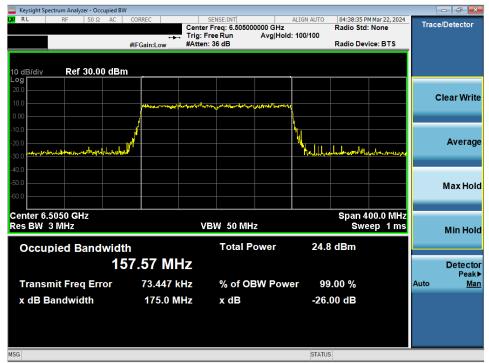
FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 22 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 22 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

MIMO Antenna-1 26 dB Bandwidth Measurements - (UNII Band 6)


Plot 7-9. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11a (UNII Band 6) - Ch. 105)

Plot 7-10. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11ax/be (UNII Band 6) - Ch. 105)

FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 02 of 160
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 23 of 168
© 2024 ELEMENT			V 9.0 02/01/2019


Plot 7-11. 26dB Bandwidth Plot MIMO ANT1 (40MHz 802.11ax/be (UNII Band 6) - Ch. 107)

Plot 7-12. 26dB Bandwidth Plot MIMO ANT1 (80MHz 802.11ax/be (UNII Band 6) - Ch. 103)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 24 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 24 of 168
© 2024 ELEMENT	•		V 9.0 02/01/2019

Plot 7-13. 26dB Bandwidth Plot MIMO ANT1 (160MHz 802.11ax/be (UNII Band 6) - Ch. 111)



Plot 7-14. 26dB Bandwidth Plot MIMO ANT1 (320MHz 802.11ax/be (UNII Band 5/6/7) - Ch. 95)


FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dere 25 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 25 of 168
© 2024 ELEMENT	•	·	V 9.0 02/01/2019

MIMO Antenna-1 26 dB Bandwidth Measurements - (UNII Band 7)

Plot 7-15. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11a (UNII Band 7) - Ch. 149)

Plot 7-16. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11ax/be (UNII Band 7) - Ch. 149)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dega 26 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 26 of 168
© 2024 ELEMENT	·		V 9.0 02/01/2019

🏧 Keysight Spectrum Analyzer - Occupied B	W				- 6 2
LXIRL RF 50Ω AC	CORREC	SENSE:INT r Freg: 6.725000000 GHz	ALIGN AUTO 03:21:44 Radio St	PM Mar 22, 2024	Trace/Detector
	Trig: F	Free Run Avg Hol	d: 100/100		
	#IFGain:Low #Atter	n: 36 dB	Radio De	evice: BTS	
10 dB/div Ref 20.00 dBr	n				
10.0					
0.00		-Ryundemandering	1		Clear Writ
-10.0					
-20.0	/				
-30.0 hangingthey manufamet how			My wayne breezeway	utilitati	Averag
-40.0				e della d	
-50.0					
-60.0					Max Hol
-70.0					
Center 6.72500 GHz			Enan	100.0 MHz	
Res BW 910 kHz	v	BW 8 MHz		reep 1 ms	Min Hal
					Min Hol
Occupied Bandwid	th	Total Power	19.5 dBm		
3	8.044 MHz				Detecto
					Peak
Transmit Freq Error	43.849 kHz	% of OBW Pow			Auto <u>Ma</u>
x dB Bandwidth	42.06 MHz	x dB	-26.00 dB		
MSG			STATUS		


Plot 7-17. 26dB Bandwidth Plot MIMO ANT1 (40MHz 802.11ax/be (UNII Band 7) - Ch. 155)

Plot 7-18. 26dB Bandwidth Plot MIMO ANT1 (80MHz 802.11ax/be (UNII Band 7) - Ch. 151)

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	Fest Dates: EUT Type:	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 27 of 168
© 2024 ELEMENT	•		V 9.0 02/01/2019

Plot 7-19. 26dB Bandwidth Plot MIMO ANT1 (160MHz 802.11ax/be (UNII Band 7) - Ch. 143)

Plot 7-20. 26dB Bandwidth Plot MIMO ANT1 (320MHz 802.11ax/be (UNII Band 6/7) - Ch. 127)

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 28 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

MIMO Antenna-1 26 dB Bandwidth Measurements - (UNII Band 8)

Plot 7-21. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11a (UNII Band 8) - Ch. 209)

Plot 7-22. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11ax/be (UNII Band 8) - Ch. 209)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	est Dates: EUT Type:	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 29 of 168
© 2024 ELEMENT	·		V 9.0 02/01/2019

🔤 Keysight Spectrum Analyzer - Occupied B					
LX/ RL RF 50Ω AC		SENSE:INT Freg: 7.005000000 GHz	ALIGN AUTO 03:27:53 Radio St	PM Mar 22, 2024 d: None	Trace/Detector
	Trig: Fr	ree Run Avg Hol	d: 100/100	vice: BTS	
	#IFGain:Low #Atten:	: 36 dB	Radio De	VICE: BIS	
10 dB/div Ref 20.00 dB	m		•		
10.0					01
0.00	nummunnum	her and a star and the second s	· · · · · · · · · · · · · · · · · · ·		Clear Write
-10.0	<mark>.</mark>				
-20.0			<u>h</u>		
-30.0			Winner	e ne ster Dont ster ster stor	Average
-40.0				af an a fundation of the second s	
-50.0					
-60.0					Max Hold
-70.0					
Center 7.00500 GHz				100.0 MHz	
Res BW 910 kHz	Vi	BW/8 MHz		eep 1 ms	Min Hald
					Min Hold
Occupied Bandwid	th	Total Power	18.4 dBm		
3	8.043 MHz				Detector
					Peak▶
Transmit Freq Error	39.243 kHz	% of OBW Pow			Auto <u>Man</u>
x dB Bandwidth	41.71 MHz	x dB	-26.00 dB		
MSG			STATUS		

Plot 7-23. 26dB Bandwidth Plot MIMO ANT1 (40MHz 802.11ax/be (UNII Band 8) - Ch. 211)

Plot 7-24. 26dB Bandwidth Plot MIMO ANT1 (80MHz 802.11ax/be (UNII Band 8) - Ch. 199)

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	Fest Dates: EUT Type:	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 30 of 168
© 2024 ELEMENT	•		V 9.0 02/01/2019

🔤 Keysight Spectrum Analyzer - Occupied BW							ð X
LX RL RF 50Ω AC	CORREC	SENSE:INT ter Freg: 6.985000	ALIGN AUTO	04:45:43 PM Radio Std:		Trace/Det	tector
	Trig	j: Free Run ten: 36 dB	Avg Hold: 100/100	Radio Devi	DTC		
	#IFGain:Low #At	ten: 36 dB		Radio Devid	Ce: DIS		
10 dB/div Ref 30.00 dBm							
20.0						01	
10.0	- where the last free to be the second	all marker and	in la marine			Clea	r Write
0.00							
-10.0							
-20.0	# ^r					A	verage
-30.0			"Newsyork	mound	where and	_	
-40.0							
-50.0						Ма	x Hold
-60.0							
Center 6.9850 GHz				Snan /(0.0 MHz		
Res BW 3 MHz		VBW 50 MHz	2	Swee	ep 1 ms	M	in Hold
					<u> </u>	IVI	
Occupied Bandwidt		Total Po	ower 24.5	5 dBm			
15	7.61 MHz					D	etector
Transmit Freq Error	13.344 kHz	% of OP	W Power 99	0.00 %		Auto	Peak▶ Man
						Auto	Ivian
x dB Bandwidth	173.9 MHz	x dB	-26.	00 dB			
MSG			STATU	5			

Plot 7-25. 26dB Bandwidth Plot MIMO ANT1 (160MHz 802.11ax/be (UNII Band 8) - Ch. 207)

Plot 7-26. 26dB Bandwidth Plot MIMO ANT1 (320MHz 802.11ax/be (UNII Band 7/8) - Ch. 191)

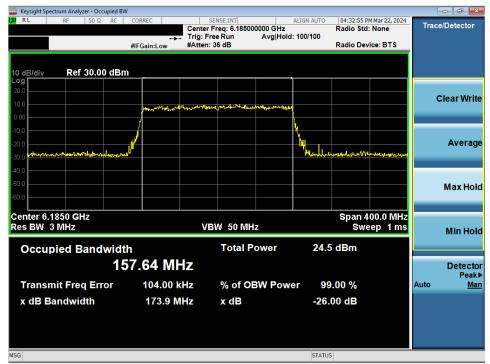
FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	Fest Dates: EUT Type:	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 31 of 168
© 2024 ELEMENT	•	·	V 9.0 02/01/2019

MIMO Antenna-2 26 dB Bandwidth Measurements - (UNII Band 5)

Plot 7-27. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11a (UNII Band 5) - Ch. 45)

Plot 7-28. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11ax/be (UNII Band 5) – Ch. 45)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 32 of 168
© 2024 ELEMENT			V 9.0 02/01/2019


Plot 7-29. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11ax/be (UNII Band 5) - Ch. 43)

Plot 7-30. 26dB Bandwidth Plot MIMO ANT2 (80MHz 802.11ax/be (UNII Band 5) - Ch. 39)

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 22 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 33 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

Plot 7-31. 26dB Bandwidth Plot MIMO ANT2 (160MHz 802.11ax/be (UNII Band 5) - Ch. 47)

Plot 7-32. 26dB Bandwidth Plot MIMO ANT2 (320MHz 802.11ax/be (UNII Band 5) – Ch.31)

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	Fest Dates: EUT Type:	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 34 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

MIMO Antenna-2 26 dB Bandwidth Measurements - (UNII Band 6)

Plot 7-33. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11a (UNII Band 6) - Ch. 105)

Plot 7-34. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11ax/be (UNII Band 6) - Ch. 105)

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 35 of 168
© 2024 ELEMENT	*		V 9.0 02/01/2019

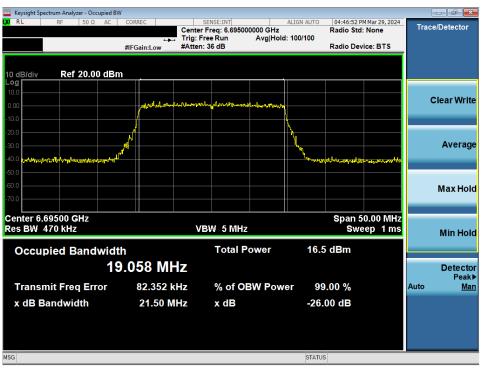
Plot 7-35. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11ax/be (UNII Band 6) - Ch. 107)

Plot 7-36. 26dB Bandwidth Plot MIMO ANT2 (80MHz 802.11ax/be (UNII Band 6) - Ch. 103)

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 26 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 36 of 168
© 2024 ELEMENT	•		V 9.0 02/01/2019

Plot 7-37. 26dB Bandwidth Plot MIMO ANT2 (160MHz 802.11ax/be (UNII Band 6) - Ch. 111)

Plot 7-38. 26dB Bandwidth Plot MIMO ANT2 (320MHz 802.11ax/be (UNII Band 5/6/7) - Ch. 95)


FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 27 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 37 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

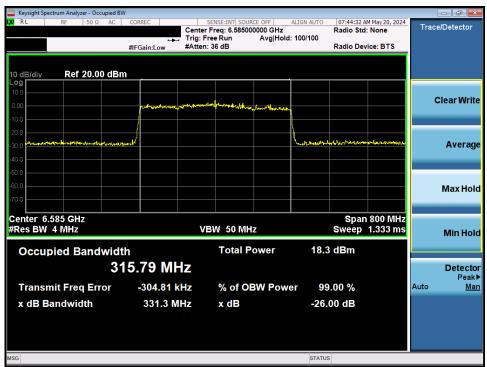
MIMO Antenna-2 26 dB Bandwidth Measurements - (UNII Band 7)

Plot 7-39. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11a (UNII Band 7) - Ch. 149)

Plot 7-40. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11ax/be (UNII Band 7) - Ch. 149)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dega 29 of 169			
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 38 of 168			
© 2024 ELEMENT			V 9.0 02/01/2019			

Plot 7-41. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11ax/be (UNII Band 7) - Ch. 155)


Plot 7-42. 26dB Bandwidth Plot MIMO ANT2 (80MHz 802.11ax/be (UNII Band 7) - Ch. 151)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 20 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 39 of 168
© 2024 ELEMENT	•		V 9.0 02/01/2019

Plot 7-43. 26dB Bandwidth Plot MIMO ANT2 (160MHz 802.11ax/be (UNII Band 7) - Ch. 143)

Plot 7-44. 26dB Bandwidth Plot MIMO ANT2 (320MHz 802.11ax/be (UNII Band 6/7) - Ch. 127)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 40 of 168
© 2024 ELEMENT	•		V 9.0 02/01/2019

MIMO Antenna-2 26 dB Bandwidth Measurements - (UNII Band 8)

Plot 7-45. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11a (UNII Band 8) - Ch. 209)

Plot 7-46. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11ax/be (UNII Band 8) - Ch. 209)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dage 41 of 169				
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 41 of 168				
© 2024 ELEMENT			V 9.0 02/01/2019				


Plot 7-47. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11ax/be (UNII Band 8) - Ch. 211)

Plot 7-48. 26dB Bandwidth Plot MIMO ANT2 (80MHz 802.11ax/be (UNII Band 8) - Ch. 199)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 42 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 42 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

Plot 7-49. 26dB Bandwidth Plot MIMO ANT2 (160MHz 802.11ax/be (UNII Band 8) - Ch. 207)

Plot 7-50. 26dB Bandwidth Plot MIMO ANT2 (320MHz 802.11ax/be (UNII Band 7/8) - Ch. 191)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 42 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 43 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

7.3 UNII Output Power Measurement

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies.

For client devices operating under the control of an indoor access point in the 5.925-7.125 GHz bands, the maximum e.i.r.p. over the frequency band of operation must not exceed 24 dBm. For client devices operating under the control of a standard power access point, the maximum e.i.r.p. over the frequency band of operation must not exceed 30 dBm and the device must limit its power to no more than 6 dB below its associated standard power access point's authorized transmit power.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

Compliance for this device while operating under the control of either an indoor low power access point or a standard power access point is demonstrated by applying either the low power indoor access point limit of 24dBm e.i.r.p. or the standard power access point limit of 30dBm e.i.r.p. as shown in the tables.

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N: Test Dates: El		EUT Type:	Dama 44 af 100
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 44 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

MIMO Maximum Conducted Output Power Measurements

			6GHz WIFI	(20MHz 802.11a	a MIMO)		Directional Ant.			
	Band	Freq [MHz]	Channel	Avg. C	Avg. Conducted Powers [dBm]			Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
ອ				ANT1	ANT2	MIMO	[dBi]			
(0		5935	2	3.36	3.02	6.20	-0.61	5.59	24.00	-18.41
	UNII-5	5955	1	7.01	7.31	10.17	-0.61	9.56	24.00	-14.44
· ·	UNII-3	6175	45	7.02	7.57	10.31	-0.61	9.70	24.00	-14.30
\sim		6415	93	7.19	7.42	10.32	-0.61	9.71	24.00	-14.29
Ö		6435	97	7.32	7.23	10.29	-0.10	10.19	24.00	-13.81
$\widetilde{\mathbf{\omega}}$	UNII-6	6475	105	7.44	7.19	10.33	-0.10	10.23	24.00	-13.77
		6515	113	7.36	7.13	10.26	-0.10	10.16	24.00	-13.84
Щ		6535	117	7.27	7.09	10.19	-0.74	9.45	24.00	-14.55
ш	UNII-7	6675	145	7.41	7.04	10.24	-0.74	9.50	24.00	-14.50
Ш	UNII-7	6695	149	7.01	7.14	10.09	-0.74	9.35	24.00	-14.65
	UNII-8	6875	185	7.66	7.81	10.75	-0.74	10.01	24.00	-13.99
		6895	189	7.11	7.52	10.33	-1.28	9.05	24.00	-14.95
		6995	209	7.01	7.67	10.36	-1.28	9.08	24.00	-14.92
		7115	233	7.20	7.99	10.62	-1.28	9.34	24.00	-14.66

Table 7-6. MIMO 20MHz BW 802.11a (UNII) Maximum Conducted Output Power – LPI

			6GHz WIFI	(20MHz 802.11a	x MIMO)		Directional Ant.			
\cap	Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Gain	[dBm] [dBm] [dB	e.i.r.p Margin [dB]	
S				ANT1	ANT2	MIMO	[dBi]			
×		5935	2	3.37	3.01	6.20	-0.61	5.59	24.00	-18.41
a)	UNII-5	5955	1	7.01	7.59	10.32	-0.61	9.71	24.00	-14.29
<u></u>	UNII-5	6175	45	7.52	7.45	10.50	-0.61	9.89	24.00	-14.11
<u>`</u>		6415	93	7.27	7.55	10.42	-0.61	9.81	24.00	-14.19
•		6435	97	7.16	7.40	10.29	-0.10	10.19	24.00	-13.81
\sim	UNII-6	6475	105	7.34	7.28	10.32	-0.10	10.22	24.00	-13.78
0		6515	113	7.48	7.01	10.26	-0.10	10.16	24.00	-13.84
õ		6535	117	7.40	7.01	10.22	-0.74	9.48	24.00	-14.52
	UNII-7	6675	145	7.49	7.21	10.36	-0.74	9.62	24.00	-14.38
Ш	UNII-7	6695	149	7.02	7.11	10.08	-0.74	9.34	24.00	-14.66
Щ		6875	185	7.67	7.89	10.79	-0.74	10.05	24.00	-13.95
Ш		6895	189	8.12	8.56	11.36	-1.28	10.08	24.00	-13.92
	UNII-8	6995	209	8.01	8.91	11.49	-1.28	10.21	24.00	-13.79
		7115	233	8.02	8.54	11.30	-1.28	10.02	24.00	-13.98

Table 7-7. MIMO 20MHz BW 802.11ax (UNII) Maximum Conducted Output Power - LPI

			6GHz WIFI	(20MHz 802.11b	e MIMO)		Directional Ant.			
Ŋ	Band	Band Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Gain	Max e.i.r.p e.i.r.p Limit e.i.r.p Mar [dBm] [dBm] [dB]	e.i.r.p Margin [dB]	
S				ANT1	ANT2	MIMO	[dBi]			
Ð		5935	2	3.42	3.01	6.23	-0.61	5.62	24.00	-18.38
ă	UNII-5	5955	1	7.12	7.65	10.40	-0.61	9.79	24.00	-14.21
<u> </u>	UNII-3	6175	45	7.01	7.43	10.24	-0.61	9.63	24.00	-14.37
		6415	93	7.32	7.61	10.48	-0.61	9.87	24.00	-14.13
· · ·		6435	97	7.19	7.43	10.32	-0.10	10.22	24.00	-13.78
5	UNII-6	6475	105	7.41	7.31	10.37	-0.10	10.27	24.00	-13.73
0		6515	113	7.52	7.01	10.28	-0.10	10.18	24.00	-13.82
$\widetilde{\infty}$		6535	117	7.47	7.01	10.26	-0.74	9.52	24.00	-14.48
. –	UNII-7	6675	145	7.49	7.26	10.39	-0.74	9.65	24.00	-14.35
Ш	UNII-7	6695	149	7.01	7.16	10.10	-0.74	9.36	24.00	-14.64
Ш		6875	185	7.71	7.89	10.81	-0.74	10.07	24.00	-13.93
ш		6895	189	8.12	8.61	11.38	-1.28	10.10	24.00	-13.90
	UNII-8	6995	209	8.12	8.60	11.38	-1.28	10.10	24.00	-13.90
		7115	233	8.01	8.55	11.30	-1.28	10.02	24.00	-13.98

Table 7-8. MIMO 20MHz BW 802.11be (UNII) Maximum Conducted Output Power – LPI

			6GHz WIFI	(20MHz 802.11a	a MIMO)		Directional Ant.			
ŋ	Band	Freg [MHz]	Channel	Avg. Co	onducted Powers	s [dBm]	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
				ANT1	ANT2	MIMO	[dBi]			
		5935	2	3.80	3.33	6.58	-0.61	5.97	30.00	-24.03
	UNII-5	5955	1	9.95	9.45	12.71	-0.61	12.10	30.00	-17.90
М	UNII-5	6175	45	9.65	9.32	12.50	-0.61	11.89	30.00	-18.11
		6415	93	9.99	9.01	12.54	-0.61	11.93	30.00	-18.07
∞		6535	117	9.98	8.78	12.43	-0.74	11.69	30.00	-18.31
	UNII-7	6675	145	9.54	9.02	12.30	-0.74	11.56	30.00	-18.44
		6695	149	9.89	9.28	12.60	-0.74	11.86	30.00	-18.14

Table 7-9. MIMO 20MHz BW 802.11a (UNII) Maximum Conducted Output Power - SP

FCC ID: A3LNP960XMA		MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 169			
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 45 of 168			
© 2024 ELEMENT			V 0 0 02/01/2010			

			6GHz WIFI	(20MHz 802.11a)	x MIMO)		Directional Ant.			
X	Band	Freq [MHz]	Channel	Avg. C	Avg. Conducted Powers [dBm]			Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
<u>a</u>				ANT1	ANT2	MIMO	[dBi]			
		5935	2	3.87	3.21	6.56	-0.61	5.95	30.00	-24.05
SI H	UNII-5	5955	1	9.90	9.97	12.95	-0.61	12.34	30.00	-17.66
	UNII-5	6175	45	9.62	9.32	12.48	-0.61	11.87	30.00	-18.13
		6415	93	9.54	9.27	12.42	-0.61	11.81	30.00	-18.19
8(6535	117	9.76	9.49	12.64	-0.74	11.90	30.00	-18.10
	UNII-7	6675	145	9.84	9.01	12.46	-0.74	11.72	30.00	-18.28
		6695	149	9.63	9.45	12.55	-0.74	11.81	30.00	-18.19

Table 7-10. MIMO 20MHz BW 802.11ax (UNII) Maximum Conducted Output Power - SP

			6GHz WIFI	(20MHz 802.11b	e MIMO)		Directional Ant. Gain [dBi] [dBm]		e.i.r.p Limit [dBm]	
)e	Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]				e.i.r.p Margin [dB]
Q				ANT1	ANT2	MIMO				
	UNII-5	5935	2	3.92	3.24	6.60	-0.61	5.99	30.00	-24.01
		5955	1	9.89	9.96	12.94	-0.61	12.33	30.00	-17.67
S is a second se		6175	45	9.69	9.46	12.59	-0.61	11.98	30.00	-18.02
		6415	93	9.57	9.29	12.44	-0.61	11.83	30.00	-18.17
8(6535	117	9.77	9.52	12.66	-0.74	11.92	30.00	-18.08
	UNII-7	6675	145	9.87	9.03	12.48	-0.74	11.74	30.00	-18.26
		6695	149	9.68	9.48	12.59	-0.74	11.85	30.00	-18.15

Table 7-11. MIMO 20MHz BW 802.11be (UNII) Maximum Conducted Output Power – SP

			6GHz WIFI	(40MHz 802.11a	x MIMO)		Directional Ant.			
\Box	Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
S				ANT1	ANT2	MIMO	[dBi]			
$\mathbf{\mathbf{v}}$		5965	3	9.56	9.43	12.51	-0.61	11.90	24.00	-12.10
ax	UNII-5	6165	43	9.77	9.68	12.74	-0.61	12.13	24.00	-11.87
— —	UNIT-3	6285	67	9.64	9.74	12.70	-0.61	12.09	24.00	-11.91
<u>`</u>		6405	91	9.71	9.50	12.62	-0.61	12.01	24.00	-11.99
`.		6445	99	9.83	9.42	12.64	-0.10	12.54	24.00	-11.46
\sim	UNII-6	6485	107	9.98	9.65	12.83	-0.10	12.73	24.00	-11.27
0		6525	115	9.56	9.24	12.41	-0.10	12.31	24.00	-11.69
∞		6565	123	9.49	9.59	12.55	-0.74	11.81	24.00	-12.19
ш	UNII-7	6685	147	9.70	9.71	12.72	-0.74	11.98	24.00	-12.02
	UNIT-7	6725	155	9.80	9.23	12.53	-0.74	11.79	24.00	-12.21
Щ		6845	179	9.65	8.68	12.20	-0.74	11.46	24.00	-12.54
Ш		6885	187	9.99	9.36	12.70	-1.28	11.42	24.00	-12.58
	UNII-8	7005	211	9.70	9.01	12.38	-1.28	11.10	24.00	-12.90
		7085	227	9.64	9.07	12.37	-1.28	11.09	24.00	-12.91

Table 7-12. MIMO 40MHz BW 802.11ax (UNII) Maximum Conducted Output Power - LPI

			6GHz WIFI	(40MHz 802.11b	e MIMO)		Directional Ant.			
Ŋ	Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
S		[IVITI2]		ANT1	ANT2	MIMO				
Ð	UNII-5 6165 6285 6405	5965	3	9.50	9.31	12.42	-0.61	11.81	24.00	-12.19
q		6165	43	9.49	9.55	12.53	-0.61	11.92	24.00	-12.08
		6285	67	9.48	9.55	12.53	-0.61	11.92	24.00	-12.08
		6405	91	9.35	9.31	12.34	-0.61	11.73	24.00	-12.27
· ·		6445	99	9.75	9.25	12.52	-0.10	12.42	24.00	-11.58
2	UNII-6	6485	107	9.71	9.44	12.59	-0.10	12.49	24.00	-11.51
0		6525	115	9.58	9.08	12.35	-0.10	12.25	24.00	-11.75
8		6565	123	9.43	9.43	12.44	-0.74	11.70	24.00	-12.30
	UNII-7	6685	147	9.77	9.63	12.71	-0.74	11.97	24.00	-12.03
Ш	UNII-7	6725	155	9.72	9.02	12.39	-0.74	11.65	24.00	-12.35
Ш		6845	179	9.66	8.51	12.13	-0.74	11.39	24.00	-12.61
		6885	187	9.97	9.22	12.62	-1.28	11.34	24.00	-12.66
	UNII-8	7005	211	9.95	9.32	12.66	-1.28	11.38	24.00	-12.62
		7085	227	9.84	9.35	12.61	-1.28	11.33	24.00	-12.67

Table 7-13. MIMO 40MHz BW 802.11be (UNII) Maximum Conducted Output Power – LPI

FCC ID: A3LNP960XMA		MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dawa 40 af 400			
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 46 of 168			
© 2024 ELEMENT			V 9.0 02/01/2019			

				6GHz WIFI	(40MHz 802.11a)		Directional Ant.				
วี	n n s		Freq [MHz] Channe	Channel	Avg. Co	onducted Powers	s [dBm]	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
	\sim				ANT1	ANT2	MIMO	[dBi]			
LLI a	d d		5965	3	9.56	9.43	12.51	-0.61	11.90	30.00	-18.10
Ш _		UNII-5	6165	43	9.77	9.68	12.74	-0.61	12.13	30.00	-17.87
Ш -		UNIT-5	6285	67	9.64	9.74	12.70	-0.61	12.09	30.00	-17.91
			6405	91	9.71	9.50	12.62	-0.61	12.01	30.00	-17.99
C	N		6565	123	9.49	9.59	12.55	-0.74	11.81	30.00	-18.19
Ċ	UNII-7		6685	147	9.70	9.71	12.72	-0.74	11.98	30.00	-18.02
Ō		UNIT-7	6725	155	9.80	9.23	12.53	-0.74	11.79	30.00	-18.21
Ŭ			6845	179	9.65	8.68	12.20	-0.74	11.46	30.00	-18.54

Table 7-14. MIMO 40MHz BW 802.11ax (UNII) Maximum Conducted Output Power – SP

_			6GHz WIFI	(40MHz 802.11b	e MIMO)		Directional Ant.			
SU	Band	Freq [MHz]	req [MHz] Channel	Avg. Conducted Powers [dBm]			Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
Φ				ANT1	ANT2	MIMO	[dBi]			
ЩЙ		5965	3	9.50	9.31	12.42	-0.61	11.81	30.00	-18.19
		6165	43	9.49	9.55	12.53	-0.61	11.92	30.00	-18.08
1 田	UNII-5	6285	67	9.48	9.55	12.53	-0.61	11.92	30.00	-18.08
		6405	91	9.35	9.31	12.34	-0.61	11.73	30.00	-18.27
\sim		6565	123	9.43	9.43	12.44	-0.74	11.70	30.00	-18.30
Ö	UNII-7	6685	147	9.77	9.63	12.71	-0.74	11.97	30.00	-18.03
$\widetilde{\mathbf{\omega}}$	UNII-7	6725	155	9.72	9.02	12.39	-0.74	11.65	30.00	-18.35
		6845	179	9.66	8.51	12.13	-0.74	11.39	30.00	-18.61

Table 7-15. MIMO 40MHz BW 802.11be (UNII) Maximum Conducted Output Power - SP

			6GHz WIFI	(80MHz 802.11a	x MIMO)		Directional Ant.			
ах	Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
(0				ANT1	ANT2	MIMO	[dBi]			
		5985	7	9.47	9.15	12.32	-0.61	11.71	24.00	-12.29
· ·	UNII-5	6145	39	9.52	9.49	12.52	-0.61	11.91	24.00	-12.09
7		6305	71	9.16	9.83	12.52	-0.61	11.91	24.00	-12.09
SI SI		6385	87	9.93	9.92	12.94	-0.61	12.33	24.00	-11.67
$\widetilde{\omega}$	UNII-6	6465	103	9.51	9.19	12.36	-0.10	12.26	24.00	-11.74
		6545	119	9.30	9.48	12.40	-0.10	12.30	24.00	-11.70
Ш	UNII-7	6705	151	9.74	9.42	12.59	-0.74	11.85	24.00	-12.15
Ш	UNII-7	6785	167	9.97	9.39	12.70	-0.74	11.96	24.00	-12.04
		6865	183	9.74	9.09	12.44	-0.74	11.70	24.00	-12.30
	UNII-8	6945	199	9.85	9.12	12.51	-1.28	11.23	24.00	-12.77
	UNII-0	7025	215	9.98	9.43	12.72	-1.28	11.44	24.00	-12.56
T - 1-1	Table 7.40 MIMO COMULE DW/ COO 44 or (UNIII) Mercireure Conducted Output Down L.D.									

Table 7-16. MIMO 80MHz BW 802.11ax (UNII) Maximum Conducted Output Power - LPI

			6GHz WIFI	(80MHz 802.11b	e MIMO)		Directional Ant.			
be	Band	Freq [MHz]	Channel Avg. Conducted Powers [dBm] Gain			Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]		
				ANT1	ANT2	MIMO				
	UNII-5	5985	7	9.58	9.17	12.39	-0.61	11.78	24.00	-12.22
		6145	39	9.52	9.52	12.53	-0.61	11.92	24.00	-12.08
		6305	71	9.34	9.39	12.37	-0.61	11.76	24.00	-12.24
SC SC		6385	87	9.87	9.95	12.92	-0.61	12.31	24.00	-11.69
	UNII-6	6465	103	9.59	9.29	12.45	-0.10	12.35	24.00	-11.65
		6545	119	9.36	9.53	12.46	-0.10	12.36	24.00	-11.64
Щ	UNII-7	6705	151	9.90	9.53	12.73	-0.74	11.99	24.00	-12.01
Щ	UNII-7	6785	167	9.98	9.41	12.71	-0.74	11.97	24.00	-12.03
		6865	183	9.95	9.17	12.59	-0.74	11.85	24.00	-12.15
	UNII-8	6945	199	9.82	9.08	12.48	-1.28	11.20	24.00	-12.80
	UNII-0	7025	215	9.99	9.45	12.74	-1.28	11.46	24.00	-12.54

Table 7-17. MIMO 80MHz BW 802.11be (UNII) Maximum Conducted Output Power - LPI

			6GHz WIFI	(80MHz 802.11a	x MIMO)		Directional Ant.			
O O	Band	Freq [MHz]	Channel Av	Avg. C	Avg. Conducted Powers [dBm]			Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
				ANT1	ANT2	MIMO	[dBi]			
	UNII-5	5985	7	9.47	9.15	12.32	-0.61	11.71	30.00	-18.29
		6145	39	9.52	9.49	12.52	-0.61	11.91	30.00	-18.09
ы С С С	UNII-5	6305	71	9.16	9.83	12.52	-0.61	11.91	30.00	-18.09
-		6385	87	9.93	9.92	12.94	-0.61	12.33	30.00	-17.67
$\widetilde{\mathbf{\omega}}$		6545	119	9.72	9.65	12.70	-0.74	11.96	24.00	-12.04
~	UNII-7	6705	151	9.74	9.42	12.59	-0.74	11.85	30.00	-18.15
	[6785	167	9.97	9.39	12.70	-0.74	11.96	30.00	-18.04

Table 7-18. MIMO 80MHz BW 802.11ax (UNII) Maximum Conducted Output Power - SP

FCC ID: A3LNP960XMA		MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dega 47 of 169			
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 47 of 168			
© 2024 ELEMENT			V 9.0 02/01/2019			

			6GHz WIFI	(80MHz 802.11b	e MIMO)		Directional Ant.			
be	Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
Ш — _				ANT1	ANT2	MIMO	[dBi]			
		5985	7	9.58	9.17	12.39	-0.61	11.78	30.00	-18.22
S : I	UNII-5	6145	39	9.52	9.52	12.53	-0.61	11.92	30.00	-18.08
		6305	71	9.34	9.39	12.37	-0.61	11.76	30.00	-18.24
0		6545	119	9.74	9.68	12.72	-0.74	11.98	24.00	-12.02
∞	UNII-7	6705	151	9.90	9.53	12.73	-0.74	11.99	30.00	-18.01
		6785	167	9.98	9.41	12.71	-0.74	11.97	30.00	-18.03

Table 7-19. MIMO 80MHz BW 802.11be (UNII) Maximum Conducted Output Power – SP

			6GHz WIFI (160MHz 802.11	ax MIMO)		Directional Ant.			
X	Band	Freq	Channel	Avg. C	onducted Powers	a [dBm]	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
<u>a</u>		[MHz]		ANT1	ANT2	MIMO	[dBi]			
		6025	15	9.56	9.95	12.77	-0.61	12.16	24.00	-11.84
	UNII-5	6185	47	9.35	9.97	12.68	-0.61	12.07	24.00	-11.93
S Г		6345	79	9.01	9.80	12.43	-0.61	11.82	24.00	-12.18
	UNII-6	6505	111	9.82	9.83	12.84	-0.10	12.74	24.00	-11.26
$\widetilde{\mathbf{\omega}}$	UNII-7	6665	143	9.67	9.56	12.63	-0.74	11.89	24.00	-12.11
\sim	UNII-7	6825	175	9.56	9.48	12.53	-0.74	11.79	24.00	-12.21
	UNII-8	6985	207	9.57	9.90	12.75	-1.28	11.47	24.00	-12.53

Table 7-20. MIMO 160MHz BW 802.11ax (UNII) Maximum Conducted Output Power – LPI

			6GHz WIFI ((160MHz 802.11	oe MIMO)		Directional Ant.			
)e	Band	Freq	Channel	Avg. C	onducted Powers	s [dBm]	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
		[MHz]		ANT1	ANT2	MIMO	[dBi]			
		6025	15	9.44	9.80	12.63	-0.61	12.02	24.00	-11.98
SL SL	UNII-5	6185	47	9.27	9.80	12.55	-0.61	11.94	24.00	-12.06
		6345	79	9.01	9.72	12.39	-0.61	11.78	24.00	-12.22
); 	UNII-6	6505	111	9.39	9.63	12.52	-0.10	12.42	24.00	-11.58
80	UNII-7	6665	143	9.36	9.46	12.42	-0.74	11.68	24.00	-12.32
\sim	UNII-7	6825	175	9.74	9.70	12.73	-0.74	11.99	24.00	-12.01
	UNII-8	6985	207	9.23	9.55	12.40	-1.28	11.12	24.00	-12.88

Table 7-21. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power - LPI

	g			6GHz WIFI (160MHz 802.11a	x MIMO)		Directional Ant.			
L	цĘ́С	Band	Freq [MHz]	Channel	Avg. C	onducted Powers	; [dBm]	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
	SI - T		-		ANT1	ANT2	MIMO	[dBi]			
			6025	15	9.56	9.95	12.77	-0.61	12.16	30.00	-17.84
	= X ×	UNII-5	6185	47	9.35	9.97	12.68	-0.61	12.07	30.00	-17.93
	80		6345	79	9.01	9.80	12.43	-0.61	11.82	30.00	-18.18
	•••	UNII-7	6665	143	9.67	9.56	12.63	-0.74	11.89	24.00	-12.11

Table 7-22. MIMO 160MHz BW 802.11ax (UNII) Maximum Conducted Output Power - SP

^			6GHz WIFI ((160MHz 802.11t	oe MIMO)		Directional Ant.			
л 1 Л	Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
E. SI				ANT1	ANT2	MIMO	[dBi]			
		6025	15	9.44	9.80	12.63	-0.61	12.02	30.00	-17.98
E C e	UNII-5	6185	47	9.27	9.80	12.55	-0.61	11.94	30.00	-18.06
80		6345	79	9.01	9.72	12.39	-0.61	11.78	30.00	-18.22
\sim	UNII-7	6665	143	9.36	9.46	12.42	-0.74	11.68	24.00	-12.32

Table 7-23. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power – SP

			6GHz WIFI (320MHz 802.11t	oe MIMO)		Directional Ant.			
be	Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
Ш — _		[IVIFIZ]		ANT1	ANT2	MIMO	[dBi]			
$\Box - \Box$	UNII-5	6105	31	9.95	9.57	12.77	-0.61	12.16	24.00	-11.84
E Π L : Ο	UNII-5	6265	63	9.86	9.60	12.74	-0.61	12.13	24.00	-11.87
	UNII-6	6425	95	9.47	9.43	12.46	-0.10	12.36	24.00	-11.64
0	UNII-7	6585	127	9.84	9.56	12.71	-0.74	11.97	24.00	-12.03
∞	UNII-7	6745	159	9.99	9.27	12.66	-0.74	11.92	24.00	-12.08
	UNII-8	6905	191	9.89	9.06	12.51	-1.28	11.23	24.00	-12.77

Table 7-24. MIMO 320MHz BW 802.11be (UNII) Maximum Conducted Output Power - LPI

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 of 400
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 48 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

			6GHz WIFI (320MHz 802.11t	e MIMO)		Directional Ant.			
D 2.1	Band	Freq [MHz]	Channel	Avg. C	onducted Powers		Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
		-		ANT1	ANT2	MIMO	[dBi]			
	UNII-5	6105	31	9.95	9.57	12.77	-0.61	12.16	30.00	-17.84
~	UNII-7	6745	159	9.99	9.27	12.66	-0.74	11.92	24.00	-12.08

Table 7-25. MIMO 320MHz BW 802.11be (UNII) Maximum Conducted Output Power - SP

							Average	Conducted Pow								
Band	Freq [MHz]	Channel	Puncture Size					Puncture Case					Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
Dunu		onanner	1 dilotare oize		90			91			92		[dBi]	[dBm]	[dBm]	[dB]
				ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
5	6145	39	20MHz	9.73	9.41	12.58	9.81	9.45	12.64	9.54	9.45	12.51	-0.61	12.0	24.0	-11.97
6	6465	103	20MHz	9.86	9.38	12.64	9.73	9.44	12.60	9.96	9.45	12.72	-0.10	12.6	24.0	-11.38
7	6705	151	20MHz	9.98	9.51	12.76	9.96	9.47	12.73	9.98	9.57	12.79	-0.74	12.1	24.0	-11.95
8	6945	199	20MHz	9.66	9.11	12.40	9.64	9.18	12.43	9.62	9.29	12.47	-1.28	11.2	24.0	-12.82

Table 7-26. MIMO 80MHz BW 802.11be (UNII) Maximum Conducted Output Power – Punctured – LPI

								Average	Conducted Pow	er (dBm)							
ž	Band	Freg (MHz)	Channel	Puncture Size					Puncture Case					Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
N						94			95			1094		[dBi]	[dBm]	[dBm]	[dB]
Ξ					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
≥	5	6185	47	40MHz	9.29	9.57	12.44	9.21	9.69	12.47	9.29	9.56	12.44	-0.61	11.9	24.0	-12.15
90	6	6505	111	40MHz	9.24	9.67	12.47	9.50	9.66	12.59	9.63	9.64	12.65	-0.10	12.5	24.0	-11.46
-	7	6665	143	40MHz	9.78	9.71	12.76	9.51	9.67	12.60	9.32	9.68	12.51	-0.74	12.0	24.0	-11.98
	8	6985	207	40MHz	9.01	9.51	12.28	9.02	9.75	12.41	9.05	9.73	12.41	-1.28	11.1	24.0	-12.87

Table 7-27. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power – Punctured – LPI

z] Channel	Puncture Size		96		1	Puncture Case 99			4000		Dir. Ant. Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin
		4.1174	96			99								
									1099		lapi	Lapud	lapini	[dB]
		ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
47	20MHz	9.13	9.58	12.37	9.16	9.63	12.41	9.24	9.63	12.45	-0.61	11.8	24.0	-12.16
111	20MHz	9.41	9.64	12.54	9.57	9.61	12.60	9.66	9.69	12.69	-0.10	12.6	24.0	-11.42
143	20MHz	9.45	9.67	12.57	9.64	9.66	12.66	9.36	9.68	12.53	-0.74	11.9	24.0	-12.08
207	20MHz	9.01	9.62	12.34	9.06	9.71	12.41	9.10	9.82	12.49	-1.28	11.2	24.0	-12.80
	143 207	111 20MHz 143 20MHz 207 20MHz	111 20MHz 9.41 143 20MHz 9.45 207 20MHz 9.01	111 20MHz 9.41 9.64 143 20MHz 9.45 9.67 207 20MHz 9.01 9.62	111 20MHz 9.41 9.64 12.54 143 20MHz 9.45 9.67 12.57 207 20MHz 9.01 9.62 12.34	111 20MHz 9.41 9.64 12.54 9.57 143 20MHz 9.45 9.67 12.57 9.64 207 20MHz 9.01 9.62 12.34 9.06	111 20M+z 9.41 9.64 12.54 9.57 9.61 143 20M+z 9.45 9.67 12.57 9.64 9.66 207 20M+z 9.01 9.62 12.34 9.06 9.71	111 20MHz 9.41 9.64 12.54 9.57 9.61 12.60 143 20MHz 9.45 9.67 12.57 9.64 12.66 207 20MHz 9.01 9.62 12.34 9.06 9.71 12.41	111 20MHz 941 9.64 12.54 9.57 9.61 12.60 9.66 143 220MHz 9.45 9.67 12.57 9.64 12.60 9.66 207 20MHz 9.05 9.67 12.34 9.06 9.71 12.41 9.10	111 20Metr. 9.41 9.64 12.54 9.57 9.61 12.60 9.66 9.69 143 20Metr. 9.45 9.67 12.57 9.64 6.66 12.66 9.36 9.68 207 20Metr. 9.01 9.62 12.34 9.06 9.71 12.41 9.10 9.82	111 20MHz 9.41 9.64 12.54 9.57 9.61 12.60 9.66 9.69 12.69 143 20MHz 9.45 9.67 12.57 9.64 9.66 12.66 9.69 9.69 12.53 207 20MHz 9.01 9.62 12.34 9.06 9.71 12.41 9.10 9.82 12.49	111 20MHz 9.41 9.64 12.54 9.57 9.61 12.60 9.66 9.69 12.69 -0.10 143 20MHz 9.45 9.67 12.57 9.64 9.66 12.66 9.36 9.68 12.53 -0.14 207 20MHz 9.01 9.62 12.34 9.06 9.71 12.41 9.10 9.82 12.49 -1.28	111 20Metz 9.41 9.44 12.54 9.57 9.61 12.60 9.66 9.69 12.69 -0.10 12.6 143 20Metz 9.45 9.67 12.57 9.64 9.66 12.66 9.56 12.53 -0.74 11.9 207 20Metz 9.01 9.62 12.34 9.06 9.71 12.41 9.10 9.82 12.49 -1.28 11.2	111 20MHz 9.41 9.64 12.54 9.57 9.61 12.60 9.66 9.99 12.69 -0.10 12.6 24.0 143 20MHz 9.45 9.67 12.57 9.64 9.66 12.66 9.36 9.88 12.53 -0.74 11.9 24.0 207 20MHz 9.01 9.62 12.34 9.06 9.71 12.41 9.10 9.82 12.49 -1.28 11.2 24.0

Table 7-28. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power – Punctured – LPI

Dir. Ant. Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
[dBi]	[dBm]	[dBm]	[dB]
			4
-0.61	11.8	24.0	-12.19
-0.10	12.6	24.0	-11.35
-0.74	11.7	24.0	-12.27
-1.28	11.4	24.0	-12.57
	-0.10	-0.10 12.6 -0.74 11.7	-0.10 12.6 24.0 -0.74 11.7 24.0

Table 7-29. MIMO 320MHz BW 802.11be (UNII) Maximum Conducted Output Power – Punctured – LPI

								Average	Conducted Pow	er (dBm)							
2	Band	Freg (MHz)	Channel	Puncture Size					Puncture Case					Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
<u> </u>	Danu	rreq (wriz)	Channel	Puncture Size		104			1104			10104		[dBi]	(dBm)	(dBm)	[dB]
문					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
N N	5	6105	31	80MHz	9.97	9.43	12.72	9.95	9.62	12.80	9.98	9.59	12.80	-0.61	12.2	24.0	-11.81
0	6	6425	95	80MHz	9.67	9.40	12.55	9.60	9.43	12.53	9.64	9.27	12.47	-0.10	12.4	24.0	-11.56
33	7	6585	127	80MHz	9.30	9.21	12.27	9.45	9.19	12.33	9.38	9.23	12.32	-0.74	11.6	24.0	-12.41
	8	6905	191	80MHz	9.99	9.08	12.57	9.56	9.01	12.30	9.73	9.16	12.46	-1.28	11.3	24.0	-12.72

Table 7-30. MIMO 320MHz BW 802.11be (UNII) Maximum Conducted Output Power – Punctured – LPI

								Average	Conducted Pow	er (dBm)							
2	Band	Freg (MHz)	Channel	Puncture Size					Puncture Case					Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
	Danu	riedimitzi	Channel	Functure Size		105			1106			11106		(dBi)	[dBm]	[dBm]	[dB]
운					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
Ī	5	6105	31	120MHz	9.77	9.58	12.69	9.98	9.59	12.80	9.97	9.62	12.81	-0.61	12.2	24.0	-11.81
0	6	6425	95	120MHz	9.81	9.47	12.65	9.69	9.45	12.58	9.84	9.50	12.68	-0.10	12.6	24.0	-11.42
33	7	6585	127	120MHz	9.50	9.35	12.44	9.53	9.36	12.46	9.48	9.33	12.42	-0.74	11.7	24.0	-12.28
	8	6905	191	120MHz	9.63	9.08	12.37	9.69	9.11	12.42	9.79	9.19	12.51	-1.28	11.2	24.0	-12.77

Table 7-31. MIMO 320MHz BW 802.11be (UNII) Maximum Conducted Output Power – Punctured – LPI

2								Average	e Conducted Pow	er (dBm)							
<u> </u>	Band	Freg (MHz)	Channel	Puncture Size					Puncture Case					Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
N	Dallu	Freq [MH2]	Channel	Puncture Size		90			91			92		[dBi]	(dBm)	(dBm)	[dB]
÷					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
6	5	6145	39	20MHz	9.73	9.41	12.58	9.81	9.45	12.64	9.54	9.45	12.51	-0.61	12.0	30.0	-17.97
õ	7	6705	151	20MHz	9.98	9.51	12.76	9.96	9.47	12.73	9.98	9.57	12.79	-0.74	12.1	30.0	-17.95
Ī																	

Ň								Average	Conducted Pow	er (dBm)							
E N	Band	Freg [MHz]	Channel	Puncture Size					Puncture Case					Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
Ξ						94			95			1094		[dBi]	[dBm]	[dBm]	[dB]
≥					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
90	5	6185	47	40MHz	9.29	9.57	12.44	9.21	9.69	12.47	9.29	9.56	12.44	-0.61	11.9	30.0	-18.15
	7	6665	143	40MHz	9.78	9.71	12.76	9.51	9.67	12.60	9.32	9.68	12.51	-0.74	12.0	30.0	-17.98

Table 7-33. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power – Punctured – SP

Ň								Average	Conducted Pow	er (dBm)							
N	Band	Freg (MHz)	Channel	Puncture Size					Puncture Case					Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
Ξ						96			99			1099		[dBi]	[dBm]	[dBm]	[dB]
≥					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
99	5	6185	47	20MHz	9.13	9.58	12.37	9.16	9.63	12.41	9.24	9.63	12.45	-0.61	11.8	30.0	-18.16
	7	6665	143	20MHz	9.45	9.67	12.57	9.64	9.66	12.66	9.36	9.68	12.53	-0.74	11.9	30.0	-18.08
់រ	abl	e 7-34	4. MIN	10 160	MHz B	W 802	2.11be	(UNII)) Maxi	mum	Cond	ucted	Outpu	t Powe	r – Pun	ctured -	- SP

								Average	Conducted Pow	er (dBm)							
우	Band	Freg (MHz)	Channel	Puncture Size					Puncture Case					Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
≅≥	Dallu	rreq [winz]	Channel	Puncture Size		100			1100			11103		(dBi)	[dBm]	[dBm]	[dB]
Q M					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
33	5	6105	31	40MHz	9.73	9.07	12.42	9.52	9.07	12.31	9.71	9.02	12.39	-0.61	11.8	30.0	-18.19
	7	6585	127	40MHz	9.50	9.42	12.47	9.37	9.37	12.38	9.47	9.40	12.45	-0.74	11.7	24.0	-12.27

Table 7-35. MIMO 320MHz BW 802.11be (UNII) Maximum Conducted Output Power – Punctured – SP

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 of 400
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 49 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

								Average	Conducted Pow	er (dBm)							
臣	Band	Freg (MHz)	Channel	Puncture Size					Puncture Case					Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
Ī≊is	Danu	rreq [wnz]	Channel	Puncture Size		104			1104			10104		[dBi]	[dBm]	[dBm]	[dB]
BV					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
33	5	6105	31	80MHz	9.97	9.43	12.72	9.95	9.62	12.80	9.98	9.59	12.80	-0.61	12.2	30.0	-17.81
	7	6585	127	80MHz	9.30	9.21	12.27	9.45	9.19	12.33	9.38	9.23	12.32	-0.74	11.6	24.0	-12.41
-	Table 7.36 MIMO 320MHz BW 802 11be (UNII) Maximum Conducted Output Bower - Bunctured - SB																

Table 7-36. MIMO 320MHz BW 802.11be (UNII) Maximum Conducted Output Power – Punctured – SP

								Average	Conducted Pow	er (dBm)							
臣	Band	Freg (MHz)	Channel	Puncture Size					Puncture Case					Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
≅≥	Dallu	Freq [ivin2]	Channel	Puncture Size		105			1106			11106		(dBi)	(dBm)	[dBm]	[dB]
ō m					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
33	5	6105	31	120MHz	9.77	9.58	12.69	9.98	9.59	12.80	9.97	9.62	12.81	-0.61	12.2	30.0	-17.81
	7	6585	127	120MHz	9.50	9.35	12.44	9.53	9.36	12.46	9.48	9.33	12.42	-0.74	11.7	24.0	-12.28
															_		

Table 7-37. MIMO 320MHz BW 802.11be (UNII) Maximum Conducted Output Power – Punctured – SP

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 50 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 50 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

Sample MIMO Calculation:

Assuming at 5935MHz in 802.11a (20MHz BW) mode, the average conducted output power was measured to be 4.86 dBm for Antenna-1 and 4.52 dBm for Antenna-2.

Sample Directional Gain Calculation:

Per ANSI C63.10-2013 Section 14.4.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used.

Directional gain = 10 log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})² / N_{ANT}] dBi

Sample e.i.r.p. Calculation:

Assuming at 5935MHz in 802.11a (20MHz BW) mode, the average MIMO conducted power was calculated to be 7.70 dBm with directional gain of 6.44 dBi.

e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

7.70 dBm + -0.43 dBi = 7.27 dBm

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 54 of 400
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 51 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

7.4 Maximum Power Spectral Density

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013, was used to measure the power spectral density for 802.11a/ax.

In the 5.925-7.125 GHz bands, the maximum power spectral density must not exceed −1 dBm e.i.r.p. in any 1-megahertz band. For client devices, except for fixed client devices as defined in this subpart, operating under the control of a standard power access point in the 5.925-6.875 GHz band, the maximum power spectral density must not exceed 17 dBm/MHz e.i.r.p.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.2 ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation.
- 2. Span was set to encompass the entire emission bandwidth of the signal.
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes.
- 9. Trace was averaged over 100 sweeps.
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

All cases were investigated; a subset of the taken plots were included to represent relevant settings and measurements.

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage E2 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 52 of 168
© 2024 ELEMENT		·	V 9.0 02/01/2019

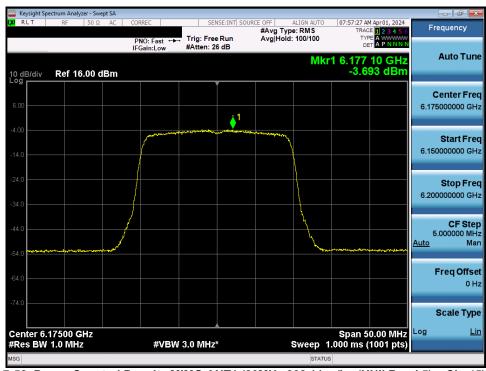
MIMO Power Spectral Density Measurements

	Frequency		802.11	Antenna-1	Antenna-2	Antenna-1	Antenna-2	Summed MIMO	Directional Gain	e.i.r.p Density	Max EIRP	Margin
	[MHz]	Channel	MODE	Power Density [dBm]	Power Density [dBm]	Gain [dBi]	Gain [dBi]	Power Density [dBm/MHz]	[dBi]	[dBm/MHz]	Density [dBm/MHz]	[dB]
	5935	2	а	-5.69	-6.13	-3.67	-3.58	-2.89	-0.61	-3.51	-1	-2.51
_	6175	45	а	-3.94	-3.45	-3.67	-3.58	-0.68	-0.61	-1.29	-1	-0.29
-	6415	93	а	-3.65	-4.30	-3.67	-3.58	-0.95	-0.61	-1.57	-1	-0.57
-	5935	2	be (20MHz)	-5.62	-7.01	-3.67	-3.58	-3.25	-0.61	-3.86	-1	-2.86
-	6175	45	be (20MHz)	-3.69	-3.59	-3.67	-3.58	-0.63	-0.61	-1.25	-1	-0.25
-	6415	93	be (20MHz)	-4.22	-2.86	-3.67	-3.58	-0.47	-0.61	-1.09	-1	-0.09
-	5695	3	be (40MHz)	-4.16	-3.76	-3.67	-3.58	-0.94	-0.61	-1.56	-1 -1	-0.56
Band 5	6165 6405	43 91	be (40MHz) be (40MHz)	-4.00 -4.41	-3.50 -3.57	-3.67 -3.67	-3.58 -3.58	-0.73 -0.96	-0.61 -0.61	-1.35 -1.57	-1 -1	-0.35 -0.57
Bar	5985	7	be (80MHz)	-4.41	-3.86	-3.67	-3.58	-1.17	-0.61	-1.78	-1	-0.37
-	6145	39	be (80MHz)	-3.47	-3.47	-3.67	-3.58	-0.46	-0.61	-1.08	-1	-0.08
-	6385	87	be (80MHz)	-4.08	-3.10	-3.67	-3.58	-0.55	-0.61	-1.16	-1	-0.16
F	6025	15	be (160MHz)	-6.13	-5.78	-3.67	-3.58	-2.94	-0.61	-3.56	-1	-2.56
-	6185	47	be (160MHz)	-5.61	-5.11	-3.67	-3.58	-2.34	-0.61	-2.95	-1	-1.95
	6345	79	be (160MHz)	-5.61	-5.55	-3.67	-3.58	-2.57	-0.61	-3.18	-1	-2.18
	6105	31	be (320MHz)	-7.24	-6.41	-3.67	-3.58	-3.79	-0.61	-4.41	-1	-3.41
	6265	63	be (320MHz)	-7.09	-6.13	-3.67	-3.58	-3.57	-0.61	-4.19	-1	-3.19
	6435	97	а	-4.21	-5.92	-3.67	-3.58	-1.97	-0.10	-2.07	-1	-1.07
	6475	105	а	-4.46	-5.72	-3.67	-3.58	-2.04	-0.10	-2.14	-1	-1.14
_	6515	113	а	-4.73	-5.97	-3.21	-3.02	-2.29	-0.10	-2.40	-1	-1.40
_	6435	97	be (20MHz)	-3.56	-5.22	-3.67	-3.58	-1.30	-0.10	-1.40	-1	-0.40
9 P	6475	105	be (20MHz)	-4.03	-3.90	-3.21	-3.02	-0.95	-0.10	-1.06	-1	-0.06
Band 6	6515	113	be (20MHz)	-4.30	-3.80	-3.21	-3.02	-1.03	-0.10	-1.14	-1	-0.14
	6445	99	be (40MHz)	-5.28	-7.15	-3.67	-3.58	-3.10	-0.10	-3.21	-1	-2.21
-	6485	107	be (40MHz)	-4.19	-4.32	-3.21	-3.02	-1.25	-0.10	-1.35	-1	-0.35
-	6525	115	be (40MHz)	-3.90	-4.39	-3.21	-3.02	-1.13	-0.10	-1.23	-1	-0.23
-	6465 6505	103 111	be (80MHz) be (160MHz)	-4.84 -4.86	-4.03 -5.30	-3.21 -3.21	-3.02 -3.02	-1.41 -2.06	-0.10 -0.10	-1.51 -2.17	-1 -1	-0.51 -1.17
Band 5/6/7	6425	95	be (320MHz)	-4.80	-5.44	-3.21	-3.02	-2.08	-0.10	-2.17	-1	-1.17
Dana 5/0/7	6535	117	a	-3.78	-4.02	-4.11	-3.40	-0.89	-0.74	-1.63	-1	-0.63
	6695	149	a	-3.89	-3.33	-4.11	-3.40	-0.59	-0.74	-1.33	-1	-0.33
	6875	185	a	-3.55	-3.54	-4.11	-3.40	-0.54	-0.74	-1.27	-1	-0.27
-	6535	117	be (20MHz)	-4.19	-3.74	-3.21	-3.02	-0.95	-0.74	-1.69	-1	-0.69
	6695	149	be (20MHz)	-3.58	-3.10	-4.11	-3.40	-0.32	-0.74	-1.06	-1	-0.06
	6875	185	be (20MHz)	-3.74	-3.54	-4.11	-3.40	-0.63	-0.74	-1.37	-1	-0.37
Band 7	6565	123	be (40MHz)	-3.90	-4.22	-3.21	-3.02	-1.05	-0.74	-1.78	-1	-0.78
Bai	6725	155	be (40MHz)	-3.14	-3.45	-4.11	-3.40	-0.28	-0.74	-1.02	-1	-0.02
_	6885	179	be (40MHz)	-3.53	-3.30	-4.28	-4.31	-0.40	-0.74	-1.14	-1	-0.14
-	6545	119	be (80MHz)	-3.48	-3.55	-4.11	-3.40	-0.50	-0.74	-1.24	-1	-0.24
-	6705	151	be (80MHz)	-3.42	-3.30	-4.11	-3.40	-0.35	-0.74	-1.09	-1	-0.09
-	6865	183	be (80MHz)	-3.51	-3.75	-4.11	-3.40	-0.62	-0.74	-1.36	-1	-0.36
	6665 6825	143	be (160MHz)	-5.51	-5.21	-4.11	-3.40 -3.40	-2.35	-0.74 -0.74	-3.09 -3.40	-1 -1	-2.09
Band 6/7	6585	175 127	be (160MHz) be (320MHz)	-5.97 -6.29	-5.40 -5.78	-4.11 -4.11	-3.40	-2.67 -3.02	-0.74	-3.40	-1 -1	-2.40 -2.75
Band 6/7 Band 7/8	6745	127	be (320MHz) be (320MHz)	-6.29	-5.78	-4.11	-3.40	-3.02	-0.74	-3.75	-1 -1	-2.75
build 1/6	6895	139	a a	-3.73	-3.52	-4.11	-4.31	-0.62	-1.28	-1.90	-1	-0.90
	6995	209	a	-4.08	-3.61	-4.28	-4.31	-0.83	-1.28	-2.11	-1	-1.11
	7115	233	a	-4.90	-3.70	-4.28	-4.31	-1.25	-1.28	-2.53	-1	-1.53
	6895	189	be (20MHz)	-3.53	-3.02	-4.28	-4.31	-0.26	-1.28	-1.54	-1	-0.54
	6995	209	be (20MHz)	-3.73	-2.96	-4.28	-4.31	-0.32	-1.28	-1.60	-1	-0.60
Band 8	7115	233	be (20MHz)	-4.19	-3.17	-4.28	-4.31	-0.64	-1.28	-1.92	-1	-0.92
Bar	6925	187	be (40MHz)	-3.35	-3.14	-4.28	-4.31	-0.23	-1.28	-1.52	-1	-0.52
	7005	211	be (40MHz)	-3.64	-3.22	-4.28	-4.31	-0.41	-1.28	-1.69	-1	-0.69
	7085	227	be (40MHz)	-3.56	-3.27	-4.28	-4.31	-0.40	-1.28	-1.69	-1	-0.69
	6945	199	be (80MHz)	-2.92	-2.99	-4.28	-4.31	0.05	-1.28	-1.23	-1	-0.23
	7025	215	be (80MHz)	-3.43	-3.22	-4.28	-4.31	-0.31	-1.28	-1.60	-1	-0.60
D 1-10	6985	207	be (160MHz)	-6.15	-6.09	-4.28	-4.31	-3.11	-1.28	-4.39	-1	-3.39
Band 7/8	6905	191	be (320MHz)	-7.18	-6.56	-4.28	-4.31	-3.85 al Density	-1.28	-5.14	-1	-4.14

Table 7-38. MIMO e.i.r.p. Conducted Power Spectral Density Measurements – LPI

FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	D		
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 53 of 168		
© 2024 ELEMENT	•	·	V 9.0 02/01/2019		

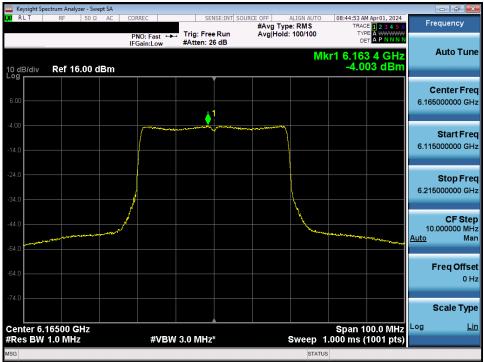
	Frequency [MHz]	Channel	802.11 MODE	Antenna-1 Power Density [dBm]	Antenna-2 Power Density [dBm]	Antenna-1 Gain [dBi]	Antenna-2 Gain [dBi]	Summed MIMO Power Density [dBm/MHz]	Directional Gain [dBi]	e.i.r.p Density [dBm/MHz]	Max EIRP Density [dBm/MHz]	Margin [dB]
	5935	2	а	3.91	3.33	-3.67	-3.58	6.64	-0.61	6.03	17	-10.97
	6175	45	а	3.86	3.64	-3.67	-3.58	6.76	-0.61	6.14	17	-10.86
	6415	93	а	4.10	4.24	-3.67	-3.58	7.18	-0.61	6.57	17	-10.43
	5935	2	be (20MHz)	5.04	3.81	-3.67	-3.58	7.48	-0.61	6.86	17	-10.14
	6175	45	be (20MHz)	5.44	4.92	-3.67	-3.58	8.20	-0.61	7.58	17	-9.42
	6415	93	be (20MHz)	5.29	6.06	-3.67	-3.58	8.70	-0.61	8.09	17	-8.91
	5695	3	be (40MHz)	2.61	1.76	-3.67	-3.58	5.21	-0.61	4.60	17	-12.40
ŝ	6165	43	be (40MHz)	2.72	2.14	-3.67	-3.58	5.45	-0.61	4.83	17	-12.17
Band 5	6405	91	be (40MHz)	2.93	3.45	-3.67	-3.58	6.21	-0.61	5.59	17	-11.41
ä	5985	7	be (80MHz)	-0.53	-1.19	-3.67	-3.58	2.16	-0.61	1.55	17	-15.45
	6145	39	be (80MHz)	-0.02	-0.81	-3.67	-3.58	2.62	-0.61	2.00	17	-15.00
	6385	87	be (80MHz)	-0.08	0.26	-3.67	-3.58	3.10	-0.61	2.49	17	-14.51
	6025	15	be (160MHz)	-2.63	-3.78	-3.67	-3.58	-0.16	-0.61	-0.77	17	-17.77
	6185	47	be (160MHz)	-3.03	-2.68	-3.67	-3.58	0.16	-0.61	-0.45	17	-17.45
	6345	79	be (160MHz)	-2.72	-3.08	-3.67	-3.58	0.12	-0.61	-0.50	17	-17.50
	6105	31	be (320MHz)	-2.81	-3.08	-3.67	-3.58	0.07	-0.61	-0.55	17	-17.55
	6265	63	be (320MHz)	-13.17	-12.56	-3.67	-3.58	-9.85	-0.61	-10.46	17	-27.46
	6535	117	а	3.48	3.80	-4.11	-3.40	6.65	-0.74	5.91	17	-11.09
	6695	149	а	4.39	4.48	-4.11	-3.40	7.44	-0.74	6.71	17	-10.29
	6875	185	а	3.74	4.12	-4.11	-3.40	6.95	-0.74	6.21	17	-10.79
	6535	117	be (20MHz)	4.61	5.43	-4.11	-3.40	8.05	-0.74	7.31	17	-9.69
	6695	149	be (20MHz)	5.55	6.34	-4.11	-3.40	8.97	-0.74	8.24	17	-8.76
~	6875	185	be (20MHz)	5.89	6.11	-4.11	-3.40	9.02	-0.74	8.28	17	-8.72
Band 7	6565	123	be (40MHz)	2.30	2.95	-4.11	-3.40	5.65	-0.74	4.91	17	-12.09
Ba	6725	155	be (40MHz)	3.10	3.27	-4.11	-3.40	6.20	-0.74	5.46	17	-11.54
	6885	179	be (40MHz)	2.91	2.93	-4.11	-3.40	5.93	-0.74	5.19	17	-11.81
	6545	119	be (80MHz)	-0.56	0.00	-4.11	-3.40	2.74	-0.74	2.00	17	-15.00
	6705	151	be (80MHz)	0.47	0.56	-4.11	-3.40	3.52	-0.74	2.79	17	-14.21
	6785	167	be (80MHz)	0.37	0.89	-4.11	-3.40	3.65	-0.74	2.91	17	-14.09
	6665	143	be (160MHz)	-2.76	-2.50	-4.11	-3.40	0.38	-0.74	-0.36	17	-17.36
	6825	175	be (160MHz)	-11.09	-12.27	-4.11	-3.40	-8.63	-0.74	-9.37	17	-26.37


Table 7-39. MIMO e.i.r.p. Conducted Power Spectral Density Measurements – SP

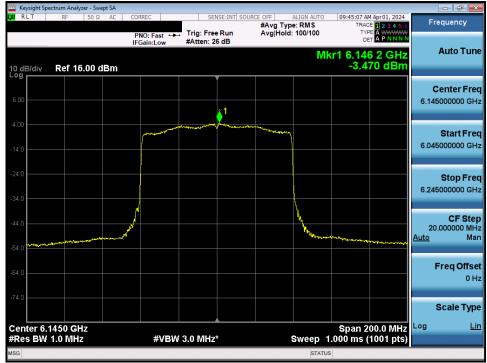
FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dega 54 of 169	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 54 of 168	
© 2024 ELEMENT			V 9.0 02/01/2019	

Keysight Spectrum Analyzer - Swept SA #Avg Type: RMS Avg|Hold: 100/100 Frequency TRACE 1 2 3 4 5 Trig: Free Run #Atten: 26 dB PNO: Fast • IFGain:Low TYPE DET A P N N Auto Tune Mkr1 6.170 10 GHz -3.940 dBm Ref 16.00 dBm 10 dB/div **Center Freq** 6.175000000 GHz 1 Start Freq 6.150000000 GHz Stop Freq 6.20000000 GHz CF Step 5.000000 MHz Man Auto **Freq Offset** 0 Hz Scale Type Span 50.00 MHz Log Lin Center 6.17500 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* Sweep 1.000 ms (1001 pts)

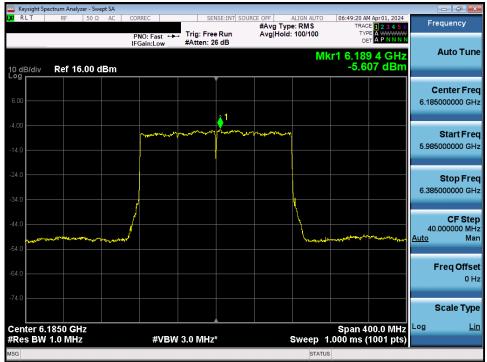
MIMO Antenna-1 Power Spectral Density Measurements - (UNII Band 5)



Plot 7-51. Power Spectral Density MIMO ANT1 (20MHz 802.11a (UNII Band 5) - Ch. 45) - LPI

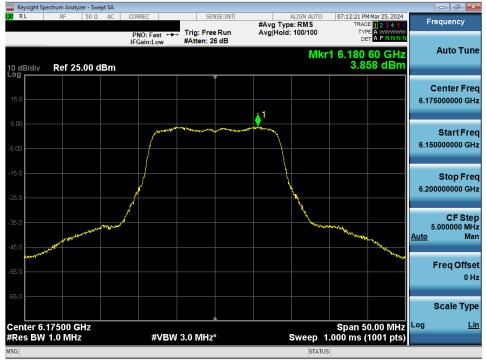

Plot 7-52. Power Spectral Density MIMO ANT1 (20MHz 802.11ax/be (UNII Band 5) - Ch. 45) - LPI

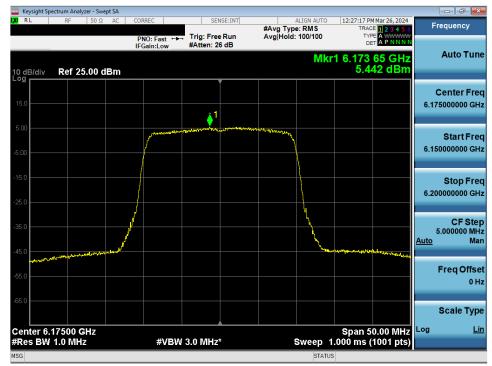
FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dere EE of 169		
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 55 of 168		
© 2024 ELEMENT	·	· · · · · · · · · · · · · · · · · · ·	V 9.0 02/01/2019		


Plot 7-53. Power Spectral Density MIMO ANT1 (40MHz 802.11ax/be (UNII Band 5) - Ch. 43) - LPI

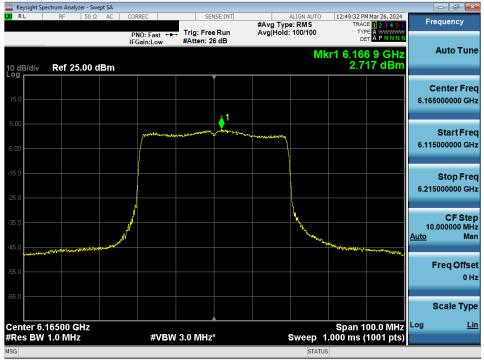

Plot 7-54. Power Spectral Density MIMO ANT1 (80MHz 802.11ax/be (UNII Band 5) - Ch. 39) - LPI

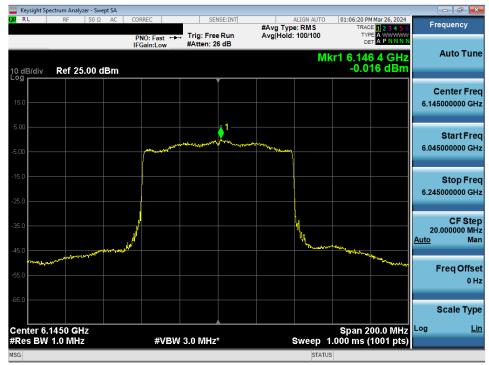
FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dere FC of 169	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 56 of 168	
© 2024 ELEMENT			V 9.0 02/01/2019	


Plot 7-55. Power Spectral Density MIMO ANT1 (160MHz 802.11ax/be (UNII Band 5) - Ch. 47) - LPI

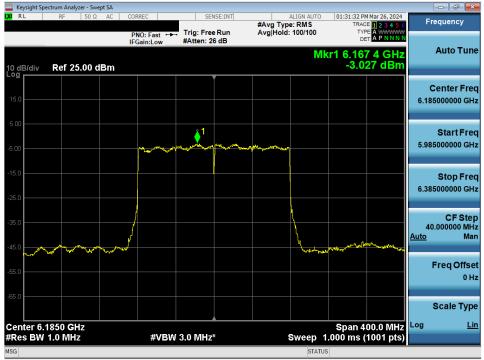

Plot 7-56. Power Spectral Density MIMO ANT1 (320MHz 802.11ax/be (UNII Band 5) - Ch.31) - LPI

FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dega 57 of 169		
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 57 of 168		
© 2024 ELEMENT			V 9.0 02/01/2019		


Plot 7-57. Power Spectral Density MIMO ANT1 (20MHz 802.11a (UNII Band 5) - Ch. 45) - SP


Plot 7-58. Power Spectral Density MIMO ANT1 (20MHz 802.11ax/be (UNII Band 5) - Ch. 45) - SP

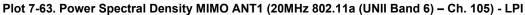
FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dege 59 of 169	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 58 of 168	
© 2024 ELEMENT	•		V 9.0 02/01/2019	

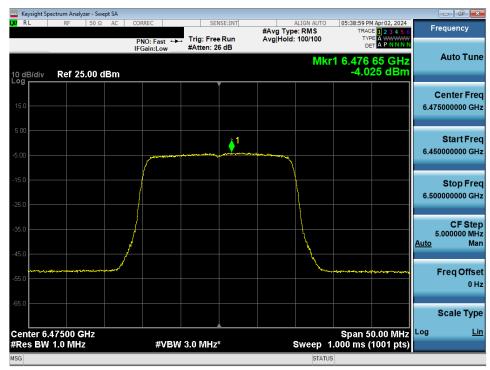

Plot 7-59. Power Spectral Density MIMO ANT1 (40MHz 802.11ax/be (UNII Band 5) - Ch. 43) - SP

Plot 7-60. Power Spectral Density MIMO ANT1 (80MHz 802.11ax/be (UNII Band 5) - Ch. 39) - SP

FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dege 50 of 169	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 59 of 168	
© 2024 ELEMENT	•		V 9.0 02/01/2019	

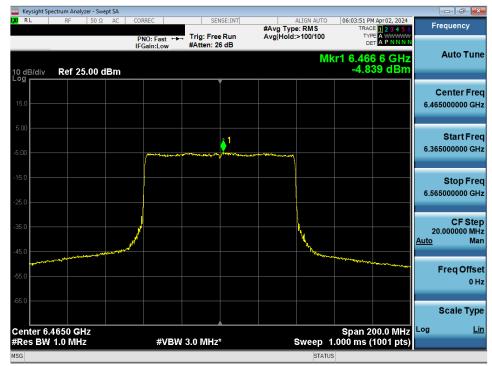
Plot 7-61. Power Spectral Density MIMO ANT1 (160MHz 802.11ax/be (UNII Band 5) - Ch. 47) - SP


Plot 7-62. Power Spectral Density MIMO ANT1 (320MHz 802.11ax/be (UNII Band 5) – Ch.31) - SP


FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 169	
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 60 of 168	
© 2024 ELEMENT	•		V 9.0 02/01/2019	

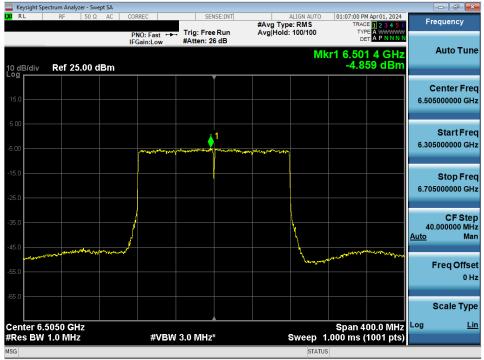
Keysight Spectrum Analyzer - Swept SA 02:45:57 PM Apr 26, 2024 ALIGN AUTO #Avg Type: RMS Avg|Hold: 100/100 Frequency Trig: Free Run #Atten: 26 dB DET A P N N PNO: Fast IFGain:Low Auto Tune Mkr1 6.471 25 GHz -4.459 dBm 0 dB/div Ref 25.00 dBm **Center Freq** 6.475000000 GHz Start Freq <mark>ۇ</mark>1 6.450000000 GHz Stop Freq 6.50000000 GHz CF Step 5.000000 MHz <u>Auto</u> Man **Freq Offset** 0 Hz Scale Type Span 50.00 MHz Log Sweep 1.000 ms (1001 pts) Center 6.47500 GHz #Res BW 1.0 MHz Lin #VBW 3.0 MHz*

MIMO Antenna-1 Power Spectral Density Measurements - (UNII Band 6)


Plot 7-64. Power Spectral Density MIMO ANT1 (20MHz 802.11ax/be (UNII Band 6) - Ch. 105) - LPI

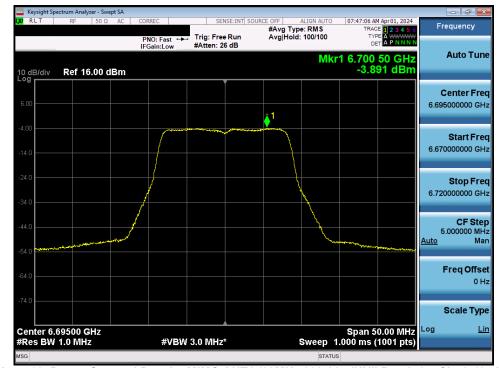
FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 61 of 169		
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 61 of 168		
© 2024 ELEMENT		·	V 9.0 02/01/2019		

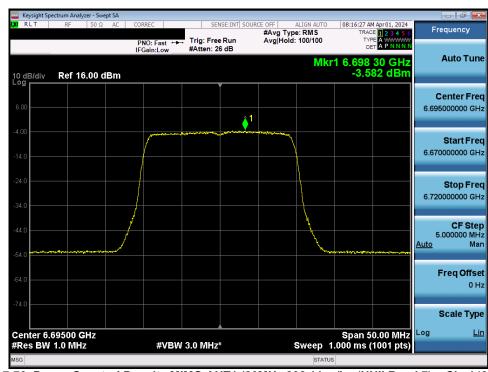
	ectrum Analyzer - Swe										×
LXI RL	RF 50 Ω	AC CC	ORREC	SEI	ISE:INT	#Avg Typ	ALIGN AUTO		M Apr 02, 2024	Frequency	
			PNO: Fast ↔ Gain:Low	Atten: 2		Avg Hold	: 100/100	TYI Di		Auto Tu	ne
10 dB/div Log	Ref 25.00 d	IBm						-4.1	92 dBm		
										Center Fr	
15.0										6.485000000 G	Hz
5.00					<u>^1</u>					Start Fr	ea
-5.00			1 million	ela harren da maralen ar anda	, and the second	manner				6.435000000 G	
-15.0										Stop Fr 6.535000000 G	
-25.0										6.535000000 G	HZ
-35.0							l			CF St	
		م م					N			10.000000 M <u>Auto</u> M	IHz Ian
-45.0	and the state of t	and and the second designed an					- Canada	and the second	man the second		
-55.0										Freq Offs 0	set Hz
-65.0											
00.01										Scale Ty	ре
	18500 GHz		43/D3		*		Ouve en a	Span 1	00.0 MHz	Log <u>l</u>	<u>Lin</u>
#Res BW	1.0 MHZ		#VBV	V 3.0 MHz			Sweep 1		1001 pts)		
							on the				


Plot 7-65. Power Spectral Density MIMO ANT1 (40MHz 802.11ax/be (UNII Band 6) - Ch. 107) - LPI

Plot 7-66. Power Spectral Density MIMO ANT1 (80MHz 802.11ax/be (UNII Band 6) - Ch. 103) - LPI

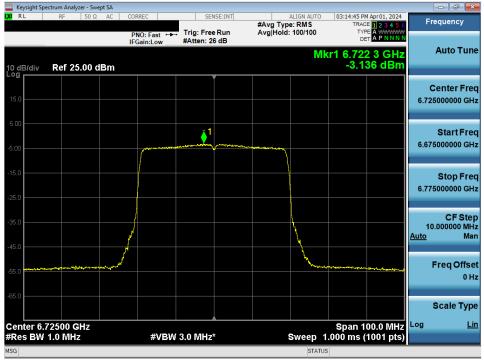
FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 62 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 62 of 168
© 2024 ELEMENT			V 9.0 02/01/2019


Plot 7-67. Power Spectral Density MIMO ANT1 (160MHz 802.11ax/be (UNII Band 6) - Ch. 111) - LPI

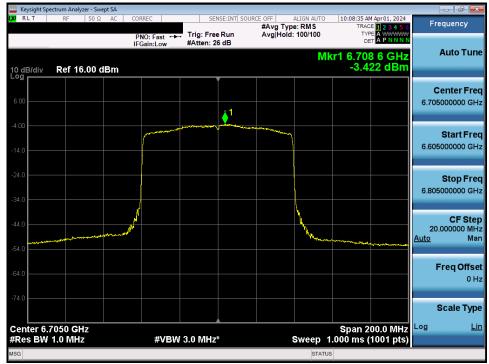

Plot 7-68. Power Spectral Density MIMO ANT1 (320MHz 802.11ax/be (UNII Band 5/6/7) - Ch. 95) - LPI

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 62 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 63 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

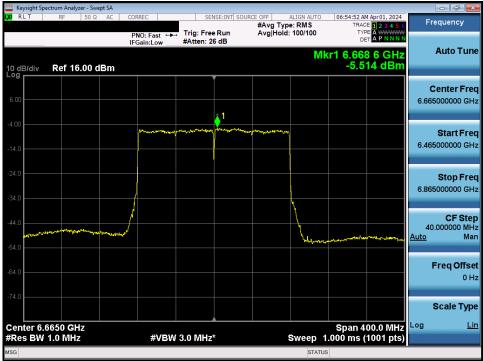
MIMO Antenna-1 Power Spectral Density Measurements - (UNII Band 7)



Plot 7-69. Power Spectral Density MIMO ANT1 (20MHz 802.11a (UNII Band 7) - Ch. 149) - LPI

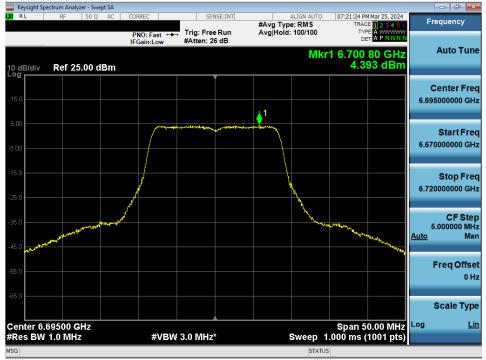

Plot 7-70. Power Spectral Density MIMO ANT1 (20MHz 802.11ax/be (UNII Band 7) - Ch. 149) - LPI

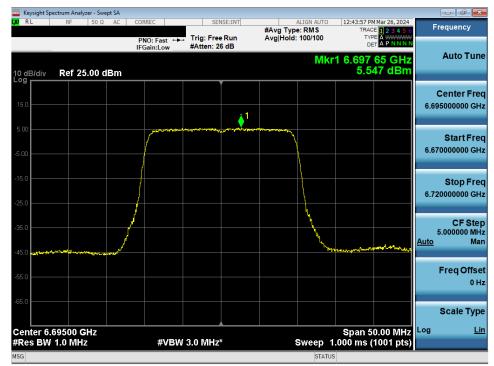
FCC ID: A3LNP960XMA		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 64 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 64 of 168
© 2024 ELEMENT	•	· · · · · · · · · · · · · · · · · · ·	V 9.0 02/01/2019


Plot 7-71. Power Spectral Density MIMO ANT1 (40MHz 802.11ax/be (UNII Band 7) - Ch. 155) - LPI

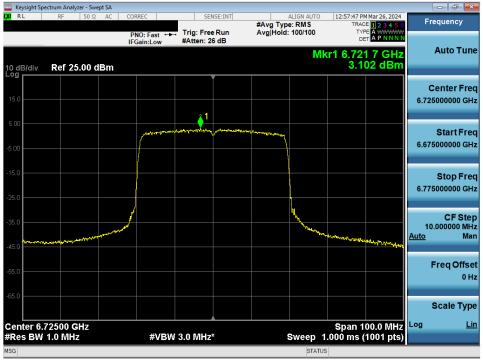

Plot 7-72. Power Spectral Density MIMO ANT1 (80MHz 802.11ax/be (UNII Band 7) - Ch. 151) - LPI

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dere CE of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 65 of 168
© 2024 ELEMENT			V 9.0 02/01/2019


Plot 7-73. Power Spectral Density MIMO ANT1 (160MHz 802.11ax/be (UNII Band 7) - Ch. 143) - LPI


Plot 7-74. Power Spectral Density MIMO ANT1 (320MHz 802.11ax/be (UNII Band 6/7) - Ch. 127) - LPI

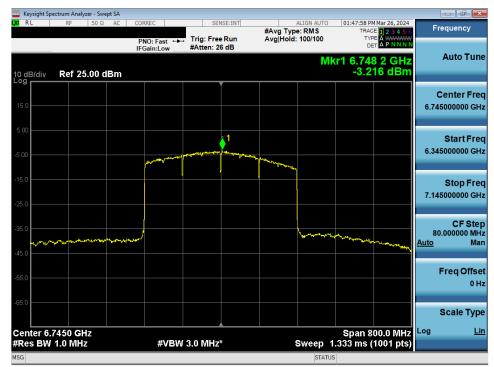
FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dere 66 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 66 of 168
© 2024 ELEMENT		·	V 9.0 02/01/2019


Plot 7-75. Power Spectral Density MIMO ANT1 (20MHz 802.11a (UNII Band 7) - Ch. 149) - SP


Plot 7-76. Power Spectral Density MIMO ANT1 (20MHz 802.11ax/be (UNII Band 7) - Ch. 149) - SP

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 67 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 67 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

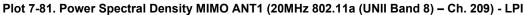
Plot 7-77. Power Spectral Density MIMO ANT1 (40MHz 802.11ax/be (UNII Band 7) - Ch. 155) - SP

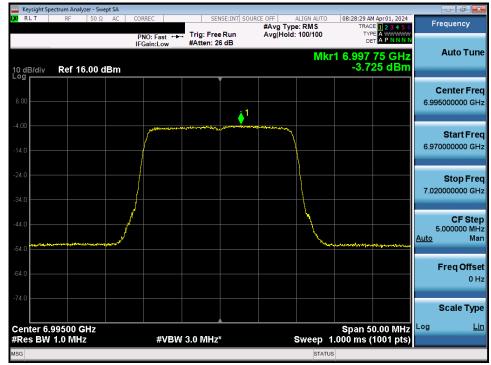

Plot 7-78. Power Spectral Density MIMO ANT1 (80MHz 802.11ax/be (UNII Band 7) - Ch. 151) - SP

FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dege 69 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 68 of 168
© 2024 ELEMENT	•		V 9.0 02/01/2019

	ctrum Analyzer - Swept SA					- # ×
LX/RL	RF 50 Ω AC	CORREC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	01:36:29 PM Mar 26, 2024 TRACE 1 2 3 4 5 6	Frequency
		PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 26 dB	Avg Hold: 100/100	TYPE A WWWW DET A P N N N N kr1 6.677 0 GHz	Auto Tune
10 dB/div Log	Ref 25.00 dBm				-2.761 dBm	
						Center Freq
15.0						6.665000000 GHz
5.00						
						Start Freq 6.465000000 GHz
-5.00		and the south the		mannelsensering		6.465000000 GHZ
-15.0						Stop Freq
						6.865000000 GHz
-25.0						
-35.0				\\		CF Step 40.000000 MHz
and the second	grand and a lot the back of a lot and	~~ [/]		\		<u>Auto</u> Man
-45.0				Marker Marker	www.haterary.	
-55.0						Freq Offset 0 Hz
						0112
-65.0						Scale Type
Center 6.6)650 GHz				Span 400.0 MHz	Log <u>Lin</u>
#Res BW		#VBW	3.0 MHz*	Sweep	1.000 ms (1001 pts)	
MSG				STATU	IS	

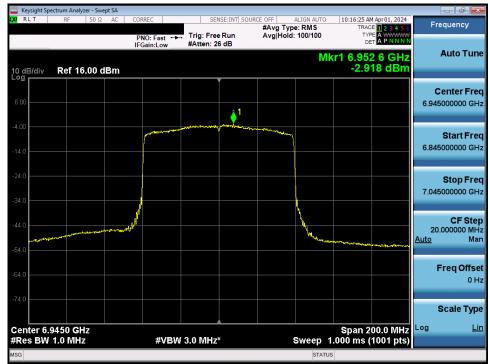
Plot 7-79. Power Spectral Density MIMO ANT1 (160MHz 802.11ax/be (UNII Band 7) - Ch. 143) - SP


Plot 7-80. Power Spectral Density MIMO ANT1 (320MHz 802.11ax/be (UNII Band 6/7) - Ch. 159) - SP


FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 60 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 69 of 168
© 2024 ELEMENT	•		V 9.0 02/01/2019

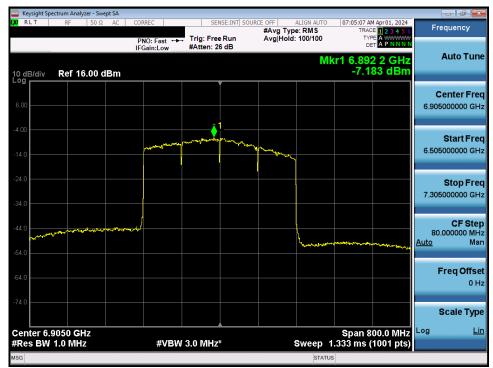
Keysight Spectrum Analyzer - Swept SA 05:31:15 PM Mar 29, 2024 TRACE 1 2 3 4 5 (ALIGN AUTO #Avg Type: RMS Avg|Hold: 100/100 SENSE:INT Frequency Trig: Free Run #Atten: 26 dB TYPE PNO: Fast IFGain:Low DET A P N N Auto Tune Mkr1 6.991 05 GHz -4.079 dBm 0 dB/div Ref 25.00 dBm **Center Fred** 6.995000000 GHz Start Freq <mark>≜</mark>1 6.970000000 GHz Stop Freq 7.02000000 GHz CF Step 5.000000 MHz Man Auto **Freq Offset** 0 Hz Scale Type Center 6.99500 GHz #Res BW 1.0 MHz Span 50.00 MHz Sweep 1.000 ms (1001 pts) Lin #VBW 3.0 MHz*

MIMO Antenna-1 Power Spectral Density Measurements - (UNII Band 8)


Plot 7-82. Power Spectral Density MIMO ANT1 (20MHz 802.11ax/be (UNII Band 8) - Ch. 209) - LPI

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 70 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 70 of 168
© 2024 ELEMENT		·	V 9.0 02/01/2019

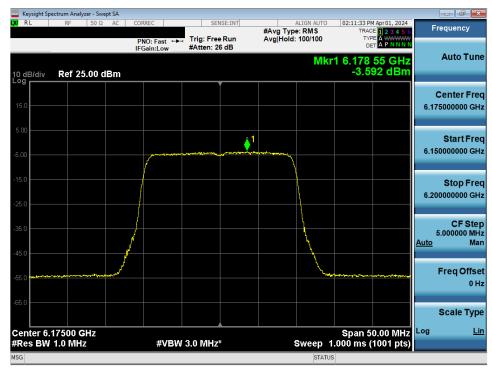
Plot 7-83. Power Spectral Density MIMO ANT1 (40MHz 802.11ax/be (UNII Band 8) - Ch. 211) - LPI


Plot 7-84. Power Spectral Density MIMO ANT1 (80MHz 802.11ax/be (UNII Band 8) - Ch. 199) - LPI

FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 71 of 160
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 71 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

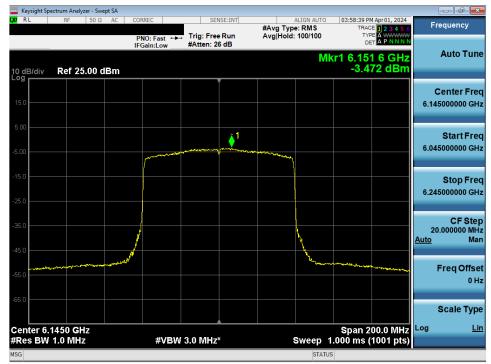
Plot 7-85. Power Spectral Density MIMO ANT1 (160MHz 802.11ax/be (UNII Band 8) - Ch. 207) - LPI

Plot 7-86. Power Spectral Density MIMO ANT1 (320MHz 802.11ax/be (UNII Band 7/8) - Ch. 191) - LPI


FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 72 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 72 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

Keysight Spectrum Analyzer - Swept SA ALIGN AUTO #Avg Type: RMS Avg|Hold: 100/100 01:52:26 PM Apr 01, 2024 TRACE 1 2 3 4 5 6 SENSE:INT Frequency Trig: Free Run #Atten: 26 dB TYPE PNO: Fast IFGain:Low DET A WWW Auto Tune Mkr1 6.181 80 GHz -3.452 dBm 0 dB/div Ref 25.00 dBm Center Fred 6.175000000 GHz Start Freq <mark>1</mark> 6.150000000 GHz Stop Freq 6.200000000 GHz CF Step 5.000000 MHz Man Auto **Freq Offset** 0 Hz Scale Type Center 6.17500 GHz #Res BW 1.0 MHz Span 50.00 MHz Sweep 1.000 ms (1001 pts) Lin #VBW 3.0 MHz*

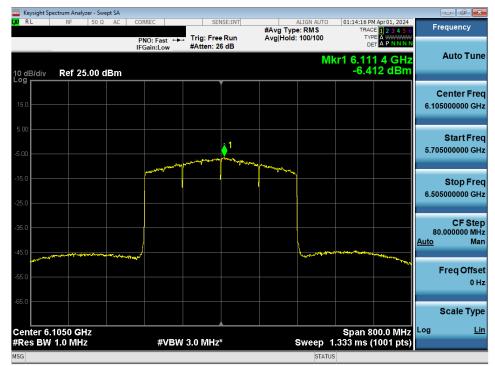
MIMO Antenna-2 Power Spectral Density Measurements - (UNII Band 5)


Plot 7-88. Power Spectral Density MIMO ANT2 (20MHz 802.11ax/be (UNII Band 5) - Ch. 45) - LPI

FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Daga 72 of 169		
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 73 of 168		
© 2024 ELEMENT		•	V 9.0 02/01/2019		

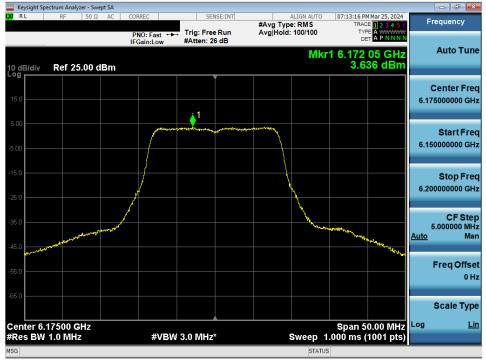
					- 8 💌
KL RF 50Ω AC	CORREC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	02:59:05 PM Apr 01, 2024 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 25.00 dBm	PNO: Fast IFGain:Low	Trig: Free Run #Atten: 26 dB	Avg Hold: 100/100	TYPE A WWWW DET A P NNN N (r1 6.170 0 GHz -3.500 dBm	Auto Tune
15.0					Center Freq 6.165000000 GHz
-5.00		<u>1</u>			Start Freq 6.115000000 GHz
-15.0					Stop Freq 6.215000000 GHz
-35.0			- V		CF Step 10.000000 MHz <u>Auto</u> Man
-55.0					Freq Offset 0 Hz
Center 6.16500 GHz	#) (D) #			Span 100.0 MHz	Scale Type Log <u>Lin</u>
#Res BW 1.0 MHz	#VBW	3.0 MHz*	Sweep 1	.000 ms (1001 pts)	

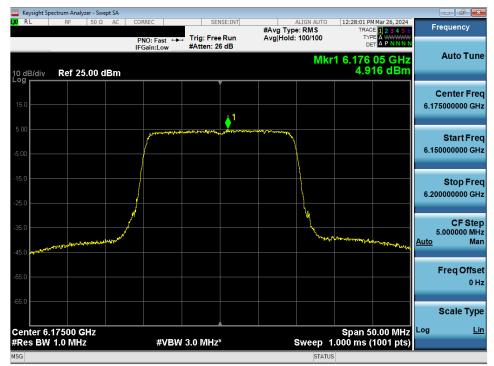
Plot 7-89. Power Spectral Density MIMO ANT2 (40MHz 802.11ax/be (UNII Band 5) - Ch. 43) - LPI


Plot 7-90. Power Spectral Density MIMO ANT2 (80MHz 802.11ax/be (UNII Band 5) - Ch. 39) - LPI

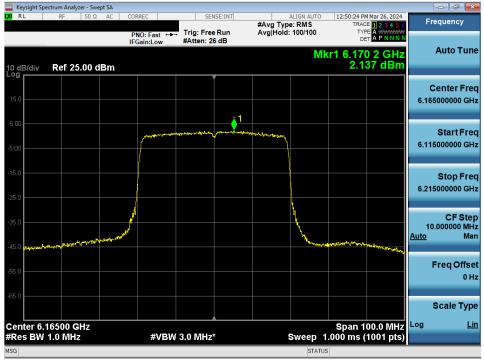
FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dega 74 of 169		
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 74 of 168		
© 2024 ELEMENT	•		V 9.0 02/01/2019		

X RL PF S0 Ω AC CORREC PNO: Far IFGain:Lo 10 dB/div Ref 25.00 dBm - <th></th> <th>Avg Hold:</th> <th>ERMS TR 100/100 T Mkr1 6.1</th> <th>PM Apr 01, 2024 ACE 12: 3: 4: 5: 6 YPE A WHAT WHAT DET A P NNN N 90 2 GHz 106 dBm</th> <th>Frequency Auto Tune Center Freq 6.185000000 GHz Start Freq 5.985000000 GHz</th>		Avg Hold:	ERMS TR 100/100 T Mkr1 6.1	PM Apr 01, 2024 ACE 12: 3: 4: 5: 6 YPE A WHAT WHAT DET A P NNN N 90 2 GHz 106 dBm	Frequency Auto Tune Center Freq 6.185000000 GHz Start Freq 5.985000000 GHz
10 dB/div Ref 25.00 dBm 15.0 5.00 -5.00 -5.00 -5.			Mkr1 6.1	DET A P NNNN 90 2 GHz	Center Freq 6.18500000 GHz Start Freq
15.0 5.00 -5.00 -5.0 -5.0 -35.0 -45.0 -45.0					6.185000000 GHz Start Freq
-5.00 -15.0 -25.0 -35.0 -45.0 -45.0	<u></u>	and the second			-
-25.0 -35.0 -45.0					
-45.0					Stop Freq 6.38500000 GHz
					CF Step 40.000000 MHz Auto Man
			Guyunan		Freq Offset 0 Hz
-65.0 Center 6.1850 GHz			Span	400.0 MHz	Scale Type .og <u>Lin</u>
#Res BW 1.0 MHz #	VBW 3.0 MHz*		Sweep 1.000 ms		


Plot 7-91. Power Spectral Density MIMO ANT2 (160MHz 802.11ax/be (UNII Band 5) - Ch. 47) - LPI


Plot 7-92. Power Spectral Density MIMO ANT2 (320MHz 802.11ax/be (UNII Band 5) - Ch.31) - LPI

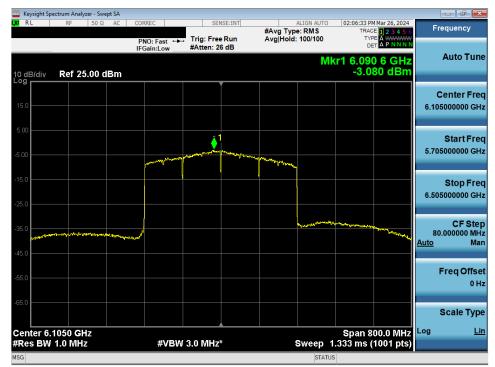
FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 75 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 75 of 168
© 2024 ELEMENT			V 9.0 02/01/2019


Plot 7-93. Power Spectral Density MIMO ANT2 (20MHz 802.11a (UNII Band 5) - Ch. 45) - SP

Plot 7-94. Power Spectral Density MIMO ANT2 (20MHz 802.11ax/be (UNII Band 5) - Ch. 45) - SP

FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dego 76 of 169		
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 76 of 168		
© 2024 ELEMENT	<u>.</u>	·	V 9.0 02/01/2019		

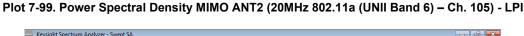
Plot 7-95. Power Spectral Density MIMO ANT2 (40MHz 802.11ax/be (UNII Band 5) - Ch. 43) - SP

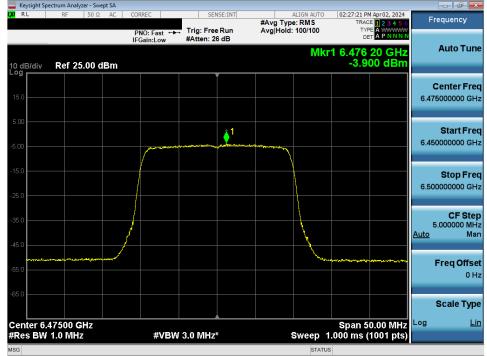

Plot 7-96. Power Spectral Density MIMO ANT2 (80MHz 802.11ax/be (UNII Band 5) - Ch. 39) - SP

FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dega 77 of 169		
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 77 of 168		
© 2024 ELEMENT		·	V 9.0 02/01/2019		

	ectrum Analyzer - Swe										×
L <mark>XI</mark> RL	RF 50 Ω		RREC		ISE:INT	#Avg Typ		TRAC	1 Mar 26, 2024 E 1 2 3 4 5 6 E A WWWWW	Frequency	
10 dB/div	Ref 25.00 d	IF	NO: Fast ↔ Gain:Low	. Trig: Free #Atten: 20		AvgiHold		r1 6.18	4 GHz 76 dBm	Auto T	une
15.0										Center F 6.185000000	
-5.00			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,	1 7777-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	aly proven in the second				Start F 5.985000000	
-15.0										Stop F 6.385000000	
-35.0	and the second	Annendene					la series and the series of th	-	and a start and	CF S 40.000000 <u>Auto</u>	
-55.0										FreqOf	fset 0 Hz
	1850 GHz							Span 4	00.0 MHz	Scale T Log	ype <u>Lin</u>
#Res BW	1.0 MHz		#VBW	/ 3.0 MHz*	*		0		1001 pts)		
MSG							STATUS				

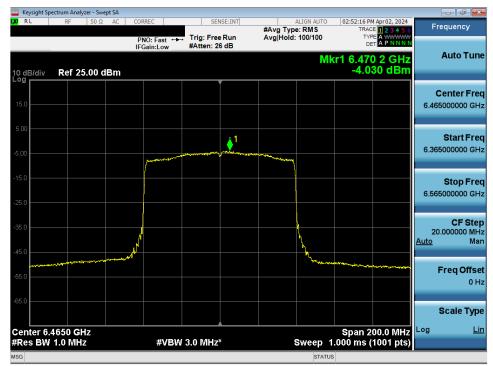
Plot 7-97. Power Spectral Density MIMO ANT2 (160MHz 802.11ax/be (UNII Band 5) - Ch. 47) - SP


Plot 7-98. Power Spectral Density MIMO ANT2 (320MHz 802.11ax/be (UNII Band 5) - Ch.31) - SP


FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 79 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 78 of 168
© 2024 ELEMENT			V 9.0 02/01/2019

- 6 × Keysight Spectrum Analyzer - Swept SA 11:34:45 AM Apr 26, 2024 TRACE 1 2 3 4 5 (TYPE A WWWWW ALIGN AUTO #Avg Type: RMS Avg|Hold: 100/100 Frequency Trig: Free Run #Atten: 26 dB PNO: Fast ↔ IFGain:Low DET A P N Auto Tune Mkr1 6.470 75 GHz -5.724 dBm Ref 25.00 dBm I0 dB/div **Center Freq** 6.475000000 GHz Start Freq ĵ1 6.450000000 GHz Stop Freq 6.50000000 GHz CF Step 5.000000 MHz Man Auto **Freq Offset** 0 Hz Scale Type Center 6.47500 GHz #Res BW 1.0 MHz Span 50.00 MHz Sweep 1.000 ms (1001 pts) Lin #VBW 3.0 MHz*

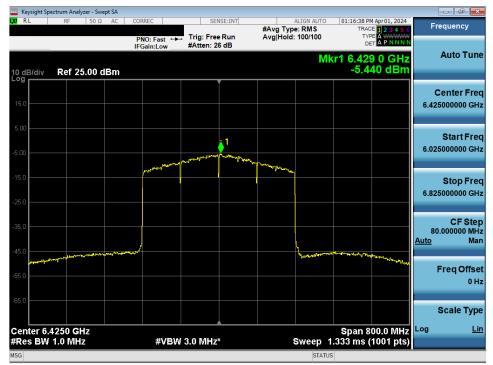
MIMO Antenna-2 Power Spectral Density Measurements - (UNII Band 6)


Plot 7-100. Power Spectral Density MIMO ANT2 (20MHz 802.11ax/be (UNII Band 6) - Ch. 105) - LPI

FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dega 70 of 169		
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 79 of 168		
© 2024 ELEMENT		·	V 9.0 02/01/2019		

	ectrum Analyzer - Swep	ot SA								- ē 🗙
L <mark>XI</mark> RL	RF 50 Ω		NO: Fast		Run	#Avg Typ Avg Hold:		TRAC	M Apr 02, 2024 E 1 2 3 4 5 6 E A WWWWW	Frequency
10 dB/div	Ref 25.00 dl	IF	Gain:Low	#Atten: 2				or 7 6.48	6 6 GHz 22 dBm	Auto Tune
15.0										Center Freq 6.485000000 GHz
-5.00				a constant and a start	ب 1					Start Freq 6.435000000 GHz
-15.0										Stop Freq 6.535000000 GHz
-35.0		J					L. L			CF Step 10.000000 MHz <u>Auto</u> Man
-55.0	Logo Lindergian Anno Marca an Ingelegation	an a					- North Andrews	nendellen nursterner	ul 1	Freq Offset 0 Hz
-65.0 Center 6.4 #Res BW	48500 GHz 1.0 MHz		#VBV	V 3.0 MHz	,		Sweep	Span 1	00.0 MHz 1001 pts)	Scale Type Log <u>Lin</u>
MSG							STATU			


Plot 7-101. Power Spectral Density MIMO ANT2 (40MHz 802.11ax/be (UNII Band 6) - Ch. 107) - LPI


Plot 7-102. Power Spectral Density MIMO ANT2 (80MHz 802.11ax/be (UNII Band 6) - Ch. 103) - LPI

FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 90 of 169
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 80 of 168
© 2024 ELEMENT	•		V 9.0 02/01/2019

Plot 7-103. Power Spectral Density MIMO ANT2 (160MHz 802.11ax/be (UNII Band 6) - Ch. 111) - LPI

Plot 7-104. Power Spectral Density MIMO ANT2 (320MHz 802.11ax/be (UNII Band 5/6/7) - Ch. 95) - LPI

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 81 of 168
1M2401250007-07-R2.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	
© 2024 ELEMENT			V 9.0 02/01/2019